diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/google_genai-0.6.0.dist-info/METADATA')
| -rw-r--r-- | .venv/lib/python3.12/site-packages/google_genai-0.6.0.dist-info/METADATA | 973 |
1 files changed, 973 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/google_genai-0.6.0.dist-info/METADATA b/.venv/lib/python3.12/site-packages/google_genai-0.6.0.dist-info/METADATA new file mode 100644 index 00000000..7f80af87 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/google_genai-0.6.0.dist-info/METADATA @@ -0,0 +1,973 @@ +Metadata-Version: 2.2 +Name: google-genai +Version: 0.6.0 +Summary: GenAI Python SDK +Author-email: Google LLC <googleapis-packages@google.com> +License: Apache-2.0 +Project-URL: Homepage, https://github.com/googleapis/python-genai +Classifier: Intended Audience :: Developers +Classifier: License :: OSI Approved :: Apache Software License +Classifier: Operating System :: OS Independent +Classifier: Programming Language :: Python +Classifier: Programming Language :: Python :: 3 +Classifier: Programming Language :: Python :: 3.9 +Classifier: Programming Language :: Python :: 3.10 +Classifier: Programming Language :: Python :: 3.11 +Classifier: Programming Language :: Python :: 3.12 +Classifier: Programming Language :: Python :: 3.13 +Classifier: Topic :: Internet +Classifier: Topic :: Software Development :: Libraries :: Python Modules +Requires-Python: >=3.9 +Description-Content-Type: text/markdown +License-File: LICENSE +Requires-Dist: google-auth<3.0.0dev,>=2.14.1 +Requires-Dist: pillow<12.0.0,>=10.0.0 +Requires-Dist: pydantic<3.0.0dev,>=2.0.0 +Requires-Dist: requests<3.0.0dev,>=2.28.1 +Requires-Dist: websockets<15.0dev,>=13.0 + +# Google Gen AI SDK + +[](https://pypi.org/project/google-genai/) + +-------- +**Documentation:** https://googleapis.github.io/python-genai/ + +----- + +Google Gen AI Python SDK provides an interface for developers to integrate Google's generative models into their Python applications. It supports the [Gemini Developer API](https://ai.google.dev/gemini-api/docs) and [Vertex AI](https://cloud.google.com/vertex-ai/generative-ai/docs/learn/overview) APIs. This is an early release. API is subject to change. Please do not use this SDK in production environments at this stage. + +## Installation + +```cmd +pip install google-genai +``` + +## Imports + +```python +from google import genai +from google.genai import types +``` + +## Create a client + +Please run one of the following code blocks to create a client for +different services ([Gemini Developer API](https://ai.google.dev/gemini-api/docs) or [Vertex AI](https://cloud.google.com/vertex-ai/generative-ai/docs/learn/overview)). + +```python +# Only run this block for Gemini Developer API +client = genai.Client(api_key="GEMINI_API_KEY") +``` + +```python +# Only run this block for Vertex AI API +client = genai.Client( + vertexai=True, project="your-project-id", location="us-central1" +) +``` + +## Types + +Parameter types can be specified as either dictionaries(`TypedDict`) or +[Pydantic Models](https://pydantic.readthedocs.io/en/stable/model.html). +Pydantic model types are available in the `types` module. + +## Models + +The `client.models` modules exposes model inferencing and model getters. + +### Generate Content + +#### with text content + +```python +response = client.models.generate_content( + model="gemini-2.0-flash-exp", contents="What is your name?" +) +print(response.text) +``` + +#### with uploaded file (Google AI only) +download the file in console. + +```cmd +!wget -q https://storage.googleapis.com/generativeai-downloads/data/a11.txt +``` + +python code. + +```python +file = client.files.upload(path="a11.text") +response = client.models.generate_content( + model="gemini-2.0-flash-exp", contents=["Summarize this file", file] +) +print(response.text) +``` + +### System Instructions and Other Configs + +```python +response = client.models.generate_content( + model="gemini-2.0-flash-exp", + contents="high", + config=types.GenerateContentConfig( + system_instruction="I say high, you say low", + temperature=0.3, + ), +) +print(response.text) +``` + +### Typed Config + +All API methods support Pydantic types for parameters as well as +dictionaries. You can get the type from `google.genai.types`. + +```python +response = client.models.generate_content( + model="gemini-2.0-flash-exp", + contents=types.Part.from_text("Why is the sky blue?"), + config=types.GenerateContentConfig( + temperature=0, + top_p=0.95, + top_k=20, + candidate_count=1, + seed=5, + max_output_tokens=100, + stop_sequences=["STOP!"], + presence_penalty=0.0, + frequency_penalty=0.0, + ), +) + +response +``` + +### List Base Models + +To retrieve tuned models, see [list tuned models](#list-tuned-models). + +```python +for model in client.models.list(config={'query_base':True}): + print(model) +``` + +```python +pager = client.models.list(config={"page_size": 10, 'query_base':True}) +print(pager.page_size) +print(pager[0]) +pager.next_page() +print(pager[0]) +``` + +#### Async + +```python +async for job in await client.aio.models.list(config={'query_base':True}): + print(job) +``` + +```python +async_pager = await client.aio.models.list(config={"page_size": 10, 'query_base':True}) +print(async_pager.page_size) +print(async_pager[0]) +await async_pager.next_page() +print(async_pager[0]) +``` + +### Safety Settings + +```python +response = client.models.generate_content( + model="gemini-2.0-flash-exp", + contents="Say something bad.", + config=types.GenerateContentConfig( + safety_settings=[ + types.SafetySetting( + category="HARM_CATEGORY_HATE_SPEECH", + threshold="BLOCK_ONLY_HIGH", + ) + ] + ), +) +print(response.text) +``` + +### Function Calling + +#### Automatic Python function Support + +You can pass a Python function directly and it will be automatically +called and responded. + +```python +def get_current_weather(location: str) -> str: + """Returns the current weather. + + Args: + location: The city and state, e.g. San Francisco, CA + """ + return "sunny" + + +response = client.models.generate_content( + model="gemini-2.0-flash-exp", + contents="What is the weather like in Boston?", + config=types.GenerateContentConfig(tools=[get_current_weather]), +) + +print(response.text) +``` + +#### Manually declare and invoke a function for function calling + +If you don't want to use the automatic function support, you can manually +declare the function and invoke it. + +The following example shows how to declare a function and pass it as a tool. +Then you will receive a function call part in the response. + +```python +function = types.FunctionDeclaration( + name="get_current_weather", + description="Get the current weather in a given location", + parameters=types.FunctionParameters( + type="OBJECT", + properties={ + "location": types.ParameterType( + type="STRING", + description="The city and state, e.g. San Francisco, CA", + ), + }, + required=["location"], + ), +) + +tool = types.Tool(function_declarations=[function]) + +response = client.models.generate_content( + model="gemini-2.0-flash-exp", + contents="What is the weather like in Boston?", + config=types.GenerateContentConfig(tools=[tool]), +) + +print(response.function_calls[0]) +``` + +After you receive the function call part from the model, you can invoke the function +and get the function response. And then you can pass the function response to +the model. +The following example shows how to do it for a simple function invocation. + +```python +user_prompt_content = types.Content( + role="user", + parts=[types.Part.from_text("What is the weather like in Boston?")], +) +function_call_content = response.candidates[0].content +function_call_part = function_call_content.parts[0] + + +try: + function_result = get_current_weather( + **function_call_part.function_call.args + ) + function_response = {"result": function_result} +except ( + Exception +) as e: # instead of raising the exception, you can let the model handle it + function_response = {"error": str(e)} + + +function_response_part = types.Part.from_function_response( + name=function_call_part.function_call.name, + response=function_response, +) +function_response_content = types.Content( + role="tool", parts=[function_response_part] +) + +response = client.models.generate_content( + model="gemini-2.0-flash-exp", + contents=[ + user_prompt_content, + function_call_content, + function_response_content, + ], + config=types.GenerateContentConfig( + tools=[tool], + ), +) + +print(response.text) +``` + +### JSON Response Schema + +#### Pydantic Model Schema support + +Schemas can be provided as Pydantic Models. + +```python +from pydantic import BaseModel + + +class CountryInfo(BaseModel): + name: str + population: int + capital: str + continent: str + gdp: int + official_language: str + total_area_sq_mi: int + + +response = client.models.generate_content( + model="gemini-2.0-flash-exp", + contents="Give me information for the United States.", + config=types.GenerateContentConfig( + response_mime_type="application/json", + response_schema=CountryInfo, + ), +) +print(response.text) +``` + +```python +response = client.models.generate_content( + model="gemini-2.0-flash-exp", + contents="Give me information for the United States.", + config=types.GenerateContentConfig( + response_mime_type="application/json", + response_schema={ + "required": [ + "name", + "population", + "capital", + "continent", + "gdp", + "official_language", + "total_area_sq_mi", + ], + "properties": { + "name": {"type": "STRING"}, + "population": {"type": "INTEGER"}, + "capital": {"type": "STRING"}, + "continent": {"type": "STRING"}, + "gdp": {"type": "INTEGER"}, + "official_language": {"type": "STRING"}, + "total_area_sq_mi": {"type": "INTEGER"}, + }, + "type": "OBJECT", + }, + ), +) +print(response.text) +``` + +### Streaming + +#### Streaming for text content + +```python +for chunk in client.models.generate_content_stream( + model="gemini-2.0-flash-exp", contents="Tell me a story in 300 words." +): + print(chunk.text, end="") +``` + +#### Streaming for image content + +If your image is stored in [Google Cloud Storage](https://cloud.google.com/storage), +you can use the `from_uri` class method to create a `Part` object. + +```python +for chunk in client.models.generate_content_stream( + model="gemini-2.0-flash-exp", + contents=[ + "What is this image about?", + types.Part.from_uri( + file_uri="gs://generativeai-downloads/images/scones.jpg", + mime_type="image/jpeg", + ), + ], +): + print(chunk.text, end="") +``` + +If your image is stored in your local file system, you can read it in as bytes +data and use the `from_bytes` class method to create a `Part` object. + +```python +YOUR_IMAGE_PATH = "your_image_path" +YOUR_IMAGE_MIME_TYPE = "your_image_mime_type" +with open(YOUR_IMAGE_PATH, "rb") as f: + image_bytes = f.read() + +for chunk in client.models.generate_content_stream( + model="gemini-2.0-flash-exp", + contents=[ + "What is this image about?", + types.Part.from_bytes(data=image_bytes, mime_type=YOUR_IMAGE_MIME_TYPE), + ], +): + print(chunk.text, end="") +``` + +### Async + +`client.aio` exposes all the analogous [`async` methods](https://docs.python.org/3/library/asyncio.html) +that are available on `client` + +For example, `client.aio.models.generate_content` is the `async` version +of `client.models.generate_content` + +```python +response = await client.aio.models.generate_content( + model="gemini-2.0-flash-exp", contents="Tell me a story in 300 words." +) + +print(response.text) +``` + +### Streaming + +```python +async for response in client.aio.models.generate_content_stream( + model="gemini-2.0-flash-exp", contents="Tell me a story in 300 words." +): + print(response.text, end="") +``` + +### Count Tokens and Compute Tokens + +```python +response = client.models.count_tokens( + model="gemini-2.0-flash-exp", + contents="What is your name?", +) +print(response) +``` + +#### Compute Tokens + +Compute tokens is only supported in Vertex AI. + +```python +response = client.models.compute_tokens( + model="gemini-2.0-flash-exp", + contents="What is your name?", +) +print(response) +``` + +##### Async + +```python +response = await client.aio.models.count_tokens( + model="gemini-2.0-flash-exp", + contents="What is your name?", +) +print(response) +``` + +### Embed Content + +```python +response = client.models.embed_content( + model="text-embedding-004", + contents="What is your name?", +) +print(response) +``` + +```python +# multiple contents with config +response = client.models.embed_content( + model="text-embedding-004", + contents=["What is your name?", "What is your age?"], + config=types.EmbedContentConfig(output_dimensionality=10), +) + +print(response) +``` + +### Imagen + +#### Generate Image + +Support for generate image in Gemini Developer API is behind an allowlist + +```python +# Generate Image +response1 = client.models.generate_image( + model="imagen-3.0-generate-001", + prompt="An umbrella in the foreground, and a rainy night sky in the background", + config=types.GenerateImageConfig( + negative_prompt="human", + number_of_images=1, + include_rai_reason=True, + output_mime_type="image/jpeg", + ), +) +response1.generated_images[0].image.show() +``` + +#### Upscale Image + +Upscale image is only supported in Vertex AI. + +```python +# Upscale the generated image from above +response2 = client.models.upscale_image( + model="imagen-3.0-generate-001", + image=response1.generated_images[0].image, + upscale_factor="x2", + config=types.UpscaleImageConfig( + include_rai_reason=True, + output_mime_type="image/jpeg", + ), +) +response2.generated_images[0].image.show() +``` + +#### Edit Image + +Edit image uses a separate model from generate and upscale. + +Edit image is only supported in Vertex AI. + +```python +# Edit the generated image from above +from google.genai.types import RawReferenceImage, MaskReferenceImage + +raw_ref_image = RawReferenceImage( + reference_id=1, + reference_image=response1.generated_images[0].image, +) + +# Model computes a mask of the background +mask_ref_image = MaskReferenceImage( + reference_id=2, + config=types.MaskReferenceConfig( + mask_mode="MASK_MODE_BACKGROUND", + mask_dilation=0, + ), +) + +response3 = client.models.edit_image( + model="imagen-3.0-capability-001", + prompt="Sunlight and clear sky", + reference_images=[raw_ref_image, mask_ref_image], + config=types.EditImageConfig( + edit_mode="EDIT_MODE_INPAINT_INSERTION", + number_of_images=1, + negative_prompt="human", + include_rai_reason=True, + output_mime_type="image/jpeg", + ), +) +response3.generated_images[0].image.show() +``` + +## Chats + +Create a chat session to start a multi-turn conversations with the model. + +### Send Message + +```python +chat = client.chats.create(model="gemini-2.0-flash-exp") +response = chat.send_message("tell me a story") +print(response.text) +``` + +### Streaming + +```python +chat = client.chats.create(model="gemini-2.0-flash-exp") +for chunk in chat.send_message_stream("tell me a story"): + print(chunk.text) +``` + +### Async + +```python +chat = client.aio.chats.create(model="gemini-2.0-flash-exp") +response = await chat.send_message("tell me a story") +print(response.text) +``` + +### Async Streaming + +```python +chat = client.aio.chats.create(model="gemini-2.0-flash-exp") +async for chunk in chat.send_message_stream("tell me a story"): + print(chunk.text) +``` + +## Files + +Files are only supported in Gemini Developer API. + +```cmd +!gsutil cp gs://cloud-samples-data/generative-ai/pdf/2312.11805v3.pdf . +!gsutil cp gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf . +``` + +### Upload + +```python +file1 = client.files.upload(path="2312.11805v3.pdf") +file2 = client.files.upload(path="2403.05530.pdf") + +print(file1) +print(file2) +``` + +### Delete + +```python +file3 = client.files.upload(path="2312.11805v3.pdf") + +client.files.delete(name=file3.name) +``` + +## Caches + +`client.caches` contains the control plane APIs for cached content + +### Create + +```python +if client.vertexai: + file_uris = [ + "gs://cloud-samples-data/generative-ai/pdf/2312.11805v3.pdf", + "gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf", + ] +else: + file_uris = [file1.uri, file2.uri] + +cached_content = client.caches.create( + model="gemini-1.5-pro-002", + config=types.CreateCachedContentConfig( + contents=[ + types.Content( + role="user", + parts=[ + types.Part.from_uri( + file_uri=file_uris[0], mime_type="application/pdf" + ), + types.Part.from_uri( + file_uri=file_uris[1], + mime_type="application/pdf", + ), + ], + ) + ], + system_instruction="What is the sum of the two pdfs?", + display_name="test cache", + ttl="3600s", + ), +) +``` + +### Get + +```python +cached_content = client.caches.get(name=cached_content.name) +``` + +### Generate Content + +```python +response = client.models.generate_content( + model="gemini-1.5-pro-002", + contents="Summarize the pdfs", + config=types.GenerateContentConfig( + cached_content=cached_content.name, + ), +) +print(response.text) +``` + +## Tunings + +`client.tunings` contains tuning job APIs and supports supervised fine +tuning through `tune` and distillation through `distill` + +### Tune + +- Vertex AI supports tuning from GCS source +- Gemini Developer API supports tuning from inline examples + +```python +if client.vertexai: + model = "gemini-1.5-pro-002" + training_dataset = types.TuningDataset( + gcs_uri="gs://cloud-samples-data/ai-platform/generative_ai/gemini-1_5/text/sft_train_data.jsonl", + ) +else: + model = "models/gemini-1.0-pro-001" + training_dataset = types.TuningDataset( + examples=[ + types.TuningExample( + text_input=f"Input text {i}", + output=f"Output text {i}", + ) + for i in range(5) + ], + ) +``` + +```python +tuning_job = client.tunings.tune( + base_model=model, + training_dataset=training_dataset, + config=types.CreateTuningJobConfig( + epoch_count=1, tuned_model_display_name="test_dataset_examples model" + ), +) +print(tuning_job) +``` + +### Get Tuning Job + +```python +tuning_job = client.tunings.get(name=tuning_job.name) +print(tuning_job) +``` + +```python +import time + +running_states = set( + [ + "JOB_STATE_PENDING", + "JOB_STATE_RUNNING", + ] +) + +while tuning_job.state in running_states: + print(tuning_job.state) + tuning_job = client.tunings.get(name=tuning_job.name) + time.sleep(10) +``` + +#### Use Tuned Model + +```python +response = client.models.generate_content( + model=tuning_job.tuned_model.endpoint, + contents="What is your name?", +) + +print(response.text) +``` + +### Get Tuned Model + +```python +tuned_model = client.models.get(model=tuning_job.tuned_model.model) +print(tuned_model) +``` + +### List Tuned Models + +To retrieve base models, see [list base models](#list-base-models). + +```python +for model in client.models.list(config={"page_size": 10}): + print(model) +``` + +```python +pager = client.models.list(config={"page_size": 10}) +print(pager.page_size) +print(pager[0]) +pager.next_page() +print(pager[0]) +``` + +#### Async + +```python +async for job in await client.aio.models.list(config={"page_size": 10}): + print(job) +``` + +```python +async_pager = await client.aio.models.list(config={"page_size": 10}) +print(async_pager.page_size) +print(async_pager[0]) +await async_pager.next_page() +print(async_pager[0]) +``` + +### Update Tuned Model + +```python +model = pager[0] + +model = client.models.update( + model=model.name, + config=types.UpdateModelConfig( + display_name="my tuned model", description="my tuned model description" + ), +) + +print(model) +``` + +### Distillation + +Only supported in Vertex AI. Requires allowlist. + +```python +distillation_job = client.tunings.distill( + student_model="gemma-2b-1.1-it", + teacher_model="gemini-1.5-pro-002", + training_dataset=genai.types.DistillationDataset( + gcs_uri="gs://cloud-samples-data/ai-platform/generative_ai/gemini-1_5/text/sft_train_data.jsonl", + ), + config=genai.types.CreateDistillationJobConfig( + epoch_count=1, + pipeline_root_directory=("gs://my-bucket"), + ), +) +print(distillation_job) +``` + +```python +completed_states = set( + [ + "JOB_STATE_SUCCEEDED", + "JOB_STATE_FAILED", + "JOB_STATE_CANCELLED", + "JOB_STATE_PAUSED", + ] +) + +while distillation_job.state not in completed_states: + print(distillation_job.state) + distillation_job = client.tunings.get(name=distillation_job.name) + time.sleep(10) + +print(distillation_job) +``` + + +### List Tuning Jobs + +```python +for job in client.tunings.list(config={"page_size": 10}): + print(job) +``` + +```python +pager = client.tunings.list(config={"page_size": 10}) +print(pager.page_size) +print(pager[0]) +pager.next_page() +print(pager[0]) +``` + +#### Async + +```python +async for job in await client.aio.tunings.list(config={"page_size": 10}): + print(job) +``` + +```python +async_pager = await client.aio.tunings.list(config={"page_size": 10}) +print(async_pager.page_size) +print(async_pager[0]) +await async_pager.next_page() +print(async_pager[0]) +``` + +## Batch Prediction + +Only supported in Vertex AI. + +### Create + +```python +# Specify model and source file only, destination and job display name will be auto-populated +job = client.batches.create( + model="gemini-1.5-flash-002", + src="bq://my-project.my-dataset.my-table", +) + +job +``` + +```python +# Get a job by name +job = client.batches.get(name=job.name) + +job.state +``` + +```python +completed_states = set( + [ + "JOB_STATE_SUCCEEDED", + "JOB_STATE_FAILED", + "JOB_STATE_CANCELLED", + "JOB_STATE_PAUSED", + ] +) + +while job.state not in completed_states: + print(job.state) + job = client.batches.get(name=job.name) + time.sleep(30) + +job +``` + +### List + +```python +for job in client.batches.list(config=types.ListBatchJobConfig(page_size=10)): + print(job) +``` + +```python +pager = client.batches.list(config=types.ListBatchJobConfig(page_size=10)) +print(pager.page_size) +print(pager[0]) +pager.next_page() +print(pager[0]) +``` + +#### Async + +```python +async for job in await client.aio.batches.list( + config=types.ListBatchJobConfig(page_size=10) +): + print(job) +``` + +```python +async_pager = await client.aio.batches.list( + config=types.ListBatchJobConfig(page_size=10) +) +print(async_pager.page_size) +print(async_pager[0]) +await async_pager.next_page() +print(async_pager[0]) +``` + +### Delete + +```python +# Delete the job resource +delete_job = client.batches.delete(name=job.name) + +delete_job +``` |
