about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/cryptography/hazmat/primitives/asymmetric/rsa.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/cryptography/hazmat/primitives/asymmetric/rsa.py')
-rw-r--r--.venv/lib/python3.12/site-packages/cryptography/hazmat/primitives/asymmetric/rsa.py263
1 files changed, 263 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/cryptography/hazmat/primitives/asymmetric/rsa.py b/.venv/lib/python3.12/site-packages/cryptography/hazmat/primitives/asymmetric/rsa.py
new file mode 100644
index 00000000..905068e3
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/cryptography/hazmat/primitives/asymmetric/rsa.py
@@ -0,0 +1,263 @@
+# This file is dual licensed under the terms of the Apache License, Version
+# 2.0, and the BSD License. See the LICENSE file in the root of this repository
+# for complete details.
+
+from __future__ import annotations
+
+import abc
+import random
+import typing
+from math import gcd
+
+from cryptography.hazmat.bindings._rust import openssl as rust_openssl
+from cryptography.hazmat.primitives import _serialization, hashes
+from cryptography.hazmat.primitives._asymmetric import AsymmetricPadding
+from cryptography.hazmat.primitives.asymmetric import utils as asym_utils
+
+
+class RSAPrivateKey(metaclass=abc.ABCMeta):
+    @abc.abstractmethod
+    def decrypt(self, ciphertext: bytes, padding: AsymmetricPadding) -> bytes:
+        """
+        Decrypts the provided ciphertext.
+        """
+
+    @property
+    @abc.abstractmethod
+    def key_size(self) -> int:
+        """
+        The bit length of the public modulus.
+        """
+
+    @abc.abstractmethod
+    def public_key(self) -> RSAPublicKey:
+        """
+        The RSAPublicKey associated with this private key.
+        """
+
+    @abc.abstractmethod
+    def sign(
+        self,
+        data: bytes,
+        padding: AsymmetricPadding,
+        algorithm: asym_utils.Prehashed | hashes.HashAlgorithm,
+    ) -> bytes:
+        """
+        Signs the data.
+        """
+
+    @abc.abstractmethod
+    def private_numbers(self) -> RSAPrivateNumbers:
+        """
+        Returns an RSAPrivateNumbers.
+        """
+
+    @abc.abstractmethod
+    def private_bytes(
+        self,
+        encoding: _serialization.Encoding,
+        format: _serialization.PrivateFormat,
+        encryption_algorithm: _serialization.KeySerializationEncryption,
+    ) -> bytes:
+        """
+        Returns the key serialized as bytes.
+        """
+
+
+RSAPrivateKeyWithSerialization = RSAPrivateKey
+RSAPrivateKey.register(rust_openssl.rsa.RSAPrivateKey)
+
+
+class RSAPublicKey(metaclass=abc.ABCMeta):
+    @abc.abstractmethod
+    def encrypt(self, plaintext: bytes, padding: AsymmetricPadding) -> bytes:
+        """
+        Encrypts the given plaintext.
+        """
+
+    @property
+    @abc.abstractmethod
+    def key_size(self) -> int:
+        """
+        The bit length of the public modulus.
+        """
+
+    @abc.abstractmethod
+    def public_numbers(self) -> RSAPublicNumbers:
+        """
+        Returns an RSAPublicNumbers
+        """
+
+    @abc.abstractmethod
+    def public_bytes(
+        self,
+        encoding: _serialization.Encoding,
+        format: _serialization.PublicFormat,
+    ) -> bytes:
+        """
+        Returns the key serialized as bytes.
+        """
+
+    @abc.abstractmethod
+    def verify(
+        self,
+        signature: bytes,
+        data: bytes,
+        padding: AsymmetricPadding,
+        algorithm: asym_utils.Prehashed | hashes.HashAlgorithm,
+    ) -> None:
+        """
+        Verifies the signature of the data.
+        """
+
+    @abc.abstractmethod
+    def recover_data_from_signature(
+        self,
+        signature: bytes,
+        padding: AsymmetricPadding,
+        algorithm: hashes.HashAlgorithm | None,
+    ) -> bytes:
+        """
+        Recovers the original data from the signature.
+        """
+
+    @abc.abstractmethod
+    def __eq__(self, other: object) -> bool:
+        """
+        Checks equality.
+        """
+
+
+RSAPublicKeyWithSerialization = RSAPublicKey
+RSAPublicKey.register(rust_openssl.rsa.RSAPublicKey)
+
+RSAPrivateNumbers = rust_openssl.rsa.RSAPrivateNumbers
+RSAPublicNumbers = rust_openssl.rsa.RSAPublicNumbers
+
+
+def generate_private_key(
+    public_exponent: int,
+    key_size: int,
+    backend: typing.Any = None,
+) -> RSAPrivateKey:
+    _verify_rsa_parameters(public_exponent, key_size)
+    return rust_openssl.rsa.generate_private_key(public_exponent, key_size)
+
+
+def _verify_rsa_parameters(public_exponent: int, key_size: int) -> None:
+    if public_exponent not in (3, 65537):
+        raise ValueError(
+            "public_exponent must be either 3 (for legacy compatibility) or "
+            "65537. Almost everyone should choose 65537 here!"
+        )
+
+    if key_size < 1024:
+        raise ValueError("key_size must be at least 1024-bits.")
+
+
+def _modinv(e: int, m: int) -> int:
+    """
+    Modular Multiplicative Inverse. Returns x such that: (x*e) mod m == 1
+    """
+    x1, x2 = 1, 0
+    a, b = e, m
+    while b > 0:
+        q, r = divmod(a, b)
+        xn = x1 - q * x2
+        a, b, x1, x2 = b, r, x2, xn
+    return x1 % m
+
+
+def rsa_crt_iqmp(p: int, q: int) -> int:
+    """
+    Compute the CRT (q ** -1) % p value from RSA primes p and q.
+    """
+    return _modinv(q, p)
+
+
+def rsa_crt_dmp1(private_exponent: int, p: int) -> int:
+    """
+    Compute the CRT private_exponent % (p - 1) value from the RSA
+    private_exponent (d) and p.
+    """
+    return private_exponent % (p - 1)
+
+
+def rsa_crt_dmq1(private_exponent: int, q: int) -> int:
+    """
+    Compute the CRT private_exponent % (q - 1) value from the RSA
+    private_exponent (d) and q.
+    """
+    return private_exponent % (q - 1)
+
+
+def rsa_recover_private_exponent(e: int, p: int, q: int) -> int:
+    """
+    Compute the RSA private_exponent (d) given the public exponent (e)
+    and the RSA primes p and q.
+
+    This uses the Carmichael totient function to generate the
+    smallest possible working value of the private exponent.
+    """
+    # This lambda_n is the Carmichael totient function.
+    # The original RSA paper uses the Euler totient function
+    # here: phi_n = (p - 1) * (q - 1)
+    # Either version of the private exponent will work, but the
+    # one generated by the older formulation may be larger
+    # than necessary. (lambda_n always divides phi_n)
+    #
+    # TODO: Replace with lcm(p - 1, q - 1) once the minimum
+    # supported Python version is >= 3.9.
+    lambda_n = (p - 1) * (q - 1) // gcd(p - 1, q - 1)
+    return _modinv(e, lambda_n)
+
+
+# Controls the number of iterations rsa_recover_prime_factors will perform
+# to obtain the prime factors.
+_MAX_RECOVERY_ATTEMPTS = 500
+
+
+def rsa_recover_prime_factors(n: int, e: int, d: int) -> tuple[int, int]:
+    """
+    Compute factors p and q from the private exponent d. We assume that n has
+    no more than two factors. This function is adapted from code in PyCrypto.
+    """
+    # reject invalid values early
+    if 17 != pow(17, e * d, n):
+        raise ValueError("n, d, e don't match")
+    # See 8.2.2(i) in Handbook of Applied Cryptography.
+    ktot = d * e - 1
+    # The quantity d*e-1 is a multiple of phi(n), even,
+    # and can be represented as t*2^s.
+    t = ktot
+    while t % 2 == 0:
+        t = t // 2
+    # Cycle through all multiplicative inverses in Zn.
+    # The algorithm is non-deterministic, but there is a 50% chance
+    # any candidate a leads to successful factoring.
+    # See "Digitalized Signatures and Public Key Functions as Intractable
+    # as Factorization", M. Rabin, 1979
+    spotted = False
+    tries = 0
+    while not spotted and tries < _MAX_RECOVERY_ATTEMPTS:
+        a = random.randint(2, n - 1)
+        tries += 1
+        k = t
+        # Cycle through all values a^{t*2^i}=a^k
+        while k < ktot:
+            cand = pow(a, k, n)
+            # Check if a^k is a non-trivial root of unity (mod n)
+            if cand != 1 and cand != (n - 1) and pow(cand, 2, n) == 1:
+                # We have found a number such that (cand-1)(cand+1)=0 (mod n).
+                # Either of the terms divides n.
+                p = gcd(cand + 1, n)
+                spotted = True
+                break
+            k *= 2
+    if not spotted:
+        raise ValueError("Unable to compute factors p and q from exponent d.")
+    # Found !
+    q, r = divmod(n, p)
+    assert r == 0
+    p, q = sorted((p, q), reverse=True)
+    return (p, q)