aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/azure/chat
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/azure/chat')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/azure/chat/gpt_transformation.py294
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/azure/chat/o_series_handler.py72
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/azure/chat/o_series_transformation.py75
3 files changed, 441 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/azure/chat/gpt_transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/azure/chat/gpt_transformation.py
new file mode 100644
index 00000000..ee85517e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/azure/chat/gpt_transformation.py
@@ -0,0 +1,294 @@
+from typing import TYPE_CHECKING, Any, List, Optional, Union
+
+from httpx._models import Headers, Response
+
+import litellm
+from litellm.litellm_core_utils.prompt_templates.factory import (
+ convert_to_azure_openai_messages,
+)
+from litellm.llms.base_llm.chat.transformation import BaseLLMException
+from litellm.types.utils import ModelResponse
+from litellm.utils import supports_response_schema
+
+from ....exceptions import UnsupportedParamsError
+from ....types.llms.openai import AllMessageValues
+from ...base_llm.chat.transformation import BaseConfig
+from ..common_utils import AzureOpenAIError
+
+if TYPE_CHECKING:
+ from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
+
+ LoggingClass = LiteLLMLoggingObj
+else:
+ LoggingClass = Any
+
+
+class AzureOpenAIConfig(BaseConfig):
+ """
+ Reference: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#chat-completions
+
+ The class `AzureOpenAIConfig` provides configuration for the OpenAI's Chat API interface, for use with Azure. Below are the parameters::
+
+ - `frequency_penalty` (number or null): Defaults to 0. Allows a value between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, thereby minimizing repetition.
+
+ - `function_call` (string or object): This optional parameter controls how the model calls functions.
+
+ - `functions` (array): An optional parameter. It is a list of functions for which the model may generate JSON inputs.
+
+ - `logit_bias` (map): This optional parameter modifies the likelihood of specified tokens appearing in the completion.
+
+ - `max_tokens` (integer or null): This optional parameter helps to set the maximum number of tokens to generate in the chat completion.
+
+ - `n` (integer or null): This optional parameter helps to set how many chat completion choices to generate for each input message.
+
+ - `presence_penalty` (number or null): Defaults to 0. It penalizes new tokens based on if they appear in the text so far, hence increasing the model's likelihood to talk about new topics.
+
+ - `stop` (string / array / null): Specifies up to 4 sequences where the API will stop generating further tokens.
+
+ - `temperature` (number or null): Defines the sampling temperature to use, varying between 0 and 2.
+
+ - `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling.
+ """
+
+ def __init__(
+ self,
+ frequency_penalty: Optional[int] = None,
+ function_call: Optional[Union[str, dict]] = None,
+ functions: Optional[list] = None,
+ logit_bias: Optional[dict] = None,
+ max_tokens: Optional[int] = None,
+ n: Optional[int] = None,
+ presence_penalty: Optional[int] = None,
+ stop: Optional[Union[str, list]] = None,
+ temperature: Optional[int] = None,
+ top_p: Optional[int] = None,
+ ) -> None:
+ locals_ = locals().copy()
+ for key, value in locals_.items():
+ if key != "self" and value is not None:
+ setattr(self.__class__, key, value)
+
+ @classmethod
+ def get_config(cls):
+ return super().get_config()
+
+ def get_supported_openai_params(self, model: str) -> List[str]:
+ return [
+ "temperature",
+ "n",
+ "stream",
+ "stream_options",
+ "stop",
+ "max_tokens",
+ "max_completion_tokens",
+ "tools",
+ "tool_choice",
+ "presence_penalty",
+ "frequency_penalty",
+ "logit_bias",
+ "user",
+ "function_call",
+ "functions",
+ "tools",
+ "tool_choice",
+ "top_p",
+ "logprobs",
+ "top_logprobs",
+ "response_format",
+ "seed",
+ "extra_headers",
+ "parallel_tool_calls",
+ "prediction",
+ "modalities",
+ "audio",
+ ]
+
+ def _is_response_format_supported_model(self, model: str) -> bool:
+ """
+ - all 4o models are supported
+ - check if 'supports_response_format' is True from get_model_info
+ - [TODO] support smart retries for 3.5 models (some supported, some not)
+ """
+ if "4o" in model:
+ return True
+ elif supports_response_schema(model):
+ return True
+
+ return False
+
+ def _is_response_format_supported_api_version(
+ self, api_version_year: str, api_version_month: str
+ ) -> bool:
+ """
+ - check if api_version is supported for response_format
+ """
+
+ is_supported = int(api_version_year) <= 2024 and int(api_version_month) >= 8
+
+ return is_supported
+
+ def map_openai_params(
+ self,
+ non_default_params: dict,
+ optional_params: dict,
+ model: str,
+ drop_params: bool,
+ api_version: str = "",
+ ) -> dict:
+ supported_openai_params = self.get_supported_openai_params(model)
+
+ api_version_times = api_version.split("-")
+ api_version_year = api_version_times[0]
+ api_version_month = api_version_times[1]
+ api_version_day = api_version_times[2]
+ for param, value in non_default_params.items():
+ if param == "tool_choice":
+ """
+ This parameter requires API version 2023-12-01-preview or later
+
+ tool_choice='required' is not supported as of 2024-05-01-preview
+ """
+ ## check if api version supports this param ##
+ if (
+ api_version_year < "2023"
+ or (api_version_year == "2023" and api_version_month < "12")
+ or (
+ api_version_year == "2023"
+ and api_version_month == "12"
+ and api_version_day < "01"
+ )
+ ):
+ if litellm.drop_params is True or (
+ drop_params is not None and drop_params is True
+ ):
+ pass
+ else:
+ raise UnsupportedParamsError(
+ status_code=400,
+ message=f"""Azure does not support 'tool_choice', for api_version={api_version}. Bump your API version to '2023-12-01-preview' or later. This parameter requires 'api_version="2023-12-01-preview"' or later. Azure API Reference: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#chat-completions""",
+ )
+ elif value == "required" and (
+ api_version_year == "2024" and api_version_month <= "05"
+ ): ## check if tool_choice value is supported ##
+ if litellm.drop_params is True or (
+ drop_params is not None and drop_params is True
+ ):
+ pass
+ else:
+ raise UnsupportedParamsError(
+ status_code=400,
+ message=f"Azure does not support '{value}' as a {param} param, for api_version={api_version}. To drop 'tool_choice=required' for calls with this Azure API version, set `litellm.drop_params=True` or for proxy:\n\n`litellm_settings:\n drop_params: true`\nAzure API Reference: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#chat-completions",
+ )
+ else:
+ optional_params["tool_choice"] = value
+ elif param == "response_format" and isinstance(value, dict):
+ _is_response_format_supported_model = (
+ self._is_response_format_supported_model(model)
+ )
+
+ is_response_format_supported_api_version = (
+ self._is_response_format_supported_api_version(
+ api_version_year, api_version_month
+ )
+ )
+ is_response_format_supported = (
+ is_response_format_supported_api_version
+ and _is_response_format_supported_model
+ )
+ optional_params = self._add_response_format_to_tools(
+ optional_params=optional_params,
+ value=value,
+ is_response_format_supported=is_response_format_supported,
+ )
+ elif param == "tools" and isinstance(value, list):
+ optional_params.setdefault("tools", [])
+ optional_params["tools"].extend(value)
+ elif param in supported_openai_params:
+ optional_params[param] = value
+
+ return optional_params
+
+ def transform_request(
+ self,
+ model: str,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ litellm_params: dict,
+ headers: dict,
+ ) -> dict:
+ messages = convert_to_azure_openai_messages(messages)
+ return {
+ "model": model,
+ "messages": messages,
+ **optional_params,
+ }
+
+ def transform_response(
+ self,
+ model: str,
+ raw_response: Response,
+ model_response: ModelResponse,
+ logging_obj: LoggingClass,
+ request_data: dict,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ litellm_params: dict,
+ encoding: Any,
+ api_key: Optional[str] = None,
+ json_mode: Optional[bool] = None,
+ ) -> ModelResponse:
+ raise NotImplementedError(
+ "Azure OpenAI handler.py has custom logic for transforming response, as it uses the OpenAI SDK."
+ )
+
+ def get_mapped_special_auth_params(self) -> dict:
+ return {"token": "azure_ad_token"}
+
+ def map_special_auth_params(self, non_default_params: dict, optional_params: dict):
+ for param, value in non_default_params.items():
+ if param == "token":
+ optional_params["azure_ad_token"] = value
+ return optional_params
+
+ def get_eu_regions(self) -> List[str]:
+ """
+ Source: https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models#gpt-4-and-gpt-4-turbo-model-availability
+ """
+ return ["europe", "sweden", "switzerland", "france", "uk"]
+
+ def get_us_regions(self) -> List[str]:
+ """
+ Source: https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models#gpt-4-and-gpt-4-turbo-model-availability
+ """
+ return [
+ "us",
+ "eastus",
+ "eastus2",
+ "eastus2euap",
+ "eastus3",
+ "southcentralus",
+ "westus",
+ "westus2",
+ "westus3",
+ "westus4",
+ ]
+
+ def get_error_class(
+ self, error_message: str, status_code: int, headers: Union[dict, Headers]
+ ) -> BaseLLMException:
+ return AzureOpenAIError(
+ message=error_message, status_code=status_code, headers=headers
+ )
+
+ def validate_environment(
+ self,
+ headers: dict,
+ model: str,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ api_key: Optional[str] = None,
+ api_base: Optional[str] = None,
+ ) -> dict:
+ raise NotImplementedError(
+ "Azure OpenAI has custom logic for validating environment, as it uses the OpenAI SDK."
+ )
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/azure/chat/o_series_handler.py b/.venv/lib/python3.12/site-packages/litellm/llms/azure/chat/o_series_handler.py
new file mode 100644
index 00000000..2f3e9e63
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/azure/chat/o_series_handler.py
@@ -0,0 +1,72 @@
+"""
+Handler file for calls to Azure OpenAI's o1/o3 family of models
+
+Written separately to handle faking streaming for o1 and o3 models.
+"""
+
+from typing import Any, Callable, Optional, Union
+
+import httpx
+
+from litellm.types.utils import ModelResponse
+
+from ...openai.openai import OpenAIChatCompletion
+from ..common_utils import BaseAzureLLM
+
+
+class AzureOpenAIO1ChatCompletion(BaseAzureLLM, OpenAIChatCompletion):
+ def completion(
+ self,
+ model_response: ModelResponse,
+ timeout: Union[float, httpx.Timeout],
+ optional_params: dict,
+ litellm_params: dict,
+ logging_obj: Any,
+ model: Optional[str] = None,
+ messages: Optional[list] = None,
+ print_verbose: Optional[Callable] = None,
+ api_key: Optional[str] = None,
+ api_base: Optional[str] = None,
+ api_version: Optional[str] = None,
+ dynamic_params: Optional[bool] = None,
+ azure_ad_token: Optional[str] = None,
+ acompletion: bool = False,
+ logger_fn=None,
+ headers: Optional[dict] = None,
+ custom_prompt_dict: dict = {},
+ client=None,
+ organization: Optional[str] = None,
+ custom_llm_provider: Optional[str] = None,
+ drop_params: Optional[bool] = None,
+ ):
+ client = self.get_azure_openai_client(
+ litellm_params=litellm_params,
+ api_key=api_key,
+ api_base=api_base,
+ api_version=api_version,
+ client=client,
+ _is_async=acompletion,
+ )
+ return super().completion(
+ model_response=model_response,
+ timeout=timeout,
+ optional_params=optional_params,
+ litellm_params=litellm_params,
+ logging_obj=logging_obj,
+ model=model,
+ messages=messages,
+ print_verbose=print_verbose,
+ api_key=api_key,
+ api_base=api_base,
+ api_version=api_version,
+ dynamic_params=dynamic_params,
+ azure_ad_token=azure_ad_token,
+ acompletion=acompletion,
+ logger_fn=logger_fn,
+ headers=headers,
+ custom_prompt_dict=custom_prompt_dict,
+ client=client,
+ organization=organization,
+ custom_llm_provider=custom_llm_provider,
+ drop_params=drop_params,
+ )
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/azure/chat/o_series_transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/azure/chat/o_series_transformation.py
new file mode 100644
index 00000000..0ca3a28d
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/azure/chat/o_series_transformation.py
@@ -0,0 +1,75 @@
+"""
+Support for o1 and o3 model families
+
+https://platform.openai.com/docs/guides/reasoning
+
+Translations handled by LiteLLM:
+- modalities: image => drop param (if user opts in to dropping param)
+- role: system ==> translate to role 'user'
+- streaming => faked by LiteLLM
+- Tools, response_format => drop param (if user opts in to dropping param)
+- Logprobs => drop param (if user opts in to dropping param)
+- Temperature => drop param (if user opts in to dropping param)
+"""
+
+from typing import List, Optional
+
+from litellm import verbose_logger
+from litellm.types.llms.openai import AllMessageValues
+from litellm.utils import get_model_info
+
+from ...openai.chat.o_series_transformation import OpenAIOSeriesConfig
+
+
+class AzureOpenAIO1Config(OpenAIOSeriesConfig):
+ def should_fake_stream(
+ self,
+ model: Optional[str],
+ stream: Optional[bool],
+ custom_llm_provider: Optional[str] = None,
+ ) -> bool:
+ """
+ Currently no Azure O Series models support native streaming.
+ """
+
+ if stream is not True:
+ return False
+
+ if (
+ model and "o3" in model
+ ): # o3 models support streaming - https://github.com/BerriAI/litellm/issues/8274
+ return False
+
+ if model is not None:
+ try:
+ model_info = get_model_info(
+ model=model, custom_llm_provider=custom_llm_provider
+ ) # allow user to override default with model_info={"supports_native_streaming": true}
+
+ if (
+ model_info.get("supports_native_streaming") is True
+ ): # allow user to override default with model_info={"supports_native_streaming": true}
+ return False
+ except Exception as e:
+ verbose_logger.debug(
+ f"Error getting model info in AzureOpenAIO1Config: {e}"
+ )
+ return True
+
+ def is_o_series_model(self, model: str) -> bool:
+ return "o1" in model or "o3" in model or "o_series/" in model
+
+ def transform_request(
+ self,
+ model: str,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ litellm_params: dict,
+ headers: dict,
+ ) -> dict:
+ model = model.replace(
+ "o_series/", ""
+ ) # handle o_series/my-random-deployment-name
+ return super().transform_request(
+ model, messages, optional_params, litellm_params, headers
+ )