diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/fsspec/implementations/reference.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/fsspec/implementations/reference.py | 1216 |
1 files changed, 1216 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/fsspec/implementations/reference.py b/.venv/lib/python3.12/site-packages/fsspec/implementations/reference.py new file mode 100644 index 00000000..60fb5d57 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/fsspec/implementations/reference.py @@ -0,0 +1,1216 @@ +import base64 +import collections +import io +import itertools +import logging +import math +import os +from functools import lru_cache +from itertools import chain +from typing import TYPE_CHECKING, Literal + +import fsspec.core + +try: + import ujson as json +except ImportError: + if not TYPE_CHECKING: + import json + +from fsspec.asyn import AsyncFileSystem +from fsspec.callbacks import DEFAULT_CALLBACK +from fsspec.core import filesystem, open, split_protocol +from fsspec.implementations.asyn_wrapper import AsyncFileSystemWrapper +from fsspec.utils import isfilelike, merge_offset_ranges, other_paths + +logger = logging.getLogger("fsspec.reference") + + +class ReferenceNotReachable(RuntimeError): + def __init__(self, reference, target, *args): + super().__init__(*args) + self.reference = reference + self.target = target + + def __str__(self): + return f'Reference "{self.reference}" failed to fetch target {self.target}' + + +def _first(d): + return next(iter(d.values())) + + +def _prot_in_references(path, references): + ref = references.get(path) + if isinstance(ref, (list, tuple)) and isinstance(ref[0], str): + return split_protocol(ref[0])[0] if ref[0] else ref[0] + + +def _protocol_groups(paths, references): + if isinstance(paths, str): + return {_prot_in_references(paths, references): [paths]} + out = {} + for path in paths: + protocol = _prot_in_references(path, references) + out.setdefault(protocol, []).append(path) + return out + + +class RefsValuesView(collections.abc.ValuesView): + def __iter__(self): + for val in self._mapping.zmetadata.values(): + yield json.dumps(val).encode() + yield from self._mapping._items.values() + for field in self._mapping.listdir(): + chunk_sizes = self._mapping._get_chunk_sizes(field) + if len(chunk_sizes) == 0: + yield self._mapping[field + "/0"] + continue + yield from self._mapping._generate_all_records(field) + + +class RefsItemsView(collections.abc.ItemsView): + def __iter__(self): + return zip(self._mapping.keys(), self._mapping.values()) + + +def ravel_multi_index(idx, sizes): + val = 0 + mult = 1 + for i, s in zip(idx[::-1], sizes[::-1]): + val += i * mult + mult *= s + return val + + +class LazyReferenceMapper(collections.abc.MutableMapping): + """This interface can be used to read/write references from Parquet stores. + It is not intended for other types of references. + It can be used with Kerchunk's MultiZarrToZarr method to combine + references into a parquet store. + Examples of this use-case can be found here: + https://fsspec.github.io/kerchunk/advanced.html?highlight=parquet#parquet-storage""" + + # import is class level to prevent numpy dep requirement for fsspec + @property + def np(self): + import numpy as np + + return np + + @property + def pd(self): + import pandas as pd + + return pd + + def __init__( + self, + root, + fs=None, + out_root=None, + cache_size=128, + categorical_threshold=10, + engine: Literal["fastparquet", "pyarrow"] = "fastparquet", + ): + """ + + This instance will be writable, storing changes in memory until full partitions + are accumulated or .flush() is called. + + To create an empty lazy store, use .create() + + Parameters + ---------- + root : str + Root of parquet store + fs : fsspec.AbstractFileSystem + fsspec filesystem object, default is local filesystem. + cache_size : int, default=128 + Maximum size of LRU cache, where cache_size*record_size denotes + the total number of references that can be loaded in memory at once. + categorical_threshold : int + Encode urls as pandas.Categorical to reduce memory footprint if the ratio + of the number of unique urls to total number of refs for each variable + is greater than or equal to this number. (default 10) + engine: Literal["fastparquet","pyarrow"] + Engine choice for reading parquet files. (default is "fastparquet") + """ + + self.root = root + self.chunk_sizes = {} + self.out_root = out_root or self.root + self.cat_thresh = categorical_threshold + self.engine = engine + self.cache_size = cache_size + self.url = self.root + "/{field}/refs.{record}.parq" + # TODO: derive fs from `root` + self.fs = fsspec.filesystem("file") if fs is None else fs + + from importlib.util import find_spec + + if self.engine == "pyarrow" and find_spec("pyarrow") is None: + raise ImportError("engine choice `pyarrow` is not installed.") + + def __getattr__(self, item): + if item in ("_items", "record_size", "zmetadata"): + self.setup() + # avoid possible recursion if setup fails somehow + return self.__dict__[item] + raise AttributeError(item) + + def setup(self): + self._items = {} + self._items[".zmetadata"] = self.fs.cat_file( + "/".join([self.root, ".zmetadata"]) + ) + met = json.loads(self._items[".zmetadata"]) + self.record_size = met["record_size"] + self.zmetadata = met["metadata"] + + # Define function to open and decompress refs + @lru_cache(maxsize=self.cache_size) + def open_refs(field, record): + """cached parquet file loader""" + path = self.url.format(field=field, record=record) + data = io.BytesIO(self.fs.cat_file(path)) + try: + df = self.pd.read_parquet(data, engine=self.engine) + refs = {c: df[c].to_numpy() for c in df.columns} + except OSError: + refs = None + return refs + + self.open_refs = open_refs + + @staticmethod + def create(root, storage_options=None, fs=None, record_size=10000, **kwargs): + """Make empty parquet reference set + + First deletes the contents of the given directory, if it exists. + + Parameters + ---------- + root: str + Directory to contain the output; will be created + storage_options: dict | None + For making the filesystem to use for writing is fs is None + fs: FileSystem | None + Filesystem for writing + record_size: int + Number of references per parquet file + kwargs: passed to __init__ + + Returns + ------- + LazyReferenceMapper instance + """ + met = {"metadata": {}, "record_size": record_size} + if fs is None: + fs, root = fsspec.core.url_to_fs(root, **(storage_options or {})) + if fs.exists(root): + fs.rm(root, recursive=True) + fs.makedirs(root, exist_ok=True) + fs.pipe("/".join([root, ".zmetadata"]), json.dumps(met).encode()) + return LazyReferenceMapper(root, fs, **kwargs) + + @lru_cache() + def listdir(self): + """List top-level directories""" + dirs = (p.rsplit("/", 1)[0] for p in self.zmetadata if not p.startswith(".z")) + return set(dirs) + + def ls(self, path="", detail=True): + """Shortcut file listings""" + path = path.rstrip("/") + pathdash = path + "/" if path else "" + dirnames = self.listdir() + dirs = [ + d + for d in dirnames + if d.startswith(pathdash) and "/" not in d.lstrip(pathdash) + ] + if dirs: + others = { + f + for f in chain( + [".zmetadata"], + (name for name in self.zmetadata), + (name for name in self._items), + ) + if f.startswith(pathdash) and "/" not in f.lstrip(pathdash) + } + if detail is False: + others.update(dirs) + return sorted(others) + dirinfo = [{"name": name, "type": "directory", "size": 0} for name in dirs] + fileinfo = [ + { + "name": name, + "type": "file", + "size": len( + json.dumps(self.zmetadata[name]) + if name in self.zmetadata + else self._items[name] + ), + } + for name in others + ] + return sorted(dirinfo + fileinfo, key=lambda s: s["name"]) + field = path + others = set( + [name for name in self.zmetadata if name.startswith(f"{path}/")] + + [name for name in self._items if name.startswith(f"{path}/")] + ) + fileinfo = [ + { + "name": name, + "type": "file", + "size": len( + json.dumps(self.zmetadata[name]) + if name in self.zmetadata + else self._items[name] + ), + } + for name in others + ] + keys = self._keys_in_field(field) + + if detail is False: + return list(others) + list(keys) + recs = self._generate_all_records(field) + recinfo = [ + {"name": name, "type": "file", "size": rec[-1]} + for name, rec in zip(keys, recs) + if rec[0] # filters out path==None, deleted/missing + ] + return fileinfo + recinfo + + def _load_one_key(self, key): + """Get the reference for one key + + Returns bytes, one-element list or three-element list. + """ + if key in self._items: + return self._items[key] + elif key in self.zmetadata: + return json.dumps(self.zmetadata[key]).encode() + elif "/" not in key or self._is_meta(key): + raise KeyError(key) + field, _ = key.rsplit("/", 1) + record, ri, chunk_size = self._key_to_record(key) + maybe = self._items.get((field, record), {}).get(ri, False) + if maybe is None: + # explicitly deleted + raise KeyError + elif maybe: + return maybe + elif chunk_size == 0: + return b"" + + # Chunk keys can be loaded from row group and cached in LRU cache + try: + refs = self.open_refs(field, record) + except (ValueError, TypeError, FileNotFoundError) as exc: + raise KeyError(key) from exc + columns = ["path", "offset", "size", "raw"] + selection = [refs[c][ri] if c in refs else None for c in columns] + raw = selection[-1] + if raw is not None: + return raw + if selection[0] is None: + raise KeyError("This reference does not exist or has been deleted") + if selection[1:3] == [0, 0]: + # URL only + return selection[:1] + # URL, offset, size + return selection[:3] + + @lru_cache(4096) + def _key_to_record(self, key): + """Details needed to construct a reference for one key""" + field, chunk = key.rsplit("/", 1) + chunk_sizes = self._get_chunk_sizes(field) + if len(chunk_sizes) == 0: + return 0, 0, 0 + chunk_idx = [int(c) for c in chunk.split(".")] + chunk_number = ravel_multi_index(chunk_idx, chunk_sizes) + record = chunk_number // self.record_size + ri = chunk_number % self.record_size + return record, ri, len(chunk_sizes) + + def _get_chunk_sizes(self, field): + """The number of chunks along each axis for a given field""" + if field not in self.chunk_sizes: + zarray = self.zmetadata[f"{field}/.zarray"] + size_ratio = [ + math.ceil(s / c) for s, c in zip(zarray["shape"], zarray["chunks"]) + ] + self.chunk_sizes[field] = size_ratio or [1] + return self.chunk_sizes[field] + + def _generate_record(self, field, record): + """The references for a given parquet file of a given field""" + refs = self.open_refs(field, record) + it = iter(zip(*refs.values())) + if len(refs) == 3: + # All urls + return (list(t) for t in it) + elif len(refs) == 1: + # All raws + return refs["raw"] + else: + # Mix of urls and raws + return (list(t[:3]) if not t[3] else t[3] for t in it) + + def _generate_all_records(self, field): + """Load all the references within a field by iterating over the parquet files""" + nrec = 1 + for ch in self._get_chunk_sizes(field): + nrec *= ch + nrec = math.ceil(nrec / self.record_size) + for record in range(nrec): + yield from self._generate_record(field, record) + + def values(self): + return RefsValuesView(self) + + def items(self): + return RefsItemsView(self) + + def __hash__(self): + return id(self) + + def __getitem__(self, key): + return self._load_one_key(key) + + def __setitem__(self, key, value): + if "/" in key and not self._is_meta(key): + field, chunk = key.rsplit("/", 1) + record, i, _ = self._key_to_record(key) + subdict = self._items.setdefault((field, record), {}) + subdict[i] = value + if len(subdict) == self.record_size: + self.write(field, record) + else: + # metadata or top-level + self._items[key] = value + new_value = json.loads( + value.decode() if isinstance(value, bytes) else value + ) + self.zmetadata[key] = {**self.zmetadata.get(key, {}), **new_value} + + @staticmethod + def _is_meta(key): + return key.startswith(".z") or "/.z" in key + + def __delitem__(self, key): + if key in self._items: + del self._items[key] + elif key in self.zmetadata: + del self.zmetadata[key] + else: + if "/" in key and not self._is_meta(key): + field, _ = key.rsplit("/", 1) + record, i, _ = self._key_to_record(key) + subdict = self._items.setdefault((field, record), {}) + subdict[i] = None + if len(subdict) == self.record_size: + self.write(field, record) + else: + # metadata or top-level + self._items[key] = None + + def write(self, field, record, base_url=None, storage_options=None): + # extra requirements if writing + import kerchunk.df + import numpy as np + import pandas as pd + + partition = self._items[(field, record)] + original = False + if len(partition) < self.record_size: + try: + original = self.open_refs(field, record) + except OSError: + pass + + if original: + paths = original["path"] + offsets = original["offset"] + sizes = original["size"] + raws = original["raw"] + else: + paths = np.full(self.record_size, np.nan, dtype="O") + offsets = np.zeros(self.record_size, dtype="int64") + sizes = np.zeros(self.record_size, dtype="int64") + raws = np.full(self.record_size, np.nan, dtype="O") + for j, data in partition.items(): + if isinstance(data, list): + if ( + str(paths.dtype) == "category" + and data[0] not in paths.dtype.categories + ): + paths = paths.add_categories(data[0]) + paths[j] = data[0] + if len(data) > 1: + offsets[j] = data[1] + sizes[j] = data[2] + elif data is None: + # delete + paths[j] = None + offsets[j] = 0 + sizes[j] = 0 + raws[j] = None + else: + # this is the only call into kerchunk, could remove + raws[j] = kerchunk.df._proc_raw(data) + # TODO: only save needed columns + df = pd.DataFrame( + { + "path": paths, + "offset": offsets, + "size": sizes, + "raw": raws, + }, + copy=False, + ) + if df.path.count() / (df.path.nunique() or 1) > self.cat_thresh: + df["path"] = df["path"].astype("category") + object_encoding = {"raw": "bytes", "path": "utf8"} + has_nulls = ["path", "raw"] + + fn = f"{base_url or self.out_root}/{field}/refs.{record}.parq" + self.fs.mkdirs(f"{base_url or self.out_root}/{field}", exist_ok=True) + + if self.engine == "pyarrow": + df_backend_kwargs = {"write_statistics": False} + elif self.engine == "fastparquet": + df_backend_kwargs = { + "stats": False, + "object_encoding": object_encoding, + "has_nulls": has_nulls, + } + else: + raise NotImplementedError(f"{self.engine} not supported") + + df.to_parquet( + fn, + engine=self.engine, + storage_options=storage_options + or getattr(self.fs, "storage_options", None), + compression="zstd", + index=False, + **df_backend_kwargs, + ) + + partition.clear() + self._items.pop((field, record)) + + def flush(self, base_url=None, storage_options=None): + """Output any modified or deleted keys + + Parameters + ---------- + base_url: str + Location of the output + """ + + # write what we have so far and clear sub chunks + for thing in list(self._items): + if isinstance(thing, tuple): + field, record = thing + self.write( + field, + record, + base_url=base_url, + storage_options=storage_options, + ) + + # gather .zmetadata from self._items and write that too + for k in list(self._items): + if k != ".zmetadata" and ".z" in k: + self.zmetadata[k] = json.loads(self._items.pop(k)) + met = {"metadata": self.zmetadata, "record_size": self.record_size} + self._items.clear() + self._items[".zmetadata"] = json.dumps(met).encode() + self.fs.pipe( + "/".join([base_url or self.out_root, ".zmetadata"]), + self._items[".zmetadata"], + ) + + # TODO: only clear those that we wrote to? + self.open_refs.cache_clear() + + def __len__(self): + # Caveat: This counts expected references, not actual - but is fast + count = 0 + for field in self.listdir(): + if field.startswith("."): + count += 1 + else: + count += math.prod(self._get_chunk_sizes(field)) + count += len(self.zmetadata) # all metadata keys + # any other files not in reference partitions + count += sum(1 for _ in self._items if not isinstance(_, tuple)) + return count + + def __iter__(self): + # Caveat: returns only existing keys, so the number of these does not + # match len(self) + metas = set(self.zmetadata) + metas.update(self._items) + for bit in metas: + if isinstance(bit, str): + yield bit + for field in self.listdir(): + for k in self._keys_in_field(field): + if k in self: + yield k + + def __contains__(self, item): + try: + self._load_one_key(item) + return True + except KeyError: + return False + + def _keys_in_field(self, field): + """List key names in given field + + Produces strings like "field/x.y" appropriate from the chunking of the array + """ + chunk_sizes = self._get_chunk_sizes(field) + if len(chunk_sizes) == 0: + yield field + "/0" + return + inds = itertools.product(*(range(i) for i in chunk_sizes)) + for ind in inds: + yield field + "/" + ".".join([str(c) for c in ind]) + + +class ReferenceFileSystem(AsyncFileSystem): + """View byte ranges of some other file as a file system + Initial version: single file system target, which must support + async, and must allow start and end args in _cat_file. Later versions + may allow multiple arbitrary URLs for the targets. + This FileSystem is read-only. It is designed to be used with async + targets (for now). This FileSystem only allows whole-file access, no + ``open``. We do not get original file details from the target FS. + Configuration is by passing a dict of references at init, or a URL to + a JSON file containing the same; this dict + can also contain concrete data for some set of paths. + Reference dict format: + {path0: bytes_data, path1: (target_url, offset, size)} + https://github.com/fsspec/kerchunk/blob/main/README.md + """ + + protocol = "reference" + + def __init__( + self, + fo, + target=None, + ref_storage_args=None, + target_protocol=None, + target_options=None, + remote_protocol=None, + remote_options=None, + fs=None, + template_overrides=None, + simple_templates=True, + max_gap=64_000, + max_block=256_000_000, + cache_size=128, + **kwargs, + ): + """ + Parameters + ---------- + fo : dict or str + The set of references to use for this instance, with a structure as above. + If str referencing a JSON file, will use fsspec.open, in conjunction + with target_options and target_protocol to open and parse JSON at this + location. If a directory, then assume references are a set of parquet + files to be loaded lazily. + target : str + For any references having target_url as None, this is the default file + target to use + ref_storage_args : dict + If references is a str, use these kwargs for loading the JSON file. + Deprecated: use target_options instead. + target_protocol : str + Used for loading the reference file, if it is a path. If None, protocol + will be derived from the given path + target_options : dict + Extra FS options for loading the reference file ``fo``, if given as a path + remote_protocol : str + The protocol of the filesystem on which the references will be evaluated + (unless fs is provided). If not given, will be derived from the first + URL that has a protocol in the templates or in the references, in that + order. + remote_options : dict + kwargs to go with remote_protocol + fs : AbstractFileSystem | dict(str, (AbstractFileSystem | dict)) + Directly provide a file system(s): + - a single filesystem instance + - a dict of protocol:filesystem, where each value is either a filesystem + instance, or a dict of kwargs that can be used to create in + instance for the given protocol + + If this is given, remote_options and remote_protocol are ignored. + template_overrides : dict + Swap out any templates in the references file with these - useful for + testing. + simple_templates: bool + Whether templates can be processed with simple replace (True) or if + jinja is needed (False, much slower). All reference sets produced by + ``kerchunk`` are simple in this sense, but the spec allows for complex. + max_gap, max_block: int + For merging multiple concurrent requests to the same remote file. + Neighboring byte ranges will only be merged when their + inter-range gap is <= ``max_gap``. Default is 64KB. Set to 0 + to only merge when it requires no extra bytes. Pass a negative + number to disable merging, appropriate for local target files. + Neighboring byte ranges will only be merged when the size of + the aggregated range is <= ``max_block``. Default is 256MB. + cache_size : int + Maximum size of LRU cache, where cache_size*record_size denotes + the total number of references that can be loaded in memory at once. + Only used for lazily loaded references. + kwargs : passed to parent class + """ + super().__init__(**kwargs) + self.target = target + self.template_overrides = template_overrides + self.simple_templates = simple_templates + self.templates = {} + self.fss = {} + self._dircache = {} + self.max_gap = max_gap + self.max_block = max_block + if isinstance(fo, str): + dic = dict( + **(ref_storage_args or target_options or {}), protocol=target_protocol + ) + ref_fs, fo2 = fsspec.core.url_to_fs(fo, **dic) + if ref_fs.isfile(fo2): + # text JSON + with fsspec.open(fo, "rb", **dic) as f: + logger.info("Read reference from URL %s", fo) + text = json.load(f) + self._process_references(text, template_overrides) + else: + # Lazy parquet refs + logger.info("Open lazy reference dict from URL %s", fo) + self.references = LazyReferenceMapper( + fo2, + fs=ref_fs, + cache_size=cache_size, + ) + else: + # dictionaries + self._process_references(fo, template_overrides) + if isinstance(fs, dict): + self.fss = { + k: ( + fsspec.filesystem(k.split(":", 1)[0], **opts) + if isinstance(opts, dict) + else opts + ) + for k, opts in fs.items() + } + if None not in self.fss: + self.fss[None] = filesystem("file") + return + if fs is not None: + # single remote FS + remote_protocol = ( + fs.protocol[0] if isinstance(fs.protocol, tuple) else fs.protocol + ) + self.fss[remote_protocol] = fs + + if remote_protocol is None: + # get single protocol from any templates + for ref in self.templates.values(): + if callable(ref): + ref = ref() + protocol, _ = fsspec.core.split_protocol(ref) + if protocol and protocol not in self.fss: + fs = filesystem(protocol, **(remote_options or {})) + self.fss[protocol] = fs + if remote_protocol is None: + # get single protocol from references + # TODO: warning here, since this can be very expensive? + for ref in self.references.values(): + if callable(ref): + ref = ref() + if isinstance(ref, list) and ref[0]: + protocol, _ = fsspec.core.split_protocol(ref[0]) + if protocol not in self.fss: + fs = filesystem(protocol, **(remote_options or {})) + self.fss[protocol] = fs + # only use first remote URL + break + + if remote_protocol and remote_protocol not in self.fss: + fs = filesystem(remote_protocol, **(remote_options or {})) + self.fss[remote_protocol] = fs + + self.fss[None] = fs or filesystem("file") # default one + # Wrap any non-async filesystems to ensure async methods are available below + for k, f in self.fss.items(): + if not f.async_impl: + self.fss[k] = AsyncFileSystemWrapper(f) + + def _cat_common(self, path, start=None, end=None): + path = self._strip_protocol(path) + logger.debug(f"cat: {path}") + try: + part = self.references[path] + except KeyError as exc: + raise FileNotFoundError(path) from exc + if isinstance(part, str): + part = part.encode() + if isinstance(part, bytes): + logger.debug(f"Reference: {path}, type bytes") + if part.startswith(b"base64:"): + part = base64.b64decode(part[7:]) + return part, None, None + + if len(part) == 1: + logger.debug(f"Reference: {path}, whole file => {part}") + url = part[0] + start1, end1 = start, end + else: + url, start0, size = part + logger.debug(f"Reference: {path} => {url}, offset {start0}, size {size}") + end0 = start0 + size + + if start is not None: + if start >= 0: + start1 = start0 + start + else: + start1 = end0 + start + else: + start1 = start0 + if end is not None: + if end >= 0: + end1 = start0 + end + else: + end1 = end0 + end + else: + end1 = end0 + if url is None: + url = self.target + return url, start1, end1 + + async def _cat_file(self, path, start=None, end=None, **kwargs): + part_or_url, start0, end0 = self._cat_common(path, start=start, end=end) + if isinstance(part_or_url, bytes): + return part_or_url[start:end] + protocol, _ = split_protocol(part_or_url) + try: + return await self.fss[protocol]._cat_file( + part_or_url, start=start0, end=end0 + ) + except Exception as e: + raise ReferenceNotReachable(path, part_or_url) from e + + def cat_file(self, path, start=None, end=None, **kwargs): + part_or_url, start0, end0 = self._cat_common(path, start=start, end=end) + if isinstance(part_or_url, bytes): + return part_or_url[start:end] + protocol, _ = split_protocol(part_or_url) + try: + return self.fss[protocol].cat_file(part_or_url, start=start0, end=end0) + except Exception as e: + raise ReferenceNotReachable(path, part_or_url) from e + + def pipe_file(self, path, value, **_): + """Temporarily add binary data or reference as a file""" + self.references[path] = value + + async def _get_file(self, rpath, lpath, **kwargs): + if self.isdir(rpath): + return os.makedirs(lpath, exist_ok=True) + data = await self._cat_file(rpath) + with open(lpath, "wb") as f: + f.write(data) + + def get_file(self, rpath, lpath, callback=DEFAULT_CALLBACK, **kwargs): + if self.isdir(rpath): + return os.makedirs(lpath, exist_ok=True) + data = self.cat_file(rpath, **kwargs) + callback.set_size(len(data)) + if isfilelike(lpath): + lpath.write(data) + else: + with open(lpath, "wb") as f: + f.write(data) + callback.absolute_update(len(data)) + + def get(self, rpath, lpath, recursive=False, **kwargs): + if recursive: + # trigger directory build + self.ls("") + rpath = self.expand_path(rpath, recursive=recursive) + fs = fsspec.filesystem("file", auto_mkdir=True) + targets = other_paths(rpath, lpath) + if recursive: + data = self.cat([r for r in rpath if not self.isdir(r)]) + else: + data = self.cat(rpath) + for remote, local in zip(rpath, targets): + if remote in data: + fs.pipe_file(local, data[remote]) + + def cat(self, path, recursive=False, on_error="raise", **kwargs): + if isinstance(path, str) and recursive: + raise NotImplementedError + if isinstance(path, list) and (recursive or any("*" in p for p in path)): + raise NotImplementedError + # TODO: if references is lazy, pre-fetch all paths in batch before access + proto_dict = _protocol_groups(path, self.references) + out = {} + for proto, paths in proto_dict.items(): + fs = self.fss[proto] + urls, starts, ends, valid_paths = [], [], [], [] + for p in paths: + # find references or label not-found. Early exit if any not + # found and on_error is "raise" + try: + u, s, e = self._cat_common(p) + if not isinstance(u, (bytes, str)): + # nan/None from parquet + continue + except FileNotFoundError as err: + if on_error == "raise": + raise + if on_error != "omit": + out[p] = err + else: + urls.append(u) + starts.append(s) + ends.append(e) + valid_paths.append(p) + + # process references into form for merging + urls2 = [] + starts2 = [] + ends2 = [] + paths2 = [] + whole_files = set() + for u, s, e, p in zip(urls, starts, ends, valid_paths): + if isinstance(u, bytes): + # data + out[p] = u + elif s is None: + # whole file - limits are None, None, but no further + # entries take for this file + whole_files.add(u) + urls2.append(u) + starts2.append(s) + ends2.append(e) + paths2.append(p) + for u, s, e, p in zip(urls, starts, ends, valid_paths): + # second run to account for files that are to be loaded whole + if s is not None and u not in whole_files: + urls2.append(u) + starts2.append(s) + ends2.append(e) + paths2.append(p) + + # merge and fetch consolidated ranges + new_paths, new_starts, new_ends = merge_offset_ranges( + list(urls2), + list(starts2), + list(ends2), + sort=True, + max_gap=self.max_gap, + max_block=self.max_block, + ) + bytes_out = fs.cat_ranges(new_paths, new_starts, new_ends) + + # unbundle from merged bytes - simple approach + for u, s, e, p in zip(urls, starts, ends, valid_paths): + if p in out: + continue # was bytes, already handled + for np, ns, ne, b in zip(new_paths, new_starts, new_ends, bytes_out): + if np == u and (ns is None or ne is None): + if isinstance(b, Exception): + out[p] = b + else: + out[p] = b[s:e] + elif np == u and s >= ns and e <= ne: + if isinstance(b, Exception): + out[p] = b + else: + out[p] = b[s - ns : (e - ne) or None] + + for k, v in out.copy().items(): + # these were valid references, but fetch failed, so transform exc + if isinstance(v, Exception) and k in self.references: + ex = out[k] + new_ex = ReferenceNotReachable(k, self.references[k]) + new_ex.__cause__ = ex + if on_error == "raise": + raise new_ex + elif on_error != "omit": + out[k] = new_ex + + if len(out) == 1 and isinstance(path, str) and "*" not in path: + return _first(out) + return out + + def _process_references(self, references, template_overrides=None): + vers = references.get("version", None) + if vers is None: + self._process_references0(references) + elif vers == 1: + self._process_references1(references, template_overrides=template_overrides) + else: + raise ValueError(f"Unknown reference spec version: {vers}") + # TODO: we make dircache by iterating over all entries, but for Spec >= 1, + # can replace with programmatic. Is it even needed for mapper interface? + + def _process_references0(self, references): + """Make reference dict for Spec Version 0""" + if isinstance(references, dict): + # do not do this for lazy/parquet backend, which will not make dicts, + # but must remain writable in the original object + references = { + key: json.dumps(val) if isinstance(val, dict) else val + for key, val in references.items() + } + self.references = references + + def _process_references1(self, references, template_overrides=None): + if not self.simple_templates or self.templates: + import jinja2 + self.references = {} + self._process_templates(references.get("templates", {})) + + @lru_cache(1000) + def _render_jinja(u): + return jinja2.Template(u).render(**self.templates) + + for k, v in references.get("refs", {}).items(): + if isinstance(v, str): + if v.startswith("base64:"): + self.references[k] = base64.b64decode(v[7:]) + self.references[k] = v + elif isinstance(v, dict): + self.references[k] = json.dumps(v) + elif self.templates: + u = v[0] + if "{{" in u: + if self.simple_templates: + u = ( + u.replace("{{", "{") + .replace("}}", "}") + .format(**self.templates) + ) + else: + u = _render_jinja(u) + self.references[k] = [u] if len(v) == 1 else [u, v[1], v[2]] + else: + self.references[k] = v + self.references.update(self._process_gen(references.get("gen", []))) + + def _process_templates(self, tmp): + self.templates = {} + if self.template_overrides is not None: + tmp.update(self.template_overrides) + for k, v in tmp.items(): + if "{{" in v: + import jinja2 + + self.templates[k] = lambda temp=v, **kwargs: jinja2.Template( + temp + ).render(**kwargs) + else: + self.templates[k] = v + + def _process_gen(self, gens): + out = {} + for gen in gens: + dimension = { + k: ( + v + if isinstance(v, list) + else range(v.get("start", 0), v["stop"], v.get("step", 1)) + ) + for k, v in gen["dimensions"].items() + } + products = ( + dict(zip(dimension.keys(), values)) + for values in itertools.product(*dimension.values()) + ) + for pr in products: + import jinja2 + + key = jinja2.Template(gen["key"]).render(**pr, **self.templates) + url = jinja2.Template(gen["url"]).render(**pr, **self.templates) + if ("offset" in gen) and ("length" in gen): + offset = int( + jinja2.Template(gen["offset"]).render(**pr, **self.templates) + ) + length = int( + jinja2.Template(gen["length"]).render(**pr, **self.templates) + ) + out[key] = [url, offset, length] + elif ("offset" in gen) ^ ("length" in gen): + raise ValueError( + "Both 'offset' and 'length' are required for a " + "reference generator entry if either is provided." + ) + else: + out[key] = [url] + return out + + def _dircache_from_items(self): + self.dircache = {"": []} + it = self.references.items() + for path, part in it: + if isinstance(part, (bytes, str)): + size = len(part) + elif len(part) == 1: + size = None + else: + _, _, size = part + par = path.rsplit("/", 1)[0] if "/" in path else "" + par0 = par + subdirs = [par0] + while par0 and par0 not in self.dircache: + # collect parent directories + par0 = self._parent(par0) + subdirs.append(par0) + + subdirs.reverse() + for parent, child in zip(subdirs, subdirs[1:]): + # register newly discovered directories + assert child not in self.dircache + assert parent in self.dircache + self.dircache[parent].append( + {"name": child, "type": "directory", "size": 0} + ) + self.dircache[child] = [] + + self.dircache[par].append({"name": path, "type": "file", "size": size}) + + def _open(self, path, mode="rb", block_size=None, cache_options=None, **kwargs): + data = self.cat_file(path) # load whole chunk into memory + return io.BytesIO(data) + + def ls(self, path, detail=True, **kwargs): + path = self._strip_protocol(path) + if isinstance(self.references, LazyReferenceMapper): + try: + return self.references.ls(path, detail) + except KeyError: + pass + raise FileNotFoundError(f"'{path}' is not a known key") + if not self.dircache: + self._dircache_from_items() + out = self._ls_from_cache(path) + if out is None: + raise FileNotFoundError(path) + if detail: + return out + return [o["name"] for o in out] + + def exists(self, path, **kwargs): # overwrite auto-sync version + return self.isdir(path) or self.isfile(path) + + def isdir(self, path): # overwrite auto-sync version + if self.dircache: + return path in self.dircache + elif isinstance(self.references, LazyReferenceMapper): + return path in self.references.listdir() + else: + # this may be faster than building dircache for single calls, but + # by looping will be slow for many calls; could cache it? + return any(_.startswith(f"{path}/") for _ in self.references) + + def isfile(self, path): # overwrite auto-sync version + return path in self.references + + async def _ls(self, path, detail=True, **kwargs): # calls fast sync code + return self.ls(path, detail, **kwargs) + + def find(self, path, maxdepth=None, withdirs=False, detail=False, **kwargs): + if withdirs: + return super().find( + path, maxdepth=maxdepth, withdirs=withdirs, detail=detail, **kwargs + ) + if path: + path = self._strip_protocol(path) + r = sorted(k for k in self.references if k.startswith(path)) + else: + r = sorted(self.references) + if detail: + if not self.dircache: + self._dircache_from_items() + return {k: self._ls_from_cache(k)[0] for k in r} + else: + return r + + def info(self, path, **kwargs): + out = self.references.get(path) + if out is not None: + if isinstance(out, (str, bytes)): + # decode base64 here + return {"name": path, "type": "file", "size": len(out)} + elif len(out) > 1: + return {"name": path, "type": "file", "size": out[2]} + else: + out0 = [{"name": path, "type": "file", "size": None}] + else: + out = self.ls(path, True) + out0 = [o for o in out if o["name"] == path] + if not out0: + return {"name": path, "type": "directory", "size": 0} + if out0[0]["size"] is None: + # if this is a whole remote file, update size using remote FS + prot, _ = split_protocol(self.references[path][0]) + out0[0]["size"] = self.fss[prot].size(self.references[path][0]) + return out0[0] + + async def _info(self, path, **kwargs): # calls fast sync code + return self.info(path) + + async def _rm_file(self, path, **kwargs): + self.references.pop( + path, None + ) # ignores FileNotFound, just as well for directories + self.dircache.clear() # this is a bit heavy handed + + async def _pipe_file(self, path, data, mode="overwrite", **kwargs): + if mode == "create" and self.exists(path): + raise FileExistsError + # can be str or bytes + self.references[path] = data + self.dircache.clear() # this is a bit heavy handed + + async def _put_file(self, lpath, rpath, mode="overwrite", **kwargs): + # puts binary + if mode == "create" and self.exists(rpath): + raise FileExistsError + with open(lpath, "rb") as f: + self.references[rpath] = f.read() + self.dircache.clear() # this is a bit heavy handed + + def save_json(self, url, **storage_options): + """Write modified references into new location""" + out = {} + for k, v in self.references.items(): + if isinstance(v, bytes): + try: + out[k] = v.decode("ascii") + except UnicodeDecodeError: + out[k] = (b"base64:" + base64.b64encode(v)).decode() + else: + out[k] = v + with fsspec.open(url, "wb", **storage_options) as f: + f.write(json.dumps({"version": 1, "refs": out}).encode()) |