aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/cost_calculator.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/cost_calculator.py')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/cost_calculator.py1066
1 files changed, 1066 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/cost_calculator.py b/.venv/lib/python3.12/site-packages/litellm/cost_calculator.py
new file mode 100644
index 00000000..e17a94c8
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/cost_calculator.py
@@ -0,0 +1,1066 @@
+# What is this?
+## File for 'response_cost' calculation in Logging
+import time
+from functools import lru_cache
+from typing import Any, List, Literal, Optional, Tuple, Union
+
+from pydantic import BaseModel
+
+import litellm
+import litellm._logging
+from litellm import verbose_logger
+from litellm.litellm_core_utils.llm_cost_calc.utils import _generic_cost_per_character
+from litellm.llms.anthropic.cost_calculation import (
+ cost_per_token as anthropic_cost_per_token,
+)
+from litellm.llms.azure.cost_calculation import (
+ cost_per_token as azure_openai_cost_per_token,
+)
+from litellm.llms.bedrock.image.cost_calculator import (
+ cost_calculator as bedrock_image_cost_calculator,
+)
+from litellm.llms.databricks.cost_calculator import (
+ cost_per_token as databricks_cost_per_token,
+)
+from litellm.llms.deepseek.cost_calculator import (
+ cost_per_token as deepseek_cost_per_token,
+)
+from litellm.llms.fireworks_ai.cost_calculator import (
+ cost_per_token as fireworks_ai_cost_per_token,
+)
+from litellm.llms.gemini.cost_calculator import cost_per_token as gemini_cost_per_token
+from litellm.llms.openai.cost_calculation import (
+ cost_per_second as openai_cost_per_second,
+)
+from litellm.llms.openai.cost_calculation import cost_per_token as openai_cost_per_token
+from litellm.llms.together_ai.cost_calculator import get_model_params_and_category
+from litellm.llms.vertex_ai.cost_calculator import (
+ cost_per_character as google_cost_per_character,
+)
+from litellm.llms.vertex_ai.cost_calculator import (
+ cost_per_token as google_cost_per_token,
+)
+from litellm.llms.vertex_ai.cost_calculator import cost_router as google_cost_router
+from litellm.llms.vertex_ai.image_generation.cost_calculator import (
+ cost_calculator as vertex_ai_image_cost_calculator,
+)
+from litellm.responses.utils import ResponseAPILoggingUtils
+from litellm.types.llms.openai import (
+ HttpxBinaryResponseContent,
+ ResponseAPIUsage,
+ ResponsesAPIResponse,
+)
+from litellm.types.rerank import RerankBilledUnits, RerankResponse
+from litellm.types.utils import (
+ CallTypesLiteral,
+ LlmProviders,
+ LlmProvidersSet,
+ ModelInfo,
+ PassthroughCallTypes,
+ Usage,
+)
+from litellm.utils import (
+ CallTypes,
+ CostPerToken,
+ EmbeddingResponse,
+ ImageResponse,
+ ModelResponse,
+ ProviderConfigManager,
+ TextCompletionResponse,
+ TranscriptionResponse,
+ _cached_get_model_info_helper,
+ token_counter,
+)
+
+
+def _cost_per_token_custom_pricing_helper(
+ prompt_tokens: float = 0,
+ completion_tokens: float = 0,
+ response_time_ms: Optional[float] = 0.0,
+ ### CUSTOM PRICING ###
+ custom_cost_per_token: Optional[CostPerToken] = None,
+ custom_cost_per_second: Optional[float] = None,
+) -> Optional[Tuple[float, float]]:
+ """Internal helper function for calculating cost, if custom pricing given"""
+ if custom_cost_per_token is None and custom_cost_per_second is None:
+ return None
+
+ if custom_cost_per_token is not None:
+ input_cost = custom_cost_per_token["input_cost_per_token"] * prompt_tokens
+ output_cost = custom_cost_per_token["output_cost_per_token"] * completion_tokens
+ return input_cost, output_cost
+ elif custom_cost_per_second is not None:
+ output_cost = custom_cost_per_second * response_time_ms / 1000 # type: ignore
+ return 0, output_cost
+
+ return None
+
+
+def cost_per_token( # noqa: PLR0915
+ model: str = "",
+ prompt_tokens: int = 0,
+ completion_tokens: int = 0,
+ response_time_ms: Optional[float] = 0.0,
+ custom_llm_provider: Optional[str] = None,
+ region_name=None,
+ ### CHARACTER PRICING ###
+ prompt_characters: Optional[int] = None,
+ completion_characters: Optional[int] = None,
+ ### PROMPT CACHING PRICING ### - used for anthropic
+ cache_creation_input_tokens: Optional[int] = 0,
+ cache_read_input_tokens: Optional[int] = 0,
+ ### CUSTOM PRICING ###
+ custom_cost_per_token: Optional[CostPerToken] = None,
+ custom_cost_per_second: Optional[float] = None,
+ ### NUMBER OF QUERIES ###
+ number_of_queries: Optional[int] = None,
+ ### USAGE OBJECT ###
+ usage_object: Optional[Usage] = None, # just read the usage object if provided
+ ### BILLED UNITS ###
+ rerank_billed_units: Optional[RerankBilledUnits] = None,
+ ### CALL TYPE ###
+ call_type: CallTypesLiteral = "completion",
+ audio_transcription_file_duration: float = 0.0, # for audio transcription calls - the file time in seconds
+) -> Tuple[float, float]: # type: ignore
+ """
+ Calculates the cost per token for a given model, prompt tokens, and completion tokens.
+
+ Parameters:
+ model (str): The name of the model to use. Default is ""
+ prompt_tokens (int): The number of tokens in the prompt.
+ completion_tokens (int): The number of tokens in the completion.
+ response_time (float): The amount of time, in milliseconds, it took the call to complete.
+ prompt_characters (float): The number of characters in the prompt. Used for vertex ai cost calculation.
+ completion_characters (float): The number of characters in the completion response. Used for vertex ai cost calculation.
+ custom_llm_provider (str): The llm provider to whom the call was made (see init.py for full list)
+ custom_cost_per_token: Optional[CostPerToken]: the cost per input + output token for the llm api call.
+ custom_cost_per_second: Optional[float]: the cost per second for the llm api call.
+ call_type: Optional[str]: the call type
+
+ Returns:
+ tuple: A tuple containing the cost in USD dollars for prompt tokens and completion tokens, respectively.
+ """
+ if model is None:
+ raise Exception("Invalid arg. Model cannot be none.")
+
+ ## RECONSTRUCT USAGE BLOCK ##
+ if usage_object is not None:
+ usage_block = usage_object
+ else:
+ usage_block = Usage(
+ prompt_tokens=prompt_tokens,
+ completion_tokens=completion_tokens,
+ total_tokens=prompt_tokens + completion_tokens,
+ cache_creation_input_tokens=cache_creation_input_tokens,
+ cache_read_input_tokens=cache_read_input_tokens,
+ )
+
+ ## CUSTOM PRICING ##
+ response_cost = _cost_per_token_custom_pricing_helper(
+ prompt_tokens=prompt_tokens,
+ completion_tokens=completion_tokens,
+ response_time_ms=response_time_ms,
+ custom_cost_per_second=custom_cost_per_second,
+ custom_cost_per_token=custom_cost_per_token,
+ )
+
+ if response_cost is not None:
+ return response_cost[0], response_cost[1]
+
+ # given
+ prompt_tokens_cost_usd_dollar: float = 0
+ completion_tokens_cost_usd_dollar: float = 0
+ model_cost_ref = litellm.model_cost
+ model_with_provider = model
+ if custom_llm_provider is not None:
+ model_with_provider = custom_llm_provider + "/" + model
+ if region_name is not None:
+ model_with_provider_and_region = (
+ f"{custom_llm_provider}/{region_name}/{model}"
+ )
+ if (
+ model_with_provider_and_region in model_cost_ref
+ ): # use region based pricing, if it's available
+ model_with_provider = model_with_provider_and_region
+ else:
+ _, custom_llm_provider, _, _ = litellm.get_llm_provider(model=model)
+ model_without_prefix = model
+ model_parts = model.split("/", 1)
+ if len(model_parts) > 1:
+ model_without_prefix = model_parts[1]
+ else:
+ model_without_prefix = model
+ """
+ Code block that formats model to lookup in litellm.model_cost
+ Option1. model = "bedrock/ap-northeast-1/anthropic.claude-instant-v1". This is the most accurate since it is region based. Should always be option 1
+ Option2. model = "openai/gpt-4" - model = provider/model
+ Option3. model = "anthropic.claude-3" - model = model
+ """
+ if (
+ model_with_provider in model_cost_ref
+ ): # Option 2. use model with provider, model = "openai/gpt-4"
+ model = model_with_provider
+ elif model in model_cost_ref: # Option 1. use model passed, model="gpt-4"
+ model = model
+ elif (
+ model_without_prefix in model_cost_ref
+ ): # Option 3. if user passed model="bedrock/anthropic.claude-3", use model="anthropic.claude-3"
+ model = model_without_prefix
+
+ # see this https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models
+ if call_type == "speech" or call_type == "aspeech":
+ if prompt_characters is None:
+ raise ValueError(
+ "prompt_characters must be provided for tts calls. prompt_characters={}, model={}, custom_llm_provider={}, call_type={}".format(
+ prompt_characters,
+ model,
+ custom_llm_provider,
+ call_type,
+ )
+ )
+ prompt_cost, completion_cost = _generic_cost_per_character(
+ model=model_without_prefix,
+ custom_llm_provider=custom_llm_provider,
+ prompt_characters=prompt_characters,
+ completion_characters=0,
+ custom_prompt_cost=None,
+ custom_completion_cost=0,
+ )
+ if prompt_cost is None or completion_cost is None:
+ raise ValueError(
+ "cost for tts call is None. prompt_cost={}, completion_cost={}, model={}, custom_llm_provider={}, prompt_characters={}, completion_characters={}".format(
+ prompt_cost,
+ completion_cost,
+ model_without_prefix,
+ custom_llm_provider,
+ prompt_characters,
+ completion_characters,
+ )
+ )
+ return prompt_cost, completion_cost
+ elif call_type == "arerank" or call_type == "rerank":
+ return rerank_cost(
+ model=model,
+ custom_llm_provider=custom_llm_provider,
+ billed_units=rerank_billed_units,
+ )
+ elif (
+ call_type == "aretrieve_batch"
+ or call_type == "retrieve_batch"
+ or call_type == CallTypes.aretrieve_batch
+ or call_type == CallTypes.retrieve_batch
+ ):
+ return batch_cost_calculator(
+ usage=usage_block, model=model, custom_llm_provider=custom_llm_provider
+ )
+ elif call_type == "atranscription" or call_type == "transcription":
+ return openai_cost_per_second(
+ model=model,
+ custom_llm_provider=custom_llm_provider,
+ duration=audio_transcription_file_duration,
+ )
+ elif custom_llm_provider == "vertex_ai":
+ cost_router = google_cost_router(
+ model=model_without_prefix,
+ custom_llm_provider=custom_llm_provider,
+ call_type=call_type,
+ )
+ if cost_router == "cost_per_character":
+ return google_cost_per_character(
+ model=model_without_prefix,
+ custom_llm_provider=custom_llm_provider,
+ prompt_characters=prompt_characters,
+ completion_characters=completion_characters,
+ prompt_tokens=prompt_tokens,
+ completion_tokens=completion_tokens,
+ )
+ elif cost_router == "cost_per_token":
+ return google_cost_per_token(
+ model=model_without_prefix,
+ custom_llm_provider=custom_llm_provider,
+ prompt_tokens=prompt_tokens,
+ completion_tokens=completion_tokens,
+ )
+ elif custom_llm_provider == "anthropic":
+ return anthropic_cost_per_token(model=model, usage=usage_block)
+ elif custom_llm_provider == "openai":
+ return openai_cost_per_token(model=model, usage=usage_block)
+ elif custom_llm_provider == "databricks":
+ return databricks_cost_per_token(model=model, usage=usage_block)
+ elif custom_llm_provider == "fireworks_ai":
+ return fireworks_ai_cost_per_token(model=model, usage=usage_block)
+ elif custom_llm_provider == "azure":
+ return azure_openai_cost_per_token(
+ model=model, usage=usage_block, response_time_ms=response_time_ms
+ )
+ elif custom_llm_provider == "gemini":
+ return gemini_cost_per_token(model=model, usage=usage_block)
+ elif custom_llm_provider == "deepseek":
+ return deepseek_cost_per_token(model=model, usage=usage_block)
+ else:
+ model_info = _cached_get_model_info_helper(
+ model=model, custom_llm_provider=custom_llm_provider
+ )
+
+ if model_info["input_cost_per_token"] > 0:
+ ## COST PER TOKEN ##
+ prompt_tokens_cost_usd_dollar = (
+ model_info["input_cost_per_token"] * prompt_tokens
+ )
+ elif (
+ model_info.get("input_cost_per_second", None) is not None
+ and response_time_ms is not None
+ ):
+ verbose_logger.debug(
+ "For model=%s - input_cost_per_second: %s; response time: %s",
+ model,
+ model_info.get("input_cost_per_second", None),
+ response_time_ms,
+ )
+ ## COST PER SECOND ##
+ prompt_tokens_cost_usd_dollar = (
+ model_info["input_cost_per_second"] * response_time_ms / 1000 # type: ignore
+ )
+
+ if model_info["output_cost_per_token"] > 0:
+ completion_tokens_cost_usd_dollar = (
+ model_info["output_cost_per_token"] * completion_tokens
+ )
+ elif (
+ model_info.get("output_cost_per_second", None) is not None
+ and response_time_ms is not None
+ ):
+ verbose_logger.debug(
+ "For model=%s - output_cost_per_second: %s; response time: %s",
+ model,
+ model_info.get("output_cost_per_second", None),
+ response_time_ms,
+ )
+ ## COST PER SECOND ##
+ completion_tokens_cost_usd_dollar = (
+ model_info["output_cost_per_second"] * response_time_ms / 1000 # type: ignore
+ )
+
+ verbose_logger.debug(
+ "Returned custom cost for model=%s - prompt_tokens_cost_usd_dollar: %s, completion_tokens_cost_usd_dollar: %s",
+ model,
+ prompt_tokens_cost_usd_dollar,
+ completion_tokens_cost_usd_dollar,
+ )
+ return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
+
+
+def get_replicate_completion_pricing(completion_response: dict, total_time=0.0):
+ # see https://replicate.com/pricing
+ # for all litellm currently supported LLMs, almost all requests go to a100_80gb
+ a100_80gb_price_per_second_public = (
+ 0.001400 # assume all calls sent to A100 80GB for now
+ )
+ if total_time == 0.0: # total time is in ms
+ start_time = completion_response.get("created", time.time())
+ end_time = getattr(completion_response, "ended", time.time())
+ total_time = end_time - start_time
+
+ return a100_80gb_price_per_second_public * total_time / 1000
+
+
+def has_hidden_params(obj: Any) -> bool:
+ return hasattr(obj, "_hidden_params")
+
+
+def _get_provider_for_cost_calc(
+ model: Optional[str],
+ custom_llm_provider: Optional[str] = None,
+) -> Optional[str]:
+ if custom_llm_provider is not None:
+ return custom_llm_provider
+ if model is None:
+ return None
+ try:
+ _, custom_llm_provider, _, _ = litellm.get_llm_provider(model=model)
+ except Exception as e:
+ verbose_logger.debug(
+ f"litellm.cost_calculator.py::_get_provider_for_cost_calc() - Error inferring custom_llm_provider - {str(e)}"
+ )
+ return None
+
+ return custom_llm_provider
+
+
+def _select_model_name_for_cost_calc(
+ model: Optional[str],
+ completion_response: Optional[Any],
+ base_model: Optional[str] = None,
+ custom_pricing: Optional[bool] = None,
+ custom_llm_provider: Optional[str] = None,
+) -> Optional[str]:
+ """
+ 1. If custom pricing is true, return received model name
+ 2. If base_model is set (e.g. for azure models), return that
+ 3. If completion response has model set return that
+ 4. Check if model is passed in return that
+ """
+
+ return_model: Optional[str] = None
+ region_name: Optional[str] = None
+ custom_llm_provider = _get_provider_for_cost_calc(
+ model=model, custom_llm_provider=custom_llm_provider
+ )
+
+ if custom_pricing is True:
+ return_model = model
+
+ if base_model is not None:
+ return_model = base_model
+
+ completion_response_model: Optional[str] = None
+ if completion_response is not None:
+ if isinstance(completion_response, BaseModel):
+ completion_response_model = getattr(completion_response, "model", None)
+ elif isinstance(completion_response, dict):
+ completion_response_model = completion_response.get("model", None)
+ hidden_params: Optional[dict] = getattr(completion_response, "_hidden_params", None)
+ if completion_response_model is None and hidden_params is not None:
+ if (
+ hidden_params.get("model", None) is not None
+ and len(hidden_params["model"]) > 0
+ ):
+ return_model = hidden_params.get("model", model)
+ if hidden_params is not None and hidden_params.get("region_name", None) is not None:
+ region_name = hidden_params.get("region_name", None)
+
+ if return_model is None and completion_response_model is not None:
+ return_model = completion_response_model
+
+ if return_model is None and model is not None:
+ return_model = model
+
+ if (
+ return_model is not None
+ and custom_llm_provider is not None
+ and not _model_contains_known_llm_provider(return_model)
+ ): # add provider prefix if not already present, to match model_cost
+ if region_name is not None:
+ return_model = f"{custom_llm_provider}/{region_name}/{return_model}"
+ else:
+ return_model = f"{custom_llm_provider}/{return_model}"
+
+ return return_model
+
+
+@lru_cache(maxsize=16)
+def _model_contains_known_llm_provider(model: str) -> bool:
+ """
+ Check if the model contains a known llm provider
+ """
+ _provider_prefix = model.split("/")[0]
+ return _provider_prefix in LlmProvidersSet
+
+
+def _get_usage_object(
+ completion_response: Any,
+) -> Optional[Usage]:
+ usage_obj: Optional[Usage] = None
+ if completion_response is not None and isinstance(
+ completion_response, ModelResponse
+ ):
+ usage_obj = completion_response.get("usage")
+
+ return usage_obj
+
+
+def _is_known_usage_objects(usage_obj):
+ """Returns True if the usage obj is a known Usage type"""
+ return isinstance(usage_obj, litellm.Usage) or isinstance(
+ usage_obj, ResponseAPIUsage
+ )
+
+
+def _infer_call_type(
+ call_type: Optional[CallTypesLiteral], completion_response: Any
+) -> Optional[CallTypesLiteral]:
+ if call_type is not None:
+ return call_type
+
+ if completion_response is None:
+ return None
+
+ if isinstance(completion_response, ModelResponse):
+ return "completion"
+ elif isinstance(completion_response, EmbeddingResponse):
+ return "embedding"
+ elif isinstance(completion_response, TranscriptionResponse):
+ return "transcription"
+ elif isinstance(completion_response, HttpxBinaryResponseContent):
+ return "speech"
+ elif isinstance(completion_response, RerankResponse):
+ return "rerank"
+ elif isinstance(completion_response, ImageResponse):
+ return "image_generation"
+ elif isinstance(completion_response, TextCompletionResponse):
+ return "text_completion"
+
+ return call_type
+
+
+def completion_cost( # noqa: PLR0915
+ completion_response=None,
+ model: Optional[str] = None,
+ prompt="",
+ messages: List = [],
+ completion="",
+ total_time: Optional[float] = 0.0, # used for replicate, sagemaker
+ call_type: Optional[CallTypesLiteral] = None,
+ ### REGION ###
+ custom_llm_provider=None,
+ region_name=None, # used for bedrock pricing
+ ### IMAGE GEN ###
+ size: Optional[str] = None,
+ quality: Optional[str] = None,
+ n: Optional[int] = None, # number of images
+ ### CUSTOM PRICING ###
+ custom_cost_per_token: Optional[CostPerToken] = None,
+ custom_cost_per_second: Optional[float] = None,
+ optional_params: Optional[dict] = None,
+ custom_pricing: Optional[bool] = None,
+ base_model: Optional[str] = None,
+) -> float:
+ """
+ Calculate the cost of a given completion call fot GPT-3.5-turbo, llama2, any litellm supported llm.
+
+ Parameters:
+ completion_response (litellm.ModelResponses): [Required] The response received from a LiteLLM completion request.
+
+ [OPTIONAL PARAMS]
+ model (str): Optional. The name of the language model used in the completion calls
+ prompt (str): Optional. The input prompt passed to the llm
+ completion (str): Optional. The output completion text from the llm
+ total_time (float, int): Optional. (Only used for Replicate LLMs) The total time used for the request in seconds
+ custom_cost_per_token: Optional[CostPerToken]: the cost per input + output token for the llm api call.
+ custom_cost_per_second: Optional[float]: the cost per second for the llm api call.
+
+ Returns:
+ float: The cost in USD dollars for the completion based on the provided parameters.
+
+ Exceptions:
+ Raises exception if model not in the litellm model cost map. Register model, via custom pricing or PR - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json
+
+
+ Note:
+ - If completion_response is provided, the function extracts token information and the model name from it.
+ - If completion_response is not provided, the function calculates token counts based on the model and input text.
+ - The cost is calculated based on the model, prompt tokens, and completion tokens.
+ - For certain models containing "togethercomputer" in the name, prices are based on the model size.
+ - For un-mapped Replicate models, the cost is calculated based on the total time used for the request.
+ """
+ try:
+
+ call_type = _infer_call_type(call_type, completion_response) or "completion"
+
+ if (
+ (call_type == "aimage_generation" or call_type == "image_generation")
+ and model is not None
+ and isinstance(model, str)
+ and len(model) == 0
+ and custom_llm_provider == "azure"
+ ):
+ model = "dall-e-2" # for dall-e-2, azure expects an empty model name
+ # Handle Inputs to completion_cost
+ prompt_tokens = 0
+ prompt_characters: Optional[int] = None
+ completion_tokens = 0
+ completion_characters: Optional[int] = None
+ cache_creation_input_tokens: Optional[int] = None
+ cache_read_input_tokens: Optional[int] = None
+ audio_transcription_file_duration: float = 0.0
+ cost_per_token_usage_object: Optional[Usage] = _get_usage_object(
+ completion_response=completion_response
+ )
+ rerank_billed_units: Optional[RerankBilledUnits] = None
+ model = _select_model_name_for_cost_calc(
+ model=model,
+ completion_response=completion_response,
+ custom_llm_provider=custom_llm_provider,
+ custom_pricing=custom_pricing,
+ base_model=base_model,
+ )
+
+ verbose_logger.info(f"selected model name for cost calculation: {model}")
+
+ if completion_response is not None and (
+ isinstance(completion_response, BaseModel)
+ or isinstance(completion_response, dict)
+ ): # tts returns a custom class
+ if isinstance(completion_response, dict):
+ usage_obj: Optional[Union[dict, Usage]] = completion_response.get(
+ "usage", {}
+ )
+ else:
+ usage_obj = getattr(completion_response, "usage", {})
+ if isinstance(usage_obj, BaseModel) and not _is_known_usage_objects(
+ usage_obj=usage_obj
+ ):
+ setattr(
+ completion_response,
+ "usage",
+ litellm.Usage(**usage_obj.model_dump()),
+ )
+ if usage_obj is None:
+ _usage = {}
+ elif isinstance(usage_obj, BaseModel):
+ _usage = usage_obj.model_dump()
+ else:
+ _usage = usage_obj
+
+ if ResponseAPILoggingUtils._is_response_api_usage(_usage):
+ _usage = (
+ ResponseAPILoggingUtils._transform_response_api_usage_to_chat_usage(
+ _usage
+ ).model_dump()
+ )
+
+ # get input/output tokens from completion_response
+ prompt_tokens = _usage.get("prompt_tokens", 0)
+ completion_tokens = _usage.get("completion_tokens", 0)
+ cache_creation_input_tokens = _usage.get("cache_creation_input_tokens", 0)
+ cache_read_input_tokens = _usage.get("cache_read_input_tokens", 0)
+ if (
+ "prompt_tokens_details" in _usage
+ and _usage["prompt_tokens_details"] != {}
+ and _usage["prompt_tokens_details"]
+ ):
+ prompt_tokens_details = _usage.get("prompt_tokens_details", {})
+ cache_read_input_tokens = prompt_tokens_details.get("cached_tokens", 0)
+
+ total_time = getattr(completion_response, "_response_ms", 0)
+
+ hidden_params = getattr(completion_response, "_hidden_params", None)
+ if hidden_params is not None:
+ custom_llm_provider = hidden_params.get(
+ "custom_llm_provider", custom_llm_provider or None
+ )
+ region_name = hidden_params.get("region_name", region_name)
+ size = hidden_params.get("optional_params", {}).get(
+ "size", "1024-x-1024"
+ ) # openai default
+ quality = hidden_params.get("optional_params", {}).get(
+ "quality", "standard"
+ ) # openai default
+ n = hidden_params.get("optional_params", {}).get(
+ "n", 1
+ ) # openai default
+ else:
+ if model is None:
+ raise ValueError(
+ f"Model is None and does not exist in passed completion_response. Passed completion_response={completion_response}, model={model}"
+ )
+ if len(messages) > 0:
+ prompt_tokens = token_counter(model=model, messages=messages)
+ elif len(prompt) > 0:
+ prompt_tokens = token_counter(model=model, text=prompt)
+ completion_tokens = token_counter(model=model, text=completion)
+ if model is None:
+ raise ValueError(
+ f"Model is None and does not exist in passed completion_response. Passed completion_response={completion_response}, model={model}"
+ )
+ if custom_llm_provider is None:
+ try:
+ model, custom_llm_provider, _, _ = litellm.get_llm_provider(
+ model=model
+ ) # strip the llm provider from the model name -> for image gen cost calculation
+ except Exception as e:
+ verbose_logger.debug(
+ "litellm.cost_calculator.py::completion_cost() - Error inferring custom_llm_provider - {}".format(
+ str(e)
+ )
+ )
+ if (
+ call_type == CallTypes.image_generation.value
+ or call_type == CallTypes.aimage_generation.value
+ or call_type == PassthroughCallTypes.passthrough_image_generation.value
+ ):
+ ### IMAGE GENERATION COST CALCULATION ###
+ if custom_llm_provider == "vertex_ai":
+ if isinstance(completion_response, ImageResponse):
+ return vertex_ai_image_cost_calculator(
+ model=model,
+ image_response=completion_response,
+ )
+ elif custom_llm_provider == "bedrock":
+ if isinstance(completion_response, ImageResponse):
+ return bedrock_image_cost_calculator(
+ model=model,
+ size=size,
+ image_response=completion_response,
+ optional_params=optional_params,
+ )
+ raise TypeError(
+ "completion_response must be of type ImageResponse for bedrock image cost calculation"
+ )
+ else:
+ return default_image_cost_calculator(
+ model=model,
+ quality=quality,
+ custom_llm_provider=custom_llm_provider,
+ n=n,
+ size=size,
+ optional_params=optional_params,
+ )
+ elif (
+ call_type == CallTypes.speech.value or call_type == CallTypes.aspeech.value
+ ):
+ prompt_characters = litellm.utils._count_characters(text=prompt)
+ elif (
+ call_type == CallTypes.atranscription.value
+ or call_type == CallTypes.transcription.value
+ ):
+ audio_transcription_file_duration = getattr(
+ completion_response, "duration", 0.0
+ )
+ elif (
+ call_type == CallTypes.rerank.value or call_type == CallTypes.arerank.value
+ ):
+ if completion_response is not None and isinstance(
+ completion_response, RerankResponse
+ ):
+ meta_obj = completion_response.meta
+ if meta_obj is not None:
+ billed_units = meta_obj.get("billed_units", {}) or {}
+ else:
+ billed_units = {}
+
+ rerank_billed_units = RerankBilledUnits(
+ search_units=billed_units.get("search_units"),
+ total_tokens=billed_units.get("total_tokens"),
+ )
+
+ search_units = (
+ billed_units.get("search_units") or 1
+ ) # cohere charges per request by default.
+ completion_tokens = search_units
+ # Calculate cost based on prompt_tokens, completion_tokens
+ if (
+ "togethercomputer" in model
+ or "together_ai" in model
+ or custom_llm_provider == "together_ai"
+ ):
+ # together ai prices based on size of llm
+ # get_model_params_and_category takes a model name and returns the category of LLM size it is in model_prices_and_context_window.json
+
+ model = get_model_params_and_category(model, call_type=CallTypes(call_type))
+
+ # replicate llms are calculate based on time for request running
+ # see https://replicate.com/pricing
+ elif (
+ model in litellm.replicate_models or "replicate" in model
+ ) and model not in litellm.model_cost:
+ # for unmapped replicate model, default to replicate's time tracking logic
+ return get_replicate_completion_pricing(completion_response, total_time) # type: ignore
+
+ if model is None:
+ raise ValueError(
+ f"Model is None and does not exist in passed completion_response. Passed completion_response={completion_response}, model={model}"
+ )
+
+ if custom_llm_provider is not None and custom_llm_provider == "vertex_ai":
+ # Calculate the prompt characters + response characters
+ if len(messages) > 0:
+ prompt_string = litellm.utils.get_formatted_prompt(
+ data={"messages": messages}, call_type="completion"
+ )
+
+ prompt_characters = litellm.utils._count_characters(text=prompt_string)
+ if completion_response is not None and isinstance(
+ completion_response, ModelResponse
+ ):
+ completion_string = litellm.utils.get_response_string(
+ response_obj=completion_response
+ )
+ completion_characters = litellm.utils._count_characters(
+ text=completion_string
+ )
+
+ (
+ prompt_tokens_cost_usd_dollar,
+ completion_tokens_cost_usd_dollar,
+ ) = cost_per_token(
+ model=model,
+ prompt_tokens=prompt_tokens,
+ completion_tokens=completion_tokens,
+ custom_llm_provider=custom_llm_provider,
+ response_time_ms=total_time,
+ region_name=region_name,
+ custom_cost_per_second=custom_cost_per_second,
+ custom_cost_per_token=custom_cost_per_token,
+ prompt_characters=prompt_characters,
+ completion_characters=completion_characters,
+ cache_creation_input_tokens=cache_creation_input_tokens,
+ cache_read_input_tokens=cache_read_input_tokens,
+ usage_object=cost_per_token_usage_object,
+ call_type=call_type,
+ audio_transcription_file_duration=audio_transcription_file_duration,
+ rerank_billed_units=rerank_billed_units,
+ )
+ _final_cost = prompt_tokens_cost_usd_dollar + completion_tokens_cost_usd_dollar
+
+ return _final_cost
+ except Exception as e:
+ raise e
+
+
+def get_response_cost_from_hidden_params(
+ hidden_params: Union[dict, BaseModel]
+) -> Optional[float]:
+ if isinstance(hidden_params, BaseModel):
+ _hidden_params_dict = hidden_params.model_dump()
+ else:
+ _hidden_params_dict = hidden_params
+
+ additional_headers = _hidden_params_dict.get("additional_headers", {})
+ if additional_headers and "x-litellm-response-cost" in additional_headers:
+ response_cost = additional_headers["x-litellm-response-cost"]
+ if response_cost is None:
+ return None
+ return float(additional_headers["x-litellm-response-cost"])
+ return None
+
+
+def response_cost_calculator(
+ response_object: Union[
+ ModelResponse,
+ EmbeddingResponse,
+ ImageResponse,
+ TranscriptionResponse,
+ TextCompletionResponse,
+ HttpxBinaryResponseContent,
+ RerankResponse,
+ ResponsesAPIResponse,
+ ],
+ model: str,
+ custom_llm_provider: Optional[str],
+ call_type: Literal[
+ "embedding",
+ "aembedding",
+ "completion",
+ "acompletion",
+ "atext_completion",
+ "text_completion",
+ "image_generation",
+ "aimage_generation",
+ "moderation",
+ "amoderation",
+ "atranscription",
+ "transcription",
+ "aspeech",
+ "speech",
+ "rerank",
+ "arerank",
+ ],
+ optional_params: dict,
+ cache_hit: Optional[bool] = None,
+ base_model: Optional[str] = None,
+ custom_pricing: Optional[bool] = None,
+ prompt: str = "",
+) -> float:
+ """
+ Returns
+ - float or None: cost of response
+ """
+ try:
+ response_cost: float = 0.0
+ if cache_hit is not None and cache_hit is True:
+ response_cost = 0.0
+ else:
+ if isinstance(response_object, BaseModel):
+ response_object._hidden_params["optional_params"] = optional_params
+
+ if hasattr(response_object, "_hidden_params"):
+ provider_response_cost = get_response_cost_from_hidden_params(
+ response_object._hidden_params
+ )
+ if provider_response_cost is not None:
+ return provider_response_cost
+
+ response_cost = completion_cost(
+ completion_response=response_object,
+ model=model,
+ call_type=call_type,
+ custom_llm_provider=custom_llm_provider,
+ optional_params=optional_params,
+ custom_pricing=custom_pricing,
+ base_model=base_model,
+ prompt=prompt,
+ )
+ return response_cost
+ except Exception as e:
+ raise e
+
+
+def rerank_cost(
+ model: str,
+ custom_llm_provider: Optional[str],
+ billed_units: Optional[RerankBilledUnits] = None,
+) -> Tuple[float, float]:
+ """
+ Returns
+ - float or None: cost of response OR none if error.
+ """
+ _, custom_llm_provider, _, _ = litellm.get_llm_provider(
+ model=model, custom_llm_provider=custom_llm_provider
+ )
+
+ try:
+ config = ProviderConfigManager.get_provider_rerank_config(
+ model=model,
+ api_base=None,
+ present_version_params=[],
+ provider=LlmProviders(custom_llm_provider),
+ )
+
+ try:
+ model_info: Optional[ModelInfo] = litellm.get_model_info(
+ model=model, custom_llm_provider=custom_llm_provider
+ )
+ except Exception:
+ model_info = None
+
+ return config.calculate_rerank_cost(
+ model=model,
+ custom_llm_provider=custom_llm_provider,
+ billed_units=billed_units,
+ model_info=model_info,
+ )
+ except Exception as e:
+ raise e
+
+
+def transcription_cost(
+ model: str, custom_llm_provider: Optional[str], duration: float
+) -> Tuple[float, float]:
+ return openai_cost_per_second(
+ model=model, custom_llm_provider=custom_llm_provider, duration=duration
+ )
+
+
+def default_image_cost_calculator(
+ model: str,
+ custom_llm_provider: Optional[str] = None,
+ quality: Optional[str] = None,
+ n: Optional[int] = 1, # Default to 1 image
+ size: Optional[str] = "1024-x-1024", # OpenAI default
+ optional_params: Optional[dict] = None,
+) -> float:
+ """
+ Default image cost calculator for image generation
+
+ Args:
+ model (str): Model name
+ image_response (ImageResponse): Response from image generation
+ quality (Optional[str]): Image quality setting
+ n (Optional[int]): Number of images generated
+ size (Optional[str]): Image size (e.g. "1024x1024" or "1024-x-1024")
+
+ Returns:
+ float: Cost in USD for the image generation
+
+ Raises:
+ Exception: If model pricing not found in cost map
+ """
+ # Standardize size format to use "-x-"
+ size_str: str = size or "1024-x-1024"
+ size_str = (
+ size_str.replace("x", "-x-")
+ if "x" in size_str and "-x-" not in size_str
+ else size_str
+ )
+
+ # Parse dimensions
+ height, width = map(int, size_str.split("-x-"))
+
+ # Build model names for cost lookup
+ base_model_name = f"{size_str}/{model}"
+ if custom_llm_provider and model.startswith(custom_llm_provider):
+ base_model_name = (
+ f"{custom_llm_provider}/{size_str}/{model.replace(custom_llm_provider, '')}"
+ )
+ model_name_with_quality = (
+ f"{quality}/{base_model_name}" if quality else base_model_name
+ )
+
+ verbose_logger.debug(
+ f"Looking up cost for models: {model_name_with_quality}, {base_model_name}"
+ )
+
+ # Try model with quality first, fall back to base model name
+ if model_name_with_quality in litellm.model_cost:
+ cost_info = litellm.model_cost[model_name_with_quality]
+ elif base_model_name in litellm.model_cost:
+ cost_info = litellm.model_cost[base_model_name]
+ else:
+ # Try without provider prefix
+ model_without_provider = f"{size_str}/{model.split('/')[-1]}"
+ model_with_quality_without_provider = (
+ f"{quality}/{model_without_provider}" if quality else model_without_provider
+ )
+
+ if model_with_quality_without_provider in litellm.model_cost:
+ cost_info = litellm.model_cost[model_with_quality_without_provider]
+ elif model_without_provider in litellm.model_cost:
+ cost_info = litellm.model_cost[model_without_provider]
+ else:
+ raise Exception(
+ f"Model not found in cost map. Tried {model_name_with_quality}, {base_model_name}, {model_with_quality_without_provider}, and {model_without_provider}"
+ )
+
+ return cost_info["input_cost_per_pixel"] * height * width * n
+
+
+def batch_cost_calculator(
+ usage: Usage,
+ model: str,
+ custom_llm_provider: Optional[str] = None,
+) -> Tuple[float, float]:
+ """
+ Calculate the cost of a batch job
+ """
+
+ _, custom_llm_provider, _, _ = litellm.get_llm_provider(
+ model=model, custom_llm_provider=custom_llm_provider
+ )
+
+ verbose_logger.info(
+ "Calculating batch cost per token. model=%s, custom_llm_provider=%s",
+ model,
+ custom_llm_provider,
+ )
+
+ try:
+ model_info: Optional[ModelInfo] = litellm.get_model_info(
+ model=model, custom_llm_provider=custom_llm_provider
+ )
+ except Exception:
+ model_info = None
+
+ if not model_info:
+ return 0.0, 0.0
+
+ input_cost_per_token_batches = model_info.get("input_cost_per_token_batches")
+ input_cost_per_token = model_info.get("input_cost_per_token")
+ output_cost_per_token_batches = model_info.get("output_cost_per_token_batches")
+ output_cost_per_token = model_info.get("output_cost_per_token")
+ total_prompt_cost = 0.0
+ total_completion_cost = 0.0
+ if input_cost_per_token_batches:
+ total_prompt_cost = usage.prompt_tokens * input_cost_per_token_batches
+ elif input_cost_per_token:
+ total_prompt_cost = (
+ usage.prompt_tokens * (input_cost_per_token) / 2
+ ) # batch cost is usually half of the regular token cost
+ if output_cost_per_token_batches:
+ total_completion_cost = usage.completion_tokens * output_cost_per_token_batches
+ elif output_cost_per_token:
+ total_completion_cost = (
+ usage.completion_tokens * (output_cost_per_token) / 2
+ ) # batch cost is usually half of the regular token cost
+
+ return total_prompt_cost, total_completion_cost