aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/core/providers/embeddings
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/core/providers/embeddings')
-rw-r--r--.venv/lib/python3.12/site-packages/core/providers/embeddings/__init__.py9
-rw-r--r--.venv/lib/python3.12/site-packages/core/providers/embeddings/litellm.py305
-rw-r--r--.venv/lib/python3.12/site-packages/core/providers/embeddings/ollama.py194
-rw-r--r--.venv/lib/python3.12/site-packages/core/providers/embeddings/openai.py243
4 files changed, 751 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/core/providers/embeddings/__init__.py b/.venv/lib/python3.12/site-packages/core/providers/embeddings/__init__.py
new file mode 100644
index 00000000..3fa67442
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/core/providers/embeddings/__init__.py
@@ -0,0 +1,9 @@
+from .litellm import LiteLLMEmbeddingProvider
+from .ollama import OllamaEmbeddingProvider
+from .openai import OpenAIEmbeddingProvider
+
+__all__ = [
+ "LiteLLMEmbeddingProvider",
+ "OpenAIEmbeddingProvider",
+ "OllamaEmbeddingProvider",
+]
diff --git a/.venv/lib/python3.12/site-packages/core/providers/embeddings/litellm.py b/.venv/lib/python3.12/site-packages/core/providers/embeddings/litellm.py
new file mode 100644
index 00000000..5f705c91
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/core/providers/embeddings/litellm.py
@@ -0,0 +1,305 @@
+import logging
+import math
+import os
+from copy import copy
+from typing import Any
+
+import litellm
+import requests
+from aiohttp import ClientError, ClientSession
+from litellm import AuthenticationError, aembedding, embedding
+
+from core.base import (
+ ChunkSearchResult,
+ EmbeddingConfig,
+ EmbeddingProvider,
+ EmbeddingPurpose,
+ R2RException,
+)
+
+logger = logging.getLogger()
+
+
+class LiteLLMEmbeddingProvider(EmbeddingProvider):
+ def __init__(
+ self,
+ config: EmbeddingConfig,
+ *args,
+ **kwargs,
+ ) -> None:
+ super().__init__(config)
+
+ self.litellm_embedding = embedding
+ self.litellm_aembedding = aembedding
+
+ provider = config.provider
+ if not provider:
+ raise ValueError(
+ "Must set provider in order to initialize `LiteLLMEmbeddingProvider`."
+ )
+ if provider != "litellm":
+ raise ValueError(
+ "LiteLLMEmbeddingProvider must be initialized with provider `litellm`."
+ )
+
+ self.rerank_url = None
+ if config.rerank_model:
+ if "huggingface" not in config.rerank_model:
+ raise ValueError(
+ "LiteLLMEmbeddingProvider only supports re-ranking via the HuggingFace text-embeddings-inference API"
+ )
+
+ url = os.getenv("HUGGINGFACE_API_BASE") or config.rerank_url
+ if not url:
+ raise ValueError(
+ "LiteLLMEmbeddingProvider requires a valid reranking API url to be set via `embedding.rerank_url` in the r2r.toml, or via the environment variable `HUGGINGFACE_API_BASE`."
+ )
+ self.rerank_url = url
+
+ self.base_model = config.base_model
+ if "amazon" in self.base_model:
+ logger.warn("Amazon embedding model detected, dropping params")
+ litellm.drop_params = True
+ self.base_dimension = config.base_dimension
+
+ def _get_embedding_kwargs(self, **kwargs):
+ embedding_kwargs = {
+ "model": self.base_model,
+ "dimensions": self.base_dimension,
+ }
+ embedding_kwargs.update(kwargs)
+ return embedding_kwargs
+
+ async def _execute_task(self, task: dict[str, Any]) -> list[list[float]]:
+ texts = task["texts"]
+ kwargs = self._get_embedding_kwargs(**task.get("kwargs", {}))
+
+ if "dimensions" in kwargs and math.isnan(kwargs["dimensions"]):
+ kwargs.pop("dimensions")
+ logger.warning("Dropping nan dimensions from kwargs")
+
+ try:
+ response = await self.litellm_aembedding(
+ input=texts,
+ **kwargs,
+ )
+ return [data["embedding"] for data in response.data]
+ except AuthenticationError:
+ logger.error(
+ "Authentication error: Invalid API key or credentials."
+ )
+ raise
+ except Exception as e:
+ error_msg = f"Error getting embeddings: {str(e)}"
+ logger.error(error_msg)
+
+ raise R2RException(error_msg, 400) from e
+
+ def _execute_task_sync(self, task: dict[str, Any]) -> list[list[float]]:
+ texts = task["texts"]
+ kwargs = self._get_embedding_kwargs(**task.get("kwargs", {}))
+ try:
+ response = self.litellm_embedding(
+ input=texts,
+ **kwargs,
+ )
+ return [data["embedding"] for data in response.data]
+ except AuthenticationError:
+ logger.error(
+ "Authentication error: Invalid API key or credentials."
+ )
+ raise
+ except Exception as e:
+ error_msg = f"Error getting embeddings: {str(e)}"
+ logger.error(error_msg)
+ raise R2RException(error_msg, 400) from e
+
+ async def async_get_embedding(
+ self,
+ text: str,
+ stage: EmbeddingProvider.Step = EmbeddingProvider.Step.BASE,
+ purpose: EmbeddingPurpose = EmbeddingPurpose.INDEX,
+ **kwargs,
+ ) -> list[float]:
+ if stage != EmbeddingProvider.Step.BASE:
+ raise ValueError(
+ "LiteLLMEmbeddingProvider only supports search stage."
+ )
+
+ task = {
+ "texts": [text],
+ "stage": stage,
+ "purpose": purpose,
+ "kwargs": kwargs,
+ }
+ return (await self._execute_with_backoff_async(task))[0]
+
+ def get_embedding(
+ self,
+ text: str,
+ stage: EmbeddingProvider.Step = EmbeddingProvider.Step.BASE,
+ purpose: EmbeddingPurpose = EmbeddingPurpose.INDEX,
+ **kwargs,
+ ) -> list[float]:
+ if stage != EmbeddingProvider.Step.BASE:
+ raise ValueError(
+ "Error getting embeddings: LiteLLMEmbeddingProvider only supports search stage."
+ )
+
+ task = {
+ "texts": [text],
+ "stage": stage,
+ "purpose": purpose,
+ "kwargs": kwargs,
+ }
+ return self._execute_with_backoff_sync(task)[0]
+
+ async def async_get_embeddings(
+ self,
+ texts: list[str],
+ stage: EmbeddingProvider.Step = EmbeddingProvider.Step.BASE,
+ purpose: EmbeddingPurpose = EmbeddingPurpose.INDEX,
+ **kwargs,
+ ) -> list[list[float]]:
+ if stage != EmbeddingProvider.Step.BASE:
+ raise ValueError(
+ "LiteLLMEmbeddingProvider only supports search stage."
+ )
+
+ task = {
+ "texts": texts,
+ "stage": stage,
+ "purpose": purpose,
+ "kwargs": kwargs,
+ }
+ return await self._execute_with_backoff_async(task)
+
+ def get_embeddings(
+ self,
+ texts: list[str],
+ stage: EmbeddingProvider.Step = EmbeddingProvider.Step.BASE,
+ purpose: EmbeddingPurpose = EmbeddingPurpose.INDEX,
+ **kwargs,
+ ) -> list[list[float]]:
+ if stage != EmbeddingProvider.Step.BASE:
+ raise ValueError(
+ "LiteLLMEmbeddingProvider only supports search stage."
+ )
+
+ task = {
+ "texts": texts,
+ "stage": stage,
+ "purpose": purpose,
+ "kwargs": kwargs,
+ }
+ return self._execute_with_backoff_sync(task)
+
+ def rerank(
+ self,
+ query: str,
+ results: list[ChunkSearchResult],
+ stage: EmbeddingProvider.Step = EmbeddingProvider.Step.RERANK,
+ limit: int = 10,
+ ):
+ if self.config.rerank_model is not None:
+ if not self.rerank_url:
+ raise ValueError(
+ "Error, `rerank_url` was expected to be set inside LiteLLMEmbeddingProvider"
+ )
+
+ texts = [result.text for result in results]
+
+ payload = {
+ "query": query,
+ "texts": texts,
+ "model-id": self.config.rerank_model.split("huggingface/")[1],
+ }
+
+ headers = {"Content-Type": "application/json"}
+
+ try:
+ response = requests.post(
+ self.rerank_url, json=payload, headers=headers
+ )
+ response.raise_for_status()
+ reranked_results = response.json()
+
+ # Copy reranked results into new array
+ scored_results = []
+ for rank_info in reranked_results:
+ original_result = results[rank_info["index"]]
+ copied_result = copy(original_result)
+ # Inject the reranking score into the result object
+ copied_result.score = rank_info["score"]
+ scored_results.append(copied_result)
+
+ # Return only the ChunkSearchResult objects, limited to specified count
+ return scored_results[:limit]
+
+ except requests.RequestException as e:
+ logger.error(f"Error during reranking: {str(e)}")
+ # Fall back to returning the original results if reranking fails
+ return results[:limit]
+ else:
+ return results[:limit]
+
+ async def arerank(
+ self,
+ query: str,
+ results: list[ChunkSearchResult],
+ stage: EmbeddingProvider.Step = EmbeddingProvider.Step.RERANK,
+ limit: int = 10,
+ ) -> list[ChunkSearchResult]:
+ """Asynchronously rerank search results using the configured rerank
+ model.
+
+ Args:
+ query: The search query string
+ results: List of ChunkSearchResult objects to rerank
+ limit: Maximum number of results to return
+
+ Returns:
+ List of reranked ChunkSearchResult objects, limited to specified count
+ """
+ if self.config.rerank_model is not None:
+ if not self.rerank_url:
+ raise ValueError(
+ "Error, `rerank_url` was expected to be set inside LiteLLMEmbeddingProvider"
+ )
+
+ texts = [result.text for result in results]
+
+ payload = {
+ "query": query,
+ "texts": texts,
+ "model-id": self.config.rerank_model.split("huggingface/")[1],
+ }
+
+ headers = {"Content-Type": "application/json"}
+
+ try:
+ async with ClientSession() as session:
+ async with session.post(
+ self.rerank_url, json=payload, headers=headers
+ ) as response:
+ response.raise_for_status()
+ reranked_results = await response.json()
+
+ # Copy reranked results into new array
+ scored_results = []
+ for rank_info in reranked_results:
+ original_result = results[rank_info["index"]]
+ copied_result = copy(original_result)
+ # Inject the reranking score into the result object
+ copied_result.score = rank_info["score"]
+ scored_results.append(copied_result)
+
+ # Return only the ChunkSearchResult objects, limited to specified count
+ return scored_results[:limit]
+
+ except (ClientError, Exception) as e:
+ logger.error(f"Error during async reranking: {str(e)}")
+ # Fall back to returning the original results if reranking fails
+ return results[:limit]
+ else:
+ return results[:limit]
diff --git a/.venv/lib/python3.12/site-packages/core/providers/embeddings/ollama.py b/.venv/lib/python3.12/site-packages/core/providers/embeddings/ollama.py
new file mode 100644
index 00000000..297d9167
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/core/providers/embeddings/ollama.py
@@ -0,0 +1,194 @@
+import logging
+import os
+from typing import Any
+
+from ollama import AsyncClient, Client
+
+from core.base import (
+ ChunkSearchResult,
+ EmbeddingConfig,
+ EmbeddingProvider,
+ EmbeddingPurpose,
+ R2RException,
+)
+
+logger = logging.getLogger()
+
+
+class OllamaEmbeddingProvider(EmbeddingProvider):
+ def __init__(self, config: EmbeddingConfig):
+ super().__init__(config)
+ provider = config.provider
+ if not provider:
+ raise ValueError(
+ "Must set provider in order to initialize `OllamaEmbeddingProvider`."
+ )
+ if provider != "ollama":
+ raise ValueError(
+ "OllamaEmbeddingProvider must be initialized with provider `ollama`."
+ )
+ if config.rerank_model:
+ raise ValueError(
+ "OllamaEmbeddingProvider does not support separate reranking."
+ )
+
+ self.base_model = config.base_model
+ self.base_dimension = config.base_dimension
+ self.base_url = os.getenv("OLLAMA_API_BASE")
+ logger.info(
+ f"Using Ollama API base URL: {self.base_url or 'http://127.0.0.1:11434'}"
+ )
+ self.client = Client(host=self.base_url)
+ self.aclient = AsyncClient(host=self.base_url)
+
+ self.set_prefixes(config.prefixes or {}, self.base_model)
+ self.batch_size = config.batch_size or 32
+
+ def _get_embedding_kwargs(self, **kwargs):
+ embedding_kwargs = {
+ "model": self.base_model,
+ }
+ embedding_kwargs.update(kwargs)
+ return embedding_kwargs
+
+ async def _execute_task(self, task: dict[str, Any]) -> list[list[float]]:
+ texts = task["texts"]
+ purpose = task.get("purpose", EmbeddingPurpose.INDEX)
+ kwargs = self._get_embedding_kwargs(**task.get("kwargs", {}))
+
+ try:
+ embeddings = []
+ for i in range(0, len(texts), self.batch_size):
+ batch = texts[i : i + self.batch_size]
+ prefixed_batch = [
+ self.prefixes.get(purpose, "") + text for text in batch
+ ]
+ response = await self.aclient.embed(
+ input=prefixed_batch, **kwargs
+ )
+ embeddings.extend(response["embeddings"])
+ return embeddings
+ except Exception as e:
+ error_msg = f"Error getting embeddings: {str(e)}"
+ logger.error(error_msg)
+ raise R2RException(error_msg, 400) from e
+
+ def _execute_task_sync(self, task: dict[str, Any]) -> list[list[float]]:
+ texts = task["texts"]
+ purpose = task.get("purpose", EmbeddingPurpose.INDEX)
+ kwargs = self._get_embedding_kwargs(**task.get("kwargs", {}))
+
+ try:
+ embeddings = []
+ for i in range(0, len(texts), self.batch_size):
+ batch = texts[i : i + self.batch_size]
+ prefixed_batch = [
+ self.prefixes.get(purpose, "") + text for text in batch
+ ]
+ response = self.client.embed(input=prefixed_batch, **kwargs)
+ embeddings.extend(response["embeddings"])
+ return embeddings
+ except Exception as e:
+ error_msg = f"Error getting embeddings: {str(e)}"
+ logger.error(error_msg)
+ raise R2RException(error_msg, 400) from e
+
+ async def async_get_embedding(
+ self,
+ text: str,
+ stage: EmbeddingProvider.Step = EmbeddingProvider.Step.BASE,
+ purpose: EmbeddingPurpose = EmbeddingPurpose.INDEX,
+ **kwargs,
+ ) -> list[float]:
+ if stage != EmbeddingProvider.Step.BASE:
+ raise ValueError(
+ "OllamaEmbeddingProvider only supports search stage."
+ )
+
+ task = {
+ "texts": [text],
+ "stage": stage,
+ "purpose": purpose,
+ "kwargs": kwargs,
+ }
+ result = await self._execute_with_backoff_async(task)
+ return result[0]
+
+ def get_embedding(
+ self,
+ text: str,
+ stage: EmbeddingProvider.Step = EmbeddingProvider.Step.BASE,
+ purpose: EmbeddingPurpose = EmbeddingPurpose.INDEX,
+ **kwargs,
+ ) -> list[float]:
+ if stage != EmbeddingProvider.Step.BASE:
+ raise ValueError(
+ "OllamaEmbeddingProvider only supports search stage."
+ )
+
+ task = {
+ "texts": [text],
+ "stage": stage,
+ "purpose": purpose,
+ "kwargs": kwargs,
+ }
+ result = self._execute_with_backoff_sync(task)
+ return result[0]
+
+ async def async_get_embeddings(
+ self,
+ texts: list[str],
+ stage: EmbeddingProvider.Step = EmbeddingProvider.Step.BASE,
+ purpose: EmbeddingPurpose = EmbeddingPurpose.INDEX,
+ **kwargs,
+ ) -> list[list[float]]:
+ if stage != EmbeddingProvider.Step.BASE:
+ raise ValueError(
+ "OllamaEmbeddingProvider only supports search stage."
+ )
+
+ task = {
+ "texts": texts,
+ "stage": stage,
+ "purpose": purpose,
+ "kwargs": kwargs,
+ }
+ return await self._execute_with_backoff_async(task)
+
+ def get_embeddings(
+ self,
+ texts: list[str],
+ stage: EmbeddingProvider.Step = EmbeddingProvider.Step.BASE,
+ purpose: EmbeddingPurpose = EmbeddingPurpose.INDEX,
+ **kwargs,
+ ) -> list[list[float]]:
+ if stage != EmbeddingProvider.Step.BASE:
+ raise ValueError(
+ "OllamaEmbeddingProvider only supports search stage."
+ )
+
+ task = {
+ "texts": texts,
+ "stage": stage,
+ "purpose": purpose,
+ "kwargs": kwargs,
+ }
+ return self._execute_with_backoff_sync(task)
+
+ def rerank(
+ self,
+ query: str,
+ results: list[ChunkSearchResult],
+ stage: EmbeddingProvider.Step = EmbeddingProvider.Step.RERANK,
+ limit: int = 10,
+ ) -> list[ChunkSearchResult]:
+ return results[:limit]
+
+ async def arerank(
+ self,
+ query: str,
+ results: list[ChunkSearchResult],
+ stage: EmbeddingProvider.Step = EmbeddingProvider.Step.RERANK,
+ limit: int = 10,
+ ):
+ return results[:limit]
diff --git a/.venv/lib/python3.12/site-packages/core/providers/embeddings/openai.py b/.venv/lib/python3.12/site-packages/core/providers/embeddings/openai.py
new file mode 100644
index 00000000..907cebd9
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/core/providers/embeddings/openai.py
@@ -0,0 +1,243 @@
+import logging
+import os
+from typing import Any
+
+import tiktoken
+from openai import AsyncOpenAI, AuthenticationError, OpenAI
+from openai._types import NOT_GIVEN
+
+from core.base import (
+ ChunkSearchResult,
+ EmbeddingConfig,
+ EmbeddingProvider,
+ EmbeddingPurpose,
+)
+
+logger = logging.getLogger()
+
+
+class OpenAIEmbeddingProvider(EmbeddingProvider):
+ MODEL_TO_TOKENIZER = {
+ "text-embedding-ada-002": "cl100k_base",
+ "text-embedding-3-small": "cl100k_base",
+ "text-embedding-3-large": "cl100k_base",
+ }
+ MODEL_TO_DIMENSIONS = {
+ "text-embedding-ada-002": [1536],
+ "text-embedding-3-small": [512, 1536],
+ "text-embedding-3-large": [256, 1024, 3072],
+ }
+
+ def __init__(self, config: EmbeddingConfig):
+ super().__init__(config)
+ if not config.provider:
+ raise ValueError(
+ "Must set provider in order to initialize OpenAIEmbeddingProvider."
+ )
+
+ if config.provider != "openai":
+ raise ValueError(
+ "OpenAIEmbeddingProvider must be initialized with provider `openai`."
+ )
+ if not os.getenv("OPENAI_API_KEY"):
+ raise ValueError(
+ "Must set OPENAI_API_KEY in order to initialize OpenAIEmbeddingProvider."
+ )
+ self.client = OpenAI()
+ self.async_client = AsyncOpenAI()
+
+ if config.rerank_model:
+ raise ValueError(
+ "OpenAIEmbeddingProvider does not support separate reranking."
+ )
+
+ if config.base_model and "openai/" in config.base_model:
+ self.base_model = config.base_model.split("/")[-1]
+ else:
+ self.base_model = config.base_model
+ self.base_dimension = config.base_dimension
+
+ if not self.base_model:
+ raise ValueError(
+ "Must set base_model in order to initialize OpenAIEmbeddingProvider."
+ )
+
+ if self.base_model not in OpenAIEmbeddingProvider.MODEL_TO_TOKENIZER:
+ raise ValueError(
+ f"OpenAI embedding model {self.base_model} not supported."
+ )
+
+ if self.base_dimension:
+ if (
+ self.base_dimension
+ not in OpenAIEmbeddingProvider.MODEL_TO_DIMENSIONS[
+ self.base_model
+ ]
+ ):
+ raise ValueError(
+ f"Dimensions {self.base_dimension} for {self.base_model} are not supported"
+ )
+ else:
+ # If base_dimension is not set, use the largest available dimension for the model
+ self.base_dimension = max(
+ OpenAIEmbeddingProvider.MODEL_TO_DIMENSIONS[self.base_model]
+ )
+
+ def _get_dimensions(self):
+ return (
+ NOT_GIVEN
+ if self.base_model == "text-embedding-ada-002"
+ else self.base_dimension
+ or OpenAIEmbeddingProvider.MODEL_TO_DIMENSIONS[self.base_model][-1]
+ )
+
+ def _get_embedding_kwargs(self, **kwargs):
+ return {
+ "model": self.base_model,
+ "dimensions": self._get_dimensions(),
+ } | kwargs
+
+ async def _execute_task(self, task: dict[str, Any]) -> list[list[float]]:
+ texts = task["texts"]
+ kwargs = self._get_embedding_kwargs(**task.get("kwargs", {}))
+
+ try:
+ response = await self.async_client.embeddings.create(
+ input=texts,
+ **kwargs,
+ )
+ return [data.embedding for data in response.data]
+ except AuthenticationError as e:
+ raise ValueError(
+ "Invalid OpenAI API key provided. Please check your OPENAI_API_KEY environment variable."
+ ) from e
+ except Exception as e:
+ error_msg = f"Error getting embeddings: {str(e)}"
+ logger.error(error_msg)
+ raise ValueError(error_msg) from e
+
+ def _execute_task_sync(self, task: dict[str, Any]) -> list[list[float]]:
+ texts = task["texts"]
+ kwargs = self._get_embedding_kwargs(**task.get("kwargs", {}))
+ try:
+ response = self.client.embeddings.create(
+ input=texts,
+ **kwargs,
+ )
+ return [data.embedding for data in response.data]
+ except AuthenticationError as e:
+ raise ValueError(
+ "Invalid OpenAI API key provided. Please check your OPENAI_API_KEY environment variable."
+ ) from e
+ except Exception as e:
+ error_msg = f"Error getting embeddings: {str(e)}"
+ logger.error(error_msg)
+ raise ValueError(error_msg) from e
+
+ async def async_get_embedding(
+ self,
+ text: str,
+ stage: EmbeddingProvider.Step = EmbeddingProvider.Step.BASE,
+ purpose: EmbeddingPurpose = EmbeddingPurpose.INDEX,
+ **kwargs,
+ ) -> list[float]:
+ if stage != EmbeddingProvider.Step.BASE:
+ raise ValueError(
+ "OpenAIEmbeddingProvider only supports search stage."
+ )
+
+ task = {
+ "texts": [text],
+ "stage": stage,
+ "purpose": purpose,
+ "kwargs": kwargs,
+ }
+ result = await self._execute_with_backoff_async(task)
+ return result[0]
+
+ def get_embedding(
+ self,
+ text: str,
+ stage: EmbeddingProvider.Step = EmbeddingProvider.Step.BASE,
+ purpose: EmbeddingPurpose = EmbeddingPurpose.INDEX,
+ **kwargs,
+ ) -> list[float]:
+ if stage != EmbeddingProvider.Step.BASE:
+ raise ValueError(
+ "OpenAIEmbeddingProvider only supports search stage."
+ )
+
+ task = {
+ "texts": [text],
+ "stage": stage,
+ "purpose": purpose,
+ "kwargs": kwargs,
+ }
+ result = self._execute_with_backoff_sync(task)
+ return result[0]
+
+ async def async_get_embeddings(
+ self,
+ texts: list[str],
+ stage: EmbeddingProvider.Step = EmbeddingProvider.Step.BASE,
+ purpose: EmbeddingPurpose = EmbeddingPurpose.INDEX,
+ **kwargs,
+ ) -> list[list[float]]:
+ if stage != EmbeddingProvider.Step.BASE:
+ raise ValueError(
+ "OpenAIEmbeddingProvider only supports search stage."
+ )
+
+ task = {
+ "texts": texts,
+ "stage": stage,
+ "purpose": purpose,
+ "kwargs": kwargs,
+ }
+ return await self._execute_with_backoff_async(task)
+
+ def get_embeddings(
+ self,
+ texts: list[str],
+ stage: EmbeddingProvider.Step = EmbeddingProvider.Step.BASE,
+ purpose: EmbeddingPurpose = EmbeddingPurpose.INDEX,
+ **kwargs,
+ ) -> list[list[float]]:
+ if stage != EmbeddingProvider.Step.BASE:
+ raise ValueError(
+ "OpenAIEmbeddingProvider only supports search stage."
+ )
+
+ task = {
+ "texts": texts,
+ "stage": stage,
+ "purpose": purpose,
+ "kwargs": kwargs,
+ }
+ return self._execute_with_backoff_sync(task)
+
+ def rerank(
+ self,
+ query: str,
+ results: list[ChunkSearchResult],
+ stage: EmbeddingProvider.Step = EmbeddingProvider.Step.RERANK,
+ limit: int = 10,
+ ):
+ return results[:limit]
+
+ async def arerank(
+ self,
+ query: str,
+ results: list[ChunkSearchResult],
+ stage: EmbeddingProvider.Step = EmbeddingProvider.Step.RERANK,
+ limit: int = 10,
+ ):
+ return results[:limit]
+
+ def tokenize_string(self, text: str, model: str) -> list[int]:
+ if model not in OpenAIEmbeddingProvider.MODEL_TO_TOKENIZER:
+ raise ValueError(f"OpenAI embedding model {model} not supported.")
+ encoding = tiktoken.get_encoding(
+ OpenAIEmbeddingProvider.MODEL_TO_TOKENIZER[model]
+ )
+ return encoding.encode(text)