diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/together.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/together.py | 59 |
1 files changed, 59 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/together.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/together.py new file mode 100644 index 00000000..6e2c1eb4 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/together.py @@ -0,0 +1,59 @@ +import base64 +from abc import ABC +from typing import Any, Dict, Optional, Union + +from huggingface_hub.inference._common import _as_dict +from huggingface_hub.inference._providers._common import ( + BaseConversationalTask, + BaseTextGenerationTask, + TaskProviderHelper, + filter_none, +) + + +_PROVIDER = "together" +_BASE_URL = "https://api.together.xyz" + + +class TogetherTask(TaskProviderHelper, ABC): + """Base class for Together API tasks.""" + + def __init__(self, task: str): + super().__init__(provider=_PROVIDER, base_url=_BASE_URL, task=task) + + def _prepare_route(self, mapped_model: str) -> str: + if self.task == "text-to-image": + return "/v1/images/generations" + elif self.task == "conversational": + return "/v1/chat/completions" + elif self.task == "text-generation": + return "/v1/completions" + raise ValueError(f"Unsupported task '{self.task}' for Together API.") + + +class TogetherTextGenerationTask(BaseTextGenerationTask): + def __init__(self): + super().__init__(provider=_PROVIDER, base_url=_BASE_URL) + + +class TogetherConversationalTask(BaseConversationalTask): + def __init__(self): + super().__init__(provider=_PROVIDER, base_url=_BASE_URL) + + +class TogetherTextToImageTask(TogetherTask): + def __init__(self): + super().__init__("text-to-image") + + def _prepare_payload_as_dict(self, inputs: Any, parameters: Dict, mapped_model: str) -> Optional[Dict]: + parameters = filter_none(parameters) + if "num_inference_steps" in parameters: + parameters["steps"] = parameters.pop("num_inference_steps") + if "guidance_scale" in parameters: + parameters["guidance"] = parameters.pop("guidance_scale") + + return {"prompt": inputs, "response_format": "base64", **parameters, "model": mapped_model} + + def get_response(self, response: Union[bytes, Dict]) -> Any: + response_dict = _as_dict(response) + return base64.b64decode(response_dict["data"][0]["b64_json"]) |