diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/integrations/logfire_logger.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/litellm/integrations/logfire_logger.py | 179 |
1 files changed, 179 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/integrations/logfire_logger.py b/.venv/lib/python3.12/site-packages/litellm/integrations/logfire_logger.py new file mode 100644 index 00000000..516bd4a8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/litellm/integrations/logfire_logger.py @@ -0,0 +1,179 @@ +#### What this does #### +# On success + failure, log events to Logfire + +import os +import traceback +import uuid +from enum import Enum +from typing import Any, Dict, NamedTuple + +from typing_extensions import LiteralString + +from litellm._logging import print_verbose, verbose_logger +from litellm.litellm_core_utils.redact_messages import redact_user_api_key_info + + +class SpanConfig(NamedTuple): + message_template: LiteralString + span_data: Dict[str, Any] + + +class LogfireLevel(str, Enum): + INFO = "info" + ERROR = "error" + + +class LogfireLogger: + # Class variables or attributes + def __init__(self): + try: + verbose_logger.debug("in init logfire logger") + import logfire + + # only setting up logfire if we are sending to logfire + # in testing, we don't want to send to logfire + if logfire.DEFAULT_LOGFIRE_INSTANCE.config.send_to_logfire: + logfire.configure(token=os.getenv("LOGFIRE_TOKEN")) + except Exception as e: + print_verbose(f"Got exception on init logfire client {str(e)}") + raise e + + def _get_span_config(self, payload) -> SpanConfig: + if ( + payload["call_type"] == "completion" + or payload["call_type"] == "acompletion" + ): + return SpanConfig( + message_template="Chat Completion with {request_data[model]!r}", + span_data={"request_data": payload}, + ) + elif ( + payload["call_type"] == "embedding" or payload["call_type"] == "aembedding" + ): + return SpanConfig( + message_template="Embedding Creation with {request_data[model]!r}", + span_data={"request_data": payload}, + ) + elif ( + payload["call_type"] == "image_generation" + or payload["call_type"] == "aimage_generation" + ): + return SpanConfig( + message_template="Image Generation with {request_data[model]!r}", + span_data={"request_data": payload}, + ) + else: + return SpanConfig( + message_template="Litellm Call with {request_data[model]!r}", + span_data={"request_data": payload}, + ) + + async def _async_log_event( + self, + kwargs, + response_obj, + start_time, + end_time, + print_verbose, + level: LogfireLevel, + ): + self.log_event( + kwargs=kwargs, + response_obj=response_obj, + start_time=start_time, + end_time=end_time, + print_verbose=print_verbose, + level=level, + ) + + def log_event( + self, + kwargs, + start_time, + end_time, + print_verbose, + level: LogfireLevel, + response_obj, + ): + try: + import logfire + + verbose_logger.debug( + f"logfire Logging - Enters logging function for model {kwargs}" + ) + + if not response_obj: + response_obj = {} + litellm_params = kwargs.get("litellm_params", {}) + metadata = ( + litellm_params.get("metadata", {}) or {} + ) # if litellm_params['metadata'] == None + messages = kwargs.get("messages") + optional_params = kwargs.get("optional_params", {}) + call_type = kwargs.get("call_type", "completion") + cache_hit = kwargs.get("cache_hit", False) + usage = response_obj.get("usage", {}) + id = response_obj.get("id", str(uuid.uuid4())) + try: + response_time = (end_time - start_time).total_seconds() + except Exception: + response_time = None + + # Clean Metadata before logging - never log raw metadata + # the raw metadata can contain circular references which leads to infinite recursion + # we clean out all extra litellm metadata params before logging + clean_metadata = {} + if isinstance(metadata, dict): + for key, value in metadata.items(): + # clean litellm metadata before logging + if key in [ + "endpoint", + "caching_groups", + "previous_models", + ]: + continue + else: + clean_metadata[key] = value + + clean_metadata = redact_user_api_key_info(metadata=clean_metadata) + + # Build the initial payload + payload = { + "id": id, + "call_type": call_type, + "cache_hit": cache_hit, + "startTime": start_time, + "endTime": end_time, + "responseTime (seconds)": response_time, + "model": kwargs.get("model", ""), + "user": kwargs.get("user", ""), + "modelParameters": optional_params, + "spend": kwargs.get("response_cost", 0), + "messages": messages, + "response": response_obj, + "usage": usage, + "metadata": clean_metadata, + } + logfire_openai = logfire.with_settings(custom_scope_suffix="openai") + message_template, span_data = self._get_span_config(payload) + if level == LogfireLevel.INFO: + logfire_openai.info( + message_template, + **span_data, + ) + elif level == LogfireLevel.ERROR: + logfire_openai.error( + message_template, + **span_data, + _exc_info=True, + ) + print_verbose(f"\ndd Logger - Logging payload = {payload}") + + print_verbose( + f"Logfire Layer Logging - final response object: {response_obj}" + ) + except Exception as e: + verbose_logger.debug( + f"Logfire Layer Error - {str(e)}\n{traceback.format_exc()}" + ) + pass |