aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/bedrock/image
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/bedrock/image')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/bedrock/image/amazon_nova_canvas_transformation.py106
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/bedrock/image/amazon_stability1_transformation.py104
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/bedrock/image/amazon_stability3_transformation.py100
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/bedrock/image/cost_calculator.py41
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/bedrock/image/image_handler.py314
5 files changed, 665 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/bedrock/image/amazon_nova_canvas_transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/bedrock/image/amazon_nova_canvas_transformation.py
new file mode 100644
index 00000000..de46edb9
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/bedrock/image/amazon_nova_canvas_transformation.py
@@ -0,0 +1,106 @@
+import types
+from typing import List, Optional
+
+from openai.types.image import Image
+
+from litellm.types.llms.bedrock import (
+ AmazonNovaCanvasTextToImageRequest, AmazonNovaCanvasTextToImageResponse,
+ AmazonNovaCanvasTextToImageParams, AmazonNovaCanvasRequestBase,
+)
+from litellm.types.utils import ImageResponse
+
+
+class AmazonNovaCanvasConfig:
+ """
+ Reference: https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/model-catalog/serverless/amazon.nova-canvas-v1:0
+
+ """
+
+ @classmethod
+ def get_config(cls):
+ return {
+ k: v
+ for k, v in cls.__dict__.items()
+ if not k.startswith("__")
+ and not isinstance(
+ v,
+ (
+ types.FunctionType,
+ types.BuiltinFunctionType,
+ classmethod,
+ staticmethod,
+ ),
+ )
+ and v is not None
+ }
+
+ @classmethod
+ def get_supported_openai_params(cls, model: Optional[str] = None) -> List:
+ """
+ """
+ return ["n", "size", "quality"]
+
+ @classmethod
+ def _is_nova_model(cls, model: Optional[str] = None) -> bool:
+ """
+ Returns True if the model is a Nova Canvas model
+
+ Nova models follow this pattern:
+
+ """
+ if model:
+ if "amazon.nova-canvas" in model:
+ return True
+ return False
+
+ @classmethod
+ def transform_request_body(
+ cls, text: str, optional_params: dict
+ ) -> AmazonNovaCanvasRequestBase:
+ """
+ Transform the request body for Amazon Nova Canvas model
+ """
+ task_type = optional_params.pop("taskType", "TEXT_IMAGE")
+ image_generation_config = optional_params.pop("imageGenerationConfig", {})
+ image_generation_config = {**image_generation_config, **optional_params}
+ if task_type == "TEXT_IMAGE":
+ text_to_image_params = image_generation_config.pop("textToImageParams", {})
+ text_to_image_params = {"text" :text, **text_to_image_params}
+ text_to_image_params = AmazonNovaCanvasTextToImageParams(**text_to_image_params)
+ return AmazonNovaCanvasTextToImageRequest(textToImageParams=text_to_image_params, taskType=task_type,
+ imageGenerationConfig=image_generation_config)
+ raise NotImplementedError(f"Task type {task_type} is not supported")
+
+ @classmethod
+ def map_openai_params(cls, non_default_params: dict, optional_params: dict) -> dict:
+ """
+ Map the OpenAI params to the Bedrock params
+ """
+ _size = non_default_params.get("size")
+ if _size is not None:
+ width, height = _size.split("x")
+ optional_params["width"], optional_params["height"] = int(width), int(height)
+ if non_default_params.get("n") is not None:
+ optional_params["numberOfImages"] = non_default_params.get("n")
+ if non_default_params.get("quality") is not None:
+ if non_default_params.get("quality") in ("hd", "premium"):
+ optional_params["quality"] = "premium"
+ if non_default_params.get("quality") == "standard":
+ optional_params["quality"] = "standard"
+ return optional_params
+
+ @classmethod
+ def transform_response_dict_to_openai_response(
+ cls, model_response: ImageResponse, response_dict: dict
+ ) -> ImageResponse:
+ """
+ Transform the response dict to the OpenAI response
+ """
+
+ nova_response = AmazonNovaCanvasTextToImageResponse(**response_dict)
+ openai_images: List[Image] = []
+ for _img in nova_response.get("images", []):
+ openai_images.append(Image(b64_json=_img))
+
+ model_response.data = openai_images
+ return model_response
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/bedrock/image/amazon_stability1_transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/bedrock/image/amazon_stability1_transformation.py
new file mode 100644
index 00000000..698ecca9
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/bedrock/image/amazon_stability1_transformation.py
@@ -0,0 +1,104 @@
+import types
+from typing import List, Optional
+
+from openai.types.image import Image
+
+from litellm.types.utils import ImageResponse
+
+
+class AmazonStabilityConfig:
+ """
+ Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=stability.stable-diffusion-xl-v0
+
+ Supported Params for the Amazon / Stable Diffusion models:
+
+ - `cfg_scale` (integer): Default `7`. Between [ 0 .. 35 ]. How strictly the diffusion process adheres to the prompt text (higher values keep your image closer to your prompt)
+
+ - `seed` (float): Default: `0`. Between [ 0 .. 4294967295 ]. Random noise seed (omit this option or use 0 for a random seed)
+
+ - `steps` (array of strings): Default `30`. Between [ 10 .. 50 ]. Number of diffusion steps to run.
+
+ - `width` (integer): Default: `512`. multiple of 64 >= 128. Width of the image to generate, in pixels, in an increment divible by 64.
+ Engine-specific dimension validation:
+
+ - SDXL Beta: must be between 128x128 and 512x896 (or 896x512); only one dimension can be greater than 512.
+ - SDXL v0.9: must be one of 1024x1024, 1152x896, 1216x832, 1344x768, 1536x640, 640x1536, 768x1344, 832x1216, or 896x1152
+ - SDXL v1.0: same as SDXL v0.9
+ - SD v1.6: must be between 320x320 and 1536x1536
+
+ - `height` (integer): Default: `512`. multiple of 64 >= 128. Height of the image to generate, in pixels, in an increment divible by 64.
+ Engine-specific dimension validation:
+
+ - SDXL Beta: must be between 128x128 and 512x896 (or 896x512); only one dimension can be greater than 512.
+ - SDXL v0.9: must be one of 1024x1024, 1152x896, 1216x832, 1344x768, 1536x640, 640x1536, 768x1344, 832x1216, or 896x1152
+ - SDXL v1.0: same as SDXL v0.9
+ - SD v1.6: must be between 320x320 and 1536x1536
+ """
+
+ cfg_scale: Optional[int] = None
+ seed: Optional[float] = None
+ steps: Optional[List[str]] = None
+ width: Optional[int] = None
+ height: Optional[int] = None
+
+ def __init__(
+ self,
+ cfg_scale: Optional[int] = None,
+ seed: Optional[float] = None,
+ steps: Optional[List[str]] = None,
+ width: Optional[int] = None,
+ height: Optional[int] = None,
+ ) -> None:
+ locals_ = locals().copy()
+ for key, value in locals_.items():
+ if key != "self" and value is not None:
+ setattr(self.__class__, key, value)
+
+ @classmethod
+ def get_config(cls):
+ return {
+ k: v
+ for k, v in cls.__dict__.items()
+ if not k.startswith("__")
+ and not isinstance(
+ v,
+ (
+ types.FunctionType,
+ types.BuiltinFunctionType,
+ classmethod,
+ staticmethod,
+ ),
+ )
+ and v is not None
+ }
+
+ @classmethod
+ def get_supported_openai_params(cls, model: Optional[str] = None) -> List:
+ return ["size"]
+
+ @classmethod
+ def map_openai_params(
+ cls,
+ non_default_params: dict,
+ optional_params: dict,
+ ):
+ _size = non_default_params.get("size")
+ if _size is not None:
+ width, height = _size.split("x")
+ optional_params["width"] = int(width)
+ optional_params["height"] = int(height)
+
+ return optional_params
+
+ @classmethod
+ def transform_response_dict_to_openai_response(
+ cls, model_response: ImageResponse, response_dict: dict
+ ) -> ImageResponse:
+ image_list: List[Image] = []
+ for artifact in response_dict["artifacts"]:
+ _image = Image(b64_json=artifact["base64"])
+ image_list.append(_image)
+
+ model_response.data = image_list
+
+ return model_response
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/bedrock/image/amazon_stability3_transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/bedrock/image/amazon_stability3_transformation.py
new file mode 100644
index 00000000..2c90b3a1
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/bedrock/image/amazon_stability3_transformation.py
@@ -0,0 +1,100 @@
+import types
+from typing import List, Optional
+
+from openai.types.image import Image
+
+from litellm.types.llms.bedrock import (
+ AmazonStability3TextToImageRequest,
+ AmazonStability3TextToImageResponse,
+)
+from litellm.types.utils import ImageResponse
+
+
+class AmazonStability3Config:
+ """
+ Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=stability.stable-diffusion-xl-v0
+
+ Stability API Ref: https://platform.stability.ai/docs/api-reference#tag/Generate/paths/~1v2beta~1stable-image~1generate~1sd3/post
+ """
+
+ @classmethod
+ def get_config(cls):
+ return {
+ k: v
+ for k, v in cls.__dict__.items()
+ if not k.startswith("__")
+ and not isinstance(
+ v,
+ (
+ types.FunctionType,
+ types.BuiltinFunctionType,
+ classmethod,
+ staticmethod,
+ ),
+ )
+ and v is not None
+ }
+
+ @classmethod
+ def get_supported_openai_params(cls, model: Optional[str] = None) -> List:
+ """
+ No additional OpenAI params are mapped for stability 3
+ """
+ return []
+
+ @classmethod
+ def _is_stability_3_model(cls, model: Optional[str] = None) -> bool:
+ """
+ Returns True if the model is a Stability 3 model
+
+ Stability 3 models follow this pattern:
+ sd3-large
+ sd3-large-turbo
+ sd3-medium
+ sd3.5-large
+ sd3.5-large-turbo
+
+ Stability ultra models
+ stable-image-ultra-v1
+ """
+ if model:
+ if "sd3" in model or "sd3.5" in model:
+ return True
+ if "stable-image-ultra-v1" in model:
+ return True
+ return False
+
+ @classmethod
+ def transform_request_body(
+ cls, prompt: str, optional_params: dict
+ ) -> AmazonStability3TextToImageRequest:
+ """
+ Transform the request body for the Stability 3 models
+ """
+ data = AmazonStability3TextToImageRequest(prompt=prompt, **optional_params)
+ return data
+
+ @classmethod
+ def map_openai_params(cls, non_default_params: dict, optional_params: dict) -> dict:
+ """
+ Map the OpenAI params to the Bedrock params
+
+ No OpenAI params are mapped for Stability 3, so directly return the optional_params
+ """
+ return optional_params
+
+ @classmethod
+ def transform_response_dict_to_openai_response(
+ cls, model_response: ImageResponse, response_dict: dict
+ ) -> ImageResponse:
+ """
+ Transform the response dict to the OpenAI response
+ """
+
+ stability_3_response = AmazonStability3TextToImageResponse(**response_dict)
+ openai_images: List[Image] = []
+ for _img in stability_3_response.get("images", []):
+ openai_images.append(Image(b64_json=_img))
+
+ model_response.data = openai_images
+ return model_response
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/bedrock/image/cost_calculator.py b/.venv/lib/python3.12/site-packages/litellm/llms/bedrock/image/cost_calculator.py
new file mode 100644
index 00000000..0a20b44c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/bedrock/image/cost_calculator.py
@@ -0,0 +1,41 @@
+from typing import Optional
+
+import litellm
+from litellm.types.utils import ImageResponse
+
+
+def cost_calculator(
+ model: str,
+ image_response: ImageResponse,
+ size: Optional[str] = None,
+ optional_params: Optional[dict] = None,
+) -> float:
+ """
+ Bedrock image generation cost calculator
+
+ Handles both Stability 1 and Stability 3 models
+ """
+ if litellm.AmazonStability3Config()._is_stability_3_model(model=model):
+ pass
+ else:
+ # Stability 1 models
+ optional_params = optional_params or {}
+
+ # see model_prices_and_context_window.json for details on how steps is used
+ # Reference pricing by steps for stability 1: https://aws.amazon.com/bedrock/pricing/
+ _steps = optional_params.get("steps", 50)
+ steps = "max-steps" if _steps > 50 else "50-steps"
+
+ # size is stored in model_prices_and_context_window.json as 1024-x-1024
+ # current size has 1024x1024
+ size = size or "1024-x-1024"
+ model = f"{size}/{steps}/{model}"
+
+ _model_info = litellm.get_model_info(
+ model=model,
+ custom_llm_provider="bedrock",
+ )
+
+ output_cost_per_image: float = _model_info.get("output_cost_per_image") or 0.0
+ num_images: int = len(image_response.data)
+ return output_cost_per_image * num_images
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/bedrock/image/image_handler.py b/.venv/lib/python3.12/site-packages/litellm/llms/bedrock/image/image_handler.py
new file mode 100644
index 00000000..8f7762e5
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/bedrock/image/image_handler.py
@@ -0,0 +1,314 @@
+import copy
+import json
+import os
+from typing import TYPE_CHECKING, Any, Optional, Union
+
+import httpx
+from pydantic import BaseModel
+
+import litellm
+from litellm._logging import verbose_logger
+from litellm.litellm_core_utils.litellm_logging import Logging as LitellmLogging
+from litellm.llms.custom_httpx.http_handler import (
+ AsyncHTTPHandler,
+ HTTPHandler,
+ _get_httpx_client,
+ get_async_httpx_client,
+)
+from litellm.types.utils import ImageResponse
+
+from ..base_aws_llm import BaseAWSLLM
+from ..common_utils import BedrockError
+
+if TYPE_CHECKING:
+ from botocore.awsrequest import AWSPreparedRequest
+else:
+ AWSPreparedRequest = Any
+
+
+class BedrockImagePreparedRequest(BaseModel):
+ """
+ Internal/Helper class for preparing the request for bedrock image generation
+ """
+
+ endpoint_url: str
+ prepped: AWSPreparedRequest
+ body: bytes
+ data: dict
+
+
+class BedrockImageGeneration(BaseAWSLLM):
+ """
+ Bedrock Image Generation handler
+ """
+
+ def image_generation(
+ self,
+ model: str,
+ prompt: str,
+ model_response: ImageResponse,
+ optional_params: dict,
+ logging_obj: LitellmLogging,
+ timeout: Optional[Union[float, httpx.Timeout]],
+ aimg_generation: bool = False,
+ api_base: Optional[str] = None,
+ extra_headers: Optional[dict] = None,
+ client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
+ ):
+ prepared_request = self._prepare_request(
+ model=model,
+ optional_params=optional_params,
+ api_base=api_base,
+ extra_headers=extra_headers,
+ logging_obj=logging_obj,
+ prompt=prompt,
+ )
+
+ if aimg_generation is True:
+ return self.async_image_generation(
+ prepared_request=prepared_request,
+ timeout=timeout,
+ model=model,
+ logging_obj=logging_obj,
+ prompt=prompt,
+ model_response=model_response,
+ client=(
+ client
+ if client is not None and isinstance(client, AsyncHTTPHandler)
+ else None
+ ),
+ )
+
+ if client is None or not isinstance(client, HTTPHandler):
+ client = _get_httpx_client()
+ try:
+ response = client.post(url=prepared_request.endpoint_url, headers=prepared_request.prepped.headers, data=prepared_request.body) # type: ignore
+ response.raise_for_status()
+ except httpx.HTTPStatusError as err:
+ error_code = err.response.status_code
+ raise BedrockError(status_code=error_code, message=err.response.text)
+ except httpx.TimeoutException:
+ raise BedrockError(status_code=408, message="Timeout error occurred.")
+ ### FORMAT RESPONSE TO OPENAI FORMAT ###
+ model_response = self._transform_response_dict_to_openai_response(
+ model_response=model_response,
+ model=model,
+ logging_obj=logging_obj,
+ prompt=prompt,
+ response=response,
+ data=prepared_request.data,
+ )
+ return model_response
+
+ async def async_image_generation(
+ self,
+ prepared_request: BedrockImagePreparedRequest,
+ timeout: Optional[Union[float, httpx.Timeout]],
+ model: str,
+ logging_obj: LitellmLogging,
+ prompt: str,
+ model_response: ImageResponse,
+ client: Optional[AsyncHTTPHandler] = None,
+ ) -> ImageResponse:
+ """
+ Asynchronous handler for bedrock image generation
+
+ Awaits the response from the bedrock image generation endpoint
+ """
+ async_client = client or get_async_httpx_client(
+ llm_provider=litellm.LlmProviders.BEDROCK,
+ params={"timeout": timeout},
+ )
+
+ try:
+ response = await async_client.post(url=prepared_request.endpoint_url, headers=prepared_request.prepped.headers, data=prepared_request.body) # type: ignore
+ response.raise_for_status()
+ except httpx.HTTPStatusError as err:
+ error_code = err.response.status_code
+ raise BedrockError(status_code=error_code, message=err.response.text)
+ except httpx.TimeoutException:
+ raise BedrockError(status_code=408, message="Timeout error occurred.")
+
+ ### FORMAT RESPONSE TO OPENAI FORMAT ###
+ model_response = self._transform_response_dict_to_openai_response(
+ model=model,
+ logging_obj=logging_obj,
+ prompt=prompt,
+ response=response,
+ data=prepared_request.data,
+ model_response=model_response,
+ )
+ return model_response
+
+ def _prepare_request(
+ self,
+ model: str,
+ optional_params: dict,
+ api_base: Optional[str],
+ extra_headers: Optional[dict],
+ logging_obj: LitellmLogging,
+ prompt: str,
+ ) -> BedrockImagePreparedRequest:
+ """
+ Prepare the request body, headers, and endpoint URL for the Bedrock Image Generation API
+
+ Args:
+ model (str): The model to use for the image generation
+ optional_params (dict): The optional parameters for the image generation
+ api_base (Optional[str]): The base URL for the Bedrock API
+ extra_headers (Optional[dict]): The extra headers to include in the request
+ logging_obj (LitellmLogging): The logging object to use for logging
+ prompt (str): The prompt to use for the image generation
+ Returns:
+ BedrockImagePreparedRequest: The prepared request object
+
+ The BedrockImagePreparedRequest contains:
+ endpoint_url (str): The endpoint URL for the Bedrock Image Generation API
+ prepped (httpx.Request): The prepared request object
+ body (bytes): The request body
+ """
+ try:
+ from botocore.auth import SigV4Auth
+ from botocore.awsrequest import AWSRequest
+ except ImportError:
+ raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
+ boto3_credentials_info = self._get_boto_credentials_from_optional_params(
+ optional_params, model
+ )
+
+ ### SET RUNTIME ENDPOINT ###
+ modelId = model
+ _, proxy_endpoint_url = self.get_runtime_endpoint(
+ api_base=api_base,
+ aws_bedrock_runtime_endpoint=boto3_credentials_info.aws_bedrock_runtime_endpoint,
+ aws_region_name=boto3_credentials_info.aws_region_name,
+ )
+ proxy_endpoint_url = f"{proxy_endpoint_url}/model/{modelId}/invoke"
+ sigv4 = SigV4Auth(
+ boto3_credentials_info.credentials,
+ "bedrock",
+ boto3_credentials_info.aws_region_name,
+ )
+
+ data = self._get_request_body(
+ model=model, prompt=prompt, optional_params=optional_params
+ )
+
+ # Make POST Request
+ body = json.dumps(data).encode("utf-8")
+
+ headers = {"Content-Type": "application/json"}
+ if extra_headers is not None:
+ headers = {"Content-Type": "application/json", **extra_headers}
+ request = AWSRequest(
+ method="POST", url=proxy_endpoint_url, data=body, headers=headers
+ )
+ sigv4.add_auth(request)
+ if (
+ extra_headers is not None and "Authorization" in extra_headers
+ ): # prevent sigv4 from overwriting the auth header
+ request.headers["Authorization"] = extra_headers["Authorization"]
+ prepped = request.prepare()
+
+ ## LOGGING
+ logging_obj.pre_call(
+ input=prompt,
+ api_key="",
+ additional_args={
+ "complete_input_dict": data,
+ "api_base": proxy_endpoint_url,
+ "headers": prepped.headers,
+ },
+ )
+ return BedrockImagePreparedRequest(
+ endpoint_url=proxy_endpoint_url,
+ prepped=prepped,
+ body=body,
+ data=data,
+ )
+
+ def _get_request_body(
+ self,
+ model: str,
+ prompt: str,
+ optional_params: dict,
+ ) -> dict:
+ """
+ Get the request body for the Bedrock Image Generation API
+
+ Checks the model/provider and transforms the request body accordingly
+
+ Returns:
+ dict: The request body to use for the Bedrock Image Generation API
+ """
+ provider = model.split(".")[0]
+ inference_params = copy.deepcopy(optional_params)
+ inference_params.pop(
+ "user", None
+ ) # make sure user is not passed in for bedrock call
+ data = {}
+ if provider == "stability":
+ if litellm.AmazonStability3Config._is_stability_3_model(model):
+ request_body = litellm.AmazonStability3Config.transform_request_body(
+ prompt=prompt, optional_params=optional_params
+ )
+ return dict(request_body)
+ else:
+ prompt = prompt.replace(os.linesep, " ")
+ ## LOAD CONFIG
+ config = litellm.AmazonStabilityConfig.get_config()
+ for k, v in config.items():
+ if (
+ k not in inference_params
+ ): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
+ inference_params[k] = v
+ data = {
+ "text_prompts": [{"text": prompt, "weight": 1}],
+ **inference_params,
+ }
+ elif provider == "amazon":
+ return dict(litellm.AmazonNovaCanvasConfig.transform_request_body(text=prompt, optional_params=optional_params))
+ else:
+ raise BedrockError(
+ status_code=422, message=f"Unsupported model={model}, passed in"
+ )
+ return data
+
+ def _transform_response_dict_to_openai_response(
+ self,
+ model_response: ImageResponse,
+ model: str,
+ logging_obj: LitellmLogging,
+ prompt: str,
+ response: httpx.Response,
+ data: dict,
+ ) -> ImageResponse:
+ """
+ Transforms the Image Generation response from Bedrock to OpenAI format
+ """
+
+ ## LOGGING
+ if logging_obj is not None:
+ logging_obj.post_call(
+ input=prompt,
+ api_key="",
+ original_response=response.text,
+ additional_args={"complete_input_dict": data},
+ )
+ verbose_logger.debug("raw model_response: %s", response.text)
+ response_dict = response.json()
+ if response_dict is None:
+ raise ValueError("Error in response object format, got None")
+
+ config_class = (
+ litellm.AmazonStability3Config
+ if litellm.AmazonStability3Config._is_stability_3_model(model=model)
+ else litellm.AmazonNovaCanvasConfig if litellm.AmazonNovaCanvasConfig._is_nova_model(model=model)
+ else litellm.AmazonStabilityConfig
+ )
+ config_class.transform_response_dict_to_openai_response(
+ model_response=model_response,
+ response_dict=response_dict,
+ )
+
+ return model_response