diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/docutils/utils/math/unichar2tex.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/docutils/utils/math/unichar2tex.py | 808 |
1 files changed, 808 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/docutils/utils/math/unichar2tex.py b/.venv/lib/python3.12/site-packages/docutils/utils/math/unichar2tex.py new file mode 100644 index 00000000..da1f828a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/docutils/utils/math/unichar2tex.py @@ -0,0 +1,808 @@ +# LaTeX math to Unicode symbols translation table +# for use with the translate() method of unicode objects. +# Generated with ``write_unichar2tex.py`` from the data in +# http://milde.users.sourceforge.net/LUCR/Math/ + +# Includes commands from: standard LaTeX, amssymb, amsmath + +uni2tex_table = { +0xa0: '~', +0xa3: '\\pounds ', +0xa5: '\\yen ', +0xa7: '\\S ', +0xac: '\\neg ', +0xb1: '\\pm ', +0xb6: '\\P ', +0xd7: '\\times ', +0xf0: '\\eth ', +0xf7: '\\div ', +0x131: '\\imath ', +0x237: '\\jmath ', +0x393: '\\Gamma ', +0x394: '\\Delta ', +0x398: '\\Theta ', +0x39b: '\\Lambda ', +0x39e: '\\Xi ', +0x3a0: '\\Pi ', +0x3a3: '\\Sigma ', +0x3a5: '\\Upsilon ', +0x3a6: '\\Phi ', +0x3a8: '\\Psi ', +0x3a9: '\\Omega ', +0x3b1: '\\alpha ', +0x3b2: '\\beta ', +0x3b3: '\\gamma ', +0x3b4: '\\delta ', +0x3b5: '\\varepsilon ', +0x3b6: '\\zeta ', +0x3b7: '\\eta ', +0x3b8: '\\theta ', +0x3b9: '\\iota ', +0x3ba: '\\kappa ', +0x3bb: '\\lambda ', +0x3bc: '\\mu ', +0x3bd: '\\nu ', +0x3be: '\\xi ', +0x3c0: '\\pi ', +0x3c1: '\\rho ', +0x3c2: '\\varsigma ', +0x3c3: '\\sigma ', +0x3c4: '\\tau ', +0x3c5: '\\upsilon ', +0x3c6: '\\varphi ', +0x3c7: '\\chi ', +0x3c8: '\\psi ', +0x3c9: '\\omega ', +0x3d1: '\\vartheta ', +0x3d5: '\\phi ', +0x3d6: '\\varpi ', +0x3dd: '\\digamma ', +0x3f0: '\\varkappa ', +0x3f1: '\\varrho ', +0x3f5: '\\epsilon ', +0x3f6: '\\backepsilon ', +0x2001: '\\quad ', +0x2003: '\\quad ', +0x2006: '\\, ', +0x2016: '\\| ', +0x2020: '\\dagger ', +0x2021: '\\ddagger ', +0x2022: '\\bullet ', +0x2026: '\\ldots ', +0x2032: '\\prime ', +0x2035: '\\backprime ', +0x205f: '\\: ', +0x2102: '\\mathbb{C}', +0x210b: '\\mathcal{H}', +0x210c: '\\mathfrak{H}', +0x210d: '\\mathbb{H}', +0x210f: '\\hslash ', +0x2110: '\\mathcal{I}', +0x2111: '\\Im ', +0x2112: '\\mathcal{L}', +0x2113: '\\ell ', +0x2115: '\\mathbb{N}', +0x2118: '\\wp ', +0x2119: '\\mathbb{P}', +0x211a: '\\mathbb{Q}', +0x211b: '\\mathcal{R}', +0x211c: '\\Re ', +0x211d: '\\mathbb{R}', +0x2124: '\\mathbb{Z}', +0x2127: '\\mho ', +0x2128: '\\mathfrak{Z}', +0x212c: '\\mathcal{B}', +0x212d: '\\mathfrak{C}', +0x2130: '\\mathcal{E}', +0x2131: '\\mathcal{F}', +0x2132: '\\Finv ', +0x2133: '\\mathcal{M}', +0x2135: '\\aleph ', +0x2136: '\\beth ', +0x2137: '\\gimel ', +0x2138: '\\daleth ', +0x2190: '\\leftarrow ', +0x2191: '\\uparrow ', +0x2192: '\\rightarrow ', +0x2193: '\\downarrow ', +0x2194: '\\leftrightarrow ', +0x2195: '\\updownarrow ', +0x2196: '\\nwarrow ', +0x2197: '\\nearrow ', +0x2198: '\\searrow ', +0x2199: '\\swarrow ', +0x219a: '\\nleftarrow ', +0x219b: '\\nrightarrow ', +0x219e: '\\twoheadleftarrow ', +0x21a0: '\\twoheadrightarrow ', +0x21a2: '\\leftarrowtail ', +0x21a3: '\\rightarrowtail ', +0x21a6: '\\mapsto ', +0x21a9: '\\hookleftarrow ', +0x21aa: '\\hookrightarrow ', +0x21ab: '\\looparrowleft ', +0x21ac: '\\looparrowright ', +0x21ad: '\\leftrightsquigarrow ', +0x21ae: '\\nleftrightarrow ', +0x21b0: '\\Lsh ', +0x21b1: '\\Rsh ', +0x21b6: '\\curvearrowleft ', +0x21b7: '\\curvearrowright ', +0x21ba: '\\circlearrowleft ', +0x21bb: '\\circlearrowright ', +0x21bc: '\\leftharpoonup ', +0x21bd: '\\leftharpoondown ', +0x21be: '\\upharpoonright ', +0x21bf: '\\upharpoonleft ', +0x21c0: '\\rightharpoonup ', +0x21c1: '\\rightharpoondown ', +0x21c2: '\\downharpoonright ', +0x21c3: '\\downharpoonleft ', +0x21c4: '\\rightleftarrows ', +0x21c6: '\\leftrightarrows ', +0x21c7: '\\leftleftarrows ', +0x21c8: '\\upuparrows ', +0x21c9: '\\rightrightarrows ', +0x21ca: '\\downdownarrows ', +0x21cb: '\\leftrightharpoons ', +0x21cc: '\\rightleftharpoons ', +0x21cd: '\\nLeftarrow ', +0x21ce: '\\nLeftrightarrow ', +0x21cf: '\\nRightarrow ', +0x21d0: '\\Leftarrow ', +0x21d1: '\\Uparrow ', +0x21d2: '\\Rightarrow ', +0x21d3: '\\Downarrow ', +0x21d4: '\\Leftrightarrow ', +0x21d5: '\\Updownarrow ', +0x21da: '\\Lleftarrow ', +0x21db: '\\Rrightarrow ', +0x21dd: '\\rightsquigarrow ', +0x21e0: '\\dashleftarrow ', +0x21e2: '\\dashrightarrow ', +0x2200: '\\forall ', +0x2201: '\\complement ', +0x2202: '\\partial ', +0x2203: '\\exists ', +0x2204: '\\nexists ', +0x2205: '\\emptyset ', +0x2207: '\\nabla ', +0x2208: '\\in ', +0x2209: '\\notin ', +0x220b: '\\ni ', +0x220f: '\\prod ', +0x2210: '\\coprod ', +0x2211: '\\sum ', +0x2212: '-', +0x2213: '\\mp ', +0x2214: '\\dotplus ', +0x2215: '\\slash ', +0x2216: '\\smallsetminus ', +0x2217: '\\ast ', +0x2218: '\\circ ', +0x2219: '\\bullet ', +0x221a: '\\surd ', +0x221b: '\\sqrt[3] ', +0x221c: '\\sqrt[4] ', +0x221d: '\\propto ', +0x221e: '\\infty ', +0x2220: '\\angle ', +0x2221: '\\measuredangle ', +0x2222: '\\sphericalangle ', +0x2223: '\\mid ', +0x2224: '\\nmid ', +0x2225: '\\parallel ', +0x2226: '\\nparallel ', +0x2227: '\\wedge ', +0x2228: '\\vee ', +0x2229: '\\cap ', +0x222a: '\\cup ', +0x222b: '\\int ', +0x222c: '\\iint ', +0x222d: '\\iiint ', +0x222e: '\\oint ', +0x2234: '\\therefore ', +0x2235: '\\because ', +0x2236: ':', +0x223c: '\\sim ', +0x223d: '\\backsim ', +0x2240: '\\wr ', +0x2241: '\\nsim ', +0x2242: '\\eqsim ', +0x2243: '\\simeq ', +0x2245: '\\cong ', +0x2247: '\\ncong ', +0x2248: '\\approx ', +0x224a: '\\approxeq ', +0x224d: '\\asymp ', +0x224e: '\\Bumpeq ', +0x224f: '\\bumpeq ', +0x2250: '\\doteq ', +0x2251: '\\Doteq ', +0x2252: '\\fallingdotseq ', +0x2253: '\\risingdotseq ', +0x2256: '\\eqcirc ', +0x2257: '\\circeq ', +0x225c: '\\triangleq ', +0x2260: '\\neq ', +0x2261: '\\equiv ', +0x2264: '\\leq ', +0x2265: '\\geq ', +0x2266: '\\leqq ', +0x2267: '\\geqq ', +0x2268: '\\lneqq ', +0x2269: '\\gneqq ', +0x226a: '\\ll ', +0x226b: '\\gg ', +0x226c: '\\between ', +0x226e: '\\nless ', +0x226f: '\\ngtr ', +0x2270: '\\nleq ', +0x2271: '\\ngeq ', +0x2272: '\\lesssim ', +0x2273: '\\gtrsim ', +0x2276: '\\lessgtr ', +0x2277: '\\gtrless ', +0x227a: '\\prec ', +0x227b: '\\succ ', +0x227c: '\\preccurlyeq ', +0x227d: '\\succcurlyeq ', +0x227e: '\\precsim ', +0x227f: '\\succsim ', +0x2280: '\\nprec ', +0x2281: '\\nsucc ', +0x2282: '\\subset ', +0x2283: '\\supset ', +0x2286: '\\subseteq ', +0x2287: '\\supseteq ', +0x2288: '\\nsubseteq ', +0x2289: '\\nsupseteq ', +0x228a: '\\subsetneq ', +0x228b: '\\supsetneq ', +0x228e: '\\uplus ', +0x228f: '\\sqsubset ', +0x2290: '\\sqsupset ', +0x2291: '\\sqsubseteq ', +0x2292: '\\sqsupseteq ', +0x2293: '\\sqcap ', +0x2294: '\\sqcup ', +0x2295: '\\oplus ', +0x2296: '\\ominus ', +0x2297: '\\otimes ', +0x2298: '\\oslash ', +0x2299: '\\odot ', +0x229a: '\\circledcirc ', +0x229b: '\\circledast ', +0x229d: '\\circleddash ', +0x229e: '\\boxplus ', +0x229f: '\\boxminus ', +0x22a0: '\\boxtimes ', +0x22a1: '\\boxdot ', +0x22a2: '\\vdash ', +0x22a3: '\\dashv ', +0x22a4: '\\top ', +0x22a5: '\\bot ', +0x22a7: '\\models ', +0x22a8: '\\vDash ', +0x22a9: '\\Vdash ', +0x22aa: '\\Vvdash ', +0x22ac: '\\nvdash ', +0x22ad: '\\nvDash ', +0x22ae: '\\nVdash ', +0x22af: '\\nVDash ', +0x22b2: '\\vartriangleleft ', +0x22b3: '\\vartriangleright ', +0x22b4: '\\trianglelefteq ', +0x22b5: '\\trianglerighteq ', +0x22b8: '\\multimap ', +0x22ba: '\\intercal ', +0x22bb: '\\veebar ', +0x22bc: '\\barwedge ', +0x22c0: '\\bigwedge ', +0x22c1: '\\bigvee ', +0x22c2: '\\bigcap ', +0x22c3: '\\bigcup ', +0x22c4: '\\diamond ', +0x22c5: '\\cdot ', +0x22c6: '\\star ', +0x22c7: '\\divideontimes ', +0x22c8: '\\bowtie ', +0x22c9: '\\ltimes ', +0x22ca: '\\rtimes ', +0x22cb: '\\leftthreetimes ', +0x22cc: '\\rightthreetimes ', +0x22cd: '\\backsimeq ', +0x22ce: '\\curlyvee ', +0x22cf: '\\curlywedge ', +0x22d0: '\\Subset ', +0x22d1: '\\Supset ', +0x22d2: '\\Cap ', +0x22d3: '\\Cup ', +0x22d4: '\\pitchfork ', +0x22d6: '\\lessdot ', +0x22d7: '\\gtrdot ', +0x22d8: '\\lll ', +0x22d9: '\\ggg ', +0x22da: '\\lesseqgtr ', +0x22db: '\\gtreqless ', +0x22de: '\\curlyeqprec ', +0x22df: '\\curlyeqsucc ', +0x22e0: '\\npreceq ', +0x22e1: '\\nsucceq ', +0x22e6: '\\lnsim ', +0x22e7: '\\gnsim ', +0x22e8: '\\precnsim ', +0x22e9: '\\succnsim ', +0x22ea: '\\ntriangleleft ', +0x22eb: '\\ntriangleright ', +0x22ec: '\\ntrianglelefteq ', +0x22ed: '\\ntrianglerighteq ', +0x22ee: '\\vdots ', +0x22ef: '\\cdots ', +0x22f1: '\\ddots ', +0x2308: '\\lceil ', +0x2309: '\\rceil ', +0x230a: '\\lfloor ', +0x230b: '\\rfloor ', +0x231c: '\\ulcorner ', +0x231d: '\\urcorner ', +0x231e: '\\llcorner ', +0x231f: '\\lrcorner ', +0x2322: '\\frown ', +0x2323: '\\smile ', +0x23aa: '\\bracevert ', +0x23b0: '\\lmoustache ', +0x23b1: '\\rmoustache ', +0x23d0: '\\arrowvert ', +0x23de: '\\overbrace ', +0x23df: '\\underbrace ', +0x24c7: '\\circledR ', +0x24c8: '\\circledS ', +0x25b2: '\\blacktriangle ', +0x25b3: '\\bigtriangleup ', +0x25b7: '\\triangleright ', +0x25bc: '\\blacktriangledown ', +0x25bd: '\\bigtriangledown ', +0x25c1: '\\triangleleft ', +0x25c7: '\\Diamond ', +0x25ca: '\\lozenge ', +0x25ef: '\\bigcirc ', +0x25fb: '\\square ', +0x25fc: '\\blacksquare ', +0x2605: '\\bigstar ', +0x2660: '\\spadesuit ', +0x2661: '\\heartsuit ', +0x2662: '\\diamondsuit ', +0x2663: '\\clubsuit ', +0x266d: '\\flat ', +0x266e: '\\natural ', +0x266f: '\\sharp ', +0x2713: '\\checkmark ', +0x2720: '\\maltese ', +0x27c2: '\\perp ', +0x27cb: '\\diagup ', +0x27cd: '\\diagdown ', +0x27e8: '\\langle ', +0x27e9: '\\rangle ', +0x27ee: '\\lgroup ', +0x27ef: '\\rgroup ', +0x27f5: '\\longleftarrow ', +0x27f6: '\\longrightarrow ', +0x27f7: '\\longleftrightarrow ', +0x27f8: '\\Longleftarrow ', +0x27f9: '\\Longrightarrow ', +0x27fa: '\\Longleftrightarrow ', +0x27fc: '\\longmapsto ', +0x29eb: '\\blacklozenge ', +0x29f5: '\\setminus ', +0x2a00: '\\bigodot ', +0x2a01: '\\bigoplus ', +0x2a02: '\\bigotimes ', +0x2a04: '\\biguplus ', +0x2a06: '\\bigsqcup ', +0x2a0c: '\\iiiint ', +0x2a3f: '\\amalg ', +0x2a5e: '\\doublebarwedge ', +0x2a7d: '\\leqslant ', +0x2a7e: '\\geqslant ', +0x2a85: '\\lessapprox ', +0x2a86: '\\gtrapprox ', +0x2a87: '\\lneq ', +0x2a88: '\\gneq ', +0x2a89: '\\lnapprox ', +0x2a8a: '\\gnapprox ', +0x2a8b: '\\lesseqqgtr ', +0x2a8c: '\\gtreqqless ', +0x2a95: '\\eqslantless ', +0x2a96: '\\eqslantgtr ', +0x2aaf: '\\preceq ', +0x2ab0: '\\succeq ', +0x2ab5: '\\precneqq ', +0x2ab6: '\\succneqq ', +0x2ab7: '\\precapprox ', +0x2ab8: '\\succapprox ', +0x2ab9: '\\precnapprox ', +0x2aba: '\\succnapprox ', +0x2ac5: '\\subseteqq ', +0x2ac6: '\\supseteqq ', +0x2acb: '\\subsetneqq ', +0x2acc: '\\supsetneqq ', +0x2b1c: '\\Box ', +0x1d400: '\\mathbf{A}', +0x1d401: '\\mathbf{B}', +0x1d402: '\\mathbf{C}', +0x1d403: '\\mathbf{D}', +0x1d404: '\\mathbf{E}', +0x1d405: '\\mathbf{F}', +0x1d406: '\\mathbf{G}', +0x1d407: '\\mathbf{H}', +0x1d408: '\\mathbf{I}', +0x1d409: '\\mathbf{J}', +0x1d40a: '\\mathbf{K}', +0x1d40b: '\\mathbf{L}', +0x1d40c: '\\mathbf{M}', +0x1d40d: '\\mathbf{N}', +0x1d40e: '\\mathbf{O}', +0x1d40f: '\\mathbf{P}', +0x1d410: '\\mathbf{Q}', +0x1d411: '\\mathbf{R}', +0x1d412: '\\mathbf{S}', +0x1d413: '\\mathbf{T}', +0x1d414: '\\mathbf{U}', +0x1d415: '\\mathbf{V}', +0x1d416: '\\mathbf{W}', +0x1d417: '\\mathbf{X}', +0x1d418: '\\mathbf{Y}', +0x1d419: '\\mathbf{Z}', +0x1d41a: '\\mathbf{a}', +0x1d41b: '\\mathbf{b}', +0x1d41c: '\\mathbf{c}', +0x1d41d: '\\mathbf{d}', +0x1d41e: '\\mathbf{e}', +0x1d41f: '\\mathbf{f}', +0x1d420: '\\mathbf{g}', +0x1d421: '\\mathbf{h}', +0x1d422: '\\mathbf{i}', +0x1d423: '\\mathbf{j}', +0x1d424: '\\mathbf{k}', +0x1d425: '\\mathbf{l}', +0x1d426: '\\mathbf{m}', +0x1d427: '\\mathbf{n}', +0x1d428: '\\mathbf{o}', +0x1d429: '\\mathbf{p}', +0x1d42a: '\\mathbf{q}', +0x1d42b: '\\mathbf{r}', +0x1d42c: '\\mathbf{s}', +0x1d42d: '\\mathbf{t}', +0x1d42e: '\\mathbf{u}', +0x1d42f: '\\mathbf{v}', +0x1d430: '\\mathbf{w}', +0x1d431: '\\mathbf{x}', +0x1d432: '\\mathbf{y}', +0x1d433: '\\mathbf{z}', +0x1d434: 'A', +0x1d435: 'B', +0x1d436: 'C', +0x1d437: 'D', +0x1d438: 'E', +0x1d439: 'F', +0x1d43a: 'G', +0x1d43b: 'H', +0x1d43c: 'I', +0x1d43d: 'J', +0x1d43e: 'K', +0x1d43f: 'L', +0x1d440: 'M', +0x1d441: 'N', +0x1d442: 'O', +0x1d443: 'P', +0x1d444: 'Q', +0x1d445: 'R', +0x1d446: 'S', +0x1d447: 'T', +0x1d448: 'U', +0x1d449: 'V', +0x1d44a: 'W', +0x1d44b: 'X', +0x1d44c: 'Y', +0x1d44d: 'Z', +0x1d44e: 'a', +0x1d44f: 'b', +0x1d450: 'c', +0x1d451: 'd', +0x1d452: 'e', +0x1d453: 'f', +0x1d454: 'g', +0x1d456: 'i', +0x1d457: 'j', +0x1d458: 'k', +0x1d459: 'l', +0x1d45a: 'm', +0x1d45b: 'n', +0x1d45c: 'o', +0x1d45d: 'p', +0x1d45e: 'q', +0x1d45f: 'r', +0x1d460: 's', +0x1d461: 't', +0x1d462: 'u', +0x1d463: 'v', +0x1d464: 'w', +0x1d465: 'x', +0x1d466: 'y', +0x1d467: 'z', +0x1d49c: '\\mathcal{A}', +0x1d49e: '\\mathcal{C}', +0x1d49f: '\\mathcal{D}', +0x1d4a2: '\\mathcal{G}', +0x1d4a5: '\\mathcal{J}', +0x1d4a6: '\\mathcal{K}', +0x1d4a9: '\\mathcal{N}', +0x1d4aa: '\\mathcal{O}', +0x1d4ab: '\\mathcal{P}', +0x1d4ac: '\\mathcal{Q}', +0x1d4ae: '\\mathcal{S}', +0x1d4af: '\\mathcal{T}', +0x1d4b0: '\\mathcal{U}', +0x1d4b1: '\\mathcal{V}', +0x1d4b2: '\\mathcal{W}', +0x1d4b3: '\\mathcal{X}', +0x1d4b4: '\\mathcal{Y}', +0x1d4b5: '\\mathcal{Z}', +0x1d504: '\\mathfrak{A}', +0x1d505: '\\mathfrak{B}', +0x1d507: '\\mathfrak{D}', +0x1d508: '\\mathfrak{E}', +0x1d509: '\\mathfrak{F}', +0x1d50a: '\\mathfrak{G}', +0x1d50d: '\\mathfrak{J}', +0x1d50e: '\\mathfrak{K}', +0x1d50f: '\\mathfrak{L}', +0x1d510: '\\mathfrak{M}', +0x1d511: '\\mathfrak{N}', +0x1d512: '\\mathfrak{O}', +0x1d513: '\\mathfrak{P}', +0x1d514: '\\mathfrak{Q}', +0x1d516: '\\mathfrak{S}', +0x1d517: '\\mathfrak{T}', +0x1d518: '\\mathfrak{U}', +0x1d519: '\\mathfrak{V}', +0x1d51a: '\\mathfrak{W}', +0x1d51b: '\\mathfrak{X}', +0x1d51c: '\\mathfrak{Y}', +0x1d51e: '\\mathfrak{a}', +0x1d51f: '\\mathfrak{b}', +0x1d520: '\\mathfrak{c}', +0x1d521: '\\mathfrak{d}', +0x1d522: '\\mathfrak{e}', +0x1d523: '\\mathfrak{f}', +0x1d524: '\\mathfrak{g}', +0x1d525: '\\mathfrak{h}', +0x1d526: '\\mathfrak{i}', +0x1d527: '\\mathfrak{j}', +0x1d528: '\\mathfrak{k}', +0x1d529: '\\mathfrak{l}', +0x1d52a: '\\mathfrak{m}', +0x1d52b: '\\mathfrak{n}', +0x1d52c: '\\mathfrak{o}', +0x1d52d: '\\mathfrak{p}', +0x1d52e: '\\mathfrak{q}', +0x1d52f: '\\mathfrak{r}', +0x1d530: '\\mathfrak{s}', +0x1d531: '\\mathfrak{t}', +0x1d532: '\\mathfrak{u}', +0x1d533: '\\mathfrak{v}', +0x1d534: '\\mathfrak{w}', +0x1d535: '\\mathfrak{x}', +0x1d536: '\\mathfrak{y}', +0x1d537: '\\mathfrak{z}', +0x1d538: '\\mathbb{A}', +0x1d539: '\\mathbb{B}', +0x1d53b: '\\mathbb{D}', +0x1d53c: '\\mathbb{E}', +0x1d53d: '\\mathbb{F}', +0x1d53e: '\\mathbb{G}', +0x1d540: '\\mathbb{I}', +0x1d541: '\\mathbb{J}', +0x1d542: '\\mathbb{K}', +0x1d543: '\\mathbb{L}', +0x1d544: '\\mathbb{M}', +0x1d546: '\\mathbb{O}', +0x1d54a: '\\mathbb{S}', +0x1d54b: '\\mathbb{T}', +0x1d54c: '\\mathbb{U}', +0x1d54d: '\\mathbb{V}', +0x1d54e: '\\mathbb{W}', +0x1d54f: '\\mathbb{X}', +0x1d550: '\\mathbb{Y}', +0x1d55c: '\\Bbbk ', +0x1d5a0: '\\mathsf{A}', +0x1d5a1: '\\mathsf{B}', +0x1d5a2: '\\mathsf{C}', +0x1d5a3: '\\mathsf{D}', +0x1d5a4: '\\mathsf{E}', +0x1d5a5: '\\mathsf{F}', +0x1d5a6: '\\mathsf{G}', +0x1d5a7: '\\mathsf{H}', +0x1d5a8: '\\mathsf{I}', +0x1d5a9: '\\mathsf{J}', +0x1d5aa: '\\mathsf{K}', +0x1d5ab: '\\mathsf{L}', +0x1d5ac: '\\mathsf{M}', +0x1d5ad: '\\mathsf{N}', +0x1d5ae: '\\mathsf{O}', +0x1d5af: '\\mathsf{P}', +0x1d5b0: '\\mathsf{Q}', +0x1d5b1: '\\mathsf{R}', +0x1d5b2: '\\mathsf{S}', +0x1d5b3: '\\mathsf{T}', +0x1d5b4: '\\mathsf{U}', +0x1d5b5: '\\mathsf{V}', +0x1d5b6: '\\mathsf{W}', +0x1d5b7: '\\mathsf{X}', +0x1d5b8: '\\mathsf{Y}', +0x1d5b9: '\\mathsf{Z}', +0x1d5ba: '\\mathsf{a}', +0x1d5bb: '\\mathsf{b}', +0x1d5bc: '\\mathsf{c}', +0x1d5bd: '\\mathsf{d}', +0x1d5be: '\\mathsf{e}', +0x1d5bf: '\\mathsf{f}', +0x1d5c0: '\\mathsf{g}', +0x1d5c1: '\\mathsf{h}', +0x1d5c2: '\\mathsf{i}', +0x1d5c3: '\\mathsf{j}', +0x1d5c4: '\\mathsf{k}', +0x1d5c5: '\\mathsf{l}', +0x1d5c6: '\\mathsf{m}', +0x1d5c7: '\\mathsf{n}', +0x1d5c8: '\\mathsf{o}', +0x1d5c9: '\\mathsf{p}', +0x1d5ca: '\\mathsf{q}', +0x1d5cb: '\\mathsf{r}', +0x1d5cc: '\\mathsf{s}', +0x1d5cd: '\\mathsf{t}', +0x1d5ce: '\\mathsf{u}', +0x1d5cf: '\\mathsf{v}', +0x1d5d0: '\\mathsf{w}', +0x1d5d1: '\\mathsf{x}', +0x1d5d2: '\\mathsf{y}', +0x1d5d3: '\\mathsf{z}', +0x1d670: '\\mathtt{A}', +0x1d671: '\\mathtt{B}', +0x1d672: '\\mathtt{C}', +0x1d673: '\\mathtt{D}', +0x1d674: '\\mathtt{E}', +0x1d675: '\\mathtt{F}', +0x1d676: '\\mathtt{G}', +0x1d677: '\\mathtt{H}', +0x1d678: '\\mathtt{I}', +0x1d679: '\\mathtt{J}', +0x1d67a: '\\mathtt{K}', +0x1d67b: '\\mathtt{L}', +0x1d67c: '\\mathtt{M}', +0x1d67d: '\\mathtt{N}', +0x1d67e: '\\mathtt{O}', +0x1d67f: '\\mathtt{P}', +0x1d680: '\\mathtt{Q}', +0x1d681: '\\mathtt{R}', +0x1d682: '\\mathtt{S}', +0x1d683: '\\mathtt{T}', +0x1d684: '\\mathtt{U}', +0x1d685: '\\mathtt{V}', +0x1d686: '\\mathtt{W}', +0x1d687: '\\mathtt{X}', +0x1d688: '\\mathtt{Y}', +0x1d689: '\\mathtt{Z}', +0x1d68a: '\\mathtt{a}', +0x1d68b: '\\mathtt{b}', +0x1d68c: '\\mathtt{c}', +0x1d68d: '\\mathtt{d}', +0x1d68e: '\\mathtt{e}', +0x1d68f: '\\mathtt{f}', +0x1d690: '\\mathtt{g}', +0x1d691: '\\mathtt{h}', +0x1d692: '\\mathtt{i}', +0x1d693: '\\mathtt{j}', +0x1d694: '\\mathtt{k}', +0x1d695: '\\mathtt{l}', +0x1d696: '\\mathtt{m}', +0x1d697: '\\mathtt{n}', +0x1d698: '\\mathtt{o}', +0x1d699: '\\mathtt{p}', +0x1d69a: '\\mathtt{q}', +0x1d69b: '\\mathtt{r}', +0x1d69c: '\\mathtt{s}', +0x1d69d: '\\mathtt{t}', +0x1d69e: '\\mathtt{u}', +0x1d69f: '\\mathtt{v}', +0x1d6a0: '\\mathtt{w}', +0x1d6a1: '\\mathtt{x}', +0x1d6a2: '\\mathtt{y}', +0x1d6a3: '\\mathtt{z}', +0x1d6a4: '\\imath ', +0x1d6a5: '\\jmath ', +0x1d6aa: '\\mathbf{\\Gamma}', +0x1d6ab: '\\mathbf{\\Delta}', +0x1d6af: '\\mathbf{\\Theta}', +0x1d6b2: '\\mathbf{\\Lambda}', +0x1d6b5: '\\mathbf{\\Xi}', +0x1d6b7: '\\mathbf{\\Pi}', +0x1d6ba: '\\mathbf{\\Sigma}', +0x1d6bc: '\\mathbf{\\Upsilon}', +0x1d6bd: '\\mathbf{\\Phi}', +0x1d6bf: '\\mathbf{\\Psi}', +0x1d6c0: '\\mathbf{\\Omega}', +0x1d6e4: '\\mathit{\\Gamma}', +0x1d6e5: '\\mathit{\\Delta}', +0x1d6e9: '\\mathit{\\Theta}', +0x1d6ec: '\\mathit{\\Lambda}', +0x1d6ef: '\\mathit{\\Xi}', +0x1d6f1: '\\mathit{\\Pi}', +0x1d6f4: '\\mathit{\\Sigma}', +0x1d6f6: '\\mathit{\\Upsilon}', +0x1d6f7: '\\mathit{\\Phi}', +0x1d6f9: '\\mathit{\\Psi}', +0x1d6fa: '\\mathit{\\Omega}', +0x1d6fc: '\\alpha ', +0x1d6fd: '\\beta ', +0x1d6fe: '\\gamma ', +0x1d6ff: '\\delta ', +0x1d700: '\\varepsilon ', +0x1d701: '\\zeta ', +0x1d702: '\\eta ', +0x1d703: '\\theta ', +0x1d704: '\\iota ', +0x1d705: '\\kappa ', +0x1d706: '\\lambda ', +0x1d707: '\\mu ', +0x1d708: '\\nu ', +0x1d709: '\\xi ', +0x1d70b: '\\pi ', +0x1d70c: '\\rho ', +0x1d70d: '\\varsigma ', +0x1d70e: '\\sigma ', +0x1d70f: '\\tau ', +0x1d710: '\\upsilon ', +0x1d711: '\\varphi ', +0x1d712: '\\chi ', +0x1d713: '\\psi ', +0x1d714: '\\omega ', +0x1d715: '\\partial ', +0x1d716: '\\epsilon ', +0x1d717: '\\vartheta ', +0x1d718: '\\varkappa ', +0x1d719: '\\phi ', +0x1d71a: '\\varrho ', +0x1d71b: '\\varpi ', +0x1d7ce: '\\mathbf{0}', +0x1d7cf: '\\mathbf{1}', +0x1d7d0: '\\mathbf{2}', +0x1d7d1: '\\mathbf{3}', +0x1d7d2: '\\mathbf{4}', +0x1d7d3: '\\mathbf{5}', +0x1d7d4: '\\mathbf{6}', +0x1d7d5: '\\mathbf{7}', +0x1d7d6: '\\mathbf{8}', +0x1d7d7: '\\mathbf{9}', +0x1d7e2: '\\mathsf{0}', +0x1d7e3: '\\mathsf{1}', +0x1d7e4: '\\mathsf{2}', +0x1d7e5: '\\mathsf{3}', +0x1d7e6: '\\mathsf{4}', +0x1d7e7: '\\mathsf{5}', +0x1d7e8: '\\mathsf{6}', +0x1d7e9: '\\mathsf{7}', +0x1d7ea: '\\mathsf{8}', +0x1d7eb: '\\mathsf{9}', +0x1d7f6: '\\mathtt{0}', +0x1d7f7: '\\mathtt{1}', +0x1d7f8: '\\mathtt{2}', +0x1d7f9: '\\mathtt{3}', +0x1d7fa: '\\mathtt{4}', +0x1d7fb: '\\mathtt{5}', +0x1d7fc: '\\mathtt{6}', +0x1d7fd: '\\mathtt{7}', +0x1d7fe: '\\mathtt{8}', +0x1d7ff: '\\mathtt{9}', +} |