aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/anthropic/completion/transformation.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/anthropic/completion/transformation.py')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/anthropic/completion/transformation.py306
1 files changed, 306 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/anthropic/completion/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/anthropic/completion/transformation.py
new file mode 100644
index 00000000..7a260b6f
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/anthropic/completion/transformation.py
@@ -0,0 +1,306 @@
+"""
+Translation logic for anthropic's `/v1/complete` endpoint
+
+Litellm provider slug: `anthropic_text/<model_name>`
+"""
+
+import json
+import time
+from typing import AsyncIterator, Dict, Iterator, List, Optional, Union
+
+import httpx
+
+import litellm
+from litellm.litellm_core_utils.prompt_templates.factory import (
+ custom_prompt,
+ prompt_factory,
+)
+from litellm.llms.base_llm.base_model_iterator import BaseModelResponseIterator
+from litellm.llms.base_llm.chat.transformation import (
+ BaseConfig,
+ BaseLLMException,
+ LiteLLMLoggingObj,
+)
+from litellm.types.llms.openai import AllMessageValues
+from litellm.types.utils import (
+ ChatCompletionToolCallChunk,
+ ChatCompletionUsageBlock,
+ GenericStreamingChunk,
+ ModelResponse,
+ Usage,
+)
+
+
+class AnthropicTextError(BaseLLMException):
+ def __init__(self, status_code, message):
+ self.status_code = status_code
+ self.message = message
+ self.request = httpx.Request(
+ method="POST", url="https://api.anthropic.com/v1/complete"
+ )
+ self.response = httpx.Response(status_code=status_code, request=self.request)
+ super().__init__(
+ message=self.message,
+ status_code=self.status_code,
+ request=self.request,
+ response=self.response,
+ ) # Call the base class constructor with the parameters it needs
+
+
+class AnthropicTextConfig(BaseConfig):
+ """
+ Reference: https://docs.anthropic.com/claude/reference/complete_post
+
+ to pass metadata to anthropic, it's {"user_id": "any-relevant-information"}
+ """
+
+ max_tokens_to_sample: Optional[int] = (
+ litellm.max_tokens
+ ) # anthropic requires a default
+ stop_sequences: Optional[list] = None
+ temperature: Optional[int] = None
+ top_p: Optional[int] = None
+ top_k: Optional[int] = None
+ metadata: Optional[dict] = None
+
+ def __init__(
+ self,
+ max_tokens_to_sample: Optional[int] = 256, # anthropic requires a default
+ stop_sequences: Optional[list] = None,
+ temperature: Optional[int] = None,
+ top_p: Optional[int] = None,
+ top_k: Optional[int] = None,
+ metadata: Optional[dict] = None,
+ ) -> None:
+ locals_ = locals().copy()
+ for key, value in locals_.items():
+ if key != "self" and value is not None:
+ setattr(self.__class__, key, value)
+
+ # makes headers for API call
+ def validate_environment(
+ self,
+ headers: dict,
+ model: str,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ api_key: Optional[str] = None,
+ api_base: Optional[str] = None,
+ ) -> dict:
+ if api_key is None:
+ raise ValueError(
+ "Missing Anthropic API Key - A call is being made to anthropic but no key is set either in the environment variables or via params"
+ )
+ _headers = {
+ "accept": "application/json",
+ "anthropic-version": "2023-06-01",
+ "content-type": "application/json",
+ "x-api-key": api_key,
+ }
+ headers.update(_headers)
+ return headers
+
+ def transform_request(
+ self,
+ model: str,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ litellm_params: dict,
+ headers: dict,
+ ) -> dict:
+ prompt = self._get_anthropic_text_prompt_from_messages(
+ messages=messages, model=model
+ )
+ ## Load Config
+ config = litellm.AnthropicTextConfig.get_config()
+ for k, v in config.items():
+ if (
+ k not in optional_params
+ ): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
+ optional_params[k] = v
+
+ data = {
+ "model": model,
+ "prompt": prompt,
+ **optional_params,
+ }
+
+ return data
+
+ def get_supported_openai_params(self, model: str):
+ """
+ Anthropic /complete API Ref: https://docs.anthropic.com/en/api/complete
+ """
+ return [
+ "stream",
+ "max_tokens",
+ "max_completion_tokens",
+ "stop",
+ "temperature",
+ "top_p",
+ "extra_headers",
+ "user",
+ ]
+
+ def map_openai_params(
+ self,
+ non_default_params: dict,
+ optional_params: dict,
+ model: str,
+ drop_params: bool,
+ ) -> dict:
+ """
+ Follows the same logic as the AnthropicConfig.map_openai_params method (which is the Anthropic /messages API)
+
+ Note: the only difference is in the get supported openai params method between the AnthropicConfig and AnthropicTextConfig
+ API Ref: https://docs.anthropic.com/en/api/complete
+ """
+ for param, value in non_default_params.items():
+ if param == "max_tokens":
+ optional_params["max_tokens_to_sample"] = value
+ if param == "max_completion_tokens":
+ optional_params["max_tokens_to_sample"] = value
+ if param == "stream" and value is True:
+ optional_params["stream"] = value
+ if param == "stop" and (isinstance(value, str) or isinstance(value, list)):
+ _value = litellm.AnthropicConfig()._map_stop_sequences(value)
+ if _value is not None:
+ optional_params["stop_sequences"] = _value
+ if param == "temperature":
+ optional_params["temperature"] = value
+ if param == "top_p":
+ optional_params["top_p"] = value
+ if param == "user":
+ optional_params["metadata"] = {"user_id": value}
+
+ return optional_params
+
+ def transform_response(
+ self,
+ model: str,
+ raw_response: httpx.Response,
+ model_response: ModelResponse,
+ logging_obj: LiteLLMLoggingObj,
+ request_data: dict,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ litellm_params: dict,
+ encoding: str,
+ api_key: Optional[str] = None,
+ json_mode: Optional[bool] = None,
+ ) -> ModelResponse:
+ try:
+ completion_response = raw_response.json()
+ except Exception:
+ raise AnthropicTextError(
+ message=raw_response.text, status_code=raw_response.status_code
+ )
+ prompt = self._get_anthropic_text_prompt_from_messages(
+ messages=messages, model=model
+ )
+ if "error" in completion_response:
+ raise AnthropicTextError(
+ message=str(completion_response["error"]),
+ status_code=raw_response.status_code,
+ )
+ else:
+ if len(completion_response["completion"]) > 0:
+ model_response.choices[0].message.content = completion_response[ # type: ignore
+ "completion"
+ ]
+ model_response.choices[0].finish_reason = completion_response["stop_reason"]
+
+ ## CALCULATING USAGE
+ prompt_tokens = len(
+ encoding.encode(prompt)
+ ) ##[TODO] use the anthropic tokenizer here
+ completion_tokens = len(
+ encoding.encode(model_response["choices"][0]["message"].get("content", ""))
+ ) ##[TODO] use the anthropic tokenizer here
+
+ model_response.created = int(time.time())
+ model_response.model = model
+ usage = Usage(
+ prompt_tokens=prompt_tokens,
+ completion_tokens=completion_tokens,
+ total_tokens=prompt_tokens + completion_tokens,
+ )
+
+ setattr(model_response, "usage", usage)
+ return model_response
+
+ def get_error_class(
+ self, error_message: str, status_code: int, headers: Union[Dict, httpx.Headers]
+ ) -> BaseLLMException:
+ return AnthropicTextError(
+ status_code=status_code,
+ message=error_message,
+ )
+
+ @staticmethod
+ def _is_anthropic_text_model(model: str) -> bool:
+ return model == "claude-2" or model == "claude-instant-1"
+
+ def _get_anthropic_text_prompt_from_messages(
+ self, messages: List[AllMessageValues], model: str
+ ) -> str:
+ custom_prompt_dict = litellm.custom_prompt_dict
+ if model in custom_prompt_dict:
+ # check if the model has a registered custom prompt
+ model_prompt_details = custom_prompt_dict[model]
+ prompt = custom_prompt(
+ role_dict=model_prompt_details["roles"],
+ initial_prompt_value=model_prompt_details["initial_prompt_value"],
+ final_prompt_value=model_prompt_details["final_prompt_value"],
+ messages=messages,
+ )
+ else:
+ prompt = prompt_factory(
+ model=model, messages=messages, custom_llm_provider="anthropic"
+ )
+
+ return str(prompt)
+
+ def get_model_response_iterator(
+ self,
+ streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse],
+ sync_stream: bool,
+ json_mode: Optional[bool] = False,
+ ):
+ return AnthropicTextCompletionResponseIterator(
+ streaming_response=streaming_response,
+ sync_stream=sync_stream,
+ json_mode=json_mode,
+ )
+
+
+class AnthropicTextCompletionResponseIterator(BaseModelResponseIterator):
+ def chunk_parser(self, chunk: dict) -> GenericStreamingChunk:
+ try:
+ text = ""
+ tool_use: Optional[ChatCompletionToolCallChunk] = None
+ is_finished = False
+ finish_reason = ""
+ usage: Optional[ChatCompletionUsageBlock] = None
+ provider_specific_fields = None
+ index = int(chunk.get("index", 0))
+ _chunk_text = chunk.get("completion", None)
+ if _chunk_text is not None and isinstance(_chunk_text, str):
+ text = _chunk_text
+ finish_reason = chunk.get("stop_reason", None)
+ if finish_reason is not None:
+ is_finished = True
+ returned_chunk = GenericStreamingChunk(
+ text=text,
+ tool_use=tool_use,
+ is_finished=is_finished,
+ finish_reason=finish_reason,
+ usage=usage,
+ index=index,
+ provider_specific_fields=provider_specific_fields,
+ )
+
+ return returned_chunk
+
+ except json.JSONDecodeError:
+ raise ValueError(f"Failed to decode JSON from chunk: {chunk}")