about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/azure/ai/ml/operations/_batch_deployment_operations.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/azure/ai/ml/operations/_batch_deployment_operations.py')
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/operations/_batch_deployment_operations.py392
1 files changed, 392 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/operations/_batch_deployment_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/operations/_batch_deployment_operations.py
new file mode 100644
index 00000000..9bde33c8
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/operations/_batch_deployment_operations.py
@@ -0,0 +1,392 @@
+# ---------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# ---------------------------------------------------------
+
+# pylint: disable=protected-access, too-many-boolean-expressions
+
+import re
+from typing import Any, Optional, TypeVar, Union
+
+from azure.ai.ml._restclient.v2024_01_01_preview import AzureMachineLearningWorkspaces as ServiceClient012024Preview
+from azure.ai.ml._scope_dependent_operations import (
+    OperationConfig,
+    OperationsContainer,
+    OperationScope,
+    _ScopeDependentOperations,
+)
+from azure.ai.ml._telemetry import ActivityType, monitor_with_activity
+from azure.ai.ml._utils._arm_id_utils import AMLVersionedArmId
+from azure.ai.ml._utils._azureml_polling import AzureMLPolling
+from azure.ai.ml._utils._endpoint_utils import upload_dependencies, validate_scoring_script
+from azure.ai.ml._utils._http_utils import HttpPipeline
+from azure.ai.ml._utils._logger_utils import OpsLogger
+from azure.ai.ml._utils._package_utils import package_deployment
+from azure.ai.ml._utils.utils import _get_mfe_base_url_from_discovery_service, modified_operation_client
+from azure.ai.ml.constants._common import ARM_ID_PREFIX, AzureMLResourceType, LROConfigurations
+from azure.ai.ml.entities import BatchDeployment, BatchJob, ModelBatchDeployment, PipelineComponent, PipelineJob
+from azure.ai.ml.entities._deployment.pipeline_component_batch_deployment import PipelineComponentBatchDeployment
+from azure.core.credentials import TokenCredential
+from azure.core.exceptions import HttpResponseError, ResourceNotFoundError
+from azure.core.paging import ItemPaged
+from azure.core.polling import LROPoller
+from azure.core.tracing.decorator import distributed_trace
+
+from ._operation_orchestrator import OperationOrchestrator
+
+ops_logger = OpsLogger(__name__)
+module_logger = ops_logger.module_logger
+DeploymentType = TypeVar(
+    "DeploymentType", bound=Union[BatchDeployment, PipelineComponentBatchDeployment, ModelBatchDeployment]
+)
+
+
+class BatchDeploymentOperations(_ScopeDependentOperations):
+    """BatchDeploymentOperations.
+
+    You should not instantiate this class directly. Instead, you should create an MLClient instance that instantiates it
+    for you and attaches it as an attribute.
+
+    :param operation_scope: Scope variables for the operations classes of an MLClient object.
+    :type operation_scope: ~azure.ai.ml._scope_dependent_operations.OperationScope
+    :param operation_config: Common configuration for operations classes of an MLClient object.
+    :type operation_config: ~azure.ai.ml._scope_dependent_operations.OperationConfig
+    :param service_client_05_2022: Service client to allow end users to operate on Azure Machine Learning Workspace
+        resources.
+    :type service_client_05_2022: ~azure.ai.ml._restclient.v2022_05_01._azure_machine_learning_workspaces.
+        AzureMachineLearningWorkspaces
+    :param all_operations: All operations classes of an MLClient object.
+    :type all_operations: ~azure.ai.ml._scope_dependent_operations.OperationsContainer
+    :param credentials: Credential to use for authentication.
+    :type credentials: ~azure.core.credentials.TokenCredential
+    """
+
+    def __init__(
+        self,
+        operation_scope: OperationScope,
+        operation_config: OperationConfig,
+        service_client_01_2024_preview: ServiceClient012024Preview,
+        all_operations: OperationsContainer,
+        credentials: Optional[TokenCredential] = None,
+        **kwargs: Any,
+    ):
+        super(BatchDeploymentOperations, self).__init__(operation_scope, operation_config)
+        ops_logger.update_filter()
+        self._batch_deployment = service_client_01_2024_preview.batch_deployments
+        self._batch_job_deployment = kwargs.pop("service_client_09_2020_dataplanepreview").batch_job_deployment
+        service_client_02_2023_preview = kwargs.pop("service_client_02_2023_preview")
+        self._component_batch_deployment_operations = service_client_02_2023_preview.batch_deployments
+        self._batch_endpoint_operations = service_client_01_2024_preview.batch_endpoints
+        self._component_operations = service_client_02_2023_preview.component_versions
+        self._all_operations = all_operations
+        self._credentials = credentials
+        self._init_kwargs = kwargs
+
+        self._requests_pipeline: HttpPipeline = kwargs.pop("requests_pipeline")
+
+    @distributed_trace
+    @monitor_with_activity(ops_logger, "BatchDeployment.BeginCreateOrUpdate", ActivityType.PUBLICAPI)
+    def begin_create_or_update(
+        self,
+        deployment: DeploymentType,
+        *,
+        skip_script_validation: bool = False,
+        **kwargs: Any,
+    ) -> LROPoller[DeploymentType]:
+        """Create or update a batch deployment.
+
+        :param deployment: The deployment entity.
+        :type deployment: ~azure.ai.ml.entities.BatchDeployment
+        :keyword skip_script_validation: If set to True, the script validation will be skipped. Defaults to False.
+        :paramtype skip_script_validation: bool
+        :raises ~azure.ai.ml.exceptions.ValidationException: Raised if BatchDeployment cannot be
+            successfully validated. Details will be provided in the error message.
+        :raises ~azure.ai.ml.exceptions.AssetException: Raised if BatchDeployment assets
+            (e.g. Data, Code, Model, Environment) cannot be successfully validated.
+            Details will be provided in the error message.
+        :raises ~azure.ai.ml.exceptions.ModelException: Raised if BatchDeployment model
+            cannot be successfully validated. Details will be provided in the error message.
+        :return: A poller to track the operation status.
+        :rtype: ~azure.core.polling.LROPoller[~azure.ai.ml.entities.BatchDeployment]
+
+        .. admonition:: Example:
+
+            .. literalinclude:: ../samples/ml_samples_misc.py
+                :start-after: [START batch_deployment_operations_begin_create_or_update]
+                :end-before: [END batch_deployment_operations_begin_create_or_update]
+                :language: python
+                :dedent: 8
+                :caption: Create example.
+        """
+        if (
+            not skip_script_validation
+            and not isinstance(deployment, PipelineComponentBatchDeployment)
+            and deployment
+            and deployment.code_configuration  # type: ignore
+            and not deployment.code_configuration.code.startswith(ARM_ID_PREFIX)  # type: ignore
+            and not re.match(AMLVersionedArmId.REGEX_PATTERN, deployment.code_configuration.code)  # type: ignore
+        ):
+            validate_scoring_script(deployment)
+        module_logger.debug("Checking endpoint %s exists", deployment.endpoint_name)
+        self._batch_endpoint_operations.get(
+            endpoint_name=deployment.endpoint_name,
+            resource_group_name=self._resource_group_name,
+            workspace_name=self._workspace_name,
+        )
+        orchestrators = OperationOrchestrator(
+            operation_container=self._all_operations,
+            operation_scope=self._operation_scope,
+            operation_config=self._operation_config,
+        )
+        if isinstance(deployment, PipelineComponentBatchDeployment):
+            self._validate_component(deployment, orchestrators)  # type: ignore
+        else:
+            upload_dependencies(deployment, orchestrators)
+        try:
+            location = self._get_workspace_location()
+            if kwargs.pop("package_model", False):
+                deployment = package_deployment(deployment, self._all_operations.all_operations)
+                module_logger.info("\nStarting deployment")
+            deployment_rest = deployment._to_rest_object(location=location)
+            if isinstance(deployment, PipelineComponentBatchDeployment):  # pylint: disable=no-else-return
+                return self._component_batch_deployment_operations.begin_create_or_update(
+                    resource_group_name=self._resource_group_name,
+                    workspace_name=self._workspace_name,
+                    endpoint_name=deployment.endpoint_name,
+                    deployment_name=deployment.name,
+                    body=deployment_rest,
+                    **self._init_kwargs,
+                    cls=lambda response, deserialized, headers: PipelineComponentBatchDeployment._from_rest_object(
+                        deserialized
+                    ),
+                )
+            else:
+                return self._batch_deployment.begin_create_or_update(
+                    resource_group_name=self._resource_group_name,
+                    workspace_name=self._workspace_name,
+                    endpoint_name=deployment.endpoint_name,
+                    deployment_name=deployment.name,
+                    body=deployment_rest,
+                    **self._init_kwargs,
+                    cls=lambda response, deserialized, headers: BatchDeployment._from_rest_object(deserialized),
+                )
+        except Exception as ex:
+            raise ex
+
+    @distributed_trace
+    @monitor_with_activity(ops_logger, "BatchDeployment.Get", ActivityType.PUBLICAPI)
+    def get(self, name: str, endpoint_name: str) -> BatchDeployment:
+        """Get a deployment resource.
+
+        :param name: The name of the deployment
+        :type name: str
+        :param endpoint_name: The name of the endpoint
+        :type endpoint_name: str
+        :return: A deployment entity
+        :rtype: ~azure.ai.ml.entities.BatchDeployment
+
+        .. admonition:: Example:
+
+            .. literalinclude:: ../samples/ml_samples_misc.py
+                :start-after: [START batch_deployment_operations_get]
+                :end-before: [END batch_deployment_operations_get]
+                :language: python
+                :dedent: 8
+                :caption: Get example.
+        """
+        deployment = BatchDeployment._from_rest_object(
+            self._batch_deployment.get(
+                endpoint_name=endpoint_name,
+                deployment_name=name,
+                resource_group_name=self._resource_group_name,
+                workspace_name=self._workspace_name,
+                **self._init_kwargs,
+            )
+        )
+        deployment.endpoint_name = endpoint_name
+        return deployment
+
+    @distributed_trace
+    @monitor_with_activity(ops_logger, "BatchDeployment.BeginDelete", ActivityType.PUBLICAPI)
+    def begin_delete(self, name: str, endpoint_name: str) -> LROPoller[None]:
+        """Delete a batch deployment.
+
+        :param name: Name of the batch deployment.
+        :type name: str
+        :param endpoint_name: Name of the batch endpoint
+        :type endpoint_name: str
+        :return: A poller to track the operation status.
+        :rtype: ~azure.core.polling.LROPoller[None]
+
+        .. admonition:: Example:
+
+            .. literalinclude:: ../samples/ml_samples_misc.py
+                :start-after: [START batch_deployment_operations_delete]
+                :end-before: [END batch_deployment_operations_delete]
+                :language: python
+                :dedent: 8
+                :caption: Delete example.
+        """
+        path_format_arguments = {
+            "endpointName": name,
+            "resourceGroupName": self._resource_group_name,
+            "workspaceName": self._workspace_name,
+        }
+
+        delete_poller = self._batch_deployment.begin_delete(
+            resource_group_name=self._resource_group_name,
+            workspace_name=self._workspace_name,
+            endpoint_name=endpoint_name,
+            deployment_name=name,
+            polling=AzureMLPolling(
+                LROConfigurations.POLL_INTERVAL,
+                path_format_arguments=path_format_arguments,
+                **self._init_kwargs,
+            ),
+            polling_interval=LROConfigurations.POLL_INTERVAL,
+            **self._init_kwargs,
+        )
+        return delete_poller
+
+    @distributed_trace
+    @monitor_with_activity(ops_logger, "BatchDeployment.List", ActivityType.PUBLICAPI)
+    def list(self, endpoint_name: str) -> ItemPaged[BatchDeployment]:
+        """List a deployment resource.
+
+        :param endpoint_name: The name of the endpoint
+        :type endpoint_name: str
+        :return: An iterator of deployment entities
+        :rtype: ~azure.core.paging.ItemPaged[~azure.ai.ml.entities.BatchDeployment]
+
+        .. admonition:: Example:
+
+            .. literalinclude:: ../samples/ml_samples_misc.py
+                :start-after: [START batch_deployment_operations_list]
+                :end-before: [END batch_deployment_operations_list]
+                :language: python
+                :dedent: 8
+                :caption: List deployment resource example.
+        """
+        return self._batch_deployment.list(
+            endpoint_name=endpoint_name,
+            resource_group_name=self._resource_group_name,
+            workspace_name=self._workspace_name,
+            cls=lambda objs: [BatchDeployment._from_rest_object(obj) for obj in objs],
+            **self._init_kwargs,
+        )
+
+    @distributed_trace
+    @monitor_with_activity(ops_logger, "BatchDeployment.ListJobs", ActivityType.PUBLICAPI)
+    def list_jobs(self, endpoint_name: str, *, name: Optional[str] = None) -> ItemPaged[BatchJob]:
+        """List jobs under the provided batch endpoint deployment. This is only valid for batch endpoint.
+
+        :param endpoint_name: Name of endpoint.
+        :type endpoint_name: str
+        :keyword name: (Optional) Name of deployment.
+        :paramtype name: str
+        :raise: Exception if endpoint_type is not BATCH_ENDPOINT_TYPE
+        :return: List of jobs
+        :rtype: ~azure.core.paging.ItemPaged[~azure.ai.ml.entities.BatchJob]
+
+        .. admonition:: Example:
+
+            .. literalinclude:: ../samples/ml_samples_misc.py
+                :start-after: [START batch_deployment_operations_list_jobs]
+                :end-before: [END batch_deployment_operations_list_jobs]
+                :language: python
+                :dedent: 8
+                :caption: List jobs example.
+        """
+
+        workspace_operations = self._all_operations.all_operations[AzureMLResourceType.WORKSPACE]
+        mfe_base_uri = _get_mfe_base_url_from_discovery_service(
+            workspace_operations, self._workspace_name, self._requests_pipeline
+        )
+
+        with modified_operation_client(self._batch_job_deployment, mfe_base_uri):
+            result = self._batch_job_deployment.list(
+                endpoint_name=endpoint_name,
+                deployment_name=name,
+                resource_group_name=self._resource_group_name,
+                workspace_name=self._workspace_name,
+                **self._init_kwargs,
+            )
+
+            # This is necessary as the paged result need to be resolved inside the context manager
+            return list(result)
+
+    def _get_workspace_location(self) -> str:
+        """Get the workspace location
+
+        TODO[TASK 1260265]: can we cache this information and only refresh when the operation_scope is changed?
+
+        :return: The workspace location
+        :rtype: str
+        """
+        return str(
+            self._all_operations.all_operations[AzureMLResourceType.WORKSPACE].get(self._workspace_name).location
+        )
+
+    def _validate_component(self, deployment: Any, orchestrators: OperationOrchestrator) -> None:
+        """Validates that the value provided is associated to an existing component or otherwise we will try to create
+        an anonymous component that will be use for batch deployment.
+
+        :param deployment: Batch deployment
+        :type deployment: ~azure.ai.ml.entities._deployment.deployment.Deployment
+        :param orchestrators: Operation Orchestrator
+        :type orchestrators: _operation_orchestrator.OperationOrchestrator
+        """
+        if isinstance(deployment.component, PipelineComponent):
+            try:
+                registered_component = self._all_operations.all_operations[AzureMLResourceType.COMPONENT].get(
+                    name=deployment.component.name, version=deployment.component.version
+                )
+                deployment.component = registered_component.id
+            except Exception as err:  # pylint: disable=W0718
+                if isinstance(err, (ResourceNotFoundError, HttpResponseError)):
+                    deployment.component = self._all_operations.all_operations[
+                        AzureMLResourceType.COMPONENT
+                    ].create_or_update(
+                        name=deployment.component.name,
+                        resource_group_name=self._resource_group_name,
+                        workspace_name=self._workspace_name,
+                        component=deployment.component,
+                        version=deployment.component.version,
+                        **self._init_kwargs,
+                    )
+                else:
+                    raise err
+        elif isinstance(deployment.component, str):
+            component_id = orchestrators.get_asset_arm_id(
+                deployment.component, azureml_type=AzureMLResourceType.COMPONENT
+            )
+            deployment.component = component_id
+        elif isinstance(deployment.job_definition, str):
+            job_component = PipelineComponent(source_job_id=deployment.job_definition)
+            job_component = self._component_operations.create_or_update(
+                name=job_component.name,
+                resource_group_name=self._resource_group_name,
+                workspace_name=self._workspace_name,
+                body=job_component._to_rest_object(),
+                version=job_component.version,
+                **self._init_kwargs,
+            )
+            deployment.component = job_component.id
+
+        elif isinstance(deployment.job_definition, PipelineJob):
+            try:
+                registered_job = self._all_operations.all_operations[AzureMLResourceType.JOB].get(
+                    name=deployment.job_definition.name
+                )
+                if registered_job:
+                    job_component = PipelineComponent(source_job_id=registered_job.name)
+                    job_component = self._component_operations.create_or_update(
+                        name=job_component.name,
+                        resource_group_name=self._resource_group_name,
+                        workspace_name=self._workspace_name,
+                        body=job_component._to_rest_object(),
+                        version=job_component.version,
+                        **self._init_kwargs,
+                    )
+                    deployment.component = job_component.id
+            except ResourceNotFoundError as err:
+                raise err