diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/cryptography/hazmat/primitives/asymmetric/rsa.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/cryptography/hazmat/primitives/asymmetric/rsa.py | 263 |
1 files changed, 263 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/cryptography/hazmat/primitives/asymmetric/rsa.py b/.venv/lib/python3.12/site-packages/cryptography/hazmat/primitives/asymmetric/rsa.py new file mode 100644 index 00000000..905068e3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/cryptography/hazmat/primitives/asymmetric/rsa.py @@ -0,0 +1,263 @@ +# This file is dual licensed under the terms of the Apache License, Version +# 2.0, and the BSD License. See the LICENSE file in the root of this repository +# for complete details. + +from __future__ import annotations + +import abc +import random +import typing +from math import gcd + +from cryptography.hazmat.bindings._rust import openssl as rust_openssl +from cryptography.hazmat.primitives import _serialization, hashes +from cryptography.hazmat.primitives._asymmetric import AsymmetricPadding +from cryptography.hazmat.primitives.asymmetric import utils as asym_utils + + +class RSAPrivateKey(metaclass=abc.ABCMeta): + @abc.abstractmethod + def decrypt(self, ciphertext: bytes, padding: AsymmetricPadding) -> bytes: + """ + Decrypts the provided ciphertext. + """ + + @property + @abc.abstractmethod + def key_size(self) -> int: + """ + The bit length of the public modulus. + """ + + @abc.abstractmethod + def public_key(self) -> RSAPublicKey: + """ + The RSAPublicKey associated with this private key. + """ + + @abc.abstractmethod + def sign( + self, + data: bytes, + padding: AsymmetricPadding, + algorithm: asym_utils.Prehashed | hashes.HashAlgorithm, + ) -> bytes: + """ + Signs the data. + """ + + @abc.abstractmethod + def private_numbers(self) -> RSAPrivateNumbers: + """ + Returns an RSAPrivateNumbers. + """ + + @abc.abstractmethod + def private_bytes( + self, + encoding: _serialization.Encoding, + format: _serialization.PrivateFormat, + encryption_algorithm: _serialization.KeySerializationEncryption, + ) -> bytes: + """ + Returns the key serialized as bytes. + """ + + +RSAPrivateKeyWithSerialization = RSAPrivateKey +RSAPrivateKey.register(rust_openssl.rsa.RSAPrivateKey) + + +class RSAPublicKey(metaclass=abc.ABCMeta): + @abc.abstractmethod + def encrypt(self, plaintext: bytes, padding: AsymmetricPadding) -> bytes: + """ + Encrypts the given plaintext. + """ + + @property + @abc.abstractmethod + def key_size(self) -> int: + """ + The bit length of the public modulus. + """ + + @abc.abstractmethod + def public_numbers(self) -> RSAPublicNumbers: + """ + Returns an RSAPublicNumbers + """ + + @abc.abstractmethod + def public_bytes( + self, + encoding: _serialization.Encoding, + format: _serialization.PublicFormat, + ) -> bytes: + """ + Returns the key serialized as bytes. + """ + + @abc.abstractmethod + def verify( + self, + signature: bytes, + data: bytes, + padding: AsymmetricPadding, + algorithm: asym_utils.Prehashed | hashes.HashAlgorithm, + ) -> None: + """ + Verifies the signature of the data. + """ + + @abc.abstractmethod + def recover_data_from_signature( + self, + signature: bytes, + padding: AsymmetricPadding, + algorithm: hashes.HashAlgorithm | None, + ) -> bytes: + """ + Recovers the original data from the signature. + """ + + @abc.abstractmethod + def __eq__(self, other: object) -> bool: + """ + Checks equality. + """ + + +RSAPublicKeyWithSerialization = RSAPublicKey +RSAPublicKey.register(rust_openssl.rsa.RSAPublicKey) + +RSAPrivateNumbers = rust_openssl.rsa.RSAPrivateNumbers +RSAPublicNumbers = rust_openssl.rsa.RSAPublicNumbers + + +def generate_private_key( + public_exponent: int, + key_size: int, + backend: typing.Any = None, +) -> RSAPrivateKey: + _verify_rsa_parameters(public_exponent, key_size) + return rust_openssl.rsa.generate_private_key(public_exponent, key_size) + + +def _verify_rsa_parameters(public_exponent: int, key_size: int) -> None: + if public_exponent not in (3, 65537): + raise ValueError( + "public_exponent must be either 3 (for legacy compatibility) or " + "65537. Almost everyone should choose 65537 here!" + ) + + if key_size < 1024: + raise ValueError("key_size must be at least 1024-bits.") + + +def _modinv(e: int, m: int) -> int: + """ + Modular Multiplicative Inverse. Returns x such that: (x*e) mod m == 1 + """ + x1, x2 = 1, 0 + a, b = e, m + while b > 0: + q, r = divmod(a, b) + xn = x1 - q * x2 + a, b, x1, x2 = b, r, x2, xn + return x1 % m + + +def rsa_crt_iqmp(p: int, q: int) -> int: + """ + Compute the CRT (q ** -1) % p value from RSA primes p and q. + """ + return _modinv(q, p) + + +def rsa_crt_dmp1(private_exponent: int, p: int) -> int: + """ + Compute the CRT private_exponent % (p - 1) value from the RSA + private_exponent (d) and p. + """ + return private_exponent % (p - 1) + + +def rsa_crt_dmq1(private_exponent: int, q: int) -> int: + """ + Compute the CRT private_exponent % (q - 1) value from the RSA + private_exponent (d) and q. + """ + return private_exponent % (q - 1) + + +def rsa_recover_private_exponent(e: int, p: int, q: int) -> int: + """ + Compute the RSA private_exponent (d) given the public exponent (e) + and the RSA primes p and q. + + This uses the Carmichael totient function to generate the + smallest possible working value of the private exponent. + """ + # This lambda_n is the Carmichael totient function. + # The original RSA paper uses the Euler totient function + # here: phi_n = (p - 1) * (q - 1) + # Either version of the private exponent will work, but the + # one generated by the older formulation may be larger + # than necessary. (lambda_n always divides phi_n) + # + # TODO: Replace with lcm(p - 1, q - 1) once the minimum + # supported Python version is >= 3.9. + lambda_n = (p - 1) * (q - 1) // gcd(p - 1, q - 1) + return _modinv(e, lambda_n) + + +# Controls the number of iterations rsa_recover_prime_factors will perform +# to obtain the prime factors. +_MAX_RECOVERY_ATTEMPTS = 500 + + +def rsa_recover_prime_factors(n: int, e: int, d: int) -> tuple[int, int]: + """ + Compute factors p and q from the private exponent d. We assume that n has + no more than two factors. This function is adapted from code in PyCrypto. + """ + # reject invalid values early + if 17 != pow(17, e * d, n): + raise ValueError("n, d, e don't match") + # See 8.2.2(i) in Handbook of Applied Cryptography. + ktot = d * e - 1 + # The quantity d*e-1 is a multiple of phi(n), even, + # and can be represented as t*2^s. + t = ktot + while t % 2 == 0: + t = t // 2 + # Cycle through all multiplicative inverses in Zn. + # The algorithm is non-deterministic, but there is a 50% chance + # any candidate a leads to successful factoring. + # See "Digitalized Signatures and Public Key Functions as Intractable + # as Factorization", M. Rabin, 1979 + spotted = False + tries = 0 + while not spotted and tries < _MAX_RECOVERY_ATTEMPTS: + a = random.randint(2, n - 1) + tries += 1 + k = t + # Cycle through all values a^{t*2^i}=a^k + while k < ktot: + cand = pow(a, k, n) + # Check if a^k is a non-trivial root of unity (mod n) + if cand != 1 and cand != (n - 1) and pow(cand, 2, n) == 1: + # We have found a number such that (cand-1)(cand+1)=0 (mod n). + # Either of the terms divides n. + p = gcd(cand + 1, n) + spotted = True + break + k *= 2 + if not spotted: + raise ValueError("Unable to compute factors p and q from exponent d.") + # Found ! + q, r = divmod(n, p) + assert r == 0 + p, q = sorted((p, q), reverse=True) + return (p, q) |