about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/core/providers/embeddings
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/core/providers/embeddings')
-rw-r--r--.venv/lib/python3.12/site-packages/core/providers/embeddings/__init__.py9
-rw-r--r--.venv/lib/python3.12/site-packages/core/providers/embeddings/litellm.py305
-rw-r--r--.venv/lib/python3.12/site-packages/core/providers/embeddings/ollama.py194
-rw-r--r--.venv/lib/python3.12/site-packages/core/providers/embeddings/openai.py243
4 files changed, 751 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/core/providers/embeddings/__init__.py b/.venv/lib/python3.12/site-packages/core/providers/embeddings/__init__.py
new file mode 100644
index 00000000..3fa67442
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/core/providers/embeddings/__init__.py
@@ -0,0 +1,9 @@
+from .litellm import LiteLLMEmbeddingProvider
+from .ollama import OllamaEmbeddingProvider
+from .openai import OpenAIEmbeddingProvider
+
+__all__ = [
+    "LiteLLMEmbeddingProvider",
+    "OpenAIEmbeddingProvider",
+    "OllamaEmbeddingProvider",
+]
diff --git a/.venv/lib/python3.12/site-packages/core/providers/embeddings/litellm.py b/.venv/lib/python3.12/site-packages/core/providers/embeddings/litellm.py
new file mode 100644
index 00000000..5f705c91
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/core/providers/embeddings/litellm.py
@@ -0,0 +1,305 @@
+import logging
+import math
+import os
+from copy import copy
+from typing import Any
+
+import litellm
+import requests
+from aiohttp import ClientError, ClientSession
+from litellm import AuthenticationError, aembedding, embedding
+
+from core.base import (
+    ChunkSearchResult,
+    EmbeddingConfig,
+    EmbeddingProvider,
+    EmbeddingPurpose,
+    R2RException,
+)
+
+logger = logging.getLogger()
+
+
+class LiteLLMEmbeddingProvider(EmbeddingProvider):
+    def __init__(
+        self,
+        config: EmbeddingConfig,
+        *args,
+        **kwargs,
+    ) -> None:
+        super().__init__(config)
+
+        self.litellm_embedding = embedding
+        self.litellm_aembedding = aembedding
+
+        provider = config.provider
+        if not provider:
+            raise ValueError(
+                "Must set provider in order to initialize `LiteLLMEmbeddingProvider`."
+            )
+        if provider != "litellm":
+            raise ValueError(
+                "LiteLLMEmbeddingProvider must be initialized with provider `litellm`."
+            )
+
+        self.rerank_url = None
+        if config.rerank_model:
+            if "huggingface" not in config.rerank_model:
+                raise ValueError(
+                    "LiteLLMEmbeddingProvider only supports re-ranking via the HuggingFace text-embeddings-inference API"
+                )
+
+            url = os.getenv("HUGGINGFACE_API_BASE") or config.rerank_url
+            if not url:
+                raise ValueError(
+                    "LiteLLMEmbeddingProvider requires a valid reranking API url to be set via `embedding.rerank_url` in the r2r.toml, or via the environment variable `HUGGINGFACE_API_BASE`."
+                )
+            self.rerank_url = url
+
+        self.base_model = config.base_model
+        if "amazon" in self.base_model:
+            logger.warn("Amazon embedding model detected, dropping params")
+            litellm.drop_params = True
+        self.base_dimension = config.base_dimension
+
+    def _get_embedding_kwargs(self, **kwargs):
+        embedding_kwargs = {
+            "model": self.base_model,
+            "dimensions": self.base_dimension,
+        }
+        embedding_kwargs.update(kwargs)
+        return embedding_kwargs
+
+    async def _execute_task(self, task: dict[str, Any]) -> list[list[float]]:
+        texts = task["texts"]
+        kwargs = self._get_embedding_kwargs(**task.get("kwargs", {}))
+
+        if "dimensions" in kwargs and math.isnan(kwargs["dimensions"]):
+            kwargs.pop("dimensions")
+            logger.warning("Dropping nan dimensions from kwargs")
+
+        try:
+            response = await self.litellm_aembedding(
+                input=texts,
+                **kwargs,
+            )
+            return [data["embedding"] for data in response.data]
+        except AuthenticationError:
+            logger.error(
+                "Authentication error: Invalid API key or credentials."
+            )
+            raise
+        except Exception as e:
+            error_msg = f"Error getting embeddings: {str(e)}"
+            logger.error(error_msg)
+
+            raise R2RException(error_msg, 400) from e
+
+    def _execute_task_sync(self, task: dict[str, Any]) -> list[list[float]]:
+        texts = task["texts"]
+        kwargs = self._get_embedding_kwargs(**task.get("kwargs", {}))
+        try:
+            response = self.litellm_embedding(
+                input=texts,
+                **kwargs,
+            )
+            return [data["embedding"] for data in response.data]
+        except AuthenticationError:
+            logger.error(
+                "Authentication error: Invalid API key or credentials."
+            )
+            raise
+        except Exception as e:
+            error_msg = f"Error getting embeddings: {str(e)}"
+            logger.error(error_msg)
+            raise R2RException(error_msg, 400) from e
+
+    async def async_get_embedding(
+        self,
+        text: str,
+        stage: EmbeddingProvider.Step = EmbeddingProvider.Step.BASE,
+        purpose: EmbeddingPurpose = EmbeddingPurpose.INDEX,
+        **kwargs,
+    ) -> list[float]:
+        if stage != EmbeddingProvider.Step.BASE:
+            raise ValueError(
+                "LiteLLMEmbeddingProvider only supports search stage."
+            )
+
+        task = {
+            "texts": [text],
+            "stage": stage,
+            "purpose": purpose,
+            "kwargs": kwargs,
+        }
+        return (await self._execute_with_backoff_async(task))[0]
+
+    def get_embedding(
+        self,
+        text: str,
+        stage: EmbeddingProvider.Step = EmbeddingProvider.Step.BASE,
+        purpose: EmbeddingPurpose = EmbeddingPurpose.INDEX,
+        **kwargs,
+    ) -> list[float]:
+        if stage != EmbeddingProvider.Step.BASE:
+            raise ValueError(
+                "Error getting embeddings: LiteLLMEmbeddingProvider only supports search stage."
+            )
+
+        task = {
+            "texts": [text],
+            "stage": stage,
+            "purpose": purpose,
+            "kwargs": kwargs,
+        }
+        return self._execute_with_backoff_sync(task)[0]
+
+    async def async_get_embeddings(
+        self,
+        texts: list[str],
+        stage: EmbeddingProvider.Step = EmbeddingProvider.Step.BASE,
+        purpose: EmbeddingPurpose = EmbeddingPurpose.INDEX,
+        **kwargs,
+    ) -> list[list[float]]:
+        if stage != EmbeddingProvider.Step.BASE:
+            raise ValueError(
+                "LiteLLMEmbeddingProvider only supports search stage."
+            )
+
+        task = {
+            "texts": texts,
+            "stage": stage,
+            "purpose": purpose,
+            "kwargs": kwargs,
+        }
+        return await self._execute_with_backoff_async(task)
+
+    def get_embeddings(
+        self,
+        texts: list[str],
+        stage: EmbeddingProvider.Step = EmbeddingProvider.Step.BASE,
+        purpose: EmbeddingPurpose = EmbeddingPurpose.INDEX,
+        **kwargs,
+    ) -> list[list[float]]:
+        if stage != EmbeddingProvider.Step.BASE:
+            raise ValueError(
+                "LiteLLMEmbeddingProvider only supports search stage."
+            )
+
+        task = {
+            "texts": texts,
+            "stage": stage,
+            "purpose": purpose,
+            "kwargs": kwargs,
+        }
+        return self._execute_with_backoff_sync(task)
+
+    def rerank(
+        self,
+        query: str,
+        results: list[ChunkSearchResult],
+        stage: EmbeddingProvider.Step = EmbeddingProvider.Step.RERANK,
+        limit: int = 10,
+    ):
+        if self.config.rerank_model is not None:
+            if not self.rerank_url:
+                raise ValueError(
+                    "Error, `rerank_url` was expected to be set inside LiteLLMEmbeddingProvider"
+                )
+
+            texts = [result.text for result in results]
+
+            payload = {
+                "query": query,
+                "texts": texts,
+                "model-id": self.config.rerank_model.split("huggingface/")[1],
+            }
+
+            headers = {"Content-Type": "application/json"}
+
+            try:
+                response = requests.post(
+                    self.rerank_url, json=payload, headers=headers
+                )
+                response.raise_for_status()
+                reranked_results = response.json()
+
+                # Copy reranked results into new array
+                scored_results = []
+                for rank_info in reranked_results:
+                    original_result = results[rank_info["index"]]
+                    copied_result = copy(original_result)
+                    # Inject the reranking score into the result object
+                    copied_result.score = rank_info["score"]
+                    scored_results.append(copied_result)
+
+                # Return only the ChunkSearchResult objects, limited to specified count
+                return scored_results[:limit]
+
+            except requests.RequestException as e:
+                logger.error(f"Error during reranking: {str(e)}")
+                # Fall back to returning the original results if reranking fails
+                return results[:limit]
+        else:
+            return results[:limit]
+
+    async def arerank(
+        self,
+        query: str,
+        results: list[ChunkSearchResult],
+        stage: EmbeddingProvider.Step = EmbeddingProvider.Step.RERANK,
+        limit: int = 10,
+    ) -> list[ChunkSearchResult]:
+        """Asynchronously rerank search results using the configured rerank
+        model.
+
+        Args:
+            query: The search query string
+            results: List of ChunkSearchResult objects to rerank
+            limit: Maximum number of results to return
+
+        Returns:
+            List of reranked ChunkSearchResult objects, limited to specified count
+        """
+        if self.config.rerank_model is not None:
+            if not self.rerank_url:
+                raise ValueError(
+                    "Error, `rerank_url` was expected to be set inside LiteLLMEmbeddingProvider"
+                )
+
+            texts = [result.text for result in results]
+
+            payload = {
+                "query": query,
+                "texts": texts,
+                "model-id": self.config.rerank_model.split("huggingface/")[1],
+            }
+
+            headers = {"Content-Type": "application/json"}
+
+            try:
+                async with ClientSession() as session:
+                    async with session.post(
+                        self.rerank_url, json=payload, headers=headers
+                    ) as response:
+                        response.raise_for_status()
+                        reranked_results = await response.json()
+
+                        # Copy reranked results into new array
+                        scored_results = []
+                        for rank_info in reranked_results:
+                            original_result = results[rank_info["index"]]
+                            copied_result = copy(original_result)
+                            # Inject the reranking score into the result object
+                            copied_result.score = rank_info["score"]
+                            scored_results.append(copied_result)
+
+                        # Return only the ChunkSearchResult objects, limited to specified count
+                        return scored_results[:limit]
+
+            except (ClientError, Exception) as e:
+                logger.error(f"Error during async reranking: {str(e)}")
+                # Fall back to returning the original results if reranking fails
+                return results[:limit]
+        else:
+            return results[:limit]
diff --git a/.venv/lib/python3.12/site-packages/core/providers/embeddings/ollama.py b/.venv/lib/python3.12/site-packages/core/providers/embeddings/ollama.py
new file mode 100644
index 00000000..297d9167
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/core/providers/embeddings/ollama.py
@@ -0,0 +1,194 @@
+import logging
+import os
+from typing import Any
+
+from ollama import AsyncClient, Client
+
+from core.base import (
+    ChunkSearchResult,
+    EmbeddingConfig,
+    EmbeddingProvider,
+    EmbeddingPurpose,
+    R2RException,
+)
+
+logger = logging.getLogger()
+
+
+class OllamaEmbeddingProvider(EmbeddingProvider):
+    def __init__(self, config: EmbeddingConfig):
+        super().__init__(config)
+        provider = config.provider
+        if not provider:
+            raise ValueError(
+                "Must set provider in order to initialize `OllamaEmbeddingProvider`."
+            )
+        if provider != "ollama":
+            raise ValueError(
+                "OllamaEmbeddingProvider must be initialized with provider `ollama`."
+            )
+        if config.rerank_model:
+            raise ValueError(
+                "OllamaEmbeddingProvider does not support separate reranking."
+            )
+
+        self.base_model = config.base_model
+        self.base_dimension = config.base_dimension
+        self.base_url = os.getenv("OLLAMA_API_BASE")
+        logger.info(
+            f"Using Ollama API base URL: {self.base_url or 'http://127.0.0.1:11434'}"
+        )
+        self.client = Client(host=self.base_url)
+        self.aclient = AsyncClient(host=self.base_url)
+
+        self.set_prefixes(config.prefixes or {}, self.base_model)
+        self.batch_size = config.batch_size or 32
+
+    def _get_embedding_kwargs(self, **kwargs):
+        embedding_kwargs = {
+            "model": self.base_model,
+        }
+        embedding_kwargs.update(kwargs)
+        return embedding_kwargs
+
+    async def _execute_task(self, task: dict[str, Any]) -> list[list[float]]:
+        texts = task["texts"]
+        purpose = task.get("purpose", EmbeddingPurpose.INDEX)
+        kwargs = self._get_embedding_kwargs(**task.get("kwargs", {}))
+
+        try:
+            embeddings = []
+            for i in range(0, len(texts), self.batch_size):
+                batch = texts[i : i + self.batch_size]
+                prefixed_batch = [
+                    self.prefixes.get(purpose, "") + text for text in batch
+                ]
+                response = await self.aclient.embed(
+                    input=prefixed_batch, **kwargs
+                )
+                embeddings.extend(response["embeddings"])
+            return embeddings
+        except Exception as e:
+            error_msg = f"Error getting embeddings: {str(e)}"
+            logger.error(error_msg)
+            raise R2RException(error_msg, 400) from e
+
+    def _execute_task_sync(self, task: dict[str, Any]) -> list[list[float]]:
+        texts = task["texts"]
+        purpose = task.get("purpose", EmbeddingPurpose.INDEX)
+        kwargs = self._get_embedding_kwargs(**task.get("kwargs", {}))
+
+        try:
+            embeddings = []
+            for i in range(0, len(texts), self.batch_size):
+                batch = texts[i : i + self.batch_size]
+                prefixed_batch = [
+                    self.prefixes.get(purpose, "") + text for text in batch
+                ]
+                response = self.client.embed(input=prefixed_batch, **kwargs)
+                embeddings.extend(response["embeddings"])
+            return embeddings
+        except Exception as e:
+            error_msg = f"Error getting embeddings: {str(e)}"
+            logger.error(error_msg)
+            raise R2RException(error_msg, 400) from e
+
+    async def async_get_embedding(
+        self,
+        text: str,
+        stage: EmbeddingProvider.Step = EmbeddingProvider.Step.BASE,
+        purpose: EmbeddingPurpose = EmbeddingPurpose.INDEX,
+        **kwargs,
+    ) -> list[float]:
+        if stage != EmbeddingProvider.Step.BASE:
+            raise ValueError(
+                "OllamaEmbeddingProvider only supports search stage."
+            )
+
+        task = {
+            "texts": [text],
+            "stage": stage,
+            "purpose": purpose,
+            "kwargs": kwargs,
+        }
+        result = await self._execute_with_backoff_async(task)
+        return result[0]
+
+    def get_embedding(
+        self,
+        text: str,
+        stage: EmbeddingProvider.Step = EmbeddingProvider.Step.BASE,
+        purpose: EmbeddingPurpose = EmbeddingPurpose.INDEX,
+        **kwargs,
+    ) -> list[float]:
+        if stage != EmbeddingProvider.Step.BASE:
+            raise ValueError(
+                "OllamaEmbeddingProvider only supports search stage."
+            )
+
+        task = {
+            "texts": [text],
+            "stage": stage,
+            "purpose": purpose,
+            "kwargs": kwargs,
+        }
+        result = self._execute_with_backoff_sync(task)
+        return result[0]
+
+    async def async_get_embeddings(
+        self,
+        texts: list[str],
+        stage: EmbeddingProvider.Step = EmbeddingProvider.Step.BASE,
+        purpose: EmbeddingPurpose = EmbeddingPurpose.INDEX,
+        **kwargs,
+    ) -> list[list[float]]:
+        if stage != EmbeddingProvider.Step.BASE:
+            raise ValueError(
+                "OllamaEmbeddingProvider only supports search stage."
+            )
+
+        task = {
+            "texts": texts,
+            "stage": stage,
+            "purpose": purpose,
+            "kwargs": kwargs,
+        }
+        return await self._execute_with_backoff_async(task)
+
+    def get_embeddings(
+        self,
+        texts: list[str],
+        stage: EmbeddingProvider.Step = EmbeddingProvider.Step.BASE,
+        purpose: EmbeddingPurpose = EmbeddingPurpose.INDEX,
+        **kwargs,
+    ) -> list[list[float]]:
+        if stage != EmbeddingProvider.Step.BASE:
+            raise ValueError(
+                "OllamaEmbeddingProvider only supports search stage."
+            )
+
+        task = {
+            "texts": texts,
+            "stage": stage,
+            "purpose": purpose,
+            "kwargs": kwargs,
+        }
+        return self._execute_with_backoff_sync(task)
+
+    def rerank(
+        self,
+        query: str,
+        results: list[ChunkSearchResult],
+        stage: EmbeddingProvider.Step = EmbeddingProvider.Step.RERANK,
+        limit: int = 10,
+    ) -> list[ChunkSearchResult]:
+        return results[:limit]
+
+    async def arerank(
+        self,
+        query: str,
+        results: list[ChunkSearchResult],
+        stage: EmbeddingProvider.Step = EmbeddingProvider.Step.RERANK,
+        limit: int = 10,
+    ):
+        return results[:limit]
diff --git a/.venv/lib/python3.12/site-packages/core/providers/embeddings/openai.py b/.venv/lib/python3.12/site-packages/core/providers/embeddings/openai.py
new file mode 100644
index 00000000..907cebd9
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/core/providers/embeddings/openai.py
@@ -0,0 +1,243 @@
+import logging
+import os
+from typing import Any
+
+import tiktoken
+from openai import AsyncOpenAI, AuthenticationError, OpenAI
+from openai._types import NOT_GIVEN
+
+from core.base import (
+    ChunkSearchResult,
+    EmbeddingConfig,
+    EmbeddingProvider,
+    EmbeddingPurpose,
+)
+
+logger = logging.getLogger()
+
+
+class OpenAIEmbeddingProvider(EmbeddingProvider):
+    MODEL_TO_TOKENIZER = {
+        "text-embedding-ada-002": "cl100k_base",
+        "text-embedding-3-small": "cl100k_base",
+        "text-embedding-3-large": "cl100k_base",
+    }
+    MODEL_TO_DIMENSIONS = {
+        "text-embedding-ada-002": [1536],
+        "text-embedding-3-small": [512, 1536],
+        "text-embedding-3-large": [256, 1024, 3072],
+    }
+
+    def __init__(self, config: EmbeddingConfig):
+        super().__init__(config)
+        if not config.provider:
+            raise ValueError(
+                "Must set provider in order to initialize OpenAIEmbeddingProvider."
+            )
+
+        if config.provider != "openai":
+            raise ValueError(
+                "OpenAIEmbeddingProvider must be initialized with provider `openai`."
+            )
+        if not os.getenv("OPENAI_API_KEY"):
+            raise ValueError(
+                "Must set OPENAI_API_KEY in order to initialize OpenAIEmbeddingProvider."
+            )
+        self.client = OpenAI()
+        self.async_client = AsyncOpenAI()
+
+        if config.rerank_model:
+            raise ValueError(
+                "OpenAIEmbeddingProvider does not support separate reranking."
+            )
+
+        if config.base_model and "openai/" in config.base_model:
+            self.base_model = config.base_model.split("/")[-1]
+        else:
+            self.base_model = config.base_model
+        self.base_dimension = config.base_dimension
+
+        if not self.base_model:
+            raise ValueError(
+                "Must set base_model in order to initialize OpenAIEmbeddingProvider."
+            )
+
+        if self.base_model not in OpenAIEmbeddingProvider.MODEL_TO_TOKENIZER:
+            raise ValueError(
+                f"OpenAI embedding model {self.base_model} not supported."
+            )
+
+        if self.base_dimension:
+            if (
+                self.base_dimension
+                not in OpenAIEmbeddingProvider.MODEL_TO_DIMENSIONS[
+                    self.base_model
+                ]
+            ):
+                raise ValueError(
+                    f"Dimensions {self.base_dimension} for {self.base_model} are not supported"
+                )
+        else:
+            # If base_dimension is not set, use the largest available dimension for the model
+            self.base_dimension = max(
+                OpenAIEmbeddingProvider.MODEL_TO_DIMENSIONS[self.base_model]
+            )
+
+    def _get_dimensions(self):
+        return (
+            NOT_GIVEN
+            if self.base_model == "text-embedding-ada-002"
+            else self.base_dimension
+            or OpenAIEmbeddingProvider.MODEL_TO_DIMENSIONS[self.base_model][-1]
+        )
+
+    def _get_embedding_kwargs(self, **kwargs):
+        return {
+            "model": self.base_model,
+            "dimensions": self._get_dimensions(),
+        } | kwargs
+
+    async def _execute_task(self, task: dict[str, Any]) -> list[list[float]]:
+        texts = task["texts"]
+        kwargs = self._get_embedding_kwargs(**task.get("kwargs", {}))
+
+        try:
+            response = await self.async_client.embeddings.create(
+                input=texts,
+                **kwargs,
+            )
+            return [data.embedding for data in response.data]
+        except AuthenticationError as e:
+            raise ValueError(
+                "Invalid OpenAI API key provided. Please check your OPENAI_API_KEY environment variable."
+            ) from e
+        except Exception as e:
+            error_msg = f"Error getting embeddings: {str(e)}"
+            logger.error(error_msg)
+            raise ValueError(error_msg) from e
+
+    def _execute_task_sync(self, task: dict[str, Any]) -> list[list[float]]:
+        texts = task["texts"]
+        kwargs = self._get_embedding_kwargs(**task.get("kwargs", {}))
+        try:
+            response = self.client.embeddings.create(
+                input=texts,
+                **kwargs,
+            )
+            return [data.embedding for data in response.data]
+        except AuthenticationError as e:
+            raise ValueError(
+                "Invalid OpenAI API key provided. Please check your OPENAI_API_KEY environment variable."
+            ) from e
+        except Exception as e:
+            error_msg = f"Error getting embeddings: {str(e)}"
+            logger.error(error_msg)
+            raise ValueError(error_msg) from e
+
+    async def async_get_embedding(
+        self,
+        text: str,
+        stage: EmbeddingProvider.Step = EmbeddingProvider.Step.BASE,
+        purpose: EmbeddingPurpose = EmbeddingPurpose.INDEX,
+        **kwargs,
+    ) -> list[float]:
+        if stage != EmbeddingProvider.Step.BASE:
+            raise ValueError(
+                "OpenAIEmbeddingProvider only supports search stage."
+            )
+
+        task = {
+            "texts": [text],
+            "stage": stage,
+            "purpose": purpose,
+            "kwargs": kwargs,
+        }
+        result = await self._execute_with_backoff_async(task)
+        return result[0]
+
+    def get_embedding(
+        self,
+        text: str,
+        stage: EmbeddingProvider.Step = EmbeddingProvider.Step.BASE,
+        purpose: EmbeddingPurpose = EmbeddingPurpose.INDEX,
+        **kwargs,
+    ) -> list[float]:
+        if stage != EmbeddingProvider.Step.BASE:
+            raise ValueError(
+                "OpenAIEmbeddingProvider only supports search stage."
+            )
+
+        task = {
+            "texts": [text],
+            "stage": stage,
+            "purpose": purpose,
+            "kwargs": kwargs,
+        }
+        result = self._execute_with_backoff_sync(task)
+        return result[0]
+
+    async def async_get_embeddings(
+        self,
+        texts: list[str],
+        stage: EmbeddingProvider.Step = EmbeddingProvider.Step.BASE,
+        purpose: EmbeddingPurpose = EmbeddingPurpose.INDEX,
+        **kwargs,
+    ) -> list[list[float]]:
+        if stage != EmbeddingProvider.Step.BASE:
+            raise ValueError(
+                "OpenAIEmbeddingProvider only supports search stage."
+            )
+
+        task = {
+            "texts": texts,
+            "stage": stage,
+            "purpose": purpose,
+            "kwargs": kwargs,
+        }
+        return await self._execute_with_backoff_async(task)
+
+    def get_embeddings(
+        self,
+        texts: list[str],
+        stage: EmbeddingProvider.Step = EmbeddingProvider.Step.BASE,
+        purpose: EmbeddingPurpose = EmbeddingPurpose.INDEX,
+        **kwargs,
+    ) -> list[list[float]]:
+        if stage != EmbeddingProvider.Step.BASE:
+            raise ValueError(
+                "OpenAIEmbeddingProvider only supports search stage."
+            )
+
+        task = {
+            "texts": texts,
+            "stage": stage,
+            "purpose": purpose,
+            "kwargs": kwargs,
+        }
+        return self._execute_with_backoff_sync(task)
+
+    def rerank(
+        self,
+        query: str,
+        results: list[ChunkSearchResult],
+        stage: EmbeddingProvider.Step = EmbeddingProvider.Step.RERANK,
+        limit: int = 10,
+    ):
+        return results[:limit]
+
+    async def arerank(
+        self,
+        query: str,
+        results: list[ChunkSearchResult],
+        stage: EmbeddingProvider.Step = EmbeddingProvider.Step.RERANK,
+        limit: int = 10,
+    ):
+        return results[:limit]
+
+    def tokenize_string(self, text: str, model: str) -> list[int]:
+        if model not in OpenAIEmbeddingProvider.MODEL_TO_TOKENIZER:
+            raise ValueError(f"OpenAI embedding model {model} not supported.")
+        encoding = tiktoken.get_encoding(
+            OpenAIEmbeddingProvider.MODEL_TO_TOKENIZER[model]
+        )
+        return encoding.encode(text)