about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/anthropic/completion/transformation.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/anthropic/completion/transformation.py')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/anthropic/completion/transformation.py306
1 files changed, 306 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/anthropic/completion/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/anthropic/completion/transformation.py
new file mode 100644
index 00000000..7a260b6f
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/anthropic/completion/transformation.py
@@ -0,0 +1,306 @@
+"""
+Translation logic for anthropic's `/v1/complete` endpoint
+
+Litellm provider slug: `anthropic_text/<model_name>`
+"""
+
+import json
+import time
+from typing import AsyncIterator, Dict, Iterator, List, Optional, Union
+
+import httpx
+
+import litellm
+from litellm.litellm_core_utils.prompt_templates.factory import (
+    custom_prompt,
+    prompt_factory,
+)
+from litellm.llms.base_llm.base_model_iterator import BaseModelResponseIterator
+from litellm.llms.base_llm.chat.transformation import (
+    BaseConfig,
+    BaseLLMException,
+    LiteLLMLoggingObj,
+)
+from litellm.types.llms.openai import AllMessageValues
+from litellm.types.utils import (
+    ChatCompletionToolCallChunk,
+    ChatCompletionUsageBlock,
+    GenericStreamingChunk,
+    ModelResponse,
+    Usage,
+)
+
+
+class AnthropicTextError(BaseLLMException):
+    def __init__(self, status_code, message):
+        self.status_code = status_code
+        self.message = message
+        self.request = httpx.Request(
+            method="POST", url="https://api.anthropic.com/v1/complete"
+        )
+        self.response = httpx.Response(status_code=status_code, request=self.request)
+        super().__init__(
+            message=self.message,
+            status_code=self.status_code,
+            request=self.request,
+            response=self.response,
+        )  # Call the base class constructor with the parameters it needs
+
+
+class AnthropicTextConfig(BaseConfig):
+    """
+    Reference: https://docs.anthropic.com/claude/reference/complete_post
+
+    to pass metadata to anthropic, it's {"user_id": "any-relevant-information"}
+    """
+
+    max_tokens_to_sample: Optional[int] = (
+        litellm.max_tokens
+    )  # anthropic requires a default
+    stop_sequences: Optional[list] = None
+    temperature: Optional[int] = None
+    top_p: Optional[int] = None
+    top_k: Optional[int] = None
+    metadata: Optional[dict] = None
+
+    def __init__(
+        self,
+        max_tokens_to_sample: Optional[int] = 256,  # anthropic requires a default
+        stop_sequences: Optional[list] = None,
+        temperature: Optional[int] = None,
+        top_p: Optional[int] = None,
+        top_k: Optional[int] = None,
+        metadata: Optional[dict] = None,
+    ) -> None:
+        locals_ = locals().copy()
+        for key, value in locals_.items():
+            if key != "self" and value is not None:
+                setattr(self.__class__, key, value)
+
+    # makes headers for API call
+    def validate_environment(
+        self,
+        headers: dict,
+        model: str,
+        messages: List[AllMessageValues],
+        optional_params: dict,
+        api_key: Optional[str] = None,
+        api_base: Optional[str] = None,
+    ) -> dict:
+        if api_key is None:
+            raise ValueError(
+                "Missing Anthropic API Key - A call is being made to anthropic but no key is set either in the environment variables or via params"
+            )
+        _headers = {
+            "accept": "application/json",
+            "anthropic-version": "2023-06-01",
+            "content-type": "application/json",
+            "x-api-key": api_key,
+        }
+        headers.update(_headers)
+        return headers
+
+    def transform_request(
+        self,
+        model: str,
+        messages: List[AllMessageValues],
+        optional_params: dict,
+        litellm_params: dict,
+        headers: dict,
+    ) -> dict:
+        prompt = self._get_anthropic_text_prompt_from_messages(
+            messages=messages, model=model
+        )
+        ## Load Config
+        config = litellm.AnthropicTextConfig.get_config()
+        for k, v in config.items():
+            if (
+                k not in optional_params
+            ):  # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
+                optional_params[k] = v
+
+        data = {
+            "model": model,
+            "prompt": prompt,
+            **optional_params,
+        }
+
+        return data
+
+    def get_supported_openai_params(self, model: str):
+        """
+        Anthropic /complete API Ref: https://docs.anthropic.com/en/api/complete
+        """
+        return [
+            "stream",
+            "max_tokens",
+            "max_completion_tokens",
+            "stop",
+            "temperature",
+            "top_p",
+            "extra_headers",
+            "user",
+        ]
+
+    def map_openai_params(
+        self,
+        non_default_params: dict,
+        optional_params: dict,
+        model: str,
+        drop_params: bool,
+    ) -> dict:
+        """
+        Follows the same logic as the AnthropicConfig.map_openai_params method (which is the Anthropic /messages API)
+
+        Note: the only difference is in the get supported openai params method between the AnthropicConfig and AnthropicTextConfig
+        API Ref: https://docs.anthropic.com/en/api/complete
+        """
+        for param, value in non_default_params.items():
+            if param == "max_tokens":
+                optional_params["max_tokens_to_sample"] = value
+            if param == "max_completion_tokens":
+                optional_params["max_tokens_to_sample"] = value
+            if param == "stream" and value is True:
+                optional_params["stream"] = value
+            if param == "stop" and (isinstance(value, str) or isinstance(value, list)):
+                _value = litellm.AnthropicConfig()._map_stop_sequences(value)
+                if _value is not None:
+                    optional_params["stop_sequences"] = _value
+            if param == "temperature":
+                optional_params["temperature"] = value
+            if param == "top_p":
+                optional_params["top_p"] = value
+            if param == "user":
+                optional_params["metadata"] = {"user_id": value}
+
+        return optional_params
+
+    def transform_response(
+        self,
+        model: str,
+        raw_response: httpx.Response,
+        model_response: ModelResponse,
+        logging_obj: LiteLLMLoggingObj,
+        request_data: dict,
+        messages: List[AllMessageValues],
+        optional_params: dict,
+        litellm_params: dict,
+        encoding: str,
+        api_key: Optional[str] = None,
+        json_mode: Optional[bool] = None,
+    ) -> ModelResponse:
+        try:
+            completion_response = raw_response.json()
+        except Exception:
+            raise AnthropicTextError(
+                message=raw_response.text, status_code=raw_response.status_code
+            )
+        prompt = self._get_anthropic_text_prompt_from_messages(
+            messages=messages, model=model
+        )
+        if "error" in completion_response:
+            raise AnthropicTextError(
+                message=str(completion_response["error"]),
+                status_code=raw_response.status_code,
+            )
+        else:
+            if len(completion_response["completion"]) > 0:
+                model_response.choices[0].message.content = completion_response[  # type: ignore
+                    "completion"
+                ]
+            model_response.choices[0].finish_reason = completion_response["stop_reason"]
+
+        ## CALCULATING USAGE
+        prompt_tokens = len(
+            encoding.encode(prompt)
+        )  ##[TODO] use the anthropic tokenizer here
+        completion_tokens = len(
+            encoding.encode(model_response["choices"][0]["message"].get("content", ""))
+        )  ##[TODO] use the anthropic tokenizer here
+
+        model_response.created = int(time.time())
+        model_response.model = model
+        usage = Usage(
+            prompt_tokens=prompt_tokens,
+            completion_tokens=completion_tokens,
+            total_tokens=prompt_tokens + completion_tokens,
+        )
+
+        setattr(model_response, "usage", usage)
+        return model_response
+
+    def get_error_class(
+        self, error_message: str, status_code: int, headers: Union[Dict, httpx.Headers]
+    ) -> BaseLLMException:
+        return AnthropicTextError(
+            status_code=status_code,
+            message=error_message,
+        )
+
+    @staticmethod
+    def _is_anthropic_text_model(model: str) -> bool:
+        return model == "claude-2" or model == "claude-instant-1"
+
+    def _get_anthropic_text_prompt_from_messages(
+        self, messages: List[AllMessageValues], model: str
+    ) -> str:
+        custom_prompt_dict = litellm.custom_prompt_dict
+        if model in custom_prompt_dict:
+            # check if the model has a registered custom prompt
+            model_prompt_details = custom_prompt_dict[model]
+            prompt = custom_prompt(
+                role_dict=model_prompt_details["roles"],
+                initial_prompt_value=model_prompt_details["initial_prompt_value"],
+                final_prompt_value=model_prompt_details["final_prompt_value"],
+                messages=messages,
+            )
+        else:
+            prompt = prompt_factory(
+                model=model, messages=messages, custom_llm_provider="anthropic"
+            )
+
+        return str(prompt)
+
+    def get_model_response_iterator(
+        self,
+        streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse],
+        sync_stream: bool,
+        json_mode: Optional[bool] = False,
+    ):
+        return AnthropicTextCompletionResponseIterator(
+            streaming_response=streaming_response,
+            sync_stream=sync_stream,
+            json_mode=json_mode,
+        )
+
+
+class AnthropicTextCompletionResponseIterator(BaseModelResponseIterator):
+    def chunk_parser(self, chunk: dict) -> GenericStreamingChunk:
+        try:
+            text = ""
+            tool_use: Optional[ChatCompletionToolCallChunk] = None
+            is_finished = False
+            finish_reason = ""
+            usage: Optional[ChatCompletionUsageBlock] = None
+            provider_specific_fields = None
+            index = int(chunk.get("index", 0))
+            _chunk_text = chunk.get("completion", None)
+            if _chunk_text is not None and isinstance(_chunk_text, str):
+                text = _chunk_text
+            finish_reason = chunk.get("stop_reason", None)
+            if finish_reason is not None:
+                is_finished = True
+            returned_chunk = GenericStreamingChunk(
+                text=text,
+                tool_use=tool_use,
+                is_finished=is_finished,
+                finish_reason=finish_reason,
+                usage=usage,
+                index=index,
+                provider_specific_fields=provider_specific_fields,
+            )
+
+            return returned_chunk
+
+        except json.JSONDecodeError:
+            raise ValueError(f"Failed to decode JSON from chunk: {chunk}")