aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/azure/cost_calculation.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/azure/cost_calculation.py')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/azure/cost_calculation.py61
1 files changed, 61 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/azure/cost_calculation.py b/.venv/lib/python3.12/site-packages/litellm/llms/azure/cost_calculation.py
new file mode 100644
index 00000000..96c58d95
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/azure/cost_calculation.py
@@ -0,0 +1,61 @@
+"""
+Helper util for handling azure openai-specific cost calculation
+- e.g.: prompt caching
+"""
+
+from typing import Optional, Tuple
+
+from litellm._logging import verbose_logger
+from litellm.types.utils import Usage
+from litellm.utils import get_model_info
+
+
+def cost_per_token(
+ model: str, usage: Usage, response_time_ms: Optional[float] = 0.0
+) -> Tuple[float, float]:
+ """
+ Calculates the cost per token for a given model, prompt tokens, and completion tokens.
+
+ Input:
+ - model: str, the model name without provider prefix
+ - usage: LiteLLM Usage block, containing anthropic caching information
+
+ Returns:
+ Tuple[float, float] - prompt_cost_in_usd, completion_cost_in_usd
+ """
+ ## GET MODEL INFO
+ model_info = get_model_info(model=model, custom_llm_provider="azure")
+ cached_tokens: Optional[int] = None
+ ## CALCULATE INPUT COST
+ non_cached_text_tokens = usage.prompt_tokens
+ if usage.prompt_tokens_details and usage.prompt_tokens_details.cached_tokens:
+ cached_tokens = usage.prompt_tokens_details.cached_tokens
+ non_cached_text_tokens = non_cached_text_tokens - cached_tokens
+ prompt_cost: float = non_cached_text_tokens * model_info["input_cost_per_token"]
+
+ ## CALCULATE OUTPUT COST
+ completion_cost: float = (
+ usage["completion_tokens"] * model_info["output_cost_per_token"]
+ )
+
+ ## Prompt Caching cost calculation
+ if model_info.get("cache_read_input_token_cost") is not None and cached_tokens:
+ # Note: We read ._cache_read_input_tokens from the Usage - since cost_calculator.py standardizes the cache read tokens on usage._cache_read_input_tokens
+ prompt_cost += cached_tokens * (
+ model_info.get("cache_read_input_token_cost", 0) or 0
+ )
+
+ ## Speech / Audio cost calculation
+ if (
+ "output_cost_per_second" in model_info
+ and model_info["output_cost_per_second"] is not None
+ and response_time_ms is not None
+ ):
+ verbose_logger.debug(
+ f"For model={model} - output_cost_per_second: {model_info.get('output_cost_per_second')}; response time: {response_time_ms}"
+ )
+ ## COST PER SECOND ##
+ prompt_cost = 0
+ completion_cost = model_info["output_cost_per_second"] * response_time_ms / 1000
+
+ return prompt_cost, completion_cost