about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/litellm/caching/in_memory_cache.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/caching/in_memory_cache.py')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/caching/in_memory_cache.py202
1 files changed, 202 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/caching/in_memory_cache.py b/.venv/lib/python3.12/site-packages/litellm/caching/in_memory_cache.py
new file mode 100644
index 00000000..5e09fe84
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/caching/in_memory_cache.py
@@ -0,0 +1,202 @@
+"""
+In-Memory Cache implementation
+
+Has 4 methods:
+    - set_cache
+    - get_cache
+    - async_set_cache
+    - async_get_cache
+"""
+
+import json
+import sys
+import time
+from typing import Any, List, Optional
+
+from pydantic import BaseModel
+
+from ..constants import MAX_SIZE_PER_ITEM_IN_MEMORY_CACHE_IN_KB
+from .base_cache import BaseCache
+
+
+class InMemoryCache(BaseCache):
+    def __init__(
+        self,
+        max_size_in_memory: Optional[int] = 200,
+        default_ttl: Optional[
+            int
+        ] = 600,  # default ttl is 10 minutes. At maximum litellm rate limiting logic requires objects to be in memory for 1 minute
+        max_size_per_item: Optional[int] = 1024,  # 1MB = 1024KB
+    ):
+        """
+        max_size_in_memory [int]: Maximum number of items in cache. done to prevent memory leaks. Use 200 items as a default
+        """
+        self.max_size_in_memory = (
+            max_size_in_memory or 200
+        )  # set an upper bound of 200 items in-memory
+        self.default_ttl = default_ttl or 600
+        self.max_size_per_item = (
+            max_size_per_item or MAX_SIZE_PER_ITEM_IN_MEMORY_CACHE_IN_KB
+        )  # 1MB = 1024KB
+
+        # in-memory cache
+        self.cache_dict: dict = {}
+        self.ttl_dict: dict = {}
+
+    def check_value_size(self, value: Any):
+        """
+        Check if value size exceeds max_size_per_item (1MB)
+        Returns True if value size is acceptable, False otherwise
+        """
+        try:
+            # Fast path for common primitive types that are typically small
+            if (
+                isinstance(value, (bool, int, float, str))
+                and len(str(value)) < self.max_size_per_item * 512
+            ):  # Conservative estimate
+                return True
+
+            # Direct size check for bytes objects
+            if isinstance(value, bytes):
+                return sys.getsizeof(value) / 1024 <= self.max_size_per_item
+
+            # Handle special types without full conversion when possible
+            if hasattr(value, "__sizeof__"):  # Use __sizeof__ if available
+                size = value.__sizeof__() / 1024
+                return size <= self.max_size_per_item
+
+            # Fallback for complex types
+            if isinstance(value, BaseModel) and hasattr(
+                value, "model_dump"
+            ):  # Pydantic v2
+                value = value.model_dump()
+            elif hasattr(value, "isoformat"):  # datetime objects
+                return True  # datetime strings are always small
+
+            # Only convert to JSON if absolutely necessary
+            if not isinstance(value, (str, bytes)):
+                value = json.dumps(value, default=str)
+
+            return sys.getsizeof(value) / 1024 <= self.max_size_per_item
+
+        except Exception:
+            return False
+
+    def evict_cache(self):
+        """
+        Eviction policy:
+        - check if any items in ttl_dict are expired -> remove them from ttl_dict and cache_dict
+
+
+        This guarantees the following:
+        - 1. When item ttl not set: At minimumm each item will remain in memory for 5 minutes
+        - 2. When ttl is set: the item will remain in memory for at least that amount of time
+        - 3. the size of in-memory cache is bounded
+
+        """
+        for key in list(self.ttl_dict.keys()):
+            if time.time() > self.ttl_dict[key]:
+                self.cache_dict.pop(key, None)
+                self.ttl_dict.pop(key, None)
+
+                # de-reference the removed item
+                # https://www.geeksforgeeks.org/diagnosing-and-fixing-memory-leaks-in-python/
+                # One of the most common causes of memory leaks in Python is the retention of objects that are no longer being used.
+                # This can occur when an object is referenced by another object, but the reference is never removed.
+
+    def set_cache(self, key, value, **kwargs):
+        if len(self.cache_dict) >= self.max_size_in_memory:
+            # only evict when cache is full
+            self.evict_cache()
+        if not self.check_value_size(value):
+            return
+
+        self.cache_dict[key] = value
+        if "ttl" in kwargs and kwargs["ttl"] is not None:
+            self.ttl_dict[key] = time.time() + kwargs["ttl"]
+        else:
+            self.ttl_dict[key] = time.time() + self.default_ttl
+
+    async def async_set_cache(self, key, value, **kwargs):
+        self.set_cache(key=key, value=value, **kwargs)
+
+    async def async_set_cache_pipeline(self, cache_list, ttl=None, **kwargs):
+        for cache_key, cache_value in cache_list:
+            if ttl is not None:
+                self.set_cache(key=cache_key, value=cache_value, ttl=ttl)
+            else:
+                self.set_cache(key=cache_key, value=cache_value)
+
+    async def async_set_cache_sadd(self, key, value: List, ttl: Optional[float]):
+        """
+        Add value to set
+        """
+        # get the value
+        init_value = self.get_cache(key=key) or set()
+        for val in value:
+            init_value.add(val)
+        self.set_cache(key, init_value, ttl=ttl)
+        return value
+
+    def get_cache(self, key, **kwargs):
+        if key in self.cache_dict:
+            if key in self.ttl_dict:
+                if time.time() > self.ttl_dict[key]:
+                    self.cache_dict.pop(key, None)
+                    return None
+            original_cached_response = self.cache_dict[key]
+            try:
+                cached_response = json.loads(original_cached_response)
+            except Exception:
+                cached_response = original_cached_response
+            return cached_response
+        return None
+
+    def batch_get_cache(self, keys: list, **kwargs):
+        return_val = []
+        for k in keys:
+            val = self.get_cache(key=k, **kwargs)
+            return_val.append(val)
+        return return_val
+
+    def increment_cache(self, key, value: int, **kwargs) -> int:
+        # get the value
+        init_value = self.get_cache(key=key) or 0
+        value = init_value + value
+        self.set_cache(key, value, **kwargs)
+        return value
+
+    async def async_get_cache(self, key, **kwargs):
+        return self.get_cache(key=key, **kwargs)
+
+    async def async_batch_get_cache(self, keys: list, **kwargs):
+        return_val = []
+        for k in keys:
+            val = self.get_cache(key=k, **kwargs)
+            return_val.append(val)
+        return return_val
+
+    async def async_increment(self, key, value: float, **kwargs) -> float:
+        # get the value
+        init_value = await self.async_get_cache(key=key) or 0
+        value = init_value + value
+        await self.async_set_cache(key, value, **kwargs)
+
+        return value
+
+    def flush_cache(self):
+        self.cache_dict.clear()
+        self.ttl_dict.clear()
+
+    async def disconnect(self):
+        pass
+
+    def delete_cache(self, key):
+        self.cache_dict.pop(key, None)
+        self.ttl_dict.pop(key, None)
+
+    async def async_get_ttl(self, key: str) -> Optional[int]:
+        """
+        Get the remaining TTL of a key in in-memory cache
+        """
+        return self.ttl_dict.get(key, None)