aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory')
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/__init__.py18
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/_azure_machine_learning_workspaces.py116
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/_configuration.py64
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/_patch.py31
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/_vendor.py27
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/_version.py9
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/__init__.py15
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/_azure_machine_learning_workspaces.py110
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/_configuration.py60
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/_patch.py31
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/__init__.py27
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/_delete_operations.py173
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/_events_operations.py480
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/_experiments_operations.py621
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/_metric_operations.py875
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/_run_artifacts_operations.py1236
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/_run_operations.py168
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/_runs_operations.py2674
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/_spans_operations.py302
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/models/__init__.py287
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/models/_azure_machine_learning_workspaces_enums.py80
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/models/_models.py4329
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/models/_models_py3.py4854
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/__init__.py27
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/_delete_operations.py248
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/_events_operations.py713
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/_experiments_operations.py878
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/_metric_operations.py1206
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/_run_artifacts_operations.py1850
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/_run_operations.py233
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/_runs_operations.py3972
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/_spans_operations.py429
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/py.typed1
33 files changed, 26144 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/__init__.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/__init__.py
new file mode 100644
index 00000000..da466144
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/__init__.py
@@ -0,0 +1,18 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from ._azure_machine_learning_workspaces import AzureMachineLearningWorkspaces
+from ._version import VERSION
+
+__version__ = VERSION
+__all__ = ['AzureMachineLearningWorkspaces']
+
+# `._patch.py` is used for handwritten extensions to the generated code
+# Example: https://github.com/Azure/azure-sdk-for-python/blob/main/doc/dev/customize_code/how-to-patch-sdk-code.md
+from ._patch import patch_sdk
+patch_sdk()
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/_azure_machine_learning_workspaces.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/_azure_machine_learning_workspaces.py
new file mode 100644
index 00000000..7e5916c9
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/_azure_machine_learning_workspaces.py
@@ -0,0 +1,116 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from copy import deepcopy
+from typing import TYPE_CHECKING
+
+from msrest import Deserializer, Serializer
+
+from azure.mgmt.core import ARMPipelineClient
+
+from . import models
+from ._configuration import AzureMachineLearningWorkspacesConfiguration
+from .operations import DeleteOperations, EventsOperations, ExperimentsOperations, MetricOperations, RunArtifactsOperations, RunOperations, RunsOperations, SpansOperations
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any
+
+ from azure.core.credentials import TokenCredential
+ from azure.core.rest import HttpRequest, HttpResponse
+
+class AzureMachineLearningWorkspaces(object): # pylint: disable=too-many-instance-attributes
+ """AzureMachineLearningWorkspaces.
+
+ :ivar delete: DeleteOperations operations
+ :vartype delete: azure.mgmt.machinelearningservices.operations.DeleteOperations
+ :ivar events: EventsOperations operations
+ :vartype events: azure.mgmt.machinelearningservices.operations.EventsOperations
+ :ivar experiments: ExperimentsOperations operations
+ :vartype experiments: azure.mgmt.machinelearningservices.operations.ExperimentsOperations
+ :ivar metric: MetricOperations operations
+ :vartype metric: azure.mgmt.machinelearningservices.operations.MetricOperations
+ :ivar runs: RunsOperations operations
+ :vartype runs: azure.mgmt.machinelearningservices.operations.RunsOperations
+ :ivar run_artifacts: RunArtifactsOperations operations
+ :vartype run_artifacts: azure.mgmt.machinelearningservices.operations.RunArtifactsOperations
+ :ivar run: RunOperations operations
+ :vartype run: azure.mgmt.machinelearningservices.operations.RunOperations
+ :ivar spans: SpansOperations operations
+ :vartype spans: azure.mgmt.machinelearningservices.operations.SpansOperations
+ :param credential: Credential needed for the client to connect to Azure.
+ :type credential: ~azure.core.credentials.TokenCredential
+ :param base_url: Service URL. Default value is ''.
+ :type base_url: str
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ """
+
+ def __init__(
+ self,
+ credential, # type: "TokenCredential"
+ base_url="", # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> None
+ self._config = AzureMachineLearningWorkspacesConfiguration(credential=credential, **kwargs)
+ self._client = ARMPipelineClient(base_url=base_url, config=self._config, **kwargs)
+
+ client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)}
+ self._serialize = Serializer(client_models)
+ self._deserialize = Deserializer(client_models)
+ self._serialize.client_side_validation = False
+ self.delete = DeleteOperations(self._client, self._config, self._serialize, self._deserialize)
+ self.events = EventsOperations(self._client, self._config, self._serialize, self._deserialize)
+ self.experiments = ExperimentsOperations(self._client, self._config, self._serialize, self._deserialize)
+ self.metric = MetricOperations(self._client, self._config, self._serialize, self._deserialize)
+ self.runs = RunsOperations(self._client, self._config, self._serialize, self._deserialize)
+ self.run_artifacts = RunArtifactsOperations(self._client, self._config, self._serialize, self._deserialize)
+ self.run = RunOperations(self._client, self._config, self._serialize, self._deserialize)
+ self.spans = SpansOperations(self._client, self._config, self._serialize, self._deserialize)
+
+
+ def _send_request(
+ self,
+ request, # type: HttpRequest
+ **kwargs # type: Any
+ ):
+ # type: (...) -> HttpResponse
+ """Runs the network request through the client's chained policies.
+
+ >>> from azure.core.rest import HttpRequest
+ >>> request = HttpRequest("GET", "https://www.example.org/")
+ <HttpRequest [GET], url: 'https://www.example.org/'>
+ >>> response = client._send_request(request)
+ <HttpResponse: 200 OK>
+
+ For more information on this code flow, see https://aka.ms/azsdk/python/protocol/quickstart
+
+ :param request: The network request you want to make. Required.
+ :type request: ~azure.core.rest.HttpRequest
+ :keyword bool stream: Whether the response payload will be streamed. Defaults to False.
+ :return: The response of your network call. Does not do error handling on your response.
+ :rtype: ~azure.core.rest.HttpResponse
+ """
+
+ request_copy = deepcopy(request)
+ request_copy.url = self._client.format_url(request_copy.url)
+ return self._client.send_request(request_copy, **kwargs)
+
+ def close(self):
+ # type: () -> None
+ self._client.close()
+
+ def __enter__(self):
+ # type: () -> AzureMachineLearningWorkspaces
+ self._client.__enter__()
+ return self
+
+ def __exit__(self, *exc_details):
+ # type: (Any) -> None
+ self._client.__exit__(*exc_details)
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/_configuration.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/_configuration.py
new file mode 100644
index 00000000..b418413f
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/_configuration.py
@@ -0,0 +1,64 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from typing import TYPE_CHECKING
+
+from azure.core.configuration import Configuration
+from azure.core.pipeline import policies
+from azure.mgmt.core.policies import ARMChallengeAuthenticationPolicy, ARMHttpLoggingPolicy
+
+from ._version import VERSION
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any
+
+ from azure.core.credentials import TokenCredential
+
+
+class AzureMachineLearningWorkspacesConfiguration(Configuration): # pylint: disable=too-many-instance-attributes
+ """Configuration for AzureMachineLearningWorkspaces.
+
+ Note that all parameters used to create this instance are saved as instance
+ attributes.
+
+ :param credential: Credential needed for the client to connect to Azure.
+ :type credential: ~azure.core.credentials.TokenCredential
+ """
+
+ def __init__(
+ self,
+ credential, # type: "TokenCredential"
+ **kwargs # type: Any
+ ):
+ # type: (...) -> None
+ super(AzureMachineLearningWorkspacesConfiguration, self).__init__(**kwargs)
+ if credential is None:
+ raise ValueError("Parameter 'credential' must not be None.")
+
+ self.credential = credential
+ self.credential_scopes = kwargs.pop('credential_scopes', ['https://management.azure.com/.default'])
+ kwargs.setdefault('sdk_moniker', 'mgmt-machinelearningservices/{}'.format(VERSION))
+ self._configure(**kwargs)
+
+ def _configure(
+ self,
+ **kwargs # type: Any
+ ):
+ # type: (...) -> None
+ self.user_agent_policy = kwargs.get('user_agent_policy') or policies.UserAgentPolicy(**kwargs)
+ self.headers_policy = kwargs.get('headers_policy') or policies.HeadersPolicy(**kwargs)
+ self.proxy_policy = kwargs.get('proxy_policy') or policies.ProxyPolicy(**kwargs)
+ self.logging_policy = kwargs.get('logging_policy') or policies.NetworkTraceLoggingPolicy(**kwargs)
+ self.http_logging_policy = kwargs.get('http_logging_policy') or ARMHttpLoggingPolicy(**kwargs)
+ self.retry_policy = kwargs.get('retry_policy') or policies.RetryPolicy(**kwargs)
+ self.custom_hook_policy = kwargs.get('custom_hook_policy') or policies.CustomHookPolicy(**kwargs)
+ self.redirect_policy = kwargs.get('redirect_policy') or policies.RedirectPolicy(**kwargs)
+ self.authentication_policy = kwargs.get('authentication_policy')
+ if self.credential and not self.authentication_policy:
+ self.authentication_policy = ARMChallengeAuthenticationPolicy(self.credential, *self.credential_scopes, **kwargs)
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/_patch.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/_patch.py
new file mode 100644
index 00000000..74e48ecd
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/_patch.py
@@ -0,0 +1,31 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+#
+# Copyright (c) Microsoft Corporation. All rights reserved.
+#
+# The MIT License (MIT)
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the ""Software""), to
+# deal in the Software without restriction, including without limitation the
+# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+# sell copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in
+# all copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+# IN THE SOFTWARE.
+#
+# --------------------------------------------------------------------------
+
+# This file is used for handwritten extensions to the generated code. Example:
+# https://github.com/Azure/azure-sdk-for-python/blob/main/doc/dev/customize_code/how-to-patch-sdk-code.md
+def patch_sdk():
+ pass \ No newline at end of file
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/_vendor.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/_vendor.py
new file mode 100644
index 00000000..138f663c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/_vendor.py
@@ -0,0 +1,27 @@
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.core.pipeline.transport import HttpRequest
+
+def _convert_request(request, files=None):
+ data = request.content if not files else None
+ request = HttpRequest(method=request.method, url=request.url, headers=request.headers, data=data)
+ if files:
+ request.set_formdata_body(files)
+ return request
+
+def _format_url_section(template, **kwargs):
+ components = template.split("/")
+ while components:
+ try:
+ return template.format(**kwargs)
+ except KeyError as key:
+ formatted_components = template.split("/")
+ components = [
+ c for c in formatted_components if "{}".format(key.args[0]) not in c
+ ]
+ template = "/".join(components)
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/_version.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/_version.py
new file mode 100644
index 00000000..eae7c95b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/_version.py
@@ -0,0 +1,9 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+VERSION = "0.1.0"
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/__init__.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/__init__.py
new file mode 100644
index 00000000..f67ccda9
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/__init__.py
@@ -0,0 +1,15 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from ._azure_machine_learning_workspaces import AzureMachineLearningWorkspaces
+__all__ = ['AzureMachineLearningWorkspaces']
+
+# `._patch.py` is used for handwritten extensions to the generated code
+# Example: https://github.com/Azure/azure-sdk-for-python/blob/main/doc/dev/customize_code/how-to-patch-sdk-code.md
+from ._patch import patch_sdk
+patch_sdk()
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/_azure_machine_learning_workspaces.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/_azure_machine_learning_workspaces.py
new file mode 100644
index 00000000..92b775fb
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/_azure_machine_learning_workspaces.py
@@ -0,0 +1,110 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from copy import deepcopy
+from typing import Any, Awaitable, TYPE_CHECKING
+
+from msrest import Deserializer, Serializer
+
+from azure.core.rest import AsyncHttpResponse, HttpRequest
+from azure.mgmt.core import AsyncARMPipelineClient
+
+from .. import models
+from ._configuration import AzureMachineLearningWorkspacesConfiguration
+from .operations import DeleteOperations, EventsOperations, ExperimentsOperations, MetricOperations, RunArtifactsOperations, RunOperations, RunsOperations, SpansOperations
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from azure.core.credentials_async import AsyncTokenCredential
+
+class AzureMachineLearningWorkspaces: # pylint: disable=too-many-instance-attributes
+ """AzureMachineLearningWorkspaces.
+
+ :ivar delete: DeleteOperations operations
+ :vartype delete: azure.mgmt.machinelearningservices.aio.operations.DeleteOperations
+ :ivar events: EventsOperations operations
+ :vartype events: azure.mgmt.machinelearningservices.aio.operations.EventsOperations
+ :ivar experiments: ExperimentsOperations operations
+ :vartype experiments: azure.mgmt.machinelearningservices.aio.operations.ExperimentsOperations
+ :ivar metric: MetricOperations operations
+ :vartype metric: azure.mgmt.machinelearningservices.aio.operations.MetricOperations
+ :ivar runs: RunsOperations operations
+ :vartype runs: azure.mgmt.machinelearningservices.aio.operations.RunsOperations
+ :ivar run_artifacts: RunArtifactsOperations operations
+ :vartype run_artifacts:
+ azure.mgmt.machinelearningservices.aio.operations.RunArtifactsOperations
+ :ivar run: RunOperations operations
+ :vartype run: azure.mgmt.machinelearningservices.aio.operations.RunOperations
+ :ivar spans: SpansOperations operations
+ :vartype spans: azure.mgmt.machinelearningservices.aio.operations.SpansOperations
+ :param credential: Credential needed for the client to connect to Azure.
+ :type credential: ~azure.core.credentials_async.AsyncTokenCredential
+ :param base_url: Service URL. Default value is ''.
+ :type base_url: str
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ """
+
+ def __init__(
+ self,
+ credential: "AsyncTokenCredential",
+ base_url: str = "",
+ **kwargs: Any
+ ) -> None:
+ self._config = AzureMachineLearningWorkspacesConfiguration(credential=credential, **kwargs)
+ self._client = AsyncARMPipelineClient(base_url=base_url, config=self._config, **kwargs)
+
+ client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)}
+ self._serialize = Serializer(client_models)
+ self._deserialize = Deserializer(client_models)
+ self._serialize.client_side_validation = False
+ self.delete = DeleteOperations(self._client, self._config, self._serialize, self._deserialize)
+ self.events = EventsOperations(self._client, self._config, self._serialize, self._deserialize)
+ self.experiments = ExperimentsOperations(self._client, self._config, self._serialize, self._deserialize)
+ self.metric = MetricOperations(self._client, self._config, self._serialize, self._deserialize)
+ self.runs = RunsOperations(self._client, self._config, self._serialize, self._deserialize)
+ self.run_artifacts = RunArtifactsOperations(self._client, self._config, self._serialize, self._deserialize)
+ self.run = RunOperations(self._client, self._config, self._serialize, self._deserialize)
+ self.spans = SpansOperations(self._client, self._config, self._serialize, self._deserialize)
+
+
+ def _send_request(
+ self,
+ request: HttpRequest,
+ **kwargs: Any
+ ) -> Awaitable[AsyncHttpResponse]:
+ """Runs the network request through the client's chained policies.
+
+ >>> from azure.core.rest import HttpRequest
+ >>> request = HttpRequest("GET", "https://www.example.org/")
+ <HttpRequest [GET], url: 'https://www.example.org/'>
+ >>> response = await client._send_request(request)
+ <AsyncHttpResponse: 200 OK>
+
+ For more information on this code flow, see https://aka.ms/azsdk/python/protocol/quickstart
+
+ :param request: The network request you want to make. Required.
+ :type request: ~azure.core.rest.HttpRequest
+ :keyword bool stream: Whether the response payload will be streamed. Defaults to False.
+ :return: The response of your network call. Does not do error handling on your response.
+ :rtype: ~azure.core.rest.AsyncHttpResponse
+ """
+
+ request_copy = deepcopy(request)
+ request_copy.url = self._client.format_url(request_copy.url)
+ return self._client.send_request(request_copy, **kwargs)
+
+ async def close(self) -> None:
+ await self._client.close()
+
+ async def __aenter__(self) -> "AzureMachineLearningWorkspaces":
+ await self._client.__aenter__()
+ return self
+
+ async def __aexit__(self, *exc_details) -> None:
+ await self._client.__aexit__(*exc_details)
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/_configuration.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/_configuration.py
new file mode 100644
index 00000000..6d0b0e4d
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/_configuration.py
@@ -0,0 +1,60 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from typing import Any, TYPE_CHECKING
+
+from azure.core.configuration import Configuration
+from azure.core.pipeline import policies
+from azure.mgmt.core.policies import ARMHttpLoggingPolicy, AsyncARMChallengeAuthenticationPolicy
+
+from .._version import VERSION
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from azure.core.credentials_async import AsyncTokenCredential
+
+
+class AzureMachineLearningWorkspacesConfiguration(Configuration): # pylint: disable=too-many-instance-attributes
+ """Configuration for AzureMachineLearningWorkspaces.
+
+ Note that all parameters used to create this instance are saved as instance
+ attributes.
+
+ :param credential: Credential needed for the client to connect to Azure.
+ :type credential: ~azure.core.credentials_async.AsyncTokenCredential
+ """
+
+ def __init__(
+ self,
+ credential: "AsyncTokenCredential",
+ **kwargs: Any
+ ) -> None:
+ super(AzureMachineLearningWorkspacesConfiguration, self).__init__(**kwargs)
+ if credential is None:
+ raise ValueError("Parameter 'credential' must not be None.")
+
+ self.credential = credential
+ self.credential_scopes = kwargs.pop('credential_scopes', ['https://management.azure.com/.default'])
+ kwargs.setdefault('sdk_moniker', 'mgmt-machinelearningservices/{}'.format(VERSION))
+ self._configure(**kwargs)
+
+ def _configure(
+ self,
+ **kwargs: Any
+ ) -> None:
+ self.user_agent_policy = kwargs.get('user_agent_policy') or policies.UserAgentPolicy(**kwargs)
+ self.headers_policy = kwargs.get('headers_policy') or policies.HeadersPolicy(**kwargs)
+ self.proxy_policy = kwargs.get('proxy_policy') or policies.ProxyPolicy(**kwargs)
+ self.logging_policy = kwargs.get('logging_policy') or policies.NetworkTraceLoggingPolicy(**kwargs)
+ self.http_logging_policy = kwargs.get('http_logging_policy') or ARMHttpLoggingPolicy(**kwargs)
+ self.retry_policy = kwargs.get('retry_policy') or policies.AsyncRetryPolicy(**kwargs)
+ self.custom_hook_policy = kwargs.get('custom_hook_policy') or policies.CustomHookPolicy(**kwargs)
+ self.redirect_policy = kwargs.get('redirect_policy') or policies.AsyncRedirectPolicy(**kwargs)
+ self.authentication_policy = kwargs.get('authentication_policy')
+ if self.credential and not self.authentication_policy:
+ self.authentication_policy = AsyncARMChallengeAuthenticationPolicy(self.credential, *self.credential_scopes, **kwargs)
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/_patch.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/_patch.py
new file mode 100644
index 00000000..74e48ecd
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/_patch.py
@@ -0,0 +1,31 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+#
+# Copyright (c) Microsoft Corporation. All rights reserved.
+#
+# The MIT License (MIT)
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the ""Software""), to
+# deal in the Software without restriction, including without limitation the
+# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+# sell copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in
+# all copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+# IN THE SOFTWARE.
+#
+# --------------------------------------------------------------------------
+
+# This file is used for handwritten extensions to the generated code. Example:
+# https://github.com/Azure/azure-sdk-for-python/blob/main/doc/dev/customize_code/how-to-patch-sdk-code.md
+def patch_sdk():
+ pass \ No newline at end of file
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/__init__.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/__init__.py
new file mode 100644
index 00000000..3e84a44a
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/__init__.py
@@ -0,0 +1,27 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from ._delete_operations import DeleteOperations
+from ._events_operations import EventsOperations
+from ._experiments_operations import ExperimentsOperations
+from ._metric_operations import MetricOperations
+from ._runs_operations import RunsOperations
+from ._run_artifacts_operations import RunArtifactsOperations
+from ._run_operations import RunOperations
+from ._spans_operations import SpansOperations
+
+__all__ = [
+ 'DeleteOperations',
+ 'EventsOperations',
+ 'ExperimentsOperations',
+ 'MetricOperations',
+ 'RunsOperations',
+ 'RunArtifactsOperations',
+ 'RunOperations',
+ 'SpansOperations',
+]
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/_delete_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/_delete_operations.py
new file mode 100644
index 00000000..6841ffdc
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/_delete_operations.py
@@ -0,0 +1,173 @@
+# pylint: disable=too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from typing import Any, Callable, Dict, Optional, TypeVar
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.mgmt.core.exceptions import ARMErrorFormat
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._delete_operations import build_get_configuration_request, build_patch_configuration_request
+T = TypeVar('T')
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+class DeleteOperations:
+ """DeleteOperations async operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer) -> None:
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace_async
+ async def patch_configuration(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional["_models.DeleteConfiguration"] = None,
+ **kwargs: Any
+ ) -> "_models.DeleteConfiguration":
+ """patch_configuration.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DeleteConfiguration
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DeleteConfiguration, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DeleteConfiguration
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DeleteConfiguration"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DeleteConfiguration')
+ else:
+ _json = None
+
+ request = build_patch_configuration_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.patch_configuration.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DeleteConfiguration', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ patch_configuration.metadata = {'url': "/history/v1.0/private/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/deleteConfiguration"} # type: ignore
+
+
+ @distributed_trace_async
+ async def get_configuration(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ **kwargs: Any
+ ) -> "_models.DeleteConfiguration":
+ """get_configuration.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DeleteConfiguration, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DeleteConfiguration
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DeleteConfiguration"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_configuration_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ template_url=self.get_configuration.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DeleteConfiguration', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_configuration.metadata = {'url': "/history/v1.0/private/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/deleteConfiguration"} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/_events_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/_events_operations.py
new file mode 100644
index 00000000..03dc9d42
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/_events_operations.py
@@ -0,0 +1,480 @@
+# pylint: disable=too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from typing import Any, Callable, Dict, Optional, TypeVar
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.mgmt.core.exceptions import ARMErrorFormat
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._events_operations import build_batch_post_by_experiment_id_request, build_batch_post_by_experiment_name_request, build_batch_post_request, build_post_by_experiment_id_request, build_post_by_experiment_name_request, build_post_request
+T = TypeVar('T')
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+class EventsOperations:
+ """EventsOperations async operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer) -> None:
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace_async
+ async def batch_post_by_experiment_name(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ experiment_name: str,
+ body: Optional["_models.BatchEventCommand"] = None,
+ **kwargs: Any
+ ) -> "_models.BatchEventCommandResult":
+ """batch_post_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.BatchEventCommand
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: BatchEventCommandResult, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.BatchEventCommandResult
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.BatchEventCommandResult"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'BatchEventCommand')
+ else:
+ _json = None
+
+ request = build_batch_post_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_name=experiment_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.batch_post_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('BatchEventCommandResult', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ batch_post_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/batch/events"} # type: ignore
+
+
+ @distributed_trace_async
+ async def batch_post_by_experiment_id(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ experiment_id: str,
+ body: Optional["_models.BatchEventCommand"] = None,
+ **kwargs: Any
+ ) -> "_models.BatchEventCommandResult":
+ """batch_post_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.BatchEventCommand
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: BatchEventCommandResult, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.BatchEventCommandResult
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.BatchEventCommandResult"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'BatchEventCommand')
+ else:
+ _json = None
+
+ request = build_batch_post_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_id=experiment_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.batch_post_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('BatchEventCommandResult', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ batch_post_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/batch/events"} # type: ignore
+
+
+ @distributed_trace_async
+ async def batch_post(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional["_models.BatchEventCommand"] = None,
+ **kwargs: Any
+ ) -> "_models.BatchEventCommandResult":
+ """batch_post.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.BatchEventCommand
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: BatchEventCommandResult, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.BatchEventCommandResult
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.BatchEventCommandResult"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'BatchEventCommand')
+ else:
+ _json = None
+
+ request = build_batch_post_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.batch_post.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('BatchEventCommandResult', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ batch_post.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/batch/events"} # type: ignore
+
+
+ @distributed_trace_async
+ async def post_by_experiment_name( # pylint: disable=inconsistent-return-statements
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ experiment_name: str,
+ body: Optional["_models.BaseEvent"] = None,
+ **kwargs: Any
+ ) -> None:
+ """post_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.BaseEvent
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'BaseEvent')
+ else:
+ _json = None
+
+ request = build_post_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.post_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in []:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ post_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/events"} # type: ignore
+
+
+ @distributed_trace_async
+ async def post_by_experiment_id( # pylint: disable=inconsistent-return-statements
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ experiment_id: str,
+ body: Optional["_models.BaseEvent"] = None,
+ **kwargs: Any
+ ) -> None:
+ """post_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.BaseEvent
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'BaseEvent')
+ else:
+ _json = None
+
+ request = build_post_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.post_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in []:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ post_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/events"} # type: ignore
+
+
+ @distributed_trace_async
+ async def post( # pylint: disable=inconsistent-return-statements
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ body: Optional["_models.BaseEvent"] = None,
+ **kwargs: Any
+ ) -> None:
+ """post.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.BaseEvent
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'BaseEvent')
+ else:
+ _json = None
+
+ request = build_post_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.post.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in []:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ post.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/events"} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/_experiments_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/_experiments_operations.py
new file mode 100644
index 00000000..e1831c4c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/_experiments_operations.py
@@ -0,0 +1,621 @@
+# pylint: disable=too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from typing import Any, AsyncIterable, Callable, Dict, Optional, TypeVar, Union
+
+from azure.core.async_paging import AsyncItemPaged, AsyncList
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._experiments_operations import build_create_request, build_delete_request_initial, build_delete_tags_request, build_get_by_id_request, build_get_by_query_request, build_get_request, build_update_request
+T = TypeVar('T')
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+class ExperimentsOperations:
+ """ExperimentsOperations async operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer) -> None:
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace_async
+ async def get(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ experiment_name: str,
+ **kwargs: Any
+ ) -> "_models.Experiment":
+ """Get details of an Experiment.
+
+ Get details of an Experiment with specific Experiment name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param experiment_name: The experiment name.
+ :type experiment_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Experiment, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Experiment
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Experiment"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_name=experiment_name,
+ template_url=self.get.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Experiment', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}"} # type: ignore
+
+
+ @distributed_trace_async
+ async def create(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ experiment_name: str,
+ **kwargs: Any
+ ) -> "_models.Experiment":
+ """Create an Experiment.
+
+ Create a new Experiment.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param experiment_name: The experiment name.
+ :type experiment_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Experiment, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Experiment
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Experiment"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_create_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_name=experiment_name,
+ template_url=self.create.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Experiment', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ create.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}"} # type: ignore
+
+
+ @distributed_trace_async
+ async def get_by_id(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ experiment_id: str,
+ **kwargs: Any
+ ) -> "_models.Experiment":
+ """Get details of an Experiment.
+
+ Get details of an Experiment with specific Experiment Id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param experiment_id: The identifier of the experiment.
+ :type experiment_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Experiment, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Experiment
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Experiment"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_by_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_id=experiment_id,
+ template_url=self.get_by_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Experiment', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_by_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}"} # type: ignore
+
+
+ @distributed_trace_async
+ async def update(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ experiment_id: str,
+ body: Optional["_models.ModifyExperiment"] = None,
+ **kwargs: Any
+ ) -> "_models.Experiment":
+ """Update details of an Experiment.
+
+ Update details of an Experiment with specific Experiment Id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param experiment_id: The identifier of the experiment.
+ :type experiment_id: str
+ :param body: Experiment details which needs to be updated.
+ :type body: ~azure.mgmt.machinelearningservices.models.ModifyExperiment
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Experiment, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Experiment
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Experiment"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'ModifyExperiment')
+ else:
+ _json = None
+
+ request = build_update_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_id=experiment_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.update.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Experiment', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ update.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}"} # type: ignore
+
+
+ async def _delete_initial(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ experiment_id: str,
+ **kwargs: Any
+ ) -> Any:
+ cls = kwargs.pop('cls', None) # type: ClsType[Any]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_delete_request_initial(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_id=experiment_id,
+ template_url=self._delete_initial.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('object', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ _delete_initial.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}"} # type: ignore
+
+
+ @distributed_trace_async
+ async def begin_delete(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ experiment_id: str,
+ **kwargs: Any
+ ) -> AsyncLROPoller[Any]:
+ """Delete an Experiment.
+
+ Delete an existing Empty Experiment.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param experiment_id: The identifier of the experiment.
+ :type experiment_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either any or the result of cls(response)
+ :rtype: ~azure.core.polling.AsyncLROPoller[any]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod]
+ cls = kwargs.pop('cls', None) # type: ClsType[Any]
+ lro_delay = kwargs.pop(
+ 'polling_interval',
+ self._config.polling_interval
+ )
+ cont_token = kwargs.pop('continuation_token', None) # type: Optional[str]
+ if cont_token is None:
+ raw_result = await self._delete_initial(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_id=experiment_id,
+ cls=lambda x,y,z: x,
+ **kwargs
+ )
+ kwargs.pop('error_map', None)
+
+ def get_long_running_output(pipeline_response):
+ response = pipeline_response.http_response
+ deserialized = self._deserialize('object', pipeline_response)
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+ return deserialized
+
+
+ if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs)
+ elif polling is False: polling_method = AsyncNoPolling()
+ else: polling_method = polling
+ if cont_token:
+ return AsyncLROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output
+ )
+ return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method)
+
+ begin_delete.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}"} # type: ignore
+
+ @distributed_trace
+ def get_by_query(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ url_safe_experiment_names_only: Optional[bool] = True,
+ body: Optional["_models.ExperimentQueryParams"] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedExperimentList"]:
+ """Get all Experiments in a specific workspace.
+
+ Get all experiments in a specific workspace with the specified query filters.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param url_safe_experiment_names_only:
+ :type url_safe_experiment_names_only: bool
+ :param body: Query parameters for data sorting and filtering.
+ :type body: ~azure.mgmt.machinelearningservices.models.ExperimentQueryParams
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedExperimentList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedExperimentList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedExperimentList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+ if body is not None:
+ _json = self._serialize.body(body, 'ExperimentQueryParams')
+ else:
+ _json = None
+
+ request = build_get_by_query_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ url_safe_experiment_names_only=url_safe_experiment_names_only,
+ template_url=self.get_by_query.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+ if body is not None:
+ _json = self._serialize.body(body, 'ExperimentQueryParams')
+ else:
+ _json = None
+
+ request = build_get_by_query_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ url_safe_experiment_names_only=url_safe_experiment_names_only,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedExperimentList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ get_by_query.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments:query"} # type: ignore
+
+ @distributed_trace_async
+ async def delete_tags(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ experiment_id: str,
+ body: Optional["_models.DeleteTagsCommand"] = None,
+ **kwargs: Any
+ ) -> "_models.DeleteExperimentTagsResult":
+ """Delete list of Tags in an Experiment.
+
+ Delete list of Tags from a specific Experiment Id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param experiment_id: The identifier of the experiment.
+ :type experiment_id: str
+ :param body: The requested tags list to be deleted.
+ :type body: ~azure.mgmt.machinelearningservices.models.DeleteTagsCommand
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DeleteExperimentTagsResult, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DeleteExperimentTagsResult
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DeleteExperimentTagsResult"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DeleteTagsCommand')
+ else:
+ _json = None
+
+ request = build_delete_tags_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_id=experiment_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.delete_tags.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DeleteExperimentTagsResult', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ delete_tags.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/tags:delete"} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/_metric_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/_metric_operations.py
new file mode 100644
index 00000000..0fed06c3
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/_metric_operations.py
@@ -0,0 +1,875 @@
+# pylint: disable=too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from typing import Any, AsyncIterable, Callable, Dict, Optional, TypeVar, Union
+
+from azure.core.async_paging import AsyncItemPaged, AsyncList
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._metric_operations import build_delete_metrics_by_data_container_id_request_initial, build_delete_metrics_by_run_id_request_initial, build_get_full_fidelity_metric_request, build_get_metric_details_by_experiment_id_request, build_get_metric_details_by_experiment_name_request, build_get_sampled_metric_request, build_list_generic_resource_metrics_request, build_list_metric_request, build_post_run_metrics_request
+T = TypeVar('T')
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+class MetricOperations:
+ """MetricOperations async operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer) -> None:
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace_async
+ async def get_full_fidelity_metric(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ body: Optional["_models.RetrieveFullFidelityMetricRequest"] = None,
+ **kwargs: Any
+ ) -> "_models.MetricV2":
+ """API to retrieve the full-fidelity sequence associated with a particular run and metricName.
+
+ API to retrieve the full-fidelity sequence associated with a particular run and metricName.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.RetrieveFullFidelityMetricRequest
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: MetricV2, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.MetricV2
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.MetricV2"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'RetrieveFullFidelityMetricRequest')
+ else:
+ _json = None
+
+ request = build_get_full_fidelity_metric_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.get_full_fidelity_metric.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('MetricV2', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_full_fidelity_metric.metadata = {'url': "/metric/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/full"} # type: ignore
+
+
+ @distributed_trace
+ def list_metric(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ body: Optional["_models.ListMetrics"] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedMetricDefinitionList"]:
+ """API to list metric for a particular datacontainer and metricName.
+
+ API to list metric for a particular datacontainer and metricName.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.ListMetrics
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedMetricDefinitionList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedMetricDefinitionList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedMetricDefinitionList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+ if body is not None:
+ _json = self._serialize.body(body, 'ListMetrics')
+ else:
+ _json = None
+
+ request = build_list_metric_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.list_metric.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+ if body is not None:
+ _json = self._serialize.body(body, 'ListMetrics')
+ else:
+ _json = None
+
+ request = build_list_metric_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ content_type=content_type,
+ json=_json,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedMetricDefinitionList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ list_metric.metadata = {'url': "/metric/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/list"} # type: ignore
+
+ @distributed_trace
+ def list_generic_resource_metrics(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional["_models.ListGenericResourceMetrics"] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedMetricDefinitionList"]:
+ """API to list workspace/subworkspace resource metrics for a particular ResourceId.
+
+ API to list workspace/subworkspace resource metrics for a particular ResourceId.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.ListGenericResourceMetrics
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedMetricDefinitionList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedMetricDefinitionList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedMetricDefinitionList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+ if body is not None:
+ _json = self._serialize.body(body, 'ListGenericResourceMetrics')
+ else:
+ _json = None
+
+ request = build_list_generic_resource_metrics_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.list_generic_resource_metrics.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+ if body is not None:
+ _json = self._serialize.body(body, 'ListGenericResourceMetrics')
+ else:
+ _json = None
+
+ request = build_list_generic_resource_metrics_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedMetricDefinitionList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ list_generic_resource_metrics.metadata = {'url': "/metric/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/azuremonitor/list"} # type: ignore
+
+ @distributed_trace_async
+ async def get_sampled_metric(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ body: Optional["_models.GetSampledMetricRequest"] = None,
+ **kwargs: Any
+ ) -> "_models.MetricSample":
+ """Stub for future action
+ API to retrieve samples for one or many runs to compare a given metricName
+ Throw if schemas don't match across metrics.
+
+ Stub for future action
+ API to retrieve samples for one or many runs to compare a given metricName
+ Throw if schemas don't match across metrics.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.GetSampledMetricRequest
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: MetricSample, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.MetricSample
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.MetricSample"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'GetSampledMetricRequest')
+ else:
+ _json = None
+
+ request = build_get_sampled_metric_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.get_sampled_metric.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('MetricSample', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_sampled_metric.metadata = {'url': "/metric/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/sample"} # type: ignore
+
+
+ @distributed_trace_async
+ async def post_run_metrics(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ body: Optional["_models.BatchIMetricV2"] = None,
+ **kwargs: Any
+ ) -> "_models.PostRunMetricsResult":
+ """Post Metrics to a Run.
+
+ Post Metrics to a specific Run Id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.BatchIMetricV2
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: PostRunMetricsResult, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.PostRunMetricsResult
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PostRunMetricsResult"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'BatchIMetricV2')
+ else:
+ _json = None
+
+ request = build_post_run_metrics_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.post_run_metrics.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 207]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if response.status_code == 200:
+ deserialized = self._deserialize('PostRunMetricsResult', pipeline_response)
+
+ if response.status_code == 207:
+ deserialized = self._deserialize('PostRunMetricsResult', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ post_run_metrics.metadata = {'url': "/metric/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/batch"} # type: ignore
+
+
+ async def _delete_metrics_by_data_container_id_initial(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ experiment_id: str,
+ data_container_id: str,
+ **kwargs: Any
+ ) -> Any:
+ cls = kwargs.pop('cls', None) # type: ClsType[Any]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_delete_metrics_by_data_container_id_request_initial(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_id=experiment_id,
+ data_container_id=data_container_id,
+ template_url=self._delete_metrics_by_data_container_id_initial.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('object', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ _delete_metrics_by_data_container_id_initial.metadata = {'url': "/metric/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentId}/containers/{dataContainerId}/deleteMetrics"} # type: ignore
+
+
+ @distributed_trace_async
+ async def begin_delete_metrics_by_data_container_id(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ experiment_id: str,
+ data_container_id: str,
+ **kwargs: Any
+ ) -> AsyncLROPoller[Any]:
+ """API to delete metrics by data container id.
+
+ API to delete metrics by data container id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param data_container_id:
+ :type data_container_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either any or the result of cls(response)
+ :rtype: ~azure.core.polling.AsyncLROPoller[any]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod]
+ cls = kwargs.pop('cls', None) # type: ClsType[Any]
+ lro_delay = kwargs.pop(
+ 'polling_interval',
+ self._config.polling_interval
+ )
+ cont_token = kwargs.pop('continuation_token', None) # type: Optional[str]
+ if cont_token is None:
+ raw_result = await self._delete_metrics_by_data_container_id_initial(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_id=experiment_id,
+ data_container_id=data_container_id,
+ cls=lambda x,y,z: x,
+ **kwargs
+ )
+ kwargs.pop('error_map', None)
+
+ def get_long_running_output(pipeline_response):
+ response = pipeline_response.http_response
+ deserialized = self._deserialize('object', pipeline_response)
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+ return deserialized
+
+
+ if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs)
+ elif polling is False: polling_method = AsyncNoPolling()
+ else: polling_method = polling
+ if cont_token:
+ return AsyncLROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output
+ )
+ return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method)
+
+ begin_delete_metrics_by_data_container_id.metadata = {'url': "/metric/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentId}/containers/{dataContainerId}/deleteMetrics"} # type: ignore
+
+ async def _delete_metrics_by_run_id_initial(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ **kwargs: Any
+ ) -> Any:
+ cls = kwargs.pop('cls', None) # type: ClsType[Any]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_delete_metrics_by_run_id_request_initial(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ template_url=self._delete_metrics_by_run_id_initial.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('object', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ _delete_metrics_by_run_id_initial.metadata = {'url': "/metric/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/deleteMetrics"} # type: ignore
+
+
+ @distributed_trace_async
+ async def begin_delete_metrics_by_run_id(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ **kwargs: Any
+ ) -> AsyncLROPoller[Any]:
+ """API to delete metrics by run id.
+
+ API to delete metrics by run id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either any or the result of cls(response)
+ :rtype: ~azure.core.polling.AsyncLROPoller[any]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod]
+ cls = kwargs.pop('cls', None) # type: ClsType[Any]
+ lro_delay = kwargs.pop(
+ 'polling_interval',
+ self._config.polling_interval
+ )
+ cont_token = kwargs.pop('continuation_token', None) # type: Optional[str]
+ if cont_token is None:
+ raw_result = await self._delete_metrics_by_run_id_initial(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ cls=lambda x,y,z: x,
+ **kwargs
+ )
+ kwargs.pop('error_map', None)
+
+ def get_long_running_output(pipeline_response):
+ response = pipeline_response.http_response
+ deserialized = self._deserialize('object', pipeline_response)
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+ return deserialized
+
+
+ if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs)
+ elif polling is False: polling_method = AsyncNoPolling()
+ else: polling_method = polling
+ if cont_token:
+ return AsyncLROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output
+ )
+ return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method)
+
+ begin_delete_metrics_by_run_id.metadata = {'url': "/metric/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/deleteMetrics"} # type: ignore
+
+ @distributed_trace_async
+ async def get_metric_details_by_experiment_name(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ metric_id: str,
+ experiment_name: str,
+ **kwargs: Any
+ ) -> "_models.RunMetric":
+ """Get Metric details.
+
+ Get Metric details for a specific Metric Id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param metric_id: The identifier for a Metric.
+ :type metric_id: str
+ :param experiment_name:
+ :type experiment_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: RunMetric, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.RunMetric
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.RunMetric"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_metric_details_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ metric_id=metric_id,
+ experiment_name=experiment_name,
+ template_url=self.get_metric_details_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('RunMetric', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_metric_details_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/metrics/{metricId}"} # type: ignore
+
+
+ @distributed_trace_async
+ async def get_metric_details_by_experiment_id(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ metric_id: str,
+ experiment_id: str,
+ **kwargs: Any
+ ) -> "_models.RunMetric":
+ """Get Metric details.
+
+ Get Metric details for a specific Metric Id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param metric_id: The identifier for a Metric.
+ :type metric_id: str
+ :param experiment_id:
+ :type experiment_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: RunMetric, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.RunMetric
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.RunMetric"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_metric_details_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ metric_id=metric_id,
+ experiment_id=experiment_id,
+ template_url=self.get_metric_details_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('RunMetric', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_metric_details_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/metrics/{metricId}"} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/_run_artifacts_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/_run_artifacts_operations.py
new file mode 100644
index 00000000..3710e381
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/_run_artifacts_operations.py
@@ -0,0 +1,1236 @@
+# pylint: disable=too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from typing import Any, AsyncIterable, Callable, Dict, Optional, TypeVar
+
+from azure.core.async_paging import AsyncItemPaged, AsyncList
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.mgmt.core.exceptions import ARMErrorFormat
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._run_artifacts_operations import build_batch_create_empty_artifacts_by_experiment_id_request, build_batch_create_empty_artifacts_by_experiment_name_request, build_get_by_id_by_experiment_id_request, build_get_by_id_by_experiment_name_request, build_get_content_information_by_experiment_id_request, build_get_content_information_by_experiment_name_request, build_get_sas_uri_by_experiment_id_request, build_get_sas_uri_by_experiment_name_request, build_list_in_container_by_experiment_id_request, build_list_in_container_by_experiment_name_request, build_list_in_path_by_experiment_id_request, build_list_in_path_by_experiment_name_request, build_list_sas_by_prefix_by_experiment_id_request, build_list_sas_by_prefix_by_experiment_name_request
+T = TypeVar('T')
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+class RunArtifactsOperations:
+ """RunArtifactsOperations async operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer) -> None:
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace
+ def list_in_container_by_experiment_name(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ experiment_name: str,
+ continuation_token_parameter: Optional[str] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedArtifactList"]:
+ """list_in_container_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedArtifactList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedArtifactList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedArtifactList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_in_container_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ continuation_token_parameter=continuation_token_parameter,
+ template_url=self.list_in_container_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_in_container_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ continuation_token_parameter=continuation_token_parameter,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedArtifactList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ list_in_container_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/artifacts"} # type: ignore
+
+ @distributed_trace
+ def list_in_container_by_experiment_id(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ experiment_id: str,
+ continuation_token_parameter: Optional[str] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedArtifactList"]:
+ """list_in_container_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedArtifactList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedArtifactList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedArtifactList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_in_container_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ continuation_token_parameter=continuation_token_parameter,
+ template_url=self.list_in_container_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_in_container_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ continuation_token_parameter=continuation_token_parameter,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedArtifactList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ list_in_container_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/artifacts"} # type: ignore
+
+ @distributed_trace
+ def list_in_path_by_experiment_name(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ experiment_name: str,
+ path: Optional[str] = None,
+ continuation_token_parameter: Optional[str] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedArtifactList"]:
+ """list_in_path_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param path:
+ :type path: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedArtifactList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedArtifactList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedArtifactList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_in_path_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ path=path,
+ continuation_token_parameter=continuation_token_parameter,
+ template_url=self.list_in_path_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_in_path_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ path=path,
+ continuation_token_parameter=continuation_token_parameter,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedArtifactList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ list_in_path_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/artifacts/path"} # type: ignore
+
+ @distributed_trace
+ def list_in_path_by_experiment_id(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ experiment_id: str,
+ path: Optional[str] = None,
+ continuation_token_parameter: Optional[str] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedArtifactList"]:
+ """list_in_path_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param path:
+ :type path: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedArtifactList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedArtifactList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedArtifactList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_in_path_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ path=path,
+ continuation_token_parameter=continuation_token_parameter,
+ template_url=self.list_in_path_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_in_path_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ path=path,
+ continuation_token_parameter=continuation_token_parameter,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedArtifactList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ list_in_path_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/artifacts/path"} # type: ignore
+
+ @distributed_trace_async
+ async def get_by_id_by_experiment_name(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ experiment_name: str,
+ path: Optional[str] = None,
+ **kwargs: Any
+ ) -> "_models.Artifact":
+ """get_by_id_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param path:
+ :type path: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Artifact, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Artifact
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Artifact"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_by_id_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ path=path,
+ template_url=self.get_by_id_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Artifact', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_by_id_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/artifacts/metadata"} # type: ignore
+
+
+ @distributed_trace_async
+ async def get_by_id_by_experiment_id(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ experiment_id: str,
+ path: Optional[str] = None,
+ **kwargs: Any
+ ) -> "_models.Artifact":
+ """get_by_id_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param path:
+ :type path: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Artifact, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Artifact
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Artifact"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_by_id_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ path=path,
+ template_url=self.get_by_id_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Artifact', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_by_id_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/artifacts/metadata"} # type: ignore
+
+
+ @distributed_trace_async
+ async def get_content_information_by_experiment_name(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ experiment_name: str,
+ path: Optional[str] = None,
+ **kwargs: Any
+ ) -> "_models.ArtifactContentInformation":
+ """get_content_information_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param path:
+ :type path: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: ArtifactContentInformation, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.ArtifactContentInformation
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.ArtifactContentInformation"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_content_information_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ path=path,
+ template_url=self.get_content_information_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('ArtifactContentInformation', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_content_information_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/artifacts/contentinfo"} # type: ignore
+
+
+ @distributed_trace_async
+ async def get_content_information_by_experiment_id(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ experiment_id: str,
+ path: Optional[str] = None,
+ **kwargs: Any
+ ) -> "_models.ArtifactContentInformation":
+ """get_content_information_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param path:
+ :type path: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: ArtifactContentInformation, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.ArtifactContentInformation
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.ArtifactContentInformation"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_content_information_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ path=path,
+ template_url=self.get_content_information_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('ArtifactContentInformation', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_content_information_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/artifacts/contentinfo"} # type: ignore
+
+
+ @distributed_trace_async
+ async def get_sas_uri_by_experiment_name(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ experiment_name: str,
+ path: Optional[str] = None,
+ **kwargs: Any
+ ) -> str:
+ """get_sas_uri_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param path:
+ :type path: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: str, or the result of cls(response)
+ :rtype: str
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[str]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_sas_uri_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ path=path,
+ template_url=self.get_sas_uri_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('str', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_sas_uri_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/artifacts/artifacturi"} # type: ignore
+
+
+ @distributed_trace_async
+ async def get_sas_uri_by_experiment_id(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ experiment_id: str,
+ path: Optional[str] = None,
+ **kwargs: Any
+ ) -> str:
+ """get_sas_uri_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param path:
+ :type path: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: str, or the result of cls(response)
+ :rtype: str
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[str]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_sas_uri_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ path=path,
+ template_url=self.get_sas_uri_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('str', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_sas_uri_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/artifacts/artifacturi"} # type: ignore
+
+
+ @distributed_trace
+ def list_sas_by_prefix_by_experiment_name(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ experiment_name: str,
+ path: Optional[str] = None,
+ continuation_token_parameter: Optional[str] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedArtifactContentInformationList"]:
+ """list_sas_by_prefix_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param path:
+ :type path: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedArtifactContentInformationList or the
+ result of cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedArtifactContentInformationList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedArtifactContentInformationList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_sas_by_prefix_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ path=path,
+ continuation_token_parameter=continuation_token_parameter,
+ template_url=self.list_sas_by_prefix_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_sas_by_prefix_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ path=path,
+ continuation_token_parameter=continuation_token_parameter,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedArtifactContentInformationList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ list_sas_by_prefix_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/artifacts/prefix/contentinfo"} # type: ignore
+
+ @distributed_trace
+ def list_sas_by_prefix_by_experiment_id(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ experiment_id: str,
+ path: Optional[str] = None,
+ continuation_token_parameter: Optional[str] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedArtifactContentInformationList"]:
+ """list_sas_by_prefix_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param path:
+ :type path: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedArtifactContentInformationList or the
+ result of cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedArtifactContentInformationList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedArtifactContentInformationList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_sas_by_prefix_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ path=path,
+ continuation_token_parameter=continuation_token_parameter,
+ template_url=self.list_sas_by_prefix_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_sas_by_prefix_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ path=path,
+ continuation_token_parameter=continuation_token_parameter,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedArtifactContentInformationList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ list_sas_by_prefix_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/artifacts/prefix/contentinfo"} # type: ignore
+
+ @distributed_trace_async
+ async def batch_create_empty_artifacts_by_experiment_name(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ experiment_name: str,
+ body: Optional["_models.ArtifactPathList"] = None,
+ **kwargs: Any
+ ) -> "_models.BatchArtifactContentInformationResult":
+ """batch_create_empty_artifacts_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.ArtifactPathList
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: BatchArtifactContentInformationResult, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.BatchArtifactContentInformationResult
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.BatchArtifactContentInformationResult"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'ArtifactPathList')
+ else:
+ _json = None
+
+ request = build_batch_create_empty_artifacts_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.batch_create_empty_artifacts_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('BatchArtifactContentInformationResult', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ batch_create_empty_artifacts_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/artifacts/batch/metadata"} # type: ignore
+
+
+ @distributed_trace_async
+ async def batch_create_empty_artifacts_by_experiment_id(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ experiment_id: str,
+ body: Optional["_models.ArtifactPathList"] = None,
+ **kwargs: Any
+ ) -> "_models.BatchArtifactContentInformationResult":
+ """batch_create_empty_artifacts_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.ArtifactPathList
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: BatchArtifactContentInformationResult, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.BatchArtifactContentInformationResult
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.BatchArtifactContentInformationResult"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'ArtifactPathList')
+ else:
+ _json = None
+
+ request = build_batch_create_empty_artifacts_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.batch_create_empty_artifacts_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('BatchArtifactContentInformationResult', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ batch_create_empty_artifacts_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/artifacts/batch/metadata"} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/_run_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/_run_operations.py
new file mode 100644
index 00000000..64cbc7dd
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/_run_operations.py
@@ -0,0 +1,168 @@
+# pylint: disable=too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from typing import Any, AsyncIterable, Callable, Dict, List, Optional, TypeVar, Union
+
+from azure.core.async_paging import AsyncItemPaged, AsyncList
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.mgmt.core.exceptions import ARMErrorFormat
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._run_operations import build_list_by_compute_request
+T = TypeVar('T')
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+class RunOperations:
+ """RunOperations async operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer) -> None:
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace
+ def list_by_compute(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ compute_name: str,
+ filter: Optional[str] = None,
+ continuationtoken: Optional[str] = None,
+ orderby: Optional[List[str]] = None,
+ sortorder: Optional[Union[str, "_models.SortOrderDirection"]] = None,
+ top: Optional[int] = None,
+ count: Optional[bool] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedRunList"]:
+ """list_by_compute.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param compute_name:
+ :type compute_name: str
+ :param filter: Allows for filtering the collection of resources.
+ The expression specified is evaluated for each resource in the collection, and only items
+ where the expression evaluates to true are included in the response.
+ :type filter: str
+ :param continuationtoken: The continuation token to use for getting the next set of resources.
+ :type continuationtoken: str
+ :param orderby: The list of resource properties to use for sorting the requested resources.
+ :type orderby: list[str]
+ :param sortorder: The sort order of the returned resources. Not used, specify asc or desc after
+ each property name in the OrderBy parameter.
+ :type sortorder: str or ~azure.mgmt.machinelearningservices.models.SortOrderDirection
+ :param top: The maximum number of items in the resource collection to be included in the
+ result.
+ If not specified, all items are returned.
+ :type top: int
+ :param count: Whether to include a count of the matching resources along with the resources
+ returned in the response.
+ :type count: bool
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedRunList or the result of cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedRunList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedRunList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_by_compute_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ compute_name=compute_name,
+ filter=filter,
+ continuationtoken=continuationtoken,
+ orderby=orderby,
+ sortorder=sortorder,
+ top=top,
+ count=count,
+ template_url=self.list_by_compute.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_by_compute_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ compute_name=compute_name,
+ filter=filter,
+ continuationtoken=continuationtoken,
+ orderby=orderby,
+ sortorder=sortorder,
+ top=top,
+ count=count,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedRunList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ list_by_compute.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/computes/{computeName}/runs"} # type: ignore
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/_runs_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/_runs_operations.py
new file mode 100644
index 00000000..b42721dc
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/_runs_operations.py
@@ -0,0 +1,2674 @@
+# pylint: disable=too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from typing import Any, AsyncIterable, Callable, Dict, List, Optional, TypeVar, Union
+
+from azure.core.async_paging import AsyncItemPaged, AsyncList
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.mgmt.core.exceptions import ARMErrorFormat
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._runs_operations import build_add_or_modify_by_experiment_id_request, build_add_or_modify_by_experiment_name_request, build_add_or_modify_experiment_request, build_add_or_modify_run_service_instances_request, build_add_request, build_batch_add_or_modify_by_experiment_id_request, build_batch_add_or_modify_by_experiment_name_request, build_batch_get_run_data_request, build_cancel_run_with_uri_by_experiment_id_request, build_cancel_run_with_uri_by_experiment_name_request, build_delete_run_services_by_experiment_id_request, build_delete_run_services_by_experiment_name_request, build_delete_run_services_request, build_delete_tags_by_experiment_id_request, build_delete_tags_by_experiment_name_request, build_delete_tags_request, build_get_by_experiment_id_request, build_get_by_experiment_name_request, build_get_by_ids_by_experiment_id_request, build_get_by_ids_by_experiment_name_request, build_get_by_query_by_experiment_id_request, build_get_by_query_by_experiment_name_request, build_get_child_by_experiment_id_request, build_get_child_by_experiment_name_request, build_get_child_request, build_get_details_by_experiment_id_request, build_get_details_by_experiment_name_request, build_get_details_request, build_get_request, build_get_run_data_request, build_get_run_service_instances_request, build_modify_or_delete_tags_by_experiment_id_request, build_modify_or_delete_tags_by_experiment_name_request
+T = TypeVar('T')
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+class RunsOperations: # pylint: disable=too-many-public-methods
+ """RunsOperations async operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer) -> None:
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace
+ def get_child_by_experiment_name(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ experiment_name: str,
+ filter: Optional[str] = None,
+ continuationtoken: Optional[str] = None,
+ orderby: Optional[List[str]] = None,
+ sortorder: Optional[Union[str, "_models.SortOrderDirection"]] = None,
+ top: Optional[int] = None,
+ count: Optional[bool] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedRunList"]:
+ """get_child_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param filter: Allows for filtering the collection of resources.
+ The expression specified is evaluated for each resource in the collection, and only items
+ where the expression evaluates to true are included in the response.
+ :type filter: str
+ :param continuationtoken: The continuation token to use for getting the next set of resources.
+ :type continuationtoken: str
+ :param orderby: The list of resource properties to use for sorting the requested resources.
+ :type orderby: list[str]
+ :param sortorder: The sort order of the returned resources. Not used, specify asc or desc after
+ each property name in the OrderBy parameter.
+ :type sortorder: str or ~azure.mgmt.machinelearningservices.models.SortOrderDirection
+ :param top: The maximum number of items in the resource collection to be included in the
+ result.
+ If not specified, all items are returned.
+ :type top: int
+ :param count: Whether to include a count of the matching resources along with the resources
+ returned in the response.
+ :type count: bool
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedRunList or the result of cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedRunList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedRunList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_get_child_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ filter=filter,
+ continuationtoken=continuationtoken,
+ orderby=orderby,
+ sortorder=sortorder,
+ top=top,
+ count=count,
+ template_url=self.get_child_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_get_child_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ filter=filter,
+ continuationtoken=continuationtoken,
+ orderby=orderby,
+ sortorder=sortorder,
+ top=top,
+ count=count,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedRunList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ get_child_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/children"} # type: ignore
+
+ @distributed_trace
+ def get_child_by_experiment_id(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ experiment_id: str,
+ filter: Optional[str] = None,
+ continuationtoken: Optional[str] = None,
+ orderby: Optional[List[str]] = None,
+ sortorder: Optional[Union[str, "_models.SortOrderDirection"]] = None,
+ top: Optional[int] = None,
+ count: Optional[bool] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedRunList"]:
+ """get_child_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param filter: Allows for filtering the collection of resources.
+ The expression specified is evaluated for each resource in the collection, and only items
+ where the expression evaluates to true are included in the response.
+ :type filter: str
+ :param continuationtoken: The continuation token to use for getting the next set of resources.
+ :type continuationtoken: str
+ :param orderby: The list of resource properties to use for sorting the requested resources.
+ :type orderby: list[str]
+ :param sortorder: The sort order of the returned resources. Not used, specify asc or desc after
+ each property name in the OrderBy parameter.
+ :type sortorder: str or ~azure.mgmt.machinelearningservices.models.SortOrderDirection
+ :param top: The maximum number of items in the resource collection to be included in the
+ result.
+ If not specified, all items are returned.
+ :type top: int
+ :param count: Whether to include a count of the matching resources along with the resources
+ returned in the response.
+ :type count: bool
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedRunList or the result of cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedRunList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedRunList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_get_child_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ filter=filter,
+ continuationtoken=continuationtoken,
+ orderby=orderby,
+ sortorder=sortorder,
+ top=top,
+ count=count,
+ template_url=self.get_child_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_get_child_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ filter=filter,
+ continuationtoken=continuationtoken,
+ orderby=orderby,
+ sortorder=sortorder,
+ top=top,
+ count=count,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedRunList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ get_child_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/children"} # type: ignore
+
+ @distributed_trace
+ def get_child(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ filter: Optional[str] = None,
+ continuationtoken: Optional[str] = None,
+ orderby: Optional[List[str]] = None,
+ sortorder: Optional[Union[str, "_models.SortOrderDirection"]] = None,
+ top: Optional[int] = None,
+ count: Optional[bool] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedRunList"]:
+ """get_child.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param filter: Allows for filtering the collection of resources.
+ The expression specified is evaluated for each resource in the collection, and only items
+ where the expression evaluates to true are included in the response.
+ :type filter: str
+ :param continuationtoken: The continuation token to use for getting the next set of resources.
+ :type continuationtoken: str
+ :param orderby: The list of resource properties to use for sorting the requested resources.
+ :type orderby: list[str]
+ :param sortorder: The sort order of the returned resources. Not used, specify asc or desc after
+ each property name in the OrderBy parameter.
+ :type sortorder: str or ~azure.mgmt.machinelearningservices.models.SortOrderDirection
+ :param top: The maximum number of items in the resource collection to be included in the
+ result.
+ If not specified, all items are returned.
+ :type top: int
+ :param count: Whether to include a count of the matching resources along with the resources
+ returned in the response.
+ :type count: bool
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedRunList or the result of cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedRunList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedRunList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_get_child_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ filter=filter,
+ continuationtoken=continuationtoken,
+ orderby=orderby,
+ sortorder=sortorder,
+ top=top,
+ count=count,
+ template_url=self.get_child.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_get_child_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ filter=filter,
+ continuationtoken=continuationtoken,
+ orderby=orderby,
+ sortorder=sortorder,
+ top=top,
+ count=count,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedRunList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ get_child.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/children"} # type: ignore
+
+ @distributed_trace_async
+ async def get_details_by_experiment_id(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ experiment_id: str,
+ **kwargs: Any
+ ) -> "_models.RunDetails":
+ """get_details_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_id:
+ :type experiment_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: RunDetails, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.RunDetails
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.RunDetails"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_details_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ template_url=self.get_details_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('RunDetails', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_details_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/details"} # type: ignore
+
+
+ @distributed_trace_async
+ async def get_details_by_experiment_name(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ experiment_name: str,
+ **kwargs: Any
+ ) -> "_models.RunDetails":
+ """get_details_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_name:
+ :type experiment_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: RunDetails, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.RunDetails
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.RunDetails"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_details_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ template_url=self.get_details_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('RunDetails', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_details_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/details"} # type: ignore
+
+
+ @distributed_trace_async
+ async def get_details(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ **kwargs: Any
+ ) -> "_models.RunDetails":
+ """get_details.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: RunDetails, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.RunDetails
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.RunDetails"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_details_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ template_url=self.get_details.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('RunDetails', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_details.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/details"} # type: ignore
+
+
+ @distributed_trace_async
+ async def get_run_data(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional["_models.GetRunDataRequest"] = None,
+ **kwargs: Any
+ ) -> "_models.GetRunDataResult":
+ """get_run_data.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.GetRunDataRequest
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: GetRunDataResult, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.GetRunDataResult
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.GetRunDataResult"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'GetRunDataRequest')
+ else:
+ _json = None
+
+ request = build_get_run_data_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.get_run_data.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('GetRunDataResult', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_run_data.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/rundata"} # type: ignore
+
+
+ @distributed_trace_async
+ async def batch_get_run_data(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional["_models.BatchRequest1"] = None,
+ **kwargs: Any
+ ) -> "_models.BatchResult1":
+ """batch_get_run_data.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.BatchRequest1
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: BatchResult1, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.BatchResult1
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.BatchResult1"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'BatchRequest1')
+ else:
+ _json = None
+
+ request = build_batch_get_run_data_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.batch_get_run_data.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 207]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if response.status_code == 200:
+ deserialized = self._deserialize('BatchResult1', pipeline_response)
+
+ if response.status_code == 207:
+ deserialized = self._deserialize('BatchResult1', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ batch_get_run_data.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/batchrundata"} # type: ignore
+
+
+ @distributed_trace_async
+ async def batch_add_or_modify_by_experiment_id(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ experiment_id: str,
+ body: Optional["_models.BatchAddOrModifyRunRequest"] = None,
+ **kwargs: Any
+ ) -> "_models.BatchRunResult":
+ """batch_add_or_modify_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.BatchAddOrModifyRunRequest
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: BatchRunResult, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.BatchRunResult
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.BatchRunResult"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'BatchAddOrModifyRunRequest')
+ else:
+ _json = None
+
+ request = build_batch_add_or_modify_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_id=experiment_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.batch_add_or_modify_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('BatchRunResult', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ batch_add_or_modify_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/batch/runs"} # type: ignore
+
+
+ @distributed_trace_async
+ async def batch_add_or_modify_by_experiment_name(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ experiment_name: str,
+ body: Optional["_models.BatchAddOrModifyRunRequest"] = None,
+ **kwargs: Any
+ ) -> "_models.BatchRunResult":
+ """batch_add_or_modify_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.BatchAddOrModifyRunRequest
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: BatchRunResult, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.BatchRunResult
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.BatchRunResult"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'BatchAddOrModifyRunRequest')
+ else:
+ _json = None
+
+ request = build_batch_add_or_modify_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_name=experiment_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.batch_add_or_modify_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('BatchRunResult', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ batch_add_or_modify_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/batch/runs"} # type: ignore
+
+
+ @distributed_trace_async
+ async def add_or_modify_by_experiment_name(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ experiment_name: str,
+ body: Optional["_models.CreateRun"] = None,
+ **kwargs: Any
+ ) -> "_models.Run":
+ """add_or_modify_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.CreateRun
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Run, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Run
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Run"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'CreateRun')
+ else:
+ _json = None
+
+ request = build_add_or_modify_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.add_or_modify_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Run', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ add_or_modify_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}"} # type: ignore
+
+
+ @distributed_trace_async
+ async def get_by_experiment_name(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ experiment_name: str,
+ **kwargs: Any
+ ) -> "_models.Run":
+ """get_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_name:
+ :type experiment_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Run, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Run
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Run"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ template_url=self.get_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Run', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}"} # type: ignore
+
+
+ @distributed_trace_async
+ async def add_or_modify_by_experiment_id(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ experiment_id: str,
+ body: Optional["_models.CreateRun"] = None,
+ **kwargs: Any
+ ) -> "_models.Run":
+ """add_or_modify_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.CreateRun
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Run, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Run
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Run"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'CreateRun')
+ else:
+ _json = None
+
+ request = build_add_or_modify_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.add_or_modify_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Run', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ add_or_modify_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}"} # type: ignore
+
+
+ @distributed_trace_async
+ async def get_by_experiment_id(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ experiment_id: str,
+ **kwargs: Any
+ ) -> "_models.Run":
+ """get_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_id:
+ :type experiment_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Run, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Run
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Run"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ template_url=self.get_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Run', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}"} # type: ignore
+
+
+ @distributed_trace_async
+ async def add_or_modify_experiment(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ body: Optional["_models.CreateRun"] = None,
+ **kwargs: Any
+ ) -> "_models.Run":
+ """add_or_modify_experiment.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.CreateRun
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Run, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Run
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Run"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'CreateRun')
+ else:
+ _json = None
+
+ request = build_add_or_modify_experiment_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.add_or_modify_experiment.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Run', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ add_or_modify_experiment.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}"} # type: ignore
+
+
+ @distributed_trace_async
+ async def add(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ body: Optional["_models.CreateRun"] = None,
+ **kwargs: Any
+ ) -> "_models.Run":
+ """add.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.CreateRun
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Run, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Run
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Run"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'CreateRun')
+ else:
+ _json = None
+
+ request = build_add_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.add.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Run', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ add.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}"} # type: ignore
+
+
+ @distributed_trace_async
+ async def get(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ **kwargs: Any
+ ) -> "_models.Run":
+ """get.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Run, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Run
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Run"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ template_url=self.get.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Run', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}"} # type: ignore
+
+
+ @distributed_trace_async
+ async def delete_tags_by_experiment_id(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ experiment_id: str,
+ body: Optional[List[str]] = None,
+ **kwargs: Any
+ ) -> "_models.Run":
+ """delete_tags_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param body:
+ :type body: list[str]
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Run, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Run
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Run"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, '[str]')
+ else:
+ _json = None
+
+ request = build_delete_tags_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.delete_tags_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Run', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ delete_tags_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/tags"} # type: ignore
+
+
+ @distributed_trace_async
+ async def modify_or_delete_tags_by_experiment_id(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ experiment_id: str,
+ body: Optional["_models.DeleteOrModifyTags"] = None,
+ **kwargs: Any
+ ) -> "_models.Run":
+ """modify_or_delete_tags_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DeleteOrModifyTags
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Run, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Run
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Run"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DeleteOrModifyTags')
+ else:
+ _json = None
+
+ request = build_modify_or_delete_tags_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.modify_or_delete_tags_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Run', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ modify_or_delete_tags_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/tags"} # type: ignore
+
+
+ @distributed_trace_async
+ async def delete_tags_by_experiment_name(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ experiment_name: str,
+ body: Optional[List[str]] = None,
+ **kwargs: Any
+ ) -> "_models.Run":
+ """delete_tags_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param body:
+ :type body: list[str]
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Run, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Run
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Run"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, '[str]')
+ else:
+ _json = None
+
+ request = build_delete_tags_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.delete_tags_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Run', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ delete_tags_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/tags"} # type: ignore
+
+
+ @distributed_trace_async
+ async def modify_or_delete_tags_by_experiment_name(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ experiment_name: str,
+ body: Optional["_models.DeleteOrModifyTags"] = None,
+ **kwargs: Any
+ ) -> "_models.Run":
+ """modify_or_delete_tags_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DeleteOrModifyTags
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Run, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Run
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Run"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DeleteOrModifyTags')
+ else:
+ _json = None
+
+ request = build_modify_or_delete_tags_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.modify_or_delete_tags_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Run', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ modify_or_delete_tags_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/tags"} # type: ignore
+
+
+ @distributed_trace_async
+ async def delete_tags(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ body: Optional[List[str]] = None,
+ **kwargs: Any
+ ) -> "_models.Run":
+ """delete_tags.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param body:
+ :type body: list[str]
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Run, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Run
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Run"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, '[str]')
+ else:
+ _json = None
+
+ request = build_delete_tags_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.delete_tags.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Run', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ delete_tags.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/tags"} # type: ignore
+
+
+ @distributed_trace_async
+ async def delete_run_services_by_experiment_id(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ experiment_id: str,
+ body: Optional["_models.DeleteRunServices"] = None,
+ **kwargs: Any
+ ) -> "_models.Run":
+ """delete_run_services_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DeleteRunServices
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Run, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Run
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Run"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DeleteRunServices')
+ else:
+ _json = None
+
+ request = build_delete_run_services_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.delete_run_services_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Run', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ delete_run_services_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/services"} # type: ignore
+
+
+ @distributed_trace_async
+ async def delete_run_services_by_experiment_name(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ experiment_name: str,
+ body: Optional["_models.DeleteRunServices"] = None,
+ **kwargs: Any
+ ) -> "_models.Run":
+ """delete_run_services_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DeleteRunServices
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Run, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Run
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Run"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DeleteRunServices')
+ else:
+ _json = None
+
+ request = build_delete_run_services_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.delete_run_services_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Run', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ delete_run_services_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/services"} # type: ignore
+
+
+ @distributed_trace_async
+ async def delete_run_services(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ body: Optional["_models.DeleteRunServices"] = None,
+ **kwargs: Any
+ ) -> "_models.Run":
+ """delete_run_services.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DeleteRunServices
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Run, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Run
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Run"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DeleteRunServices')
+ else:
+ _json = None
+
+ request = build_delete_run_services_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.delete_run_services.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Run', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ delete_run_services.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/services"} # type: ignore
+
+
+ @distributed_trace_async
+ async def add_or_modify_run_service_instances(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ node_id: int,
+ body: Optional["_models.AddOrModifyRunServiceInstancesRequest"] = None,
+ **kwargs: Any
+ ) -> "_models.RunServiceInstances":
+ """add_or_modify_run_service_instances.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param node_id:
+ :type node_id: int
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.AddOrModifyRunServiceInstancesRequest
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: RunServiceInstances, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.RunServiceInstances
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.RunServiceInstances"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'AddOrModifyRunServiceInstancesRequest')
+ else:
+ _json = None
+
+ request = build_add_or_modify_run_service_instances_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ node_id=node_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.add_or_modify_run_service_instances.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('RunServiceInstances', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ add_or_modify_run_service_instances.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/serviceinstances/{nodeId}"} # type: ignore
+
+
+ @distributed_trace_async
+ async def get_run_service_instances(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ node_id: int,
+ **kwargs: Any
+ ) -> "_models.RunServiceInstances":
+ """get_run_service_instances.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param node_id:
+ :type node_id: int
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: RunServiceInstances, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.RunServiceInstances
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.RunServiceInstances"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_run_service_instances_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ node_id=node_id,
+ template_url=self.get_run_service_instances.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('RunServiceInstances', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_run_service_instances.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/serviceinstances/{nodeId}"} # type: ignore
+
+
+ @distributed_trace
+ def get_by_query_by_experiment_name(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ experiment_name: str,
+ body: Optional["_models.QueryParams"] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedRunList"]:
+ """get_by_query_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.QueryParams
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedRunList or the result of cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedRunList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedRunList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+ if body is not None:
+ _json = self._serialize.body(body, 'QueryParams')
+ else:
+ _json = None
+
+ request = build_get_by_query_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_name=experiment_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.get_by_query_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+ if body is not None:
+ _json = self._serialize.body(body, 'QueryParams')
+ else:
+ _json = None
+
+ request = build_get_by_query_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_name=experiment_name,
+ content_type=content_type,
+ json=_json,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedRunList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ get_by_query_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs:query"} # type: ignore
+
+ @distributed_trace
+ def get_by_query_by_experiment_id(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ experiment_id: str,
+ body: Optional["_models.QueryParams"] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedRunList"]:
+ """get_by_query_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.QueryParams
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedRunList or the result of cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedRunList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedRunList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+ if body is not None:
+ _json = self._serialize.body(body, 'QueryParams')
+ else:
+ _json = None
+
+ request = build_get_by_query_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_id=experiment_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.get_by_query_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+ if body is not None:
+ _json = self._serialize.body(body, 'QueryParams')
+ else:
+ _json = None
+
+ request = build_get_by_query_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_id=experiment_id,
+ content_type=content_type,
+ json=_json,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedRunList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ get_by_query_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs:query"} # type: ignore
+
+ @distributed_trace_async
+ async def get_by_ids_by_experiment_id(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ experiment_id: str,
+ body: Optional["_models.GetRunsByIds"] = None,
+ **kwargs: Any
+ ) -> "_models.BatchRunResult":
+ """get_by_ids_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.GetRunsByIds
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: BatchRunResult, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.BatchRunResult
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.BatchRunResult"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'GetRunsByIds')
+ else:
+ _json = None
+
+ request = build_get_by_ids_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_id=experiment_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.get_by_ids_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('BatchRunResult', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_by_ids_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/runIds"} # type: ignore
+
+
+ @distributed_trace_async
+ async def get_by_ids_by_experiment_name(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ experiment_name: str,
+ body: Optional["_models.GetRunsByIds"] = None,
+ **kwargs: Any
+ ) -> "_models.BatchRunResult":
+ """get_by_ids_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.GetRunsByIds
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: BatchRunResult, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.BatchRunResult
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.BatchRunResult"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'GetRunsByIds')
+ else:
+ _json = None
+
+ request = build_get_by_ids_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_name=experiment_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.get_by_ids_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('BatchRunResult', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_by_ids_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/runIds"} # type: ignore
+
+
+ @distributed_trace_async
+ async def cancel_run_with_uri_by_experiment_id(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ experiment_id: str,
+ cancelation_reason: Optional[str] = None,
+ **kwargs: Any
+ ) -> "_models.Run":
+ """cancel_run_with_uri_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param cancelation_reason:
+ :type cancelation_reason: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Run, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Run
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Run"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_cancel_run_with_uri_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ cancelation_reason=cancelation_reason,
+ template_url=self.cancel_run_with_uri_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Run', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ cancel_run_with_uri_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/cancel"} # type: ignore
+
+
+ @distributed_trace_async
+ async def cancel_run_with_uri_by_experiment_name(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ experiment_name: str,
+ cancelation_reason: Optional[str] = None,
+ **kwargs: Any
+ ) -> "_models.Run":
+ """cancel_run_with_uri_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param cancelation_reason:
+ :type cancelation_reason: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Run, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Run
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Run"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_cancel_run_with_uri_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ cancelation_reason=cancelation_reason,
+ template_url=self.cancel_run_with_uri_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Run', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ cancel_run_with_uri_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/cancel"} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/_spans_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/_spans_operations.py
new file mode 100644
index 00000000..92894166
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/aio/operations/_spans_operations.py
@@ -0,0 +1,302 @@
+# pylint: disable=too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from typing import Any, AsyncIterable, Callable, Dict, Optional, TypeVar
+
+from azure.core.async_paging import AsyncItemPaged, AsyncList
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.mgmt.core.exceptions import ARMErrorFormat
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._spans_operations import build_get_active_request, build_list_request, build_post_request
+T = TypeVar('T')
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+class SpansOperations:
+ """SpansOperations async operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer) -> None:
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace_async
+ async def post( # pylint: disable=inconsistent-return-statements
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ body: Optional["_models.RunStatusSpans"] = None,
+ **kwargs: Any
+ ) -> None:
+ """post.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.RunStatusSpans
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'RunStatusSpans')
+ else:
+ _json = None
+
+ request = build_post_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.post.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in []:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ post.metadata = {'url': "/history/v1.0/private/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/spans"} # type: ignore
+
+
+ @distributed_trace
+ def list(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ continuation_token_parameter: Optional[str] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedSpanDefinition1List"]:
+ """list.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedSpanDefinition1List or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedSpanDefinition1List]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedSpanDefinition1List"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ continuation_token_parameter=continuation_token_parameter,
+ template_url=self.list.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ continuation_token_parameter=continuation_token_parameter,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedSpanDefinition1List", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ list.metadata = {'url': "/history/v1.0/private/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/spans"} # type: ignore
+
+ @distributed_trace
+ def get_active(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: str,
+ continuation_token_parameter: Optional[str] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedSpanDefinition1List"]:
+ """get_active.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedSpanDefinition1List or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedSpanDefinition1List]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedSpanDefinition1List"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_get_active_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ continuation_token_parameter=continuation_token_parameter,
+ template_url=self.get_active.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_get_active_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ continuation_token_parameter=continuation_token_parameter,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedSpanDefinition1List", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ get_active.metadata = {'url': "/history/v1.0/private/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/spans/active"} # type: ignore
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/models/__init__.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/models/__init__.py
new file mode 100644
index 00000000..422eea5c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/models/__init__.py
@@ -0,0 +1,287 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+try:
+ from ._models_py3 import AddOrModifyRunServiceInstancesRequest
+ from ._models_py3 import Artifact
+ from ._models_py3 import ArtifactContentInformation
+ from ._models_py3 import ArtifactDataPath
+ from ._models_py3 import ArtifactPath
+ from ._models_py3 import ArtifactPathList
+ from ._models_py3 import BaseEvent
+ from ._models_py3 import BatchAddOrModifyRunRequest
+ from ._models_py3 import BatchArtifactContentInformationResult
+ from ._models_py3 import BatchEventCommand
+ from ._models_py3 import BatchEventCommandResult
+ from ._models_py3 import BatchIMetricV2
+ from ._models_py3 import BatchRequest1
+ from ._models_py3 import BatchResult1
+ from ._models_py3 import BatchRunResult
+ from ._models_py3 import Compute
+ from ._models_py3 import ComputeRequest
+ from ._models_py3 import CreateRun
+ from ._models_py3 import CreatedFrom
+ from ._models_py3 import DatasetIdentifier
+ from ._models_py3 import DatasetInputDetails
+ from ._models_py3 import DatasetLineage
+ from ._models_py3 import DatasetOutputDetails
+ from ._models_py3 import DeleteConfiguration
+ from ._models_py3 import DeleteExperimentTagsResult
+ from ._models_py3 import DeleteOrModifyTags
+ from ._models_py3 import DeleteRunServices
+ from ._models_py3 import DeleteTagsCommand
+ from ._models_py3 import DerivedMetricKey
+ from ._models_py3 import EndpointSetting
+ from ._models_py3 import ErrorAdditionalInfo
+ from ._models_py3 import ErrorResponse
+ from ._models_py3 import Event
+ from ._models_py3 import Experiment
+ from ._models_py3 import ExperimentQueryParams
+ from ._models_py3 import GetRunDataRequest
+ from ._models_py3 import GetRunDataResult
+ from ._models_py3 import GetRunsByIds
+ from ._models_py3 import GetSampledMetricRequest
+ from ._models_py3 import IMetricV2
+ from ._models_py3 import InnerErrorResponse
+ from ._models_py3 import JobCost
+ from ._models_py3 import KeyValuePairBaseEventErrorResponse
+ from ._models_py3 import KeyValuePairString
+ from ._models_py3 import KeyValuePairStringJToken
+ from ._models_py3 import Link
+ from ._models_py3 import ListGenericResourceMetrics
+ from ._models_py3 import ListMetrics
+ from ._models_py3 import MetricDefinition
+ from ._models_py3 import MetricProperties
+ from ._models_py3 import MetricSample
+ from ._models_py3 import MetricSchema
+ from ._models_py3 import MetricSchemaProperty
+ from ._models_py3 import MetricV2
+ from ._models_py3 import MetricV2Value
+ from ._models_py3 import ModifyExperiment
+ from ._models_py3 import OutputDatasetLineage
+ from ._models_py3 import PaginatedArtifactContentInformationList
+ from ._models_py3 import PaginatedArtifactList
+ from ._models_py3 import PaginatedExperimentList
+ from ._models_py3 import PaginatedMetricDefinitionList
+ from ._models_py3 import PaginatedRunList
+ from ._models_py3 import PaginatedSpanDefinition1List
+ from ._models_py3 import PostRunMetricsError
+ from ._models_py3 import PostRunMetricsResult
+ from ._models_py3 import QueryParams
+ from ._models_py3 import QueueingInfo
+ from ._models_py3 import RetrieveFullFidelityMetricRequest
+ from ._models_py3 import RootError
+ from ._models_py3 import Run
+ from ._models_py3 import RunDetails
+ from ._models_py3 import RunDetailsWarning
+ from ._models_py3 import RunMetric
+ from ._models_py3 import RunOptions
+ from ._models_py3 import RunServiceInstances
+ from ._models_py3 import RunStatusSpans
+ from ._models_py3 import RunTypeV2
+ from ._models_py3 import ServiceInstance
+ from ._models_py3 import ServiceInstanceResult
+ from ._models_py3 import SpanContext
+ from ._models_py3 import SpanDefinition1
+ from ._models_py3 import SqlDataPath
+ from ._models_py3 import StoredProcedureParameter
+ from ._models_py3 import TypedAssetReference
+ from ._models_py3 import User
+except (SyntaxError, ImportError):
+ from ._models import AddOrModifyRunServiceInstancesRequest # type: ignore
+ from ._models import Artifact # type: ignore
+ from ._models import ArtifactContentInformation # type: ignore
+ from ._models import ArtifactDataPath # type: ignore
+ from ._models import ArtifactPath # type: ignore
+ from ._models import ArtifactPathList # type: ignore
+ from ._models import BaseEvent # type: ignore
+ from ._models import BatchAddOrModifyRunRequest # type: ignore
+ from ._models import BatchArtifactContentInformationResult # type: ignore
+ from ._models import BatchEventCommand # type: ignore
+ from ._models import BatchEventCommandResult # type: ignore
+ from ._models import BatchIMetricV2 # type: ignore
+ from ._models import BatchRequest1 # type: ignore
+ from ._models import BatchResult1 # type: ignore
+ from ._models import BatchRunResult # type: ignore
+ from ._models import Compute # type: ignore
+ from ._models import ComputeRequest # type: ignore
+ from ._models import CreateRun # type: ignore
+ from ._models import CreatedFrom # type: ignore
+ from ._models import DatasetIdentifier # type: ignore
+ from ._models import DatasetInputDetails # type: ignore
+ from ._models import DatasetLineage # type: ignore
+ from ._models import DatasetOutputDetails # type: ignore
+ from ._models import DeleteConfiguration # type: ignore
+ from ._models import DeleteExperimentTagsResult # type: ignore
+ from ._models import DeleteOrModifyTags # type: ignore
+ from ._models import DeleteRunServices # type: ignore
+ from ._models import DeleteTagsCommand # type: ignore
+ from ._models import DerivedMetricKey # type: ignore
+ from ._models import EndpointSetting # type: ignore
+ from ._models import ErrorAdditionalInfo # type: ignore
+ from ._models import ErrorResponse # type: ignore
+ from ._models import Event # type: ignore
+ from ._models import Experiment # type: ignore
+ from ._models import ExperimentQueryParams # type: ignore
+ from ._models import GetRunDataRequest # type: ignore
+ from ._models import GetRunDataResult # type: ignore
+ from ._models import GetRunsByIds # type: ignore
+ from ._models import GetSampledMetricRequest # type: ignore
+ from ._models import IMetricV2 # type: ignore
+ from ._models import InnerErrorResponse # type: ignore
+ from ._models import JobCost # type: ignore
+ from ._models import KeyValuePairBaseEventErrorResponse # type: ignore
+ from ._models import KeyValuePairString # type: ignore
+ from ._models import KeyValuePairStringJToken # type: ignore
+ from ._models import Link # type: ignore
+ from ._models import ListGenericResourceMetrics # type: ignore
+ from ._models import ListMetrics # type: ignore
+ from ._models import MetricDefinition # type: ignore
+ from ._models import MetricProperties # type: ignore
+ from ._models import MetricSample # type: ignore
+ from ._models import MetricSchema # type: ignore
+ from ._models import MetricSchemaProperty # type: ignore
+ from ._models import MetricV2 # type: ignore
+ from ._models import MetricV2Value # type: ignore
+ from ._models import ModifyExperiment # type: ignore
+ from ._models import OutputDatasetLineage # type: ignore
+ from ._models import PaginatedArtifactContentInformationList # type: ignore
+ from ._models import PaginatedArtifactList # type: ignore
+ from ._models import PaginatedExperimentList # type: ignore
+ from ._models import PaginatedMetricDefinitionList # type: ignore
+ from ._models import PaginatedRunList # type: ignore
+ from ._models import PaginatedSpanDefinition1List # type: ignore
+ from ._models import PostRunMetricsError # type: ignore
+ from ._models import PostRunMetricsResult # type: ignore
+ from ._models import QueryParams # type: ignore
+ from ._models import QueueingInfo # type: ignore
+ from ._models import RetrieveFullFidelityMetricRequest # type: ignore
+ from ._models import RootError # type: ignore
+ from ._models import Run # type: ignore
+ from ._models import RunDetails # type: ignore
+ from ._models import RunDetailsWarning # type: ignore
+ from ._models import RunMetric # type: ignore
+ from ._models import RunOptions # type: ignore
+ from ._models import RunServiceInstances # type: ignore
+ from ._models import RunStatusSpans # type: ignore
+ from ._models import RunTypeV2 # type: ignore
+ from ._models import ServiceInstance # type: ignore
+ from ._models import ServiceInstanceResult # type: ignore
+ from ._models import SpanContext # type: ignore
+ from ._models import SpanDefinition1 # type: ignore
+ from ._models import SqlDataPath # type: ignore
+ from ._models import StoredProcedureParameter # type: ignore
+ from ._models import TypedAssetReference # type: ignore
+ from ._models import User # type: ignore
+
+from ._azure_machine_learning_workspaces_enums import (
+ DatasetConsumptionType,
+ DatasetDeliveryMechanism,
+ DatasetOutputType,
+ ExperimentViewType,
+ MetricValueType,
+ RunStatus,
+ SortOrderDirection,
+ StoredProcedureParameterType,
+)
+
+__all__ = [
+ 'AddOrModifyRunServiceInstancesRequest',
+ 'Artifact',
+ 'ArtifactContentInformation',
+ 'ArtifactDataPath',
+ 'ArtifactPath',
+ 'ArtifactPathList',
+ 'BaseEvent',
+ 'BatchAddOrModifyRunRequest',
+ 'BatchArtifactContentInformationResult',
+ 'BatchEventCommand',
+ 'BatchEventCommandResult',
+ 'BatchIMetricV2',
+ 'BatchRequest1',
+ 'BatchResult1',
+ 'BatchRunResult',
+ 'Compute',
+ 'ComputeRequest',
+ 'CreateRun',
+ 'CreatedFrom',
+ 'DatasetIdentifier',
+ 'DatasetInputDetails',
+ 'DatasetLineage',
+ 'DatasetOutputDetails',
+ 'DeleteConfiguration',
+ 'DeleteExperimentTagsResult',
+ 'DeleteOrModifyTags',
+ 'DeleteRunServices',
+ 'DeleteTagsCommand',
+ 'DerivedMetricKey',
+ 'EndpointSetting',
+ 'ErrorAdditionalInfo',
+ 'ErrorResponse',
+ 'Event',
+ 'Experiment',
+ 'ExperimentQueryParams',
+ 'GetRunDataRequest',
+ 'GetRunDataResult',
+ 'GetRunsByIds',
+ 'GetSampledMetricRequest',
+ 'IMetricV2',
+ 'InnerErrorResponse',
+ 'JobCost',
+ 'KeyValuePairBaseEventErrorResponse',
+ 'KeyValuePairString',
+ 'KeyValuePairStringJToken',
+ 'Link',
+ 'ListGenericResourceMetrics',
+ 'ListMetrics',
+ 'MetricDefinition',
+ 'MetricProperties',
+ 'MetricSample',
+ 'MetricSchema',
+ 'MetricSchemaProperty',
+ 'MetricV2',
+ 'MetricV2Value',
+ 'ModifyExperiment',
+ 'OutputDatasetLineage',
+ 'PaginatedArtifactContentInformationList',
+ 'PaginatedArtifactList',
+ 'PaginatedExperimentList',
+ 'PaginatedMetricDefinitionList',
+ 'PaginatedRunList',
+ 'PaginatedSpanDefinition1List',
+ 'PostRunMetricsError',
+ 'PostRunMetricsResult',
+ 'QueryParams',
+ 'QueueingInfo',
+ 'RetrieveFullFidelityMetricRequest',
+ 'RootError',
+ 'Run',
+ 'RunDetails',
+ 'RunDetailsWarning',
+ 'RunMetric',
+ 'RunOptions',
+ 'RunServiceInstances',
+ 'RunStatusSpans',
+ 'RunTypeV2',
+ 'ServiceInstance',
+ 'ServiceInstanceResult',
+ 'SpanContext',
+ 'SpanDefinition1',
+ 'SqlDataPath',
+ 'StoredProcedureParameter',
+ 'TypedAssetReference',
+ 'User',
+ 'DatasetConsumptionType',
+ 'DatasetDeliveryMechanism',
+ 'DatasetOutputType',
+ 'ExperimentViewType',
+ 'MetricValueType',
+ 'RunStatus',
+ 'SortOrderDirection',
+ 'StoredProcedureParameterType',
+]
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/models/_azure_machine_learning_workspaces_enums.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/models/_azure_machine_learning_workspaces_enums.py
new file mode 100644
index 00000000..cb89b2e3
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/models/_azure_machine_learning_workspaces_enums.py
@@ -0,0 +1,80 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from enum import Enum
+from azure.core import CaseInsensitiveEnumMeta
+
+
+class DatasetConsumptionType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+
+ RUN_INPUT = "RunInput"
+ REFERENCE = "Reference"
+
+class DatasetDeliveryMechanism(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+
+ DIRECT = "Direct"
+ MOUNT = "Mount"
+ DOWNLOAD = "Download"
+ HDFS = "Hdfs"
+
+class DatasetOutputType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+
+ RUN_OUTPUT = "RunOutput"
+ REFERENCE = "Reference"
+
+class ExperimentViewType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """ViewType filters experiments by their archived state. Default is ActiveOnly
+ """
+
+ DEFAULT = "Default"
+ ALL = "All"
+ ACTIVE_ONLY = "ActiveOnly"
+ ARCHIVED_ONLY = "ArchivedOnly"
+
+class MetricValueType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+
+ INT = "Int"
+ DOUBLE = "Double"
+ STRING = "String"
+ BOOL = "Bool"
+ ARTIFACT = "Artifact"
+
+class RunStatus(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """Gets span status.
+ OpenTelemetry sets it to
+ https://github.com/open-telemetry/opentelemetry-dotnet/blob/master/src/OpenTelemetry.Api/Trace/Status.cs
+ That status enums are not very meaningful to us, so we customize this.
+ """
+
+ NOT_STARTED = "NotStarted"
+ UNAPPROVED = "Unapproved"
+ PAUSING = "Pausing"
+ PAUSED = "Paused"
+ STARTING = "Starting"
+ PREPARING = "Preparing"
+ QUEUED = "Queued"
+ RUNNING = "Running"
+ FINALIZING = "Finalizing"
+ CANCEL_REQUESTED = "CancelRequested"
+ COMPLETED = "Completed"
+ FAILED = "Failed"
+ CANCELED = "Canceled"
+
+class SortOrderDirection(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+
+ ASC = "Asc"
+ DESC = "Desc"
+
+class StoredProcedureParameterType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+
+ STRING = "String"
+ INT = "Int"
+ DECIMAL = "Decimal"
+ GUID = "Guid"
+ BOOLEAN = "Boolean"
+ DATE = "Date"
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/models/_models.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/models/_models.py
new file mode 100644
index 00000000..398700ee
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/models/_models.py
@@ -0,0 +1,4329 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.core.exceptions import HttpResponseError
+import msrest.serialization
+
+
+class AddOrModifyRunServiceInstancesRequest(msrest.serialization.Model):
+ """AddOrModifyRunServiceInstancesRequest.
+
+ :ivar instances: Dictionary of :code:`<ServiceInstance>`.
+ :vartype instances: dict[str, ~azure.mgmt.machinelearningservices.models.ServiceInstance]
+ """
+
+ _attribute_map = {
+ 'instances': {'key': 'instances', 'type': '{ServiceInstance}'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword instances: Dictionary of :code:`<ServiceInstance>`.
+ :paramtype instances: dict[str, ~azure.mgmt.machinelearningservices.models.ServiceInstance]
+ """
+ super(AddOrModifyRunServiceInstancesRequest, self).__init__(**kwargs)
+ self.instances = kwargs.get('instances', None)
+
+
+class Artifact(msrest.serialization.Model):
+ """Details of an Artifact.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar artifact_id: The identifier of an Artifact. Format of ArtifactId -
+ {Origin}/{Container}/{Path}.
+ :vartype artifact_id: str
+ :ivar origin: Required. The origin of the Artifact creation request. Available origins are
+ 'ExperimentRun', 'LocalUpload', 'WebUpload', 'Dataset' and 'Unknown'.
+ :vartype origin: str
+ :ivar container: Required. The name of container. Artifacts can be grouped by container.
+ :vartype container: str
+ :ivar path: Required. The path to the Artifact in a container.
+ :vartype path: str
+ :ivar etag: The Etag of the Artifact.
+ :vartype etag: str
+ :ivar created_time: The Date and Time at which the Artifact is created. The DateTime is in UTC.
+ :vartype created_time: ~datetime.datetime
+ :ivar data_path:
+ :vartype data_path: ~azure.mgmt.machinelearningservices.models.ArtifactDataPath
+ :ivar tags: A set of tags. Dictionary of :code:`<string>`.
+ :vartype tags: dict[str, str]
+ """
+
+ _validation = {
+ 'origin': {'required': True},
+ 'container': {'required': True},
+ 'path': {'required': True},
+ }
+
+ _attribute_map = {
+ 'artifact_id': {'key': 'artifactId', 'type': 'str'},
+ 'origin': {'key': 'origin', 'type': 'str'},
+ 'container': {'key': 'container', 'type': 'str'},
+ 'path': {'key': 'path', 'type': 'str'},
+ 'etag': {'key': 'etag', 'type': 'str'},
+ 'created_time': {'key': 'createdTime', 'type': 'iso-8601'},
+ 'data_path': {'key': 'dataPath', 'type': 'ArtifactDataPath'},
+ 'tags': {'key': 'tags', 'type': '{str}'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword artifact_id: The identifier of an Artifact. Format of ArtifactId -
+ {Origin}/{Container}/{Path}.
+ :paramtype artifact_id: str
+ :keyword origin: Required. The origin of the Artifact creation request. Available origins are
+ 'ExperimentRun', 'LocalUpload', 'WebUpload', 'Dataset' and 'Unknown'.
+ :paramtype origin: str
+ :keyword container: Required. The name of container. Artifacts can be grouped by container.
+ :paramtype container: str
+ :keyword path: Required. The path to the Artifact in a container.
+ :paramtype path: str
+ :keyword etag: The Etag of the Artifact.
+ :paramtype etag: str
+ :keyword created_time: The Date and Time at which the Artifact is created. The DateTime is in
+ UTC.
+ :paramtype created_time: ~datetime.datetime
+ :keyword data_path:
+ :paramtype data_path: ~azure.mgmt.machinelearningservices.models.ArtifactDataPath
+ :keyword tags: A set of tags. Dictionary of :code:`<string>`.
+ :paramtype tags: dict[str, str]
+ """
+ super(Artifact, self).__init__(**kwargs)
+ self.artifact_id = kwargs.get('artifact_id', None)
+ self.origin = kwargs['origin']
+ self.container = kwargs['container']
+ self.path = kwargs['path']
+ self.etag = kwargs.get('etag', None)
+ self.created_time = kwargs.get('created_time', None)
+ self.data_path = kwargs.get('data_path', None)
+ self.tags = kwargs.get('tags', None)
+
+
+class ArtifactContentInformation(msrest.serialization.Model):
+ """Details of an Artifact Content Information.
+
+ :ivar content_uri: The URI of the content.
+ :vartype content_uri: str
+ :ivar origin: The origin of the Artifact creation request. Available origins are
+ 'ExperimentRun', 'LocalUpload', 'WebUpload', 'Dataset', 'ComputeRecord', 'Metric', and
+ 'Unknown'.
+ :vartype origin: str
+ :ivar container: The name of container. Artifacts can be grouped by container.
+ :vartype container: str
+ :ivar path: The path to the Artifact in a container.
+ :vartype path: str
+ :ivar tags: A set of tags. The tags on the artifact.
+ :vartype tags: dict[str, str]
+ """
+
+ _attribute_map = {
+ 'content_uri': {'key': 'contentUri', 'type': 'str'},
+ 'origin': {'key': 'origin', 'type': 'str'},
+ 'container': {'key': 'container', 'type': 'str'},
+ 'path': {'key': 'path', 'type': 'str'},
+ 'tags': {'key': 'tags', 'type': '{str}'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword content_uri: The URI of the content.
+ :paramtype content_uri: str
+ :keyword origin: The origin of the Artifact creation request. Available origins are
+ 'ExperimentRun', 'LocalUpload', 'WebUpload', 'Dataset', 'ComputeRecord', 'Metric', and
+ 'Unknown'.
+ :paramtype origin: str
+ :keyword container: The name of container. Artifacts can be grouped by container.
+ :paramtype container: str
+ :keyword path: The path to the Artifact in a container.
+ :paramtype path: str
+ :keyword tags: A set of tags. The tags on the artifact.
+ :paramtype tags: dict[str, str]
+ """
+ super(ArtifactContentInformation, self).__init__(**kwargs)
+ self.content_uri = kwargs.get('content_uri', None)
+ self.origin = kwargs.get('origin', None)
+ self.container = kwargs.get('container', None)
+ self.path = kwargs.get('path', None)
+ self.tags = kwargs.get('tags', None)
+
+
+class ArtifactDataPath(msrest.serialization.Model):
+ """ArtifactDataPath.
+
+ :ivar data_store_name:
+ :vartype data_store_name: str
+ :ivar relative_path:
+ :vartype relative_path: str
+ :ivar sql_data_path:
+ :vartype sql_data_path: ~azure.mgmt.machinelearningservices.models.SqlDataPath
+ """
+
+ _attribute_map = {
+ 'data_store_name': {'key': 'dataStoreName', 'type': 'str'},
+ 'relative_path': {'key': 'relativePath', 'type': 'str'},
+ 'sql_data_path': {'key': 'sqlDataPath', 'type': 'SqlDataPath'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword data_store_name:
+ :paramtype data_store_name: str
+ :keyword relative_path:
+ :paramtype relative_path: str
+ :keyword sql_data_path:
+ :paramtype sql_data_path: ~azure.mgmt.machinelearningservices.models.SqlDataPath
+ """
+ super(ArtifactDataPath, self).__init__(**kwargs)
+ self.data_store_name = kwargs.get('data_store_name', None)
+ self.relative_path = kwargs.get('relative_path', None)
+ self.sql_data_path = kwargs.get('sql_data_path', None)
+
+
+class ArtifactPath(msrest.serialization.Model):
+ """Details of an Artifact Path.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar path: Required. The path to the Artifact in a container.
+ :vartype path: str
+ :ivar tags: A set of tags. Dictionary of :code:`<string>`.
+ :vartype tags: dict[str, str]
+ """
+
+ _validation = {
+ 'path': {'required': True},
+ }
+
+ _attribute_map = {
+ 'path': {'key': 'path', 'type': 'str'},
+ 'tags': {'key': 'tags', 'type': '{str}'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword path: Required. The path to the Artifact in a container.
+ :paramtype path: str
+ :keyword tags: A set of tags. Dictionary of :code:`<string>`.
+ :paramtype tags: dict[str, str]
+ """
+ super(ArtifactPath, self).__init__(**kwargs)
+ self.path = kwargs['path']
+ self.tags = kwargs.get('tags', None)
+
+
+class ArtifactPathList(msrest.serialization.Model):
+ """Contains list of Artifact Paths.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar paths: Required. List of Artifact Paths.
+ :vartype paths: list[~azure.mgmt.machinelearningservices.models.ArtifactPath]
+ """
+
+ _validation = {
+ 'paths': {'required': True},
+ }
+
+ _attribute_map = {
+ 'paths': {'key': 'paths', 'type': '[ArtifactPath]'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword paths: Required. List of Artifact Paths.
+ :paramtype paths: list[~azure.mgmt.machinelearningservices.models.ArtifactPath]
+ """
+ super(ArtifactPathList, self).__init__(**kwargs)
+ self.paths = kwargs['paths']
+
+
+class BaseEvent(msrest.serialization.Model):
+ """Base event is the envelope used to post event data to the Event controller.
+
+ :ivar timestamp:
+ :vartype timestamp: ~datetime.datetime
+ :ivar name:
+ :vartype name: str
+ :ivar data: Anything.
+ :vartype data: any
+ """
+
+ _attribute_map = {
+ 'timestamp': {'key': 'timestamp', 'type': 'iso-8601'},
+ 'name': {'key': 'name', 'type': 'str'},
+ 'data': {'key': 'data', 'type': 'object'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword timestamp:
+ :paramtype timestamp: ~datetime.datetime
+ :keyword name:
+ :paramtype name: str
+ :keyword data: Anything.
+ :paramtype data: any
+ """
+ super(BaseEvent, self).__init__(**kwargs)
+ self.timestamp = kwargs.get('timestamp', None)
+ self.name = kwargs.get('name', None)
+ self.data = kwargs.get('data', None)
+
+
+class BatchAddOrModifyRunRequest(msrest.serialization.Model):
+ """BatchAddOrModifyRunRequest.
+
+ :ivar runs:
+ :vartype runs: list[~azure.mgmt.machinelearningservices.models.CreateRun]
+ """
+
+ _attribute_map = {
+ 'runs': {'key': 'runs', 'type': '[CreateRun]'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword runs:
+ :paramtype runs: list[~azure.mgmt.machinelearningservices.models.CreateRun]
+ """
+ super(BatchAddOrModifyRunRequest, self).__init__(**kwargs)
+ self.runs = kwargs.get('runs', None)
+
+
+class BatchArtifactContentInformationResult(msrest.serialization.Model):
+ """Results of the Batch Artifact Content Information request.
+
+ :ivar artifacts: Artifact details of the Artifact Ids requested.
+ :vartype artifacts: dict[str, ~azure.mgmt.machinelearningservices.models.Artifact]
+ :ivar artifact_content_information: Artifact Content Information details of the Artifact Ids
+ requested.
+ :vartype artifact_content_information: dict[str,
+ ~azure.mgmt.machinelearningservices.models.ArtifactContentInformation]
+ :ivar errors: Errors occurred while fetching the requested Artifact Ids.
+ :vartype errors: dict[str, ~azure.mgmt.machinelearningservices.models.ErrorResponse]
+ """
+
+ _attribute_map = {
+ 'artifacts': {'key': 'artifacts', 'type': '{Artifact}'},
+ 'artifact_content_information': {'key': 'artifactContentInformation', 'type': '{ArtifactContentInformation}'},
+ 'errors': {'key': 'errors', 'type': '{ErrorResponse}'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword artifacts: Artifact details of the Artifact Ids requested.
+ :paramtype artifacts: dict[str, ~azure.mgmt.machinelearningservices.models.Artifact]
+ :keyword artifact_content_information: Artifact Content Information details of the Artifact Ids
+ requested.
+ :paramtype artifact_content_information: dict[str,
+ ~azure.mgmt.machinelearningservices.models.ArtifactContentInformation]
+ :keyword errors: Errors occurred while fetching the requested Artifact Ids.
+ :paramtype errors: dict[str, ~azure.mgmt.machinelearningservices.models.ErrorResponse]
+ """
+ super(BatchArtifactContentInformationResult, self).__init__(**kwargs)
+ self.artifacts = kwargs.get('artifacts', None)
+ self.artifact_content_information = kwargs.get('artifact_content_information', None)
+ self.errors = kwargs.get('errors', None)
+
+
+class BatchEventCommand(msrest.serialization.Model):
+ """BatchEventCommand.
+
+ :ivar events:
+ :vartype events: list[~azure.mgmt.machinelearningservices.models.BaseEvent]
+ """
+
+ _attribute_map = {
+ 'events': {'key': 'events', 'type': '[BaseEvent]'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword events:
+ :paramtype events: list[~azure.mgmt.machinelearningservices.models.BaseEvent]
+ """
+ super(BatchEventCommand, self).__init__(**kwargs)
+ self.events = kwargs.get('events', None)
+
+
+class BatchEventCommandResult(msrest.serialization.Model):
+ """BatchEventCommandResult.
+
+ :ivar errors:
+ :vartype errors:
+ list[~azure.mgmt.machinelearningservices.models.KeyValuePairBaseEventErrorResponse]
+ :ivar successes:
+ :vartype successes: list[str]
+ """
+
+ _attribute_map = {
+ 'errors': {'key': 'errors', 'type': '[KeyValuePairBaseEventErrorResponse]'},
+ 'successes': {'key': 'successes', 'type': '[str]'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword errors:
+ :paramtype errors:
+ list[~azure.mgmt.machinelearningservices.models.KeyValuePairBaseEventErrorResponse]
+ :keyword successes:
+ :paramtype successes: list[str]
+ """
+ super(BatchEventCommandResult, self).__init__(**kwargs)
+ self.errors = kwargs.get('errors', None)
+ self.successes = kwargs.get('successes', None)
+
+
+class BatchIMetricV2(msrest.serialization.Model):
+ """BatchIMetricV2.
+
+ :ivar values:
+ :vartype values: list[~azure.mgmt.machinelearningservices.models.IMetricV2]
+ :ivar report_errors:
+ :vartype report_errors: bool
+ """
+
+ _attribute_map = {
+ 'values': {'key': 'values', 'type': '[IMetricV2]'},
+ 'report_errors': {'key': 'reportErrors', 'type': 'bool'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword values:
+ :paramtype values: list[~azure.mgmt.machinelearningservices.models.IMetricV2]
+ :keyword report_errors:
+ :paramtype report_errors: bool
+ """
+ super(BatchIMetricV2, self).__init__(**kwargs)
+ self.values = kwargs.get('values', None)
+ self.report_errors = kwargs.get('report_errors', None)
+
+
+class BatchRequest1(msrest.serialization.Model):
+ """BatchRequest1.
+
+ :ivar requests: Dictionary of :code:`<GetRunDataRequest>`.
+ :vartype requests: dict[str, ~azure.mgmt.machinelearningservices.models.GetRunDataRequest]
+ """
+
+ _attribute_map = {
+ 'requests': {'key': 'requests', 'type': '{GetRunDataRequest}'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword requests: Dictionary of :code:`<GetRunDataRequest>`.
+ :paramtype requests: dict[str, ~azure.mgmt.machinelearningservices.models.GetRunDataRequest]
+ """
+ super(BatchRequest1, self).__init__(**kwargs)
+ self.requests = kwargs.get('requests', None)
+
+
+class BatchResult1(msrest.serialization.Model):
+ """BatchResult1.
+
+ :ivar successful_results: Dictionary of :code:`<GetRunDataResult>`.
+ :vartype successful_results: dict[str,
+ ~azure.mgmt.machinelearningservices.models.GetRunDataResult]
+ :ivar failed_results: Dictionary of :code:`<ErrorResponse>`.
+ :vartype failed_results: dict[str, ~azure.mgmt.machinelearningservices.models.ErrorResponse]
+ """
+
+ _attribute_map = {
+ 'successful_results': {'key': 'successfulResults', 'type': '{GetRunDataResult}'},
+ 'failed_results': {'key': 'failedResults', 'type': '{ErrorResponse}'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword successful_results: Dictionary of :code:`<GetRunDataResult>`.
+ :paramtype successful_results: dict[str,
+ ~azure.mgmt.machinelearningservices.models.GetRunDataResult]
+ :keyword failed_results: Dictionary of :code:`<ErrorResponse>`.
+ :paramtype failed_results: dict[str, ~azure.mgmt.machinelearningservices.models.ErrorResponse]
+ """
+ super(BatchResult1, self).__init__(**kwargs)
+ self.successful_results = kwargs.get('successful_results', None)
+ self.failed_results = kwargs.get('failed_results', None)
+
+
+class BatchRunResult(msrest.serialization.Model):
+ """BatchRunResult.
+
+ :ivar runs: Dictionary of :code:`<Run>`.
+ :vartype runs: dict[str, ~azure.mgmt.machinelearningservices.models.Run]
+ :ivar errors: Dictionary of :code:`<ErrorResponse>`.
+ :vartype errors: dict[str, ~azure.mgmt.machinelearningservices.models.ErrorResponse]
+ """
+
+ _attribute_map = {
+ 'runs': {'key': 'runs', 'type': '{Run}'},
+ 'errors': {'key': 'errors', 'type': '{ErrorResponse}'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword runs: Dictionary of :code:`<Run>`.
+ :paramtype runs: dict[str, ~azure.mgmt.machinelearningservices.models.Run]
+ :keyword errors: Dictionary of :code:`<ErrorResponse>`.
+ :paramtype errors: dict[str, ~azure.mgmt.machinelearningservices.models.ErrorResponse]
+ """
+ super(BatchRunResult, self).__init__(**kwargs)
+ self.runs = kwargs.get('runs', None)
+ self.errors = kwargs.get('errors', None)
+
+
+class Compute(msrest.serialization.Model):
+ """Compute.
+
+ :ivar target:
+ :vartype target: str
+ :ivar target_type:
+ :vartype target_type: str
+ :ivar vm_size:
+ :vartype vm_size: str
+ :ivar instance_count:
+ :vartype instance_count: int
+ :ivar gpu_count:
+ :vartype gpu_count: int
+ :ivar priority:
+ :vartype priority: str
+ :ivar region:
+ :vartype region: str
+ """
+
+ _attribute_map = {
+ 'target': {'key': 'target', 'type': 'str'},
+ 'target_type': {'key': 'targetType', 'type': 'str'},
+ 'vm_size': {'key': 'vmSize', 'type': 'str'},
+ 'instance_count': {'key': 'instanceCount', 'type': 'int'},
+ 'gpu_count': {'key': 'gpuCount', 'type': 'int'},
+ 'priority': {'key': 'priority', 'type': 'str'},
+ 'region': {'key': 'region', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword target:
+ :paramtype target: str
+ :keyword target_type:
+ :paramtype target_type: str
+ :keyword vm_size:
+ :paramtype vm_size: str
+ :keyword instance_count:
+ :paramtype instance_count: int
+ :keyword gpu_count:
+ :paramtype gpu_count: int
+ :keyword priority:
+ :paramtype priority: str
+ :keyword region:
+ :paramtype region: str
+ """
+ super(Compute, self).__init__(**kwargs)
+ self.target = kwargs.get('target', None)
+ self.target_type = kwargs.get('target_type', None)
+ self.vm_size = kwargs.get('vm_size', None)
+ self.instance_count = kwargs.get('instance_count', None)
+ self.gpu_count = kwargs.get('gpu_count', None)
+ self.priority = kwargs.get('priority', None)
+ self.region = kwargs.get('region', None)
+
+
+class ComputeRequest(msrest.serialization.Model):
+ """ComputeRequest.
+
+ :ivar node_count:
+ :vartype node_count: int
+ :ivar gpu_count:
+ :vartype gpu_count: int
+ """
+
+ _attribute_map = {
+ 'node_count': {'key': 'nodeCount', 'type': 'int'},
+ 'gpu_count': {'key': 'gpuCount', 'type': 'int'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword node_count:
+ :paramtype node_count: int
+ :keyword gpu_count:
+ :paramtype gpu_count: int
+ """
+ super(ComputeRequest, self).__init__(**kwargs)
+ self.node_count = kwargs.get('node_count', None)
+ self.gpu_count = kwargs.get('gpu_count', None)
+
+
+class CreatedFrom(msrest.serialization.Model):
+ """CreatedFrom.
+
+ :ivar type: The only acceptable values to pass in are None and "Notebook". The default value
+ is None.
+ :vartype type: str
+ :ivar location_type: The only acceptable values to pass in are None and "ArtifactId". The
+ default value is None.
+ :vartype location_type: str
+ :ivar location:
+ :vartype location: str
+ """
+
+ _attribute_map = {
+ 'type': {'key': 'type', 'type': 'str'},
+ 'location_type': {'key': 'locationType', 'type': 'str'},
+ 'location': {'key': 'location', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword type: The only acceptable values to pass in are None and "Notebook". The default
+ value is None.
+ :paramtype type: str
+ :keyword location_type: The only acceptable values to pass in are None and "ArtifactId". The
+ default value is None.
+ :paramtype location_type: str
+ :keyword location:
+ :paramtype location: str
+ """
+ super(CreatedFrom, self).__init__(**kwargs)
+ self.type = kwargs.get('type', None)
+ self.location_type = kwargs.get('location_type', None)
+ self.location = kwargs.get('location', None)
+
+
+class CreateRun(msrest.serialization.Model):
+ """CreateRun.
+
+ :ivar run_id: The identifier for the run. Run IDs must be less than 256 characters and contain
+ only alphanumeric characters with dashes and underscores.
+ :vartype run_id: str
+ :ivar parent_run_id: The parent of the run if the run is hierarchical; otherwise, Null.
+ :vartype parent_run_id: str
+ :ivar experiment_id: The Id of the experiment that created this run.
+ :vartype experiment_id: str
+ :ivar status: The status of the run. The Status string value maps to the RunStatus Enum.
+ :vartype status: str
+ :ivar start_time_utc: The start time of the run in UTC.
+ :vartype start_time_utc: ~datetime.datetime
+ :ivar end_time_utc: The end time of the run in UTC.
+ :vartype end_time_utc: ~datetime.datetime
+ :ivar options:
+ :vartype options: ~azure.mgmt.machinelearningservices.models.RunOptions
+ :ivar is_virtual: A virtual run can set an active child run that will override the virtual run
+ status and properties.
+ :vartype is_virtual: bool
+ :ivar display_name:
+ :vartype display_name: str
+ :ivar name:
+ :vartype name: str
+ :ivar data_container_id:
+ :vartype data_container_id: str
+ :ivar description:
+ :vartype description: str
+ :ivar hidden:
+ :vartype hidden: bool
+ :ivar run_type:
+ :vartype run_type: str
+ :ivar run_type_v2:
+ :vartype run_type_v2: ~azure.mgmt.machinelearningservices.models.RunTypeV2
+ :ivar properties: Dictionary of :code:`<string>`.
+ :vartype properties: dict[str, str]
+ :ivar parameters: Dictionary of :code:`<any>`.
+ :vartype parameters: dict[str, any]
+ :ivar action_uris: Dictionary of :code:`<string>`.
+ :vartype action_uris: dict[str, str]
+ :ivar script_name:
+ :vartype script_name: str
+ :ivar target:
+ :vartype target: str
+ :ivar unique_child_run_compute_targets:
+ :vartype unique_child_run_compute_targets: list[str]
+ :ivar tags: A set of tags. Dictionary of :code:`<string>`.
+ :vartype tags: dict[str, str]
+ :ivar settings: Dictionary of :code:`<string>`.
+ :vartype settings: dict[str, str]
+ :ivar services: Dictionary of :code:`<EndpointSetting>`.
+ :vartype services: dict[str, ~azure.mgmt.machinelearningservices.models.EndpointSetting]
+ :ivar input_datasets:
+ :vartype input_datasets: list[~azure.mgmt.machinelearningservices.models.DatasetLineage]
+ :ivar output_datasets:
+ :vartype output_datasets: list[~azure.mgmt.machinelearningservices.models.OutputDatasetLineage]
+ :ivar run_definition: Anything.
+ :vartype run_definition: any
+ :ivar job_specification: Anything.
+ :vartype job_specification: any
+ :ivar primary_metric_name:
+ :vartype primary_metric_name: str
+ :ivar created_from:
+ :vartype created_from: ~azure.mgmt.machinelearningservices.models.CreatedFrom
+ :ivar cancel_uri:
+ :vartype cancel_uri: str
+ :ivar complete_uri:
+ :vartype complete_uri: str
+ :ivar diagnostics_uri:
+ :vartype diagnostics_uri: str
+ :ivar compute_request:
+ :vartype compute_request: ~azure.mgmt.machinelearningservices.models.ComputeRequest
+ :ivar compute:
+ :vartype compute: ~azure.mgmt.machinelearningservices.models.Compute
+ :ivar retain_for_lifetime_of_workspace:
+ :vartype retain_for_lifetime_of_workspace: bool
+ :ivar queueing_info:
+ :vartype queueing_info: ~azure.mgmt.machinelearningservices.models.QueueingInfo
+ :ivar active_child_run_id: The RunId of the active child on a virtual run.
+ :vartype active_child_run_id: str
+ :ivar inputs: Dictionary of :code:`<TypedAssetReference>`.
+ :vartype inputs: dict[str, ~azure.mgmt.machinelearningservices.models.TypedAssetReference]
+ :ivar outputs: Dictionary of :code:`<TypedAssetReference>`.
+ :vartype outputs: dict[str, ~azure.mgmt.machinelearningservices.models.TypedAssetReference]
+ """
+
+ _validation = {
+ 'unique_child_run_compute_targets': {'unique': True},
+ 'input_datasets': {'unique': True},
+ 'output_datasets': {'unique': True},
+ }
+
+ _attribute_map = {
+ 'run_id': {'key': 'runId', 'type': 'str'},
+ 'parent_run_id': {'key': 'parentRunId', 'type': 'str'},
+ 'experiment_id': {'key': 'experimentId', 'type': 'str'},
+ 'status': {'key': 'status', 'type': 'str'},
+ 'start_time_utc': {'key': 'startTimeUtc', 'type': 'iso-8601'},
+ 'end_time_utc': {'key': 'endTimeUtc', 'type': 'iso-8601'},
+ 'options': {'key': 'options', 'type': 'RunOptions'},
+ 'is_virtual': {'key': 'isVirtual', 'type': 'bool'},
+ 'display_name': {'key': 'displayName', 'type': 'str'},
+ 'name': {'key': 'name', 'type': 'str'},
+ 'data_container_id': {'key': 'dataContainerId', 'type': 'str'},
+ 'description': {'key': 'description', 'type': 'str'},
+ 'hidden': {'key': 'hidden', 'type': 'bool'},
+ 'run_type': {'key': 'runType', 'type': 'str'},
+ 'run_type_v2': {'key': 'runTypeV2', 'type': 'RunTypeV2'},
+ 'properties': {'key': 'properties', 'type': '{str}'},
+ 'parameters': {'key': 'parameters', 'type': '{object}'},
+ 'action_uris': {'key': 'actionUris', 'type': '{str}'},
+ 'script_name': {'key': 'scriptName', 'type': 'str'},
+ 'target': {'key': 'target', 'type': 'str'},
+ 'unique_child_run_compute_targets': {'key': 'uniqueChildRunComputeTargets', 'type': '[str]'},
+ 'tags': {'key': 'tags', 'type': '{str}'},
+ 'settings': {'key': 'settings', 'type': '{str}'},
+ 'services': {'key': 'services', 'type': '{EndpointSetting}'},
+ 'input_datasets': {'key': 'inputDatasets', 'type': '[DatasetLineage]'},
+ 'output_datasets': {'key': 'outputDatasets', 'type': '[OutputDatasetLineage]'},
+ 'run_definition': {'key': 'runDefinition', 'type': 'object'},
+ 'job_specification': {'key': 'jobSpecification', 'type': 'object'},
+ 'primary_metric_name': {'key': 'primaryMetricName', 'type': 'str'},
+ 'created_from': {'key': 'createdFrom', 'type': 'CreatedFrom'},
+ 'cancel_uri': {'key': 'cancelUri', 'type': 'str'},
+ 'complete_uri': {'key': 'completeUri', 'type': 'str'},
+ 'diagnostics_uri': {'key': 'diagnosticsUri', 'type': 'str'},
+ 'compute_request': {'key': 'computeRequest', 'type': 'ComputeRequest'},
+ 'compute': {'key': 'compute', 'type': 'Compute'},
+ 'retain_for_lifetime_of_workspace': {'key': 'retainForLifetimeOfWorkspace', 'type': 'bool'},
+ 'queueing_info': {'key': 'queueingInfo', 'type': 'QueueingInfo'},
+ 'active_child_run_id': {'key': 'activeChildRunId', 'type': 'str'},
+ 'inputs': {'key': 'inputs', 'type': '{TypedAssetReference}'},
+ 'outputs': {'key': 'outputs', 'type': '{TypedAssetReference}'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword run_id: The identifier for the run. Run IDs must be less than 256 characters and
+ contain only alphanumeric characters with dashes and underscores.
+ :paramtype run_id: str
+ :keyword parent_run_id: The parent of the run if the run is hierarchical; otherwise, Null.
+ :paramtype parent_run_id: str
+ :keyword experiment_id: The Id of the experiment that created this run.
+ :paramtype experiment_id: str
+ :keyword status: The status of the run. The Status string value maps to the RunStatus Enum.
+ :paramtype status: str
+ :keyword start_time_utc: The start time of the run in UTC.
+ :paramtype start_time_utc: ~datetime.datetime
+ :keyword end_time_utc: The end time of the run in UTC.
+ :paramtype end_time_utc: ~datetime.datetime
+ :keyword options:
+ :paramtype options: ~azure.mgmt.machinelearningservices.models.RunOptions
+ :keyword is_virtual: A virtual run can set an active child run that will override the virtual
+ run status and properties.
+ :paramtype is_virtual: bool
+ :keyword display_name:
+ :paramtype display_name: str
+ :keyword name:
+ :paramtype name: str
+ :keyword data_container_id:
+ :paramtype data_container_id: str
+ :keyword description:
+ :paramtype description: str
+ :keyword hidden:
+ :paramtype hidden: bool
+ :keyword run_type:
+ :paramtype run_type: str
+ :keyword run_type_v2:
+ :paramtype run_type_v2: ~azure.mgmt.machinelearningservices.models.RunTypeV2
+ :keyword properties: Dictionary of :code:`<string>`.
+ :paramtype properties: dict[str, str]
+ :keyword parameters: Dictionary of :code:`<any>`.
+ :paramtype parameters: dict[str, any]
+ :keyword action_uris: Dictionary of :code:`<string>`.
+ :paramtype action_uris: dict[str, str]
+ :keyword script_name:
+ :paramtype script_name: str
+ :keyword target:
+ :paramtype target: str
+ :keyword unique_child_run_compute_targets:
+ :paramtype unique_child_run_compute_targets: list[str]
+ :keyword tags: A set of tags. Dictionary of :code:`<string>`.
+ :paramtype tags: dict[str, str]
+ :keyword settings: Dictionary of :code:`<string>`.
+ :paramtype settings: dict[str, str]
+ :keyword services: Dictionary of :code:`<EndpointSetting>`.
+ :paramtype services: dict[str, ~azure.mgmt.machinelearningservices.models.EndpointSetting]
+ :keyword input_datasets:
+ :paramtype input_datasets: list[~azure.mgmt.machinelearningservices.models.DatasetLineage]
+ :keyword output_datasets:
+ :paramtype output_datasets:
+ list[~azure.mgmt.machinelearningservices.models.OutputDatasetLineage]
+ :keyword run_definition: Anything.
+ :paramtype run_definition: any
+ :keyword job_specification: Anything.
+ :paramtype job_specification: any
+ :keyword primary_metric_name:
+ :paramtype primary_metric_name: str
+ :keyword created_from:
+ :paramtype created_from: ~azure.mgmt.machinelearningservices.models.CreatedFrom
+ :keyword cancel_uri:
+ :paramtype cancel_uri: str
+ :keyword complete_uri:
+ :paramtype complete_uri: str
+ :keyword diagnostics_uri:
+ :paramtype diagnostics_uri: str
+ :keyword compute_request:
+ :paramtype compute_request: ~azure.mgmt.machinelearningservices.models.ComputeRequest
+ :keyword compute:
+ :paramtype compute: ~azure.mgmt.machinelearningservices.models.Compute
+ :keyword retain_for_lifetime_of_workspace:
+ :paramtype retain_for_lifetime_of_workspace: bool
+ :keyword queueing_info:
+ :paramtype queueing_info: ~azure.mgmt.machinelearningservices.models.QueueingInfo
+ :keyword active_child_run_id: The RunId of the active child on a virtual run.
+ :paramtype active_child_run_id: str
+ :keyword inputs: Dictionary of :code:`<TypedAssetReference>`.
+ :paramtype inputs: dict[str, ~azure.mgmt.machinelearningservices.models.TypedAssetReference]
+ :keyword outputs: Dictionary of :code:`<TypedAssetReference>`.
+ :paramtype outputs: dict[str, ~azure.mgmt.machinelearningservices.models.TypedAssetReference]
+ """
+ super(CreateRun, self).__init__(**kwargs)
+ self.run_id = kwargs.get('run_id', None)
+ self.parent_run_id = kwargs.get('parent_run_id', None)
+ self.experiment_id = kwargs.get('experiment_id', None)
+ self.status = kwargs.get('status', None)
+ self.start_time_utc = kwargs.get('start_time_utc', None)
+ self.end_time_utc = kwargs.get('end_time_utc', None)
+ self.options = kwargs.get('options', None)
+ self.is_virtual = kwargs.get('is_virtual', None)
+ self.display_name = kwargs.get('display_name', None)
+ self.name = kwargs.get('name', None)
+ self.data_container_id = kwargs.get('data_container_id', None)
+ self.description = kwargs.get('description', None)
+ self.hidden = kwargs.get('hidden', None)
+ self.run_type = kwargs.get('run_type', None)
+ self.run_type_v2 = kwargs.get('run_type_v2', None)
+ self.properties = kwargs.get('properties', None)
+ self.parameters = kwargs.get('parameters', None)
+ self.action_uris = kwargs.get('action_uris', None)
+ self.script_name = kwargs.get('script_name', None)
+ self.target = kwargs.get('target', None)
+ self.unique_child_run_compute_targets = kwargs.get('unique_child_run_compute_targets', None)
+ self.tags = kwargs.get('tags', None)
+ self.settings = kwargs.get('settings', None)
+ self.services = kwargs.get('services', None)
+ self.input_datasets = kwargs.get('input_datasets', None)
+ self.output_datasets = kwargs.get('output_datasets', None)
+ self.run_definition = kwargs.get('run_definition', None)
+ self.job_specification = kwargs.get('job_specification', None)
+ self.primary_metric_name = kwargs.get('primary_metric_name', None)
+ self.created_from = kwargs.get('created_from', None)
+ self.cancel_uri = kwargs.get('cancel_uri', None)
+ self.complete_uri = kwargs.get('complete_uri', None)
+ self.diagnostics_uri = kwargs.get('diagnostics_uri', None)
+ self.compute_request = kwargs.get('compute_request', None)
+ self.compute = kwargs.get('compute', None)
+ self.retain_for_lifetime_of_workspace = kwargs.get('retain_for_lifetime_of_workspace', None)
+ self.queueing_info = kwargs.get('queueing_info', None)
+ self.active_child_run_id = kwargs.get('active_child_run_id', None)
+ self.inputs = kwargs.get('inputs', None)
+ self.outputs = kwargs.get('outputs', None)
+
+
+class DatasetIdentifier(msrest.serialization.Model):
+ """DatasetIdentifier.
+
+ :ivar saved_id:
+ :vartype saved_id: str
+ :ivar registered_id:
+ :vartype registered_id: str
+ :ivar registered_version:
+ :vartype registered_version: str
+ """
+
+ _attribute_map = {
+ 'saved_id': {'key': 'savedId', 'type': 'str'},
+ 'registered_id': {'key': 'registeredId', 'type': 'str'},
+ 'registered_version': {'key': 'registeredVersion', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword saved_id:
+ :paramtype saved_id: str
+ :keyword registered_id:
+ :paramtype registered_id: str
+ :keyword registered_version:
+ :paramtype registered_version: str
+ """
+ super(DatasetIdentifier, self).__init__(**kwargs)
+ self.saved_id = kwargs.get('saved_id', None)
+ self.registered_id = kwargs.get('registered_id', None)
+ self.registered_version = kwargs.get('registered_version', None)
+
+
+class DatasetInputDetails(msrest.serialization.Model):
+ """DatasetInputDetails.
+
+ :ivar input_name:
+ :vartype input_name: str
+ :ivar mechanism: Possible values include: "Direct", "Mount", "Download", "Hdfs".
+ :vartype mechanism: str or ~azure.mgmt.machinelearningservices.models.DatasetDeliveryMechanism
+ :ivar path_on_compute:
+ :vartype path_on_compute: str
+ """
+
+ _attribute_map = {
+ 'input_name': {'key': 'inputName', 'type': 'str'},
+ 'mechanism': {'key': 'mechanism', 'type': 'str'},
+ 'path_on_compute': {'key': 'pathOnCompute', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword input_name:
+ :paramtype input_name: str
+ :keyword mechanism: Possible values include: "Direct", "Mount", "Download", "Hdfs".
+ :paramtype mechanism: str or
+ ~azure.mgmt.machinelearningservices.models.DatasetDeliveryMechanism
+ :keyword path_on_compute:
+ :paramtype path_on_compute: str
+ """
+ super(DatasetInputDetails, self).__init__(**kwargs)
+ self.input_name = kwargs.get('input_name', None)
+ self.mechanism = kwargs.get('mechanism', None)
+ self.path_on_compute = kwargs.get('path_on_compute', None)
+
+
+class DatasetLineage(msrest.serialization.Model):
+ """DatasetLineage.
+
+ :ivar identifier:
+ :vartype identifier: ~azure.mgmt.machinelearningservices.models.DatasetIdentifier
+ :ivar consumption_type: Possible values include: "RunInput", "Reference".
+ :vartype consumption_type: str or
+ ~azure.mgmt.machinelearningservices.models.DatasetConsumptionType
+ :ivar input_details:
+ :vartype input_details: ~azure.mgmt.machinelearningservices.models.DatasetInputDetails
+ """
+
+ _attribute_map = {
+ 'identifier': {'key': 'identifier', 'type': 'DatasetIdentifier'},
+ 'consumption_type': {'key': 'consumptionType', 'type': 'str'},
+ 'input_details': {'key': 'inputDetails', 'type': 'DatasetInputDetails'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword identifier:
+ :paramtype identifier: ~azure.mgmt.machinelearningservices.models.DatasetIdentifier
+ :keyword consumption_type: Possible values include: "RunInput", "Reference".
+ :paramtype consumption_type: str or
+ ~azure.mgmt.machinelearningservices.models.DatasetConsumptionType
+ :keyword input_details:
+ :paramtype input_details: ~azure.mgmt.machinelearningservices.models.DatasetInputDetails
+ """
+ super(DatasetLineage, self).__init__(**kwargs)
+ self.identifier = kwargs.get('identifier', None)
+ self.consumption_type = kwargs.get('consumption_type', None)
+ self.input_details = kwargs.get('input_details', None)
+
+
+class DatasetOutputDetails(msrest.serialization.Model):
+ """DatasetOutputDetails.
+
+ :ivar output_name:
+ :vartype output_name: str
+ """
+
+ _attribute_map = {
+ 'output_name': {'key': 'outputName', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword output_name:
+ :paramtype output_name: str
+ """
+ super(DatasetOutputDetails, self).__init__(**kwargs)
+ self.output_name = kwargs.get('output_name', None)
+
+
+class DeleteConfiguration(msrest.serialization.Model):
+ """DeleteConfiguration.
+
+ :ivar workspace_id:
+ :vartype workspace_id: str
+ :ivar is_enabled:
+ :vartype is_enabled: bool
+ :ivar cutoff_days:
+ :vartype cutoff_days: int
+ """
+
+ _attribute_map = {
+ 'workspace_id': {'key': 'workspaceId', 'type': 'str'},
+ 'is_enabled': {'key': 'isEnabled', 'type': 'bool'},
+ 'cutoff_days': {'key': 'cutoffDays', 'type': 'int'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword workspace_id:
+ :paramtype workspace_id: str
+ :keyword is_enabled:
+ :paramtype is_enabled: bool
+ :keyword cutoff_days:
+ :paramtype cutoff_days: int
+ """
+ super(DeleteConfiguration, self).__init__(**kwargs)
+ self.workspace_id = kwargs.get('workspace_id', None)
+ self.is_enabled = kwargs.get('is_enabled', None)
+ self.cutoff_days = kwargs.get('cutoff_days', None)
+
+
+class DeleteExperimentTagsResult(msrest.serialization.Model):
+ """DeleteExperimentTagsResult.
+
+ :ivar errors: Dictionary of :code:`<ErrorResponse>`.
+ :vartype errors: dict[str, ~azure.mgmt.machinelearningservices.models.ErrorResponse]
+ """
+
+ _attribute_map = {
+ 'errors': {'key': 'errors', 'type': '{ErrorResponse}'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword errors: Dictionary of :code:`<ErrorResponse>`.
+ :paramtype errors: dict[str, ~azure.mgmt.machinelearningservices.models.ErrorResponse]
+ """
+ super(DeleteExperimentTagsResult, self).__init__(**kwargs)
+ self.errors = kwargs.get('errors', None)
+
+
+class DeleteOrModifyTags(msrest.serialization.Model):
+ """The Tags to modify or delete.
+
+ :ivar tags_to_modify: The KV pairs of tags to modify.
+ :vartype tags_to_modify: dict[str, str]
+ :ivar tags_to_delete: The list of tags to delete.
+ :vartype tags_to_delete: list[str]
+ """
+
+ _attribute_map = {
+ 'tags_to_modify': {'key': 'tagsToModify', 'type': '{str}'},
+ 'tags_to_delete': {'key': 'tagsToDelete', 'type': '[str]'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword tags_to_modify: The KV pairs of tags to modify.
+ :paramtype tags_to_modify: dict[str, str]
+ :keyword tags_to_delete: The list of tags to delete.
+ :paramtype tags_to_delete: list[str]
+ """
+ super(DeleteOrModifyTags, self).__init__(**kwargs)
+ self.tags_to_modify = kwargs.get('tags_to_modify', None)
+ self.tags_to_delete = kwargs.get('tags_to_delete', None)
+
+
+class DeleteRunServices(msrest.serialization.Model):
+ """The Services to delete.
+
+ :ivar services_to_delete: The list of Services to delete.
+ :vartype services_to_delete: list[str]
+ """
+
+ _attribute_map = {
+ 'services_to_delete': {'key': 'servicesToDelete', 'type': '[str]'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword services_to_delete: The list of Services to delete.
+ :paramtype services_to_delete: list[str]
+ """
+ super(DeleteRunServices, self).__init__(**kwargs)
+ self.services_to_delete = kwargs.get('services_to_delete', None)
+
+
+class DeleteTagsCommand(msrest.serialization.Model):
+ """DeleteTagsCommand.
+
+ :ivar tags: A set of tags.
+ :vartype tags: list[str]
+ """
+
+ _attribute_map = {
+ 'tags': {'key': 'tags', 'type': '[str]'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword tags: A set of tags.
+ :paramtype tags: list[str]
+ """
+ super(DeleteTagsCommand, self).__init__(**kwargs)
+ self.tags = kwargs.get('tags', None)
+
+
+class DerivedMetricKey(msrest.serialization.Model):
+ """DerivedMetricKey.
+
+ :ivar namespace:
+ :vartype namespace: str
+ :ivar name:
+ :vartype name: str
+ :ivar labels:
+ :vartype labels: list[str]
+ :ivar column_names:
+ :vartype column_names: list[str]
+ """
+
+ _validation = {
+ 'labels': {'unique': True},
+ 'column_names': {'unique': True},
+ }
+
+ _attribute_map = {
+ 'namespace': {'key': 'namespace', 'type': 'str'},
+ 'name': {'key': 'name', 'type': 'str'},
+ 'labels': {'key': 'labels', 'type': '[str]'},
+ 'column_names': {'key': 'columnNames', 'type': '[str]'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword namespace:
+ :paramtype namespace: str
+ :keyword name:
+ :paramtype name: str
+ :keyword labels:
+ :paramtype labels: list[str]
+ :keyword column_names:
+ :paramtype column_names: list[str]
+ """
+ super(DerivedMetricKey, self).__init__(**kwargs)
+ self.namespace = kwargs.get('namespace', None)
+ self.name = kwargs.get('name', None)
+ self.labels = kwargs.get('labels', None)
+ self.column_names = kwargs.get('column_names', None)
+
+
+class EndpointSetting(msrest.serialization.Model):
+ """EndpointSetting.
+
+ :ivar type:
+ :vartype type: str
+ :ivar port:
+ :vartype port: int
+ :ivar ssl_thumbprint:
+ :vartype ssl_thumbprint: str
+ :ivar endpoint:
+ :vartype endpoint: str
+ :ivar proxy_endpoint:
+ :vartype proxy_endpoint: str
+ :ivar status:
+ :vartype status: str
+ :ivar error_message:
+ :vartype error_message: str
+ :ivar enabled:
+ :vartype enabled: bool
+ :ivar properties: Dictionary of :code:`<string>`.
+ :vartype properties: dict[str, str]
+ """
+
+ _attribute_map = {
+ 'type': {'key': 'type', 'type': 'str'},
+ 'port': {'key': 'port', 'type': 'int'},
+ 'ssl_thumbprint': {'key': 'sslThumbprint', 'type': 'str'},
+ 'endpoint': {'key': 'endpoint', 'type': 'str'},
+ 'proxy_endpoint': {'key': 'proxyEndpoint', 'type': 'str'},
+ 'status': {'key': 'status', 'type': 'str'},
+ 'error_message': {'key': 'errorMessage', 'type': 'str'},
+ 'enabled': {'key': 'enabled', 'type': 'bool'},
+ 'properties': {'key': 'properties', 'type': '{str}'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword type:
+ :paramtype type: str
+ :keyword port:
+ :paramtype port: int
+ :keyword ssl_thumbprint:
+ :paramtype ssl_thumbprint: str
+ :keyword endpoint:
+ :paramtype endpoint: str
+ :keyword proxy_endpoint:
+ :paramtype proxy_endpoint: str
+ :keyword status:
+ :paramtype status: str
+ :keyword error_message:
+ :paramtype error_message: str
+ :keyword enabled:
+ :paramtype enabled: bool
+ :keyword properties: Dictionary of :code:`<string>`.
+ :paramtype properties: dict[str, str]
+ """
+ super(EndpointSetting, self).__init__(**kwargs)
+ self.type = kwargs.get('type', None)
+ self.port = kwargs.get('port', None)
+ self.ssl_thumbprint = kwargs.get('ssl_thumbprint', None)
+ self.endpoint = kwargs.get('endpoint', None)
+ self.proxy_endpoint = kwargs.get('proxy_endpoint', None)
+ self.status = kwargs.get('status', None)
+ self.error_message = kwargs.get('error_message', None)
+ self.enabled = kwargs.get('enabled', None)
+ self.properties = kwargs.get('properties', None)
+
+
+class ErrorAdditionalInfo(msrest.serialization.Model):
+ """The resource management error additional info.
+
+ :ivar type: The additional info type.
+ :vartype type: str
+ :ivar info: The additional info.
+ :vartype info: any
+ """
+
+ _attribute_map = {
+ 'type': {'key': 'type', 'type': 'str'},
+ 'info': {'key': 'info', 'type': 'object'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword type: The additional info type.
+ :paramtype type: str
+ :keyword info: The additional info.
+ :paramtype info: any
+ """
+ super(ErrorAdditionalInfo, self).__init__(**kwargs)
+ self.type = kwargs.get('type', None)
+ self.info = kwargs.get('info', None)
+
+
+class ErrorResponse(msrest.serialization.Model):
+ """The error response.
+
+ :ivar error: The root error.
+ :vartype error: ~azure.mgmt.machinelearningservices.models.RootError
+ :ivar correlation: Dictionary containing correlation details for the error.
+ :vartype correlation: dict[str, str]
+ :ivar environment: The hosting environment.
+ :vartype environment: str
+ :ivar location: The Azure region.
+ :vartype location: str
+ :ivar time: The time in UTC.
+ :vartype time: ~datetime.datetime
+ :ivar component_name: Component name where error originated/encountered.
+ :vartype component_name: str
+ """
+
+ _attribute_map = {
+ 'error': {'key': 'error', 'type': 'RootError'},
+ 'correlation': {'key': 'correlation', 'type': '{str}'},
+ 'environment': {'key': 'environment', 'type': 'str'},
+ 'location': {'key': 'location', 'type': 'str'},
+ 'time': {'key': 'time', 'type': 'iso-8601'},
+ 'component_name': {'key': 'componentName', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword error: The root error.
+ :paramtype error: ~azure.mgmt.machinelearningservices.models.RootError
+ :keyword correlation: Dictionary containing correlation details for the error.
+ :paramtype correlation: dict[str, str]
+ :keyword environment: The hosting environment.
+ :paramtype environment: str
+ :keyword location: The Azure region.
+ :paramtype location: str
+ :keyword time: The time in UTC.
+ :paramtype time: ~datetime.datetime
+ :keyword component_name: Component name where error originated/encountered.
+ :paramtype component_name: str
+ """
+ super(ErrorResponse, self).__init__(**kwargs)
+ self.error = kwargs.get('error', None)
+ self.correlation = kwargs.get('correlation', None)
+ self.environment = kwargs.get('environment', None)
+ self.location = kwargs.get('location', None)
+ self.time = kwargs.get('time', None)
+ self.component_name = kwargs.get('component_name', None)
+
+
+class Event(msrest.serialization.Model):
+ """Event.
+
+ :ivar name: Gets the Microsoft.MachineLearning.RunHistory.Contracts.Event name.
+ :vartype name: str
+ :ivar timestamp: Gets the Microsoft.MachineLearning.RunHistory.Contracts.Event timestamp.
+ :vartype timestamp: ~datetime.datetime
+ :ivar attributes: Gets the System.Collections.Generic.IDictionary`2 collection of attributes
+ associated with the event.
+ :vartype attributes: dict[str, any]
+ """
+
+ _attribute_map = {
+ 'name': {'key': 'name', 'type': 'str'},
+ 'timestamp': {'key': 'timestamp', 'type': 'iso-8601'},
+ 'attributes': {'key': 'attributes', 'type': '{object}'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword name: Gets the Microsoft.MachineLearning.RunHistory.Contracts.Event name.
+ :paramtype name: str
+ :keyword timestamp: Gets the Microsoft.MachineLearning.RunHistory.Contracts.Event timestamp.
+ :paramtype timestamp: ~datetime.datetime
+ :keyword attributes: Gets the System.Collections.Generic.IDictionary`2 collection of attributes
+ associated with the event.
+ :paramtype attributes: dict[str, any]
+ """
+ super(Event, self).__init__(**kwargs)
+ self.name = kwargs.get('name', None)
+ self.timestamp = kwargs.get('timestamp', None)
+ self.attributes = kwargs.get('attributes', None)
+
+
+class Experiment(msrest.serialization.Model):
+ """Experiment.
+
+ :ivar experiment_id:
+ :vartype experiment_id: str
+ :ivar name:
+ :vartype name: str
+ :ivar description:
+ :vartype description: str
+ :ivar created_utc:
+ :vartype created_utc: ~datetime.datetime
+ :ivar tags: A set of tags. Dictionary of :code:`<string>`.
+ :vartype tags: dict[str, str]
+ :ivar archived_time:
+ :vartype archived_time: ~datetime.datetime
+ :ivar retain_for_lifetime_of_workspace:
+ :vartype retain_for_lifetime_of_workspace: bool
+ :ivar artifact_location:
+ :vartype artifact_location: str
+ """
+
+ _attribute_map = {
+ 'experiment_id': {'key': 'experimentId', 'type': 'str'},
+ 'name': {'key': 'name', 'type': 'str'},
+ 'description': {'key': 'description', 'type': 'str'},
+ 'created_utc': {'key': 'createdUtc', 'type': 'iso-8601'},
+ 'tags': {'key': 'tags', 'type': '{str}'},
+ 'archived_time': {'key': 'archivedTime', 'type': 'iso-8601'},
+ 'retain_for_lifetime_of_workspace': {'key': 'retainForLifetimeOfWorkspace', 'type': 'bool'},
+ 'artifact_location': {'key': 'artifactLocation', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword experiment_id:
+ :paramtype experiment_id: str
+ :keyword name:
+ :paramtype name: str
+ :keyword description:
+ :paramtype description: str
+ :keyword created_utc:
+ :paramtype created_utc: ~datetime.datetime
+ :keyword tags: A set of tags. Dictionary of :code:`<string>`.
+ :paramtype tags: dict[str, str]
+ :keyword archived_time:
+ :paramtype archived_time: ~datetime.datetime
+ :keyword retain_for_lifetime_of_workspace:
+ :paramtype retain_for_lifetime_of_workspace: bool
+ :keyword artifact_location:
+ :paramtype artifact_location: str
+ """
+ super(Experiment, self).__init__(**kwargs)
+ self.experiment_id = kwargs.get('experiment_id', None)
+ self.name = kwargs.get('name', None)
+ self.description = kwargs.get('description', None)
+ self.created_utc = kwargs.get('created_utc', None)
+ self.tags = kwargs.get('tags', None)
+ self.archived_time = kwargs.get('archived_time', None)
+ self.retain_for_lifetime_of_workspace = kwargs.get('retain_for_lifetime_of_workspace', None)
+ self.artifact_location = kwargs.get('artifact_location', None)
+
+
+class ExperimentQueryParams(msrest.serialization.Model):
+ """Extends Query Params DTO for ViewType.
+
+ :ivar view_type: ViewType filters experiments by their archived state. Default is ActiveOnly.
+ Possible values include: "Default", "All", "ActiveOnly", "ArchivedOnly".
+ :vartype view_type: str or ~azure.mgmt.machinelearningservices.models.ExperimentViewType
+ :ivar filter: Allows for filtering the collection of resources.
+ The expression specified is evaluated for each resource in the collection, and only items
+ where the expression evaluates to true are included in the response.
+ See https://learn.microsoft.com/azure/search/query-odata-filter-orderby-syntax for
+ details on the expression syntax.
+ :vartype filter: str
+ :ivar continuation_token: The continuation token to use for getting the next set of resources.
+ :vartype continuation_token: str
+ :ivar order_by: The comma separated list of resource properties to use for sorting the
+ requested resources.
+ Optionally, can be followed by either 'asc' or 'desc'.
+ :vartype order_by: str
+ :ivar top: The maximum number of items in the resource collection to be included in the result.
+ If not specified, all items are returned.
+ :vartype top: int
+ """
+
+ _attribute_map = {
+ 'view_type': {'key': 'viewType', 'type': 'str'},
+ 'filter': {'key': 'filter', 'type': 'str'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'order_by': {'key': 'orderBy', 'type': 'str'},
+ 'top': {'key': 'top', 'type': 'int'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword view_type: ViewType filters experiments by their archived state. Default is
+ ActiveOnly. Possible values include: "Default", "All", "ActiveOnly", "ArchivedOnly".
+ :paramtype view_type: str or ~azure.mgmt.machinelearningservices.models.ExperimentViewType
+ :keyword filter: Allows for filtering the collection of resources.
+ The expression specified is evaluated for each resource in the collection, and only items
+ where the expression evaluates to true are included in the response.
+ See https://learn.microsoft.com/azure/search/query-odata-filter-orderby-syntax for
+ details on the expression syntax.
+ :paramtype filter: str
+ :keyword continuation_token: The continuation token to use for getting the next set of
+ resources.
+ :paramtype continuation_token: str
+ :keyword order_by: The comma separated list of resource properties to use for sorting the
+ requested resources.
+ Optionally, can be followed by either 'asc' or 'desc'.
+ :paramtype order_by: str
+ :keyword top: The maximum number of items in the resource collection to be included in the
+ result.
+ If not specified, all items are returned.
+ :paramtype top: int
+ """
+ super(ExperimentQueryParams, self).__init__(**kwargs)
+ self.view_type = kwargs.get('view_type', None)
+ self.filter = kwargs.get('filter', None)
+ self.continuation_token = kwargs.get('continuation_token', None)
+ self.order_by = kwargs.get('order_by', None)
+ self.top = kwargs.get('top', None)
+
+
+class GetRunDataRequest(msrest.serialization.Model):
+ """GetRunDataRequest.
+
+ :ivar run_id:
+ :vartype run_id: str
+ :ivar select_run_metadata:
+ :vartype select_run_metadata: bool
+ :ivar select_run_definition:
+ :vartype select_run_definition: bool
+ :ivar select_job_specification:
+ :vartype select_job_specification: bool
+ """
+
+ _attribute_map = {
+ 'run_id': {'key': 'runId', 'type': 'str'},
+ 'select_run_metadata': {'key': 'selectRunMetadata', 'type': 'bool'},
+ 'select_run_definition': {'key': 'selectRunDefinition', 'type': 'bool'},
+ 'select_job_specification': {'key': 'selectJobSpecification', 'type': 'bool'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword run_id:
+ :paramtype run_id: str
+ :keyword select_run_metadata:
+ :paramtype select_run_metadata: bool
+ :keyword select_run_definition:
+ :paramtype select_run_definition: bool
+ :keyword select_job_specification:
+ :paramtype select_job_specification: bool
+ """
+ super(GetRunDataRequest, self).__init__(**kwargs)
+ self.run_id = kwargs.get('run_id', None)
+ self.select_run_metadata = kwargs.get('select_run_metadata', None)
+ self.select_run_definition = kwargs.get('select_run_definition', None)
+ self.select_job_specification = kwargs.get('select_job_specification', None)
+
+
+class GetRunDataResult(msrest.serialization.Model):
+ """GetRunDataResult.
+
+ :ivar run_metadata: The definition of a Run.
+ :vartype run_metadata: ~azure.mgmt.machinelearningservices.models.Run
+ :ivar run_definition: Anything.
+ :vartype run_definition: any
+ :ivar job_specification: Anything.
+ :vartype job_specification: any
+ """
+
+ _attribute_map = {
+ 'run_metadata': {'key': 'runMetadata', 'type': 'Run'},
+ 'run_definition': {'key': 'runDefinition', 'type': 'object'},
+ 'job_specification': {'key': 'jobSpecification', 'type': 'object'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword run_metadata: The definition of a Run.
+ :paramtype run_metadata: ~azure.mgmt.machinelearningservices.models.Run
+ :keyword run_definition: Anything.
+ :paramtype run_definition: any
+ :keyword job_specification: Anything.
+ :paramtype job_specification: any
+ """
+ super(GetRunDataResult, self).__init__(**kwargs)
+ self.run_metadata = kwargs.get('run_metadata', None)
+ self.run_definition = kwargs.get('run_definition', None)
+ self.job_specification = kwargs.get('job_specification', None)
+
+
+class GetRunsByIds(msrest.serialization.Model):
+ """GetRunsByIds.
+
+ :ivar run_ids:
+ :vartype run_ids: list[str]
+ """
+
+ _attribute_map = {
+ 'run_ids': {'key': 'runIds', 'type': '[str]'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword run_ids:
+ :paramtype run_ids: list[str]
+ """
+ super(GetRunsByIds, self).__init__(**kwargs)
+ self.run_ids = kwargs.get('run_ids', None)
+
+
+class GetSampledMetricRequest(msrest.serialization.Model):
+ """GetSampledMetricRequest.
+
+ :ivar metric_name:
+ :vartype metric_name: str
+ :ivar metric_namespace:
+ :vartype metric_namespace: str
+ """
+
+ _attribute_map = {
+ 'metric_name': {'key': 'metricName', 'type': 'str'},
+ 'metric_namespace': {'key': 'metricNamespace', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword metric_name:
+ :paramtype metric_name: str
+ :keyword metric_namespace:
+ :paramtype metric_namespace: str
+ """
+ super(GetSampledMetricRequest, self).__init__(**kwargs)
+ self.metric_name = kwargs.get('metric_name', None)
+ self.metric_namespace = kwargs.get('metric_namespace', None)
+
+
+class IMetricV2(msrest.serialization.Model):
+ """Sequence of one or many values sharing a common DataContainerId, Name, and Schema. Used only for Post Metrics.
+
+ :ivar data_container_id: Data container to which this Metric belongs.
+ :vartype data_container_id: str
+ :ivar name: Name identifying this Metric within the Data Container.
+ :vartype name: str
+ :ivar columns: Schema shared by all values under this Metric
+ Columns.Keys define the column names which are required for each MetricValue
+ Columns.Values define the type of the associated object for each column.
+ :vartype columns: dict[str, str or ~azure.mgmt.machinelearningservices.models.MetricValueType]
+ :ivar namespace: Namespace for this Metric.
+ :vartype namespace: str
+ :ivar standard_schema_id:
+ :vartype standard_schema_id: str
+ :ivar value: The list of values.
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.MetricV2Value]
+ """
+
+ _attribute_map = {
+ 'data_container_id': {'key': 'dataContainerId', 'type': 'str'},
+ 'name': {'key': 'name', 'type': 'str'},
+ 'columns': {'key': 'columns', 'type': '{str}'},
+ 'namespace': {'key': 'namespace', 'type': 'str'},
+ 'standard_schema_id': {'key': 'standardSchemaId', 'type': 'str'},
+ 'value': {'key': 'value', 'type': '[MetricV2Value]'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword data_container_id: Data container to which this Metric belongs.
+ :paramtype data_container_id: str
+ :keyword name: Name identifying this Metric within the Data Container.
+ :paramtype name: str
+ :keyword columns: Schema shared by all values under this Metric
+ Columns.Keys define the column names which are required for each MetricValue
+ Columns.Values define the type of the associated object for each column.
+ :paramtype columns: dict[str, str or
+ ~azure.mgmt.machinelearningservices.models.MetricValueType]
+ :keyword namespace: Namespace for this Metric.
+ :paramtype namespace: str
+ :keyword standard_schema_id:
+ :paramtype standard_schema_id: str
+ :keyword value: The list of values.
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.MetricV2Value]
+ """
+ super(IMetricV2, self).__init__(**kwargs)
+ self.data_container_id = kwargs.get('data_container_id', None)
+ self.name = kwargs.get('name', None)
+ self.columns = kwargs.get('columns', None)
+ self.namespace = kwargs.get('namespace', None)
+ self.standard_schema_id = kwargs.get('standard_schema_id', None)
+ self.value = kwargs.get('value', None)
+
+
+class InnerErrorResponse(msrest.serialization.Model):
+ """A nested structure of errors.
+
+ :ivar code: The error code.
+ :vartype code: str
+ :ivar inner_error: A nested structure of errors.
+ :vartype inner_error: ~azure.mgmt.machinelearningservices.models.InnerErrorResponse
+ """
+
+ _attribute_map = {
+ 'code': {'key': 'code', 'type': 'str'},
+ 'inner_error': {'key': 'innerError', 'type': 'InnerErrorResponse'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword code: The error code.
+ :paramtype code: str
+ :keyword inner_error: A nested structure of errors.
+ :paramtype inner_error: ~azure.mgmt.machinelearningservices.models.InnerErrorResponse
+ """
+ super(InnerErrorResponse, self).__init__(**kwargs)
+ self.code = kwargs.get('code', None)
+ self.inner_error = kwargs.get('inner_error', None)
+
+
+class JobCost(msrest.serialization.Model):
+ """JobCost.
+
+ :ivar charged_cpu_core_seconds:
+ :vartype charged_cpu_core_seconds: float
+ :ivar charged_cpu_memory_megabyte_seconds:
+ :vartype charged_cpu_memory_megabyte_seconds: float
+ :ivar charged_gpu_seconds:
+ :vartype charged_gpu_seconds: float
+ :ivar charged_node_utilization_seconds:
+ :vartype charged_node_utilization_seconds: float
+ """
+
+ _attribute_map = {
+ 'charged_cpu_core_seconds': {'key': 'chargedCpuCoreSeconds', 'type': 'float'},
+ 'charged_cpu_memory_megabyte_seconds': {'key': 'chargedCpuMemoryMegabyteSeconds', 'type': 'float'},
+ 'charged_gpu_seconds': {'key': 'chargedGpuSeconds', 'type': 'float'},
+ 'charged_node_utilization_seconds': {'key': 'chargedNodeUtilizationSeconds', 'type': 'float'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword charged_cpu_core_seconds:
+ :paramtype charged_cpu_core_seconds: float
+ :keyword charged_cpu_memory_megabyte_seconds:
+ :paramtype charged_cpu_memory_megabyte_seconds: float
+ :keyword charged_gpu_seconds:
+ :paramtype charged_gpu_seconds: float
+ :keyword charged_node_utilization_seconds:
+ :paramtype charged_node_utilization_seconds: float
+ """
+ super(JobCost, self).__init__(**kwargs)
+ self.charged_cpu_core_seconds = kwargs.get('charged_cpu_core_seconds', None)
+ self.charged_cpu_memory_megabyte_seconds = kwargs.get('charged_cpu_memory_megabyte_seconds', None)
+ self.charged_gpu_seconds = kwargs.get('charged_gpu_seconds', None)
+ self.charged_node_utilization_seconds = kwargs.get('charged_node_utilization_seconds', None)
+
+
+class KeyValuePairBaseEventErrorResponse(msrest.serialization.Model):
+ """KeyValuePairBaseEventErrorResponse.
+
+ :ivar key: Base event is the envelope used to post event data to the Event controller.
+ :vartype key: ~azure.mgmt.machinelearningservices.models.BaseEvent
+ :ivar value: The error response.
+ :vartype value: ~azure.mgmt.machinelearningservices.models.ErrorResponse
+ """
+
+ _attribute_map = {
+ 'key': {'key': 'key', 'type': 'BaseEvent'},
+ 'value': {'key': 'value', 'type': 'ErrorResponse'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword key: Base event is the envelope used to post event data to the Event controller.
+ :paramtype key: ~azure.mgmt.machinelearningservices.models.BaseEvent
+ :keyword value: The error response.
+ :paramtype value: ~azure.mgmt.machinelearningservices.models.ErrorResponse
+ """
+ super(KeyValuePairBaseEventErrorResponse, self).__init__(**kwargs)
+ self.key = kwargs.get('key', None)
+ self.value = kwargs.get('value', None)
+
+
+class KeyValuePairString(msrest.serialization.Model):
+ """KeyValuePairString.
+
+ :ivar key:
+ :vartype key: str
+ :ivar value:
+ :vartype value: str
+ """
+
+ _attribute_map = {
+ 'key': {'key': 'key', 'type': 'str'},
+ 'value': {'key': 'value', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword key:
+ :paramtype key: str
+ :keyword value:
+ :paramtype value: str
+ """
+ super(KeyValuePairString, self).__init__(**kwargs)
+ self.key = kwargs.get('key', None)
+ self.value = kwargs.get('value', None)
+
+
+class KeyValuePairStringJToken(msrest.serialization.Model):
+ """KeyValuePairStringJToken.
+
+ :ivar key:
+ :vartype key: str
+ :ivar value: Anything.
+ :vartype value: any
+ """
+
+ _attribute_map = {
+ 'key': {'key': 'key', 'type': 'str'},
+ 'value': {'key': 'value', 'type': 'object'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword key:
+ :paramtype key: str
+ :keyword value: Anything.
+ :paramtype value: any
+ """
+ super(KeyValuePairStringJToken, self).__init__(**kwargs)
+ self.key = kwargs.get('key', None)
+ self.value = kwargs.get('value', None)
+
+
+class Link(msrest.serialization.Model):
+ """Link.
+
+ :ivar context:
+ :vartype context: ~azure.mgmt.machinelearningservices.models.SpanContext
+ :ivar attributes: Gets the collection of attributes associated with the link.
+ :vartype attributes: dict[str, any]
+ """
+
+ _attribute_map = {
+ 'context': {'key': 'context', 'type': 'SpanContext'},
+ 'attributes': {'key': 'attributes', 'type': '{object}'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword context:
+ :paramtype context: ~azure.mgmt.machinelearningservices.models.SpanContext
+ :keyword attributes: Gets the collection of attributes associated with the link.
+ :paramtype attributes: dict[str, any]
+ """
+ super(Link, self).__init__(**kwargs)
+ self.context = kwargs.get('context', None)
+ self.attributes = kwargs.get('attributes', None)
+
+
+class ListGenericResourceMetrics(msrest.serialization.Model):
+ """ListGenericResourceMetrics.
+
+ :ivar resource_id:
+ :vartype resource_id: str
+ :ivar metric_names:
+ :vartype metric_names: list[str]
+ :ivar label_filters: Dictionary of :code:`<string>`.
+ :vartype label_filters: dict[str, str]
+ :ivar metric_namespace:
+ :vartype metric_namespace: str
+ :ivar continuation_token:
+ :vartype continuation_token: str
+ """
+
+ _attribute_map = {
+ 'resource_id': {'key': 'resourceId', 'type': 'str'},
+ 'metric_names': {'key': 'metricNames', 'type': '[str]'},
+ 'label_filters': {'key': 'labelFilters', 'type': '{str}'},
+ 'metric_namespace': {'key': 'metricNamespace', 'type': 'str'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword resource_id:
+ :paramtype resource_id: str
+ :keyword metric_names:
+ :paramtype metric_names: list[str]
+ :keyword label_filters: Dictionary of :code:`<string>`.
+ :paramtype label_filters: dict[str, str]
+ :keyword metric_namespace:
+ :paramtype metric_namespace: str
+ :keyword continuation_token:
+ :paramtype continuation_token: str
+ """
+ super(ListGenericResourceMetrics, self).__init__(**kwargs)
+ self.resource_id = kwargs.get('resource_id', None)
+ self.metric_names = kwargs.get('metric_names', None)
+ self.label_filters = kwargs.get('label_filters', None)
+ self.metric_namespace = kwargs.get('metric_namespace', None)
+ self.continuation_token = kwargs.get('continuation_token', None)
+
+
+class ListMetrics(msrest.serialization.Model):
+ """ListMetrics.
+
+ :ivar metric_namespace:
+ :vartype metric_namespace: str
+ :ivar continuation_token:
+ :vartype continuation_token: str
+ """
+
+ _attribute_map = {
+ 'metric_namespace': {'key': 'metricNamespace', 'type': 'str'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword metric_namespace:
+ :paramtype metric_namespace: str
+ :keyword continuation_token:
+ :paramtype continuation_token: str
+ """
+ super(ListMetrics, self).__init__(**kwargs)
+ self.metric_namespace = kwargs.get('metric_namespace', None)
+ self.continuation_token = kwargs.get('continuation_token', None)
+
+
+class MetricDefinition(msrest.serialization.Model):
+ """MetricDefinition.
+
+ :ivar metric_key:
+ :vartype metric_key: ~azure.mgmt.machinelearningservices.models.DerivedMetricKey
+ :ivar columns: Dictionary of :code:`<MetricValueType>`.
+ :vartype columns: dict[str, str or ~azure.mgmt.machinelearningservices.models.MetricValueType]
+ :ivar properties:
+ :vartype properties: ~azure.mgmt.machinelearningservices.models.MetricProperties
+ """
+
+ _attribute_map = {
+ 'metric_key': {'key': 'metricKey', 'type': 'DerivedMetricKey'},
+ 'columns': {'key': 'columns', 'type': '{str}'},
+ 'properties': {'key': 'properties', 'type': 'MetricProperties'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword metric_key:
+ :paramtype metric_key: ~azure.mgmt.machinelearningservices.models.DerivedMetricKey
+ :keyword columns: Dictionary of :code:`<MetricValueType>`.
+ :paramtype columns: dict[str, str or
+ ~azure.mgmt.machinelearningservices.models.MetricValueType]
+ :keyword properties:
+ :paramtype properties: ~azure.mgmt.machinelearningservices.models.MetricProperties
+ """
+ super(MetricDefinition, self).__init__(**kwargs)
+ self.metric_key = kwargs.get('metric_key', None)
+ self.columns = kwargs.get('columns', None)
+ self.properties = kwargs.get('properties', None)
+
+
+class MetricProperties(msrest.serialization.Model):
+ """MetricProperties.
+
+ :ivar ux_metric_type: String value UX uses to decide how to render your metrics
+ Ex: azureml.v1.scalar or azureml.v1.table.
+ :vartype ux_metric_type: str
+ """
+
+ _attribute_map = {
+ 'ux_metric_type': {'key': 'uxMetricType', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword ux_metric_type: String value UX uses to decide how to render your metrics
+ Ex: azureml.v1.scalar or azureml.v1.table.
+ :paramtype ux_metric_type: str
+ """
+ super(MetricProperties, self).__init__(**kwargs)
+ self.ux_metric_type = kwargs.get('ux_metric_type', None)
+
+
+class MetricSample(msrest.serialization.Model):
+ """MetricSample.
+
+ :ivar derived_label_values: Dictionary of :code:`<string>`.
+ :vartype derived_label_values: dict[str, str]
+ :ivar is_partial_result:
+ :vartype is_partial_result: bool
+ :ivar num_values_logged:
+ :vartype num_values_logged: long
+ :ivar data_container_id: Data container to which this Metric belongs.
+ :vartype data_container_id: str
+ :ivar name: Name identifying this Metric within the Data Container.
+ :vartype name: str
+ :ivar columns: Schema shared by all values under this Metric
+ Columns.Keys define the column names which are required for each MetricValue
+ Columns.Values define the type of the associated object for each column.
+ :vartype columns: dict[str, str or ~azure.mgmt.machinelearningservices.models.MetricValueType]
+ :ivar properties:
+ :vartype properties: ~azure.mgmt.machinelearningservices.models.MetricProperties
+ :ivar namespace: Namespace for this Metric.
+ :vartype namespace: str
+ :ivar standard_schema_id:
+ :vartype standard_schema_id: str
+ :ivar value:
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.MetricV2Value]
+ :ivar continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :vartype continuation_token: str
+ :ivar next_link: The link to the next page constructed using the continuationToken. If null,
+ there are no additional pages.
+ :vartype next_link: str
+ """
+
+ _attribute_map = {
+ 'derived_label_values': {'key': 'derivedLabelValues', 'type': '{str}'},
+ 'is_partial_result': {'key': 'isPartialResult', 'type': 'bool'},
+ 'num_values_logged': {'key': 'numValuesLogged', 'type': 'long'},
+ 'data_container_id': {'key': 'dataContainerId', 'type': 'str'},
+ 'name': {'key': 'name', 'type': 'str'},
+ 'columns': {'key': 'columns', 'type': '{str}'},
+ 'properties': {'key': 'properties', 'type': 'MetricProperties'},
+ 'namespace': {'key': 'namespace', 'type': 'str'},
+ 'standard_schema_id': {'key': 'standardSchemaId', 'type': 'str'},
+ 'value': {'key': 'value', 'type': '[MetricV2Value]'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'next_link': {'key': 'nextLink', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword derived_label_values: Dictionary of :code:`<string>`.
+ :paramtype derived_label_values: dict[str, str]
+ :keyword is_partial_result:
+ :paramtype is_partial_result: bool
+ :keyword num_values_logged:
+ :paramtype num_values_logged: long
+ :keyword data_container_id: Data container to which this Metric belongs.
+ :paramtype data_container_id: str
+ :keyword name: Name identifying this Metric within the Data Container.
+ :paramtype name: str
+ :keyword columns: Schema shared by all values under this Metric
+ Columns.Keys define the column names which are required for each MetricValue
+ Columns.Values define the type of the associated object for each column.
+ :paramtype columns: dict[str, str or
+ ~azure.mgmt.machinelearningservices.models.MetricValueType]
+ :keyword properties:
+ :paramtype properties: ~azure.mgmt.machinelearningservices.models.MetricProperties
+ :keyword namespace: Namespace for this Metric.
+ :paramtype namespace: str
+ :keyword standard_schema_id:
+ :paramtype standard_schema_id: str
+ :keyword value:
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.MetricV2Value]
+ :keyword continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :paramtype continuation_token: str
+ :keyword next_link: The link to the next page constructed using the continuationToken. If
+ null, there are no additional pages.
+ :paramtype next_link: str
+ """
+ super(MetricSample, self).__init__(**kwargs)
+ self.derived_label_values = kwargs.get('derived_label_values', None)
+ self.is_partial_result = kwargs.get('is_partial_result', None)
+ self.num_values_logged = kwargs.get('num_values_logged', None)
+ self.data_container_id = kwargs.get('data_container_id', None)
+ self.name = kwargs.get('name', None)
+ self.columns = kwargs.get('columns', None)
+ self.properties = kwargs.get('properties', None)
+ self.namespace = kwargs.get('namespace', None)
+ self.standard_schema_id = kwargs.get('standard_schema_id', None)
+ self.value = kwargs.get('value', None)
+ self.continuation_token = kwargs.get('continuation_token', None)
+ self.next_link = kwargs.get('next_link', None)
+
+
+class MetricSchema(msrest.serialization.Model):
+ """MetricSchema.
+
+ :ivar num_properties:
+ :vartype num_properties: int
+ :ivar properties:
+ :vartype properties: list[~azure.mgmt.machinelearningservices.models.MetricSchemaProperty]
+ """
+
+ _attribute_map = {
+ 'num_properties': {'key': 'numProperties', 'type': 'int'},
+ 'properties': {'key': 'properties', 'type': '[MetricSchemaProperty]'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword num_properties:
+ :paramtype num_properties: int
+ :keyword properties:
+ :paramtype properties: list[~azure.mgmt.machinelearningservices.models.MetricSchemaProperty]
+ """
+ super(MetricSchema, self).__init__(**kwargs)
+ self.num_properties = kwargs.get('num_properties', None)
+ self.properties = kwargs.get('properties', None)
+
+
+class MetricSchemaProperty(msrest.serialization.Model):
+ """MetricSchemaProperty.
+
+ :ivar property_id:
+ :vartype property_id: str
+ :ivar name:
+ :vartype name: str
+ :ivar type:
+ :vartype type: str
+ """
+
+ _attribute_map = {
+ 'property_id': {'key': 'propertyId', 'type': 'str'},
+ 'name': {'key': 'name', 'type': 'str'},
+ 'type': {'key': 'type', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword property_id:
+ :paramtype property_id: str
+ :keyword name:
+ :paramtype name: str
+ :keyword type:
+ :paramtype type: str
+ """
+ super(MetricSchemaProperty, self).__init__(**kwargs)
+ self.property_id = kwargs.get('property_id', None)
+ self.name = kwargs.get('name', None)
+ self.type = kwargs.get('type', None)
+
+
+class MetricV2(msrest.serialization.Model):
+ """Sequence of one or many values sharing a common DataContainerId, Name, and Schema.
+
+ :ivar data_container_id: Data container to which this Metric belongs.
+ :vartype data_container_id: str
+ :ivar name: Name identifying this Metric within the Data Container.
+ :vartype name: str
+ :ivar columns: Schema shared by all values under this Metric
+ Columns.Keys define the column names which are required for each MetricValue
+ Columns.Values define the type of the associated object for each column.
+ :vartype columns: dict[str, str or ~azure.mgmt.machinelearningservices.models.MetricValueType]
+ :ivar properties:
+ :vartype properties: ~azure.mgmt.machinelearningservices.models.MetricProperties
+ :ivar namespace: Namespace for this Metric.
+ :vartype namespace: str
+ :ivar standard_schema_id:
+ :vartype standard_schema_id: str
+ :ivar value:
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.MetricV2Value]
+ :ivar continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :vartype continuation_token: str
+ :ivar next_link: The link to the next page constructed using the continuationToken. If null,
+ there are no additional pages.
+ :vartype next_link: str
+ """
+
+ _attribute_map = {
+ 'data_container_id': {'key': 'dataContainerId', 'type': 'str'},
+ 'name': {'key': 'name', 'type': 'str'},
+ 'columns': {'key': 'columns', 'type': '{str}'},
+ 'properties': {'key': 'properties', 'type': 'MetricProperties'},
+ 'namespace': {'key': 'namespace', 'type': 'str'},
+ 'standard_schema_id': {'key': 'standardSchemaId', 'type': 'str'},
+ 'value': {'key': 'value', 'type': '[MetricV2Value]'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'next_link': {'key': 'nextLink', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword data_container_id: Data container to which this Metric belongs.
+ :paramtype data_container_id: str
+ :keyword name: Name identifying this Metric within the Data Container.
+ :paramtype name: str
+ :keyword columns: Schema shared by all values under this Metric
+ Columns.Keys define the column names which are required for each MetricValue
+ Columns.Values define the type of the associated object for each column.
+ :paramtype columns: dict[str, str or
+ ~azure.mgmt.machinelearningservices.models.MetricValueType]
+ :keyword properties:
+ :paramtype properties: ~azure.mgmt.machinelearningservices.models.MetricProperties
+ :keyword namespace: Namespace for this Metric.
+ :paramtype namespace: str
+ :keyword standard_schema_id:
+ :paramtype standard_schema_id: str
+ :keyword value:
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.MetricV2Value]
+ :keyword continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :paramtype continuation_token: str
+ :keyword next_link: The link to the next page constructed using the continuationToken. If
+ null, there are no additional pages.
+ :paramtype next_link: str
+ """
+ super(MetricV2, self).__init__(**kwargs)
+ self.data_container_id = kwargs.get('data_container_id', None)
+ self.name = kwargs.get('name', None)
+ self.columns = kwargs.get('columns', None)
+ self.properties = kwargs.get('properties', None)
+ self.namespace = kwargs.get('namespace', None)
+ self.standard_schema_id = kwargs.get('standard_schema_id', None)
+ self.value = kwargs.get('value', None)
+ self.continuation_token = kwargs.get('continuation_token', None)
+ self.next_link = kwargs.get('next_link', None)
+
+
+class MetricV2Value(msrest.serialization.Model):
+ """An individual value logged within a Metric.
+
+ :ivar metric_id: Unique Id for this metric value
+ Format is either a Guid or a Guid augmented with an additional int index for cases where
+ multiple metric values shared a
+ MetricId in the old schema.
+ :vartype metric_id: str
+ :ivar created_utc: Client specified timestamp for this metric value.
+ :vartype created_utc: ~datetime.datetime
+ :ivar step:
+ :vartype step: long
+ :ivar data: Dictionary mapping column names (specified as the keys in MetricV2Dto.Columns) to
+ values expressed in type associated
+ with that column in the metric's schema.
+ :vartype data: dict[str, any]
+ """
+
+ _attribute_map = {
+ 'metric_id': {'key': 'metricId', 'type': 'str'},
+ 'created_utc': {'key': 'createdUtc', 'type': 'iso-8601'},
+ 'step': {'key': 'step', 'type': 'long'},
+ 'data': {'key': 'data', 'type': '{object}'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword metric_id: Unique Id for this metric value
+ Format is either a Guid or a Guid augmented with an additional int index for cases where
+ multiple metric values shared a
+ MetricId in the old schema.
+ :paramtype metric_id: str
+ :keyword created_utc: Client specified timestamp for this metric value.
+ :paramtype created_utc: ~datetime.datetime
+ :keyword step:
+ :paramtype step: long
+ :keyword data: Dictionary mapping column names (specified as the keys in MetricV2Dto.Columns)
+ to values expressed in type associated
+ with that column in the metric's schema.
+ :paramtype data: dict[str, any]
+ """
+ super(MetricV2Value, self).__init__(**kwargs)
+ self.metric_id = kwargs.get('metric_id', None)
+ self.created_utc = kwargs.get('created_utc', None)
+ self.step = kwargs.get('step', None)
+ self.data = kwargs.get('data', None)
+
+
+class ModifyExperiment(msrest.serialization.Model):
+ """ModifyExperiment.
+
+ :ivar name:
+ :vartype name: str
+ :ivar description:
+ :vartype description: str
+ :ivar tags: A set of tags. Dictionary of :code:`<string>`.
+ :vartype tags: dict[str, str]
+ :ivar archive:
+ :vartype archive: bool
+ :ivar retain_for_lifetime_of_workspace:
+ :vartype retain_for_lifetime_of_workspace: bool
+ """
+
+ _attribute_map = {
+ 'name': {'key': 'name', 'type': 'str'},
+ 'description': {'key': 'description', 'type': 'str'},
+ 'tags': {'key': 'tags', 'type': '{str}'},
+ 'archive': {'key': 'archive', 'type': 'bool'},
+ 'retain_for_lifetime_of_workspace': {'key': 'retainForLifetimeOfWorkspace', 'type': 'bool'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword name:
+ :paramtype name: str
+ :keyword description:
+ :paramtype description: str
+ :keyword tags: A set of tags. Dictionary of :code:`<string>`.
+ :paramtype tags: dict[str, str]
+ :keyword archive:
+ :paramtype archive: bool
+ :keyword retain_for_lifetime_of_workspace:
+ :paramtype retain_for_lifetime_of_workspace: bool
+ """
+ super(ModifyExperiment, self).__init__(**kwargs)
+ self.name = kwargs.get('name', None)
+ self.description = kwargs.get('description', None)
+ self.tags = kwargs.get('tags', None)
+ self.archive = kwargs.get('archive', None)
+ self.retain_for_lifetime_of_workspace = kwargs.get('retain_for_lifetime_of_workspace', None)
+
+
+class OutputDatasetLineage(msrest.serialization.Model):
+ """OutputDatasetLineage.
+
+ :ivar identifier:
+ :vartype identifier: ~azure.mgmt.machinelearningservices.models.DatasetIdentifier
+ :ivar output_type: Possible values include: "RunOutput", "Reference".
+ :vartype output_type: str or ~azure.mgmt.machinelearningservices.models.DatasetOutputType
+ :ivar output_details:
+ :vartype output_details: ~azure.mgmt.machinelearningservices.models.DatasetOutputDetails
+ """
+
+ _attribute_map = {
+ 'identifier': {'key': 'identifier', 'type': 'DatasetIdentifier'},
+ 'output_type': {'key': 'outputType', 'type': 'str'},
+ 'output_details': {'key': 'outputDetails', 'type': 'DatasetOutputDetails'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword identifier:
+ :paramtype identifier: ~azure.mgmt.machinelearningservices.models.DatasetIdentifier
+ :keyword output_type: Possible values include: "RunOutput", "Reference".
+ :paramtype output_type: str or ~azure.mgmt.machinelearningservices.models.DatasetOutputType
+ :keyword output_details:
+ :paramtype output_details: ~azure.mgmt.machinelearningservices.models.DatasetOutputDetails
+ """
+ super(OutputDatasetLineage, self).__init__(**kwargs)
+ self.identifier = kwargs.get('identifier', None)
+ self.output_type = kwargs.get('output_type', None)
+ self.output_details = kwargs.get('output_details', None)
+
+
+class PaginatedArtifactContentInformationList(msrest.serialization.Model):
+ """A paginated list of ArtifactContentInformations.
+
+ :ivar value: An array of objects of type ArtifactContentInformation.
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.ArtifactContentInformation]
+ :ivar continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :vartype continuation_token: str
+ :ivar next_link: The link to the next page constructed using the continuationToken. If null,
+ there are no additional pages.
+ :vartype next_link: str
+ """
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': '[ArtifactContentInformation]'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'next_link': {'key': 'nextLink', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword value: An array of objects of type ArtifactContentInformation.
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.ArtifactContentInformation]
+ :keyword continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :paramtype continuation_token: str
+ :keyword next_link: The link to the next page constructed using the continuationToken. If
+ null, there are no additional pages.
+ :paramtype next_link: str
+ """
+ super(PaginatedArtifactContentInformationList, self).__init__(**kwargs)
+ self.value = kwargs.get('value', None)
+ self.continuation_token = kwargs.get('continuation_token', None)
+ self.next_link = kwargs.get('next_link', None)
+
+
+class PaginatedArtifactList(msrest.serialization.Model):
+ """A paginated list of Artifacts.
+
+ :ivar value: An array of objects of type Artifact.
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.Artifact]
+ :ivar continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :vartype continuation_token: str
+ :ivar next_link: The link to the next page constructed using the continuationToken. If null,
+ there are no additional pages.
+ :vartype next_link: str
+ """
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': '[Artifact]'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'next_link': {'key': 'nextLink', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword value: An array of objects of type Artifact.
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.Artifact]
+ :keyword continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :paramtype continuation_token: str
+ :keyword next_link: The link to the next page constructed using the continuationToken. If
+ null, there are no additional pages.
+ :paramtype next_link: str
+ """
+ super(PaginatedArtifactList, self).__init__(**kwargs)
+ self.value = kwargs.get('value', None)
+ self.continuation_token = kwargs.get('continuation_token', None)
+ self.next_link = kwargs.get('next_link', None)
+
+
+class PaginatedExperimentList(msrest.serialization.Model):
+ """A paginated list of Experiments.
+
+ :ivar value: An array of objects of type Experiment.
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.Experiment]
+ :ivar continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :vartype continuation_token: str
+ :ivar next_link: The link to the next page constructed using the continuationToken. If null,
+ there are no additional pages.
+ :vartype next_link: str
+ """
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': '[Experiment]'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'next_link': {'key': 'nextLink', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword value: An array of objects of type Experiment.
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.Experiment]
+ :keyword continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :paramtype continuation_token: str
+ :keyword next_link: The link to the next page constructed using the continuationToken. If
+ null, there are no additional pages.
+ :paramtype next_link: str
+ """
+ super(PaginatedExperimentList, self).__init__(**kwargs)
+ self.value = kwargs.get('value', None)
+ self.continuation_token = kwargs.get('continuation_token', None)
+ self.next_link = kwargs.get('next_link', None)
+
+
+class PaginatedMetricDefinitionList(msrest.serialization.Model):
+ """A paginated list of MetricDefinitions.
+
+ :ivar value: An array of objects of type MetricDefinition.
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.MetricDefinition]
+ :ivar continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :vartype continuation_token: str
+ :ivar next_link: The link to the next page constructed using the continuationToken. If null,
+ there are no additional pages.
+ :vartype next_link: str
+ """
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': '[MetricDefinition]'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'next_link': {'key': 'nextLink', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword value: An array of objects of type MetricDefinition.
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.MetricDefinition]
+ :keyword continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :paramtype continuation_token: str
+ :keyword next_link: The link to the next page constructed using the continuationToken. If
+ null, there are no additional pages.
+ :paramtype next_link: str
+ """
+ super(PaginatedMetricDefinitionList, self).__init__(**kwargs)
+ self.value = kwargs.get('value', None)
+ self.continuation_token = kwargs.get('continuation_token', None)
+ self.next_link = kwargs.get('next_link', None)
+
+
+class PaginatedRunList(msrest.serialization.Model):
+ """A paginated list of Runs.
+
+ :ivar value: An array of objects of type Run.
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.Run]
+ :ivar continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :vartype continuation_token: str
+ :ivar next_link: The link to the next page constructed using the continuationToken. If null,
+ there are no additional pages.
+ :vartype next_link: str
+ """
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': '[Run]'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'next_link': {'key': 'nextLink', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword value: An array of objects of type Run.
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.Run]
+ :keyword continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :paramtype continuation_token: str
+ :keyword next_link: The link to the next page constructed using the continuationToken. If
+ null, there are no additional pages.
+ :paramtype next_link: str
+ """
+ super(PaginatedRunList, self).__init__(**kwargs)
+ self.value = kwargs.get('value', None)
+ self.continuation_token = kwargs.get('continuation_token', None)
+ self.next_link = kwargs.get('next_link', None)
+
+
+class PaginatedSpanDefinition1List(msrest.serialization.Model):
+ """A paginated list of SpanDefinition`1s.
+
+ :ivar value: An array of objects of type SpanDefinition`1.
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.SpanDefinition1]
+ :ivar continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :vartype continuation_token: str
+ :ivar next_link: The link to the next page constructed using the continuationToken. If null,
+ there are no additional pages.
+ :vartype next_link: str
+ """
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': '[SpanDefinition1]'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'next_link': {'key': 'nextLink', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword value: An array of objects of type SpanDefinition`1.
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.SpanDefinition1]
+ :keyword continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :paramtype continuation_token: str
+ :keyword next_link: The link to the next page constructed using the continuationToken. If
+ null, there are no additional pages.
+ :paramtype next_link: str
+ """
+ super(PaginatedSpanDefinition1List, self).__init__(**kwargs)
+ self.value = kwargs.get('value', None)
+ self.continuation_token = kwargs.get('continuation_token', None)
+ self.next_link = kwargs.get('next_link', None)
+
+
+class PostRunMetricsError(msrest.serialization.Model):
+ """PostRunMetricsError.
+
+ :ivar metric: Sequence of one or many values sharing a common DataContainerId, Name, and
+ Schema. Used only for Post Metrics.
+ :vartype metric: ~azure.mgmt.machinelearningservices.models.IMetricV2
+ :ivar error_response: The error response.
+ :vartype error_response: ~azure.mgmt.machinelearningservices.models.ErrorResponse
+ """
+
+ _attribute_map = {
+ 'metric': {'key': 'metric', 'type': 'IMetricV2'},
+ 'error_response': {'key': 'errorResponse', 'type': 'ErrorResponse'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword metric: Sequence of one or many values sharing a common DataContainerId, Name, and
+ Schema. Used only for Post Metrics.
+ :paramtype metric: ~azure.mgmt.machinelearningservices.models.IMetricV2
+ :keyword error_response: The error response.
+ :paramtype error_response: ~azure.mgmt.machinelearningservices.models.ErrorResponse
+ """
+ super(PostRunMetricsError, self).__init__(**kwargs)
+ self.metric = kwargs.get('metric', None)
+ self.error_response = kwargs.get('error_response', None)
+
+
+class PostRunMetricsResult(msrest.serialization.Model):
+ """PostRunMetricsResult.
+
+ :ivar errors:
+ :vartype errors: list[~azure.mgmt.machinelearningservices.models.PostRunMetricsError]
+ """
+
+ _attribute_map = {
+ 'errors': {'key': 'errors', 'type': '[PostRunMetricsError]'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword errors:
+ :paramtype errors: list[~azure.mgmt.machinelearningservices.models.PostRunMetricsError]
+ """
+ super(PostRunMetricsResult, self).__init__(**kwargs)
+ self.errors = kwargs.get('errors', None)
+
+
+class QueryParams(msrest.serialization.Model):
+ """The set of supported filters.
+
+ :ivar filter: Allows for filtering the collection of resources.
+ The expression specified is evaluated for each resource in the collection, and only items
+ where the expression evaluates to true are included in the response.
+ See https://learn.microsoft.com/azure/search/query-odata-filter-orderby-syntax for
+ details on the expression syntax.
+ :vartype filter: str
+ :ivar continuation_token: The continuation token to use for getting the next set of resources.
+ :vartype continuation_token: str
+ :ivar order_by: The comma separated list of resource properties to use for sorting the
+ requested resources.
+ Optionally, can be followed by either 'asc' or 'desc'.
+ :vartype order_by: str
+ :ivar top: The maximum number of items in the resource collection to be included in the result.
+ If not specified, all items are returned.
+ :vartype top: int
+ """
+
+ _attribute_map = {
+ 'filter': {'key': 'filter', 'type': 'str'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'order_by': {'key': 'orderBy', 'type': 'str'},
+ 'top': {'key': 'top', 'type': 'int'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword filter: Allows for filtering the collection of resources.
+ The expression specified is evaluated for each resource in the collection, and only items
+ where the expression evaluates to true are included in the response.
+ See https://learn.microsoft.com/azure/search/query-odata-filter-orderby-syntax for
+ details on the expression syntax.
+ :paramtype filter: str
+ :keyword continuation_token: The continuation token to use for getting the next set of
+ resources.
+ :paramtype continuation_token: str
+ :keyword order_by: The comma separated list of resource properties to use for sorting the
+ requested resources.
+ Optionally, can be followed by either 'asc' or 'desc'.
+ :paramtype order_by: str
+ :keyword top: The maximum number of items in the resource collection to be included in the
+ result.
+ If not specified, all items are returned.
+ :paramtype top: int
+ """
+ super(QueryParams, self).__init__(**kwargs)
+ self.filter = kwargs.get('filter', None)
+ self.continuation_token = kwargs.get('continuation_token', None)
+ self.order_by = kwargs.get('order_by', None)
+ self.top = kwargs.get('top', None)
+
+
+class QueueingInfo(msrest.serialization.Model):
+ """QueueingInfo.
+
+ :ivar code:
+ :vartype code: str
+ :ivar message:
+ :vartype message: str
+ :ivar last_refresh_timestamp:
+ :vartype last_refresh_timestamp: ~datetime.datetime
+ """
+
+ _attribute_map = {
+ 'code': {'key': 'code', 'type': 'str'},
+ 'message': {'key': 'message', 'type': 'str'},
+ 'last_refresh_timestamp': {'key': 'lastRefreshTimestamp', 'type': 'iso-8601'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword code:
+ :paramtype code: str
+ :keyword message:
+ :paramtype message: str
+ :keyword last_refresh_timestamp:
+ :paramtype last_refresh_timestamp: ~datetime.datetime
+ """
+ super(QueueingInfo, self).__init__(**kwargs)
+ self.code = kwargs.get('code', None)
+ self.message = kwargs.get('message', None)
+ self.last_refresh_timestamp = kwargs.get('last_refresh_timestamp', None)
+
+
+class RetrieveFullFidelityMetricRequest(msrest.serialization.Model):
+ """RetrieveFullFidelityMetricRequest.
+
+ :ivar metric_name:
+ :vartype metric_name: str
+ :ivar continuation_token:
+ :vartype continuation_token: str
+ :ivar start_time:
+ :vartype start_time: ~datetime.datetime
+ :ivar end_time:
+ :vartype end_time: ~datetime.datetime
+ :ivar metric_namespace:
+ :vartype metric_namespace: str
+ """
+
+ _attribute_map = {
+ 'metric_name': {'key': 'metricName', 'type': 'str'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'start_time': {'key': 'startTime', 'type': 'iso-8601'},
+ 'end_time': {'key': 'endTime', 'type': 'iso-8601'},
+ 'metric_namespace': {'key': 'metricNamespace', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword metric_name:
+ :paramtype metric_name: str
+ :keyword continuation_token:
+ :paramtype continuation_token: str
+ :keyword start_time:
+ :paramtype start_time: ~datetime.datetime
+ :keyword end_time:
+ :paramtype end_time: ~datetime.datetime
+ :keyword metric_namespace:
+ :paramtype metric_namespace: str
+ """
+ super(RetrieveFullFidelityMetricRequest, self).__init__(**kwargs)
+ self.metric_name = kwargs.get('metric_name', None)
+ self.continuation_token = kwargs.get('continuation_token', None)
+ self.start_time = kwargs.get('start_time', None)
+ self.end_time = kwargs.get('end_time', None)
+ self.metric_namespace = kwargs.get('metric_namespace', None)
+
+
+class RootError(msrest.serialization.Model):
+ """The root error.
+
+ :ivar code: The service-defined error code. Supported error codes: ServiceError, UserError,
+ ValidationError, AzureStorageError, TransientError, RequestThrottled.
+ :vartype code: str
+ :ivar severity: The Severity of error.
+ :vartype severity: int
+ :ivar message: A human-readable representation of the error.
+ :vartype message: str
+ :ivar message_format: An unformatted version of the message with no variable substitution.
+ :vartype message_format: str
+ :ivar message_parameters: Value substitutions corresponding to the contents of MessageFormat.
+ :vartype message_parameters: dict[str, str]
+ :ivar reference_code: This code can optionally be set by the system generating the error.
+ It should be used to classify the problem and identify the module and code area where the
+ failure occured.
+ :vartype reference_code: str
+ :ivar details_uri: A URI which points to more details about the context of the error.
+ :vartype details_uri: str
+ :ivar target: The target of the error (e.g., the name of the property in error).
+ :vartype target: str
+ :ivar details: The related errors that occurred during the request.
+ :vartype details: list[~azure.mgmt.machinelearningservices.models.RootError]
+ :ivar inner_error: A nested structure of errors.
+ :vartype inner_error: ~azure.mgmt.machinelearningservices.models.InnerErrorResponse
+ :ivar additional_info: The error additional info.
+ :vartype additional_info: list[~azure.mgmt.machinelearningservices.models.ErrorAdditionalInfo]
+ """
+
+ _attribute_map = {
+ 'code': {'key': 'code', 'type': 'str'},
+ 'severity': {'key': 'severity', 'type': 'int'},
+ 'message': {'key': 'message', 'type': 'str'},
+ 'message_format': {'key': 'messageFormat', 'type': 'str'},
+ 'message_parameters': {'key': 'messageParameters', 'type': '{str}'},
+ 'reference_code': {'key': 'referenceCode', 'type': 'str'},
+ 'details_uri': {'key': 'detailsUri', 'type': 'str'},
+ 'target': {'key': 'target', 'type': 'str'},
+ 'details': {'key': 'details', 'type': '[RootError]'},
+ 'inner_error': {'key': 'innerError', 'type': 'InnerErrorResponse'},
+ 'additional_info': {'key': 'additionalInfo', 'type': '[ErrorAdditionalInfo]'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword code: The service-defined error code. Supported error codes: ServiceError, UserError,
+ ValidationError, AzureStorageError, TransientError, RequestThrottled.
+ :paramtype code: str
+ :keyword severity: The Severity of error.
+ :paramtype severity: int
+ :keyword message: A human-readable representation of the error.
+ :paramtype message: str
+ :keyword message_format: An unformatted version of the message with no variable substitution.
+ :paramtype message_format: str
+ :keyword message_parameters: Value substitutions corresponding to the contents of
+ MessageFormat.
+ :paramtype message_parameters: dict[str, str]
+ :keyword reference_code: This code can optionally be set by the system generating the error.
+ It should be used to classify the problem and identify the module and code area where the
+ failure occured.
+ :paramtype reference_code: str
+ :keyword details_uri: A URI which points to more details about the context of the error.
+ :paramtype details_uri: str
+ :keyword target: The target of the error (e.g., the name of the property in error).
+ :paramtype target: str
+ :keyword details: The related errors that occurred during the request.
+ :paramtype details: list[~azure.mgmt.machinelearningservices.models.RootError]
+ :keyword inner_error: A nested structure of errors.
+ :paramtype inner_error: ~azure.mgmt.machinelearningservices.models.InnerErrorResponse
+ :keyword additional_info: The error additional info.
+ :paramtype additional_info:
+ list[~azure.mgmt.machinelearningservices.models.ErrorAdditionalInfo]
+ """
+ super(RootError, self).__init__(**kwargs)
+ self.code = kwargs.get('code', None)
+ self.severity = kwargs.get('severity', None)
+ self.message = kwargs.get('message', None)
+ self.message_format = kwargs.get('message_format', None)
+ self.message_parameters = kwargs.get('message_parameters', None)
+ self.reference_code = kwargs.get('reference_code', None)
+ self.details_uri = kwargs.get('details_uri', None)
+ self.target = kwargs.get('target', None)
+ self.details = kwargs.get('details', None)
+ self.inner_error = kwargs.get('inner_error', None)
+ self.additional_info = kwargs.get('additional_info', None)
+
+
+class Run(msrest.serialization.Model):
+ """The definition of a Run.
+
+ :ivar run_number:
+ :vartype run_number: int
+ :ivar root_run_id:
+ :vartype root_run_id: str
+ :ivar created_utc: The time the run was created in UTC.
+ :vartype created_utc: ~datetime.datetime
+ :ivar created_by:
+ :vartype created_by: ~azure.mgmt.machinelearningservices.models.User
+ :ivar user_id: The Id of the user that created the run.
+ :vartype user_id: str
+ :ivar token: A token used for authenticating a run.
+ :vartype token: str
+ :ivar token_expiry_time_utc: The Token expiration time in UTC.
+ :vartype token_expiry_time_utc: ~datetime.datetime
+ :ivar error: The error response.
+ :vartype error: ~azure.mgmt.machinelearningservices.models.ErrorResponse
+ :ivar warnings: A list of warnings that occurred during the run.
+ :vartype warnings: list[~azure.mgmt.machinelearningservices.models.RunDetailsWarning]
+ :ivar revision:
+ :vartype revision: long
+ :ivar status_revision:
+ :vartype status_revision: long
+ :ivar run_uuid: A system generated Id for the run.
+ :vartype run_uuid: str
+ :ivar parent_run_uuid: A system generated Id for the run's parent.
+ :vartype parent_run_uuid: str
+ :ivar root_run_uuid: A system generated Id for the root of the run's hierarchy.
+ :vartype root_run_uuid: str
+ :ivar has_virtual_parent: Indicates if this is a child of a virtual run.
+ :vartype has_virtual_parent: bool
+ :ivar last_start_time_utc: The last timestamp when a run transitioned from paused to running.
+ Initialized when StartTimeUtc is first set.
+ :vartype last_start_time_utc: ~datetime.datetime
+ :ivar current_compute_time: The cumulative time spent in an active status for an active run.
+ :vartype current_compute_time: str
+ :ivar compute_duration: The cumulative time spent in an active status for a terminal run.
+ :vartype compute_duration: str
+ :ivar effective_start_time_utc: A relative start time set as LastStartTimeUtc - ComputeTime for
+ active runs. This allows sorting active runs on how long they have been active, since an actual
+ active duration cannot be frequently updated.
+ :vartype effective_start_time_utc: ~datetime.datetime
+ :ivar last_modified_by:
+ :vartype last_modified_by: ~azure.mgmt.machinelearningservices.models.User
+ :ivar last_modified_utc: The time the run was created in UTC.
+ :vartype last_modified_utc: ~datetime.datetime
+ :ivar duration: The total duration of a run.
+ :vartype duration: str
+ :ivar cancelation_reason: The cancelation Reason if the run was canceled.
+ :vartype cancelation_reason: str
+ :ivar run_id: The identifier for the run. Run IDs must be less than 256 characters and contain
+ only alphanumeric characters with dashes and underscores.
+ :vartype run_id: str
+ :ivar parent_run_id: The parent of the run if the run is hierarchical; otherwise, Null.
+ :vartype parent_run_id: str
+ :ivar experiment_id: The Id of the experiment that created this run.
+ :vartype experiment_id: str
+ :ivar status: The status of the run. The Status string value maps to the RunStatus Enum.
+ :vartype status: str
+ :ivar start_time_utc: The start time of the run in UTC.
+ :vartype start_time_utc: ~datetime.datetime
+ :ivar end_time_utc: The end time of the run in UTC.
+ :vartype end_time_utc: ~datetime.datetime
+ :ivar options:
+ :vartype options: ~azure.mgmt.machinelearningservices.models.RunOptions
+ :ivar is_virtual: A virtual run can set an active child run that will override the virtual run
+ status and properties.
+ :vartype is_virtual: bool
+ :ivar display_name:
+ :vartype display_name: str
+ :ivar name:
+ :vartype name: str
+ :ivar data_container_id:
+ :vartype data_container_id: str
+ :ivar description:
+ :vartype description: str
+ :ivar hidden:
+ :vartype hidden: bool
+ :ivar run_type:
+ :vartype run_type: str
+ :ivar run_type_v2:
+ :vartype run_type_v2: ~azure.mgmt.machinelearningservices.models.RunTypeV2
+ :ivar properties: Dictionary of :code:`<string>`.
+ :vartype properties: dict[str, str]
+ :ivar parameters: Dictionary of :code:`<any>`.
+ :vartype parameters: dict[str, any]
+ :ivar action_uris: Dictionary of :code:`<string>`.
+ :vartype action_uris: dict[str, str]
+ :ivar script_name:
+ :vartype script_name: str
+ :ivar target:
+ :vartype target: str
+ :ivar unique_child_run_compute_targets:
+ :vartype unique_child_run_compute_targets: list[str]
+ :ivar tags: A set of tags. Dictionary of :code:`<string>`.
+ :vartype tags: dict[str, str]
+ :ivar settings: Dictionary of :code:`<string>`.
+ :vartype settings: dict[str, str]
+ :ivar services: Dictionary of :code:`<EndpointSetting>`.
+ :vartype services: dict[str, ~azure.mgmt.machinelearningservices.models.EndpointSetting]
+ :ivar input_datasets:
+ :vartype input_datasets: list[~azure.mgmt.machinelearningservices.models.DatasetLineage]
+ :ivar output_datasets:
+ :vartype output_datasets: list[~azure.mgmt.machinelearningservices.models.OutputDatasetLineage]
+ :ivar run_definition: Anything.
+ :vartype run_definition: any
+ :ivar job_specification: Anything.
+ :vartype job_specification: any
+ :ivar primary_metric_name:
+ :vartype primary_metric_name: str
+ :ivar created_from:
+ :vartype created_from: ~azure.mgmt.machinelearningservices.models.CreatedFrom
+ :ivar cancel_uri:
+ :vartype cancel_uri: str
+ :ivar complete_uri:
+ :vartype complete_uri: str
+ :ivar diagnostics_uri:
+ :vartype diagnostics_uri: str
+ :ivar compute_request:
+ :vartype compute_request: ~azure.mgmt.machinelearningservices.models.ComputeRequest
+ :ivar compute:
+ :vartype compute: ~azure.mgmt.machinelearningservices.models.Compute
+ :ivar retain_for_lifetime_of_workspace:
+ :vartype retain_for_lifetime_of_workspace: bool
+ :ivar queueing_info:
+ :vartype queueing_info: ~azure.mgmt.machinelearningservices.models.QueueingInfo
+ :ivar active_child_run_id: The RunId of the active child on a virtual run.
+ :vartype active_child_run_id: str
+ :ivar inputs: Dictionary of :code:`<TypedAssetReference>`.
+ :vartype inputs: dict[str, ~azure.mgmt.machinelearningservices.models.TypedAssetReference]
+ :ivar outputs: Dictionary of :code:`<TypedAssetReference>`.
+ :vartype outputs: dict[str, ~azure.mgmt.machinelearningservices.models.TypedAssetReference]
+ """
+
+ _validation = {
+ 'unique_child_run_compute_targets': {'unique': True},
+ 'input_datasets': {'unique': True},
+ 'output_datasets': {'unique': True},
+ }
+
+ _attribute_map = {
+ 'run_number': {'key': 'runNumber', 'type': 'int'},
+ 'root_run_id': {'key': 'rootRunId', 'type': 'str'},
+ 'created_utc': {'key': 'createdUtc', 'type': 'iso-8601'},
+ 'created_by': {'key': 'createdBy', 'type': 'User'},
+ 'user_id': {'key': 'userId', 'type': 'str'},
+ 'token': {'key': 'token', 'type': 'str'},
+ 'token_expiry_time_utc': {'key': 'tokenExpiryTimeUtc', 'type': 'iso-8601'},
+ 'error': {'key': 'error', 'type': 'ErrorResponse'},
+ 'warnings': {'key': 'warnings', 'type': '[RunDetailsWarning]'},
+ 'revision': {'key': 'revision', 'type': 'long'},
+ 'status_revision': {'key': 'statusRevision', 'type': 'long'},
+ 'run_uuid': {'key': 'runUuid', 'type': 'str'},
+ 'parent_run_uuid': {'key': 'parentRunUuid', 'type': 'str'},
+ 'root_run_uuid': {'key': 'rootRunUuid', 'type': 'str'},
+ 'has_virtual_parent': {'key': 'hasVirtualParent', 'type': 'bool'},
+ 'last_start_time_utc': {'key': 'lastStartTimeUtc', 'type': 'iso-8601'},
+ 'current_compute_time': {'key': 'currentComputeTime', 'type': 'str'},
+ 'compute_duration': {'key': 'computeDuration', 'type': 'str'},
+ 'effective_start_time_utc': {'key': 'effectiveStartTimeUtc', 'type': 'iso-8601'},
+ 'last_modified_by': {'key': 'lastModifiedBy', 'type': 'User'},
+ 'last_modified_utc': {'key': 'lastModifiedUtc', 'type': 'iso-8601'},
+ 'duration': {'key': 'duration', 'type': 'str'},
+ 'cancelation_reason': {'key': 'cancelationReason', 'type': 'str'},
+ 'run_id': {'key': 'runId', 'type': 'str'},
+ 'parent_run_id': {'key': 'parentRunId', 'type': 'str'},
+ 'experiment_id': {'key': 'experimentId', 'type': 'str'},
+ 'status': {'key': 'status', 'type': 'str'},
+ 'start_time_utc': {'key': 'startTimeUtc', 'type': 'iso-8601'},
+ 'end_time_utc': {'key': 'endTimeUtc', 'type': 'iso-8601'},
+ 'options': {'key': 'options', 'type': 'RunOptions'},
+ 'is_virtual': {'key': 'isVirtual', 'type': 'bool'},
+ 'display_name': {'key': 'displayName', 'type': 'str'},
+ 'name': {'key': 'name', 'type': 'str'},
+ 'data_container_id': {'key': 'dataContainerId', 'type': 'str'},
+ 'description': {'key': 'description', 'type': 'str'},
+ 'hidden': {'key': 'hidden', 'type': 'bool'},
+ 'run_type': {'key': 'runType', 'type': 'str'},
+ 'run_type_v2': {'key': 'runTypeV2', 'type': 'RunTypeV2'},
+ 'properties': {'key': 'properties', 'type': '{str}'},
+ 'parameters': {'key': 'parameters', 'type': '{object}'},
+ 'action_uris': {'key': 'actionUris', 'type': '{str}'},
+ 'script_name': {'key': 'scriptName', 'type': 'str'},
+ 'target': {'key': 'target', 'type': 'str'},
+ 'unique_child_run_compute_targets': {'key': 'uniqueChildRunComputeTargets', 'type': '[str]'},
+ 'tags': {'key': 'tags', 'type': '{str}'},
+ 'settings': {'key': 'settings', 'type': '{str}'},
+ 'services': {'key': 'services', 'type': '{EndpointSetting}'},
+ 'input_datasets': {'key': 'inputDatasets', 'type': '[DatasetLineage]'},
+ 'output_datasets': {'key': 'outputDatasets', 'type': '[OutputDatasetLineage]'},
+ 'run_definition': {'key': 'runDefinition', 'type': 'object'},
+ 'job_specification': {'key': 'jobSpecification', 'type': 'object'},
+ 'primary_metric_name': {'key': 'primaryMetricName', 'type': 'str'},
+ 'created_from': {'key': 'createdFrom', 'type': 'CreatedFrom'},
+ 'cancel_uri': {'key': 'cancelUri', 'type': 'str'},
+ 'complete_uri': {'key': 'completeUri', 'type': 'str'},
+ 'diagnostics_uri': {'key': 'diagnosticsUri', 'type': 'str'},
+ 'compute_request': {'key': 'computeRequest', 'type': 'ComputeRequest'},
+ 'compute': {'key': 'compute', 'type': 'Compute'},
+ 'retain_for_lifetime_of_workspace': {'key': 'retainForLifetimeOfWorkspace', 'type': 'bool'},
+ 'queueing_info': {'key': 'queueingInfo', 'type': 'QueueingInfo'},
+ 'active_child_run_id': {'key': 'activeChildRunId', 'type': 'str'},
+ 'inputs': {'key': 'inputs', 'type': '{TypedAssetReference}'},
+ 'outputs': {'key': 'outputs', 'type': '{TypedAssetReference}'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword run_number:
+ :paramtype run_number: int
+ :keyword root_run_id:
+ :paramtype root_run_id: str
+ :keyword created_utc: The time the run was created in UTC.
+ :paramtype created_utc: ~datetime.datetime
+ :keyword created_by:
+ :paramtype created_by: ~azure.mgmt.machinelearningservices.models.User
+ :keyword user_id: The Id of the user that created the run.
+ :paramtype user_id: str
+ :keyword token: A token used for authenticating a run.
+ :paramtype token: str
+ :keyword token_expiry_time_utc: The Token expiration time in UTC.
+ :paramtype token_expiry_time_utc: ~datetime.datetime
+ :keyword error: The error response.
+ :paramtype error: ~azure.mgmt.machinelearningservices.models.ErrorResponse
+ :keyword warnings: A list of warnings that occurred during the run.
+ :paramtype warnings: list[~azure.mgmt.machinelearningservices.models.RunDetailsWarning]
+ :keyword revision:
+ :paramtype revision: long
+ :keyword status_revision:
+ :paramtype status_revision: long
+ :keyword run_uuid: A system generated Id for the run.
+ :paramtype run_uuid: str
+ :keyword parent_run_uuid: A system generated Id for the run's parent.
+ :paramtype parent_run_uuid: str
+ :keyword root_run_uuid: A system generated Id for the root of the run's hierarchy.
+ :paramtype root_run_uuid: str
+ :keyword has_virtual_parent: Indicates if this is a child of a virtual run.
+ :paramtype has_virtual_parent: bool
+ :keyword last_start_time_utc: The last timestamp when a run transitioned from paused to
+ running. Initialized when StartTimeUtc is first set.
+ :paramtype last_start_time_utc: ~datetime.datetime
+ :keyword current_compute_time: The cumulative time spent in an active status for an active run.
+ :paramtype current_compute_time: str
+ :keyword compute_duration: The cumulative time spent in an active status for a terminal run.
+ :paramtype compute_duration: str
+ :keyword effective_start_time_utc: A relative start time set as LastStartTimeUtc - ComputeTime
+ for active runs. This allows sorting active runs on how long they have been active, since an
+ actual active duration cannot be frequently updated.
+ :paramtype effective_start_time_utc: ~datetime.datetime
+ :keyword last_modified_by:
+ :paramtype last_modified_by: ~azure.mgmt.machinelearningservices.models.User
+ :keyword last_modified_utc: The time the run was created in UTC.
+ :paramtype last_modified_utc: ~datetime.datetime
+ :keyword duration: The total duration of a run.
+ :paramtype duration: str
+ :keyword cancelation_reason: The cancelation Reason if the run was canceled.
+ :paramtype cancelation_reason: str
+ :keyword run_id: The identifier for the run. Run IDs must be less than 256 characters and
+ contain only alphanumeric characters with dashes and underscores.
+ :paramtype run_id: str
+ :keyword parent_run_id: The parent of the run if the run is hierarchical; otherwise, Null.
+ :paramtype parent_run_id: str
+ :keyword experiment_id: The Id of the experiment that created this run.
+ :paramtype experiment_id: str
+ :keyword status: The status of the run. The Status string value maps to the RunStatus Enum.
+ :paramtype status: str
+ :keyword start_time_utc: The start time of the run in UTC.
+ :paramtype start_time_utc: ~datetime.datetime
+ :keyword end_time_utc: The end time of the run in UTC.
+ :paramtype end_time_utc: ~datetime.datetime
+ :keyword options:
+ :paramtype options: ~azure.mgmt.machinelearningservices.models.RunOptions
+ :keyword is_virtual: A virtual run can set an active child run that will override the virtual
+ run status and properties.
+ :paramtype is_virtual: bool
+ :keyword display_name:
+ :paramtype display_name: str
+ :keyword name:
+ :paramtype name: str
+ :keyword data_container_id:
+ :paramtype data_container_id: str
+ :keyword description:
+ :paramtype description: str
+ :keyword hidden:
+ :paramtype hidden: bool
+ :keyword run_type:
+ :paramtype run_type: str
+ :keyword run_type_v2:
+ :paramtype run_type_v2: ~azure.mgmt.machinelearningservices.models.RunTypeV2
+ :keyword properties: Dictionary of :code:`<string>`.
+ :paramtype properties: dict[str, str]
+ :keyword parameters: Dictionary of :code:`<any>`.
+ :paramtype parameters: dict[str, any]
+ :keyword action_uris: Dictionary of :code:`<string>`.
+ :paramtype action_uris: dict[str, str]
+ :keyword script_name:
+ :paramtype script_name: str
+ :keyword target:
+ :paramtype target: str
+ :keyword unique_child_run_compute_targets:
+ :paramtype unique_child_run_compute_targets: list[str]
+ :keyword tags: A set of tags. Dictionary of :code:`<string>`.
+ :paramtype tags: dict[str, str]
+ :keyword settings: Dictionary of :code:`<string>`.
+ :paramtype settings: dict[str, str]
+ :keyword services: Dictionary of :code:`<EndpointSetting>`.
+ :paramtype services: dict[str, ~azure.mgmt.machinelearningservices.models.EndpointSetting]
+ :keyword input_datasets:
+ :paramtype input_datasets: list[~azure.mgmt.machinelearningservices.models.DatasetLineage]
+ :keyword output_datasets:
+ :paramtype output_datasets:
+ list[~azure.mgmt.machinelearningservices.models.OutputDatasetLineage]
+ :keyword run_definition: Anything.
+ :paramtype run_definition: any
+ :keyword job_specification: Anything.
+ :paramtype job_specification: any
+ :keyword primary_metric_name:
+ :paramtype primary_metric_name: str
+ :keyword created_from:
+ :paramtype created_from: ~azure.mgmt.machinelearningservices.models.CreatedFrom
+ :keyword cancel_uri:
+ :paramtype cancel_uri: str
+ :keyword complete_uri:
+ :paramtype complete_uri: str
+ :keyword diagnostics_uri:
+ :paramtype diagnostics_uri: str
+ :keyword compute_request:
+ :paramtype compute_request: ~azure.mgmt.machinelearningservices.models.ComputeRequest
+ :keyword compute:
+ :paramtype compute: ~azure.mgmt.machinelearningservices.models.Compute
+ :keyword retain_for_lifetime_of_workspace:
+ :paramtype retain_for_lifetime_of_workspace: bool
+ :keyword queueing_info:
+ :paramtype queueing_info: ~azure.mgmt.machinelearningservices.models.QueueingInfo
+ :keyword active_child_run_id: The RunId of the active child on a virtual run.
+ :paramtype active_child_run_id: str
+ :keyword inputs: Dictionary of :code:`<TypedAssetReference>`.
+ :paramtype inputs: dict[str, ~azure.mgmt.machinelearningservices.models.TypedAssetReference]
+ :keyword outputs: Dictionary of :code:`<TypedAssetReference>`.
+ :paramtype outputs: dict[str, ~azure.mgmt.machinelearningservices.models.TypedAssetReference]
+ """
+ super(Run, self).__init__(**kwargs)
+ self.run_number = kwargs.get('run_number', None)
+ self.root_run_id = kwargs.get('root_run_id', None)
+ self.created_utc = kwargs.get('created_utc', None)
+ self.created_by = kwargs.get('created_by', None)
+ self.user_id = kwargs.get('user_id', None)
+ self.token = kwargs.get('token', None)
+ self.token_expiry_time_utc = kwargs.get('token_expiry_time_utc', None)
+ self.error = kwargs.get('error', None)
+ self.warnings = kwargs.get('warnings', None)
+ self.revision = kwargs.get('revision', None)
+ self.status_revision = kwargs.get('status_revision', None)
+ self.run_uuid = kwargs.get('run_uuid', None)
+ self.parent_run_uuid = kwargs.get('parent_run_uuid', None)
+ self.root_run_uuid = kwargs.get('root_run_uuid', None)
+ self.has_virtual_parent = kwargs.get('has_virtual_parent', None)
+ self.last_start_time_utc = kwargs.get('last_start_time_utc', None)
+ self.current_compute_time = kwargs.get('current_compute_time', None)
+ self.compute_duration = kwargs.get('compute_duration', None)
+ self.effective_start_time_utc = kwargs.get('effective_start_time_utc', None)
+ self.last_modified_by = kwargs.get('last_modified_by', None)
+ self.last_modified_utc = kwargs.get('last_modified_utc', None)
+ self.duration = kwargs.get('duration', None)
+ self.cancelation_reason = kwargs.get('cancelation_reason', None)
+ self.run_id = kwargs.get('run_id', None)
+ self.parent_run_id = kwargs.get('parent_run_id', None)
+ self.experiment_id = kwargs.get('experiment_id', None)
+ self.status = kwargs.get('status', None)
+ self.start_time_utc = kwargs.get('start_time_utc', None)
+ self.end_time_utc = kwargs.get('end_time_utc', None)
+ self.options = kwargs.get('options', None)
+ self.is_virtual = kwargs.get('is_virtual', None)
+ self.display_name = kwargs.get('display_name', None)
+ self.name = kwargs.get('name', None)
+ self.data_container_id = kwargs.get('data_container_id', None)
+ self.description = kwargs.get('description', None)
+ self.hidden = kwargs.get('hidden', None)
+ self.run_type = kwargs.get('run_type', None)
+ self.run_type_v2 = kwargs.get('run_type_v2', None)
+ self.properties = kwargs.get('properties', None)
+ self.parameters = kwargs.get('parameters', None)
+ self.action_uris = kwargs.get('action_uris', None)
+ self.script_name = kwargs.get('script_name', None)
+ self.target = kwargs.get('target', None)
+ self.unique_child_run_compute_targets = kwargs.get('unique_child_run_compute_targets', None)
+ self.tags = kwargs.get('tags', None)
+ self.settings = kwargs.get('settings', None)
+ self.services = kwargs.get('services', None)
+ self.input_datasets = kwargs.get('input_datasets', None)
+ self.output_datasets = kwargs.get('output_datasets', None)
+ self.run_definition = kwargs.get('run_definition', None)
+ self.job_specification = kwargs.get('job_specification', None)
+ self.primary_metric_name = kwargs.get('primary_metric_name', None)
+ self.created_from = kwargs.get('created_from', None)
+ self.cancel_uri = kwargs.get('cancel_uri', None)
+ self.complete_uri = kwargs.get('complete_uri', None)
+ self.diagnostics_uri = kwargs.get('diagnostics_uri', None)
+ self.compute_request = kwargs.get('compute_request', None)
+ self.compute = kwargs.get('compute', None)
+ self.retain_for_lifetime_of_workspace = kwargs.get('retain_for_lifetime_of_workspace', None)
+ self.queueing_info = kwargs.get('queueing_info', None)
+ self.active_child_run_id = kwargs.get('active_child_run_id', None)
+ self.inputs = kwargs.get('inputs', None)
+ self.outputs = kwargs.get('outputs', None)
+
+
+class RunDetails(msrest.serialization.Model):
+ """The details of the run.
+
+ :ivar run_id: The identifier for the run.
+ :vartype run_id: str
+ :ivar run_uuid: A system generated Id for the run.
+ :vartype run_uuid: str
+ :ivar parent_run_uuid: A system generated Id for the run's parent.
+ :vartype parent_run_uuid: str
+ :ivar root_run_uuid: A system generated Id for the root of the run's hierarchy.
+ :vartype root_run_uuid: str
+ :ivar target: The name of the compute target where the run is executed.
+ :vartype target: str
+ :ivar status: The status of the run. The Status string value maps to the RunStatus Enum.
+ :vartype status: str
+ :ivar parent_run_id: The parent of the run if the run is hierarchical.
+ :vartype parent_run_id: str
+ :ivar created_time_utc: The creation time of the run in UTC.
+ :vartype created_time_utc: ~datetime.datetime
+ :ivar start_time_utc: The start time of the run in UTC.
+ :vartype start_time_utc: ~datetime.datetime
+ :ivar end_time_utc: The end time of the run in UTC.
+ :vartype end_time_utc: ~datetime.datetime
+ :ivar error: The error response.
+ :vartype error: ~azure.mgmt.machinelearningservices.models.ErrorResponse
+ :ivar warnings: A list of warnings that occurred during the run.
+ :vartype warnings: list[~azure.mgmt.machinelearningservices.models.RunDetailsWarning]
+ :ivar tags: A set of tags. The tag dictionary for the run. Tags are mutable.
+ :vartype tags: dict[str, str]
+ :ivar properties: The properties dictionary for the run. Properties are immutable.
+ :vartype properties: dict[str, str]
+ :ivar parameters: The parameters dictionary for the run. Parameters are immutable.
+ :vartype parameters: dict[str, any]
+ :ivar services: The interactive run services for a run. Services are mutable.
+ :vartype services: dict[str, ~azure.mgmt.machinelearningservices.models.EndpointSetting]
+ :ivar input_datasets: A list of dataset used as input to the run.
+ :vartype input_datasets: list[~azure.mgmt.machinelearningservices.models.DatasetLineage]
+ :ivar output_datasets: A list of dataset used as output to the run.
+ :vartype output_datasets: list[~azure.mgmt.machinelearningservices.models.OutputDatasetLineage]
+ :ivar run_definition: The run definition specification.
+ :vartype run_definition: any
+ :ivar log_files: Dictionary of :code:`<string>`.
+ :vartype log_files: dict[str, str]
+ :ivar job_cost:
+ :vartype job_cost: ~azure.mgmt.machinelearningservices.models.JobCost
+ :ivar revision:
+ :vartype revision: long
+ :ivar run_type_v2:
+ :vartype run_type_v2: ~azure.mgmt.machinelearningservices.models.RunTypeV2
+ :ivar settings: The run settings.
+ :vartype settings: dict[str, str]
+ :ivar compute_request:
+ :vartype compute_request: ~azure.mgmt.machinelearningservices.models.ComputeRequest
+ :ivar compute:
+ :vartype compute: ~azure.mgmt.machinelearningservices.models.Compute
+ :ivar created_by:
+ :vartype created_by: ~azure.mgmt.machinelearningservices.models.User
+ :ivar compute_duration: Time spent in an active state for terminal runs.
+ :vartype compute_duration: str
+ :ivar effective_start_time_utc: Relative start time of active runs for ordering and computing
+ active compute duration.
+ Compute duration of an active run is now() - EffectiveStartTimeUtc.
+ :vartype effective_start_time_utc: ~datetime.datetime
+ :ivar run_number: Relative start time of active runs for ordering and computing active compute
+ duration.
+ Compute duration of an active run is now() - EffectiveStartTimeUtc.
+ :vartype run_number: int
+ :ivar root_run_id:
+ :vartype root_run_id: str
+ :ivar user_id: The Id of the user that created the run.
+ :vartype user_id: str
+ :ivar status_revision:
+ :vartype status_revision: long
+ :ivar has_virtual_parent: Indicates if this is a child of a virtual run.
+ :vartype has_virtual_parent: bool
+ :ivar current_compute_time: The cumulative time spent in an active status for an active run.
+ :vartype current_compute_time: str
+ :ivar last_start_time_utc: The last timestamp when a run transitioned from paused to running.
+ Initialized when StartTimeUtc is first set.
+ :vartype last_start_time_utc: ~datetime.datetime
+ :ivar last_modified_by:
+ :vartype last_modified_by: ~azure.mgmt.machinelearningservices.models.User
+ :ivar last_modified_utc: The time the run was created in UTC.
+ :vartype last_modified_utc: ~datetime.datetime
+ :ivar duration: The total duration of a run.
+ :vartype duration: str
+ :ivar inputs: The inputs for the run.
+ :vartype inputs: dict[str, ~azure.mgmt.machinelearningservices.models.TypedAssetReference]
+ :ivar outputs: The outputs for the run.
+ :vartype outputs: dict[str, ~azure.mgmt.machinelearningservices.models.TypedAssetReference]
+ """
+
+ _validation = {
+ 'input_datasets': {'unique': True},
+ 'output_datasets': {'unique': True},
+ }
+
+ _attribute_map = {
+ 'run_id': {'key': 'runId', 'type': 'str'},
+ 'run_uuid': {'key': 'runUuid', 'type': 'str'},
+ 'parent_run_uuid': {'key': 'parentRunUuid', 'type': 'str'},
+ 'root_run_uuid': {'key': 'rootRunUuid', 'type': 'str'},
+ 'target': {'key': 'target', 'type': 'str'},
+ 'status': {'key': 'status', 'type': 'str'},
+ 'parent_run_id': {'key': 'parentRunId', 'type': 'str'},
+ 'created_time_utc': {'key': 'createdTimeUtc', 'type': 'iso-8601'},
+ 'start_time_utc': {'key': 'startTimeUtc', 'type': 'iso-8601'},
+ 'end_time_utc': {'key': 'endTimeUtc', 'type': 'iso-8601'},
+ 'error': {'key': 'error', 'type': 'ErrorResponse'},
+ 'warnings': {'key': 'warnings', 'type': '[RunDetailsWarning]'},
+ 'tags': {'key': 'tags', 'type': '{str}'},
+ 'properties': {'key': 'properties', 'type': '{str}'},
+ 'parameters': {'key': 'parameters', 'type': '{object}'},
+ 'services': {'key': 'services', 'type': '{EndpointSetting}'},
+ 'input_datasets': {'key': 'inputDatasets', 'type': '[DatasetLineage]'},
+ 'output_datasets': {'key': 'outputDatasets', 'type': '[OutputDatasetLineage]'},
+ 'run_definition': {'key': 'runDefinition', 'type': 'object'},
+ 'log_files': {'key': 'logFiles', 'type': '{str}'},
+ 'job_cost': {'key': 'jobCost', 'type': 'JobCost'},
+ 'revision': {'key': 'revision', 'type': 'long'},
+ 'run_type_v2': {'key': 'runTypeV2', 'type': 'RunTypeV2'},
+ 'settings': {'key': 'settings', 'type': '{str}'},
+ 'compute_request': {'key': 'computeRequest', 'type': 'ComputeRequest'},
+ 'compute': {'key': 'compute', 'type': 'Compute'},
+ 'created_by': {'key': 'createdBy', 'type': 'User'},
+ 'compute_duration': {'key': 'computeDuration', 'type': 'str'},
+ 'effective_start_time_utc': {'key': 'effectiveStartTimeUtc', 'type': 'iso-8601'},
+ 'run_number': {'key': 'runNumber', 'type': 'int'},
+ 'root_run_id': {'key': 'rootRunId', 'type': 'str'},
+ 'user_id': {'key': 'userId', 'type': 'str'},
+ 'status_revision': {'key': 'statusRevision', 'type': 'long'},
+ 'has_virtual_parent': {'key': 'hasVirtualParent', 'type': 'bool'},
+ 'current_compute_time': {'key': 'currentComputeTime', 'type': 'str'},
+ 'last_start_time_utc': {'key': 'lastStartTimeUtc', 'type': 'iso-8601'},
+ 'last_modified_by': {'key': 'lastModifiedBy', 'type': 'User'},
+ 'last_modified_utc': {'key': 'lastModifiedUtc', 'type': 'iso-8601'},
+ 'duration': {'key': 'duration', 'type': 'str'},
+ 'inputs': {'key': 'inputs', 'type': '{TypedAssetReference}'},
+ 'outputs': {'key': 'outputs', 'type': '{TypedAssetReference}'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword run_id: The identifier for the run.
+ :paramtype run_id: str
+ :keyword run_uuid: A system generated Id for the run.
+ :paramtype run_uuid: str
+ :keyword parent_run_uuid: A system generated Id for the run's parent.
+ :paramtype parent_run_uuid: str
+ :keyword root_run_uuid: A system generated Id for the root of the run's hierarchy.
+ :paramtype root_run_uuid: str
+ :keyword target: The name of the compute target where the run is executed.
+ :paramtype target: str
+ :keyword status: The status of the run. The Status string value maps to the RunStatus Enum.
+ :paramtype status: str
+ :keyword parent_run_id: The parent of the run if the run is hierarchical.
+ :paramtype parent_run_id: str
+ :keyword created_time_utc: The creation time of the run in UTC.
+ :paramtype created_time_utc: ~datetime.datetime
+ :keyword start_time_utc: The start time of the run in UTC.
+ :paramtype start_time_utc: ~datetime.datetime
+ :keyword end_time_utc: The end time of the run in UTC.
+ :paramtype end_time_utc: ~datetime.datetime
+ :keyword error: The error response.
+ :paramtype error: ~azure.mgmt.machinelearningservices.models.ErrorResponse
+ :keyword warnings: A list of warnings that occurred during the run.
+ :paramtype warnings: list[~azure.mgmt.machinelearningservices.models.RunDetailsWarning]
+ :keyword tags: A set of tags. The tag dictionary for the run. Tags are mutable.
+ :paramtype tags: dict[str, str]
+ :keyword properties: The properties dictionary for the run. Properties are immutable.
+ :paramtype properties: dict[str, str]
+ :keyword parameters: The parameters dictionary for the run. Parameters are immutable.
+ :paramtype parameters: dict[str, any]
+ :keyword services: The interactive run services for a run. Services are mutable.
+ :paramtype services: dict[str, ~azure.mgmt.machinelearningservices.models.EndpointSetting]
+ :keyword input_datasets: A list of dataset used as input to the run.
+ :paramtype input_datasets: list[~azure.mgmt.machinelearningservices.models.DatasetLineage]
+ :keyword output_datasets: A list of dataset used as output to the run.
+ :paramtype output_datasets:
+ list[~azure.mgmt.machinelearningservices.models.OutputDatasetLineage]
+ :keyword run_definition: The run definition specification.
+ :paramtype run_definition: any
+ :keyword log_files: Dictionary of :code:`<string>`.
+ :paramtype log_files: dict[str, str]
+ :keyword job_cost:
+ :paramtype job_cost: ~azure.mgmt.machinelearningservices.models.JobCost
+ :keyword revision:
+ :paramtype revision: long
+ :keyword run_type_v2:
+ :paramtype run_type_v2: ~azure.mgmt.machinelearningservices.models.RunTypeV2
+ :keyword settings: The run settings.
+ :paramtype settings: dict[str, str]
+ :keyword compute_request:
+ :paramtype compute_request: ~azure.mgmt.machinelearningservices.models.ComputeRequest
+ :keyword compute:
+ :paramtype compute: ~azure.mgmt.machinelearningservices.models.Compute
+ :keyword created_by:
+ :paramtype created_by: ~azure.mgmt.machinelearningservices.models.User
+ :keyword compute_duration: Time spent in an active state for terminal runs.
+ :paramtype compute_duration: str
+ :keyword effective_start_time_utc: Relative start time of active runs for ordering and
+ computing active compute duration.
+ Compute duration of an active run is now() - EffectiveStartTimeUtc.
+ :paramtype effective_start_time_utc: ~datetime.datetime
+ :keyword run_number: Relative start time of active runs for ordering and computing active
+ compute duration.
+ Compute duration of an active run is now() - EffectiveStartTimeUtc.
+ :paramtype run_number: int
+ :keyword root_run_id:
+ :paramtype root_run_id: str
+ :keyword user_id: The Id of the user that created the run.
+ :paramtype user_id: str
+ :keyword status_revision:
+ :paramtype status_revision: long
+ :keyword has_virtual_parent: Indicates if this is a child of a virtual run.
+ :paramtype has_virtual_parent: bool
+ :keyword current_compute_time: The cumulative time spent in an active status for an active run.
+ :paramtype current_compute_time: str
+ :keyword last_start_time_utc: The last timestamp when a run transitioned from paused to
+ running. Initialized when StartTimeUtc is first set.
+ :paramtype last_start_time_utc: ~datetime.datetime
+ :keyword last_modified_by:
+ :paramtype last_modified_by: ~azure.mgmt.machinelearningservices.models.User
+ :keyword last_modified_utc: The time the run was created in UTC.
+ :paramtype last_modified_utc: ~datetime.datetime
+ :keyword duration: The total duration of a run.
+ :paramtype duration: str
+ :keyword inputs: The inputs for the run.
+ :paramtype inputs: dict[str, ~azure.mgmt.machinelearningservices.models.TypedAssetReference]
+ :keyword outputs: The outputs for the run.
+ :paramtype outputs: dict[str, ~azure.mgmt.machinelearningservices.models.TypedAssetReference]
+ """
+ super(RunDetails, self).__init__(**kwargs)
+ self.run_id = kwargs.get('run_id', None)
+ self.run_uuid = kwargs.get('run_uuid', None)
+ self.parent_run_uuid = kwargs.get('parent_run_uuid', None)
+ self.root_run_uuid = kwargs.get('root_run_uuid', None)
+ self.target = kwargs.get('target', None)
+ self.status = kwargs.get('status', None)
+ self.parent_run_id = kwargs.get('parent_run_id', None)
+ self.created_time_utc = kwargs.get('created_time_utc', None)
+ self.start_time_utc = kwargs.get('start_time_utc', None)
+ self.end_time_utc = kwargs.get('end_time_utc', None)
+ self.error = kwargs.get('error', None)
+ self.warnings = kwargs.get('warnings', None)
+ self.tags = kwargs.get('tags', None)
+ self.properties = kwargs.get('properties', None)
+ self.parameters = kwargs.get('parameters', None)
+ self.services = kwargs.get('services', None)
+ self.input_datasets = kwargs.get('input_datasets', None)
+ self.output_datasets = kwargs.get('output_datasets', None)
+ self.run_definition = kwargs.get('run_definition', None)
+ self.log_files = kwargs.get('log_files', None)
+ self.job_cost = kwargs.get('job_cost', None)
+ self.revision = kwargs.get('revision', None)
+ self.run_type_v2 = kwargs.get('run_type_v2', None)
+ self.settings = kwargs.get('settings', None)
+ self.compute_request = kwargs.get('compute_request', None)
+ self.compute = kwargs.get('compute', None)
+ self.created_by = kwargs.get('created_by', None)
+ self.compute_duration = kwargs.get('compute_duration', None)
+ self.effective_start_time_utc = kwargs.get('effective_start_time_utc', None)
+ self.run_number = kwargs.get('run_number', None)
+ self.root_run_id = kwargs.get('root_run_id', None)
+ self.user_id = kwargs.get('user_id', None)
+ self.status_revision = kwargs.get('status_revision', None)
+ self.has_virtual_parent = kwargs.get('has_virtual_parent', None)
+ self.current_compute_time = kwargs.get('current_compute_time', None)
+ self.last_start_time_utc = kwargs.get('last_start_time_utc', None)
+ self.last_modified_by = kwargs.get('last_modified_by', None)
+ self.last_modified_utc = kwargs.get('last_modified_utc', None)
+ self.duration = kwargs.get('duration', None)
+ self.inputs = kwargs.get('inputs', None)
+ self.outputs = kwargs.get('outputs', None)
+
+
+class RunDetailsWarning(msrest.serialization.Model):
+ """RunDetailsWarning.
+
+ :ivar source:
+ :vartype source: str
+ :ivar message:
+ :vartype message: str
+ """
+
+ _attribute_map = {
+ 'source': {'key': 'source', 'type': 'str'},
+ 'message': {'key': 'message', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword source:
+ :paramtype source: str
+ :keyword message:
+ :paramtype message: str
+ """
+ super(RunDetailsWarning, self).__init__(**kwargs)
+ self.source = kwargs.get('source', None)
+ self.message = kwargs.get('message', None)
+
+
+class RunMetric(msrest.serialization.Model):
+ """RunMetric.
+
+ :ivar run_id:
+ :vartype run_id: str
+ :ivar metric_id:
+ :vartype metric_id: str
+ :ivar data_container_id:
+ :vartype data_container_id: str
+ :ivar metric_type:
+ :vartype metric_type: str
+ :ivar created_utc:
+ :vartype created_utc: ~datetime.datetime
+ :ivar name:
+ :vartype name: str
+ :ivar description:
+ :vartype description: str
+ :ivar label:
+ :vartype label: str
+ :ivar num_cells:
+ :vartype num_cells: int
+ :ivar data_location:
+ :vartype data_location: str
+ :ivar cells:
+ :vartype cells: list[dict[str, any]]
+ :ivar schema:
+ :vartype schema: ~azure.mgmt.machinelearningservices.models.MetricSchema
+ """
+
+ _attribute_map = {
+ 'run_id': {'key': 'runId', 'type': 'str'},
+ 'metric_id': {'key': 'metricId', 'type': 'str'},
+ 'data_container_id': {'key': 'dataContainerId', 'type': 'str'},
+ 'metric_type': {'key': 'metricType', 'type': 'str'},
+ 'created_utc': {'key': 'createdUtc', 'type': 'iso-8601'},
+ 'name': {'key': 'name', 'type': 'str'},
+ 'description': {'key': 'description', 'type': 'str'},
+ 'label': {'key': 'label', 'type': 'str'},
+ 'num_cells': {'key': 'numCells', 'type': 'int'},
+ 'data_location': {'key': 'dataLocation', 'type': 'str'},
+ 'cells': {'key': 'cells', 'type': '[{object}]'},
+ 'schema': {'key': 'schema', 'type': 'MetricSchema'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword run_id:
+ :paramtype run_id: str
+ :keyword metric_id:
+ :paramtype metric_id: str
+ :keyword data_container_id:
+ :paramtype data_container_id: str
+ :keyword metric_type:
+ :paramtype metric_type: str
+ :keyword created_utc:
+ :paramtype created_utc: ~datetime.datetime
+ :keyword name:
+ :paramtype name: str
+ :keyword description:
+ :paramtype description: str
+ :keyword label:
+ :paramtype label: str
+ :keyword num_cells:
+ :paramtype num_cells: int
+ :keyword data_location:
+ :paramtype data_location: str
+ :keyword cells:
+ :paramtype cells: list[dict[str, any]]
+ :keyword schema:
+ :paramtype schema: ~azure.mgmt.machinelearningservices.models.MetricSchema
+ """
+ super(RunMetric, self).__init__(**kwargs)
+ self.run_id = kwargs.get('run_id', None)
+ self.metric_id = kwargs.get('metric_id', None)
+ self.data_container_id = kwargs.get('data_container_id', None)
+ self.metric_type = kwargs.get('metric_type', None)
+ self.created_utc = kwargs.get('created_utc', None)
+ self.name = kwargs.get('name', None)
+ self.description = kwargs.get('description', None)
+ self.label = kwargs.get('label', None)
+ self.num_cells = kwargs.get('num_cells', None)
+ self.data_location = kwargs.get('data_location', None)
+ self.cells = kwargs.get('cells', None)
+ self.schema = kwargs.get('schema', None)
+
+
+class RunOptions(msrest.serialization.Model):
+ """RunOptions.
+
+ :ivar generate_data_container_id_if_not_specified:
+ :vartype generate_data_container_id_if_not_specified: bool
+ """
+
+ _attribute_map = {
+ 'generate_data_container_id_if_not_specified': {'key': 'generateDataContainerIdIfNotSpecified', 'type': 'bool'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword generate_data_container_id_if_not_specified:
+ :paramtype generate_data_container_id_if_not_specified: bool
+ """
+ super(RunOptions, self).__init__(**kwargs)
+ self.generate_data_container_id_if_not_specified = kwargs.get('generate_data_container_id_if_not_specified', None)
+
+
+class RunServiceInstances(msrest.serialization.Model):
+ """RunServiceInstances.
+
+ :ivar instances: Dictionary of :code:`<ServiceInstanceResult>`.
+ :vartype instances: dict[str, ~azure.mgmt.machinelearningservices.models.ServiceInstanceResult]
+ """
+
+ _attribute_map = {
+ 'instances': {'key': 'instances', 'type': '{ServiceInstanceResult}'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword instances: Dictionary of :code:`<ServiceInstanceResult>`.
+ :paramtype instances: dict[str,
+ ~azure.mgmt.machinelearningservices.models.ServiceInstanceResult]
+ """
+ super(RunServiceInstances, self).__init__(**kwargs)
+ self.instances = kwargs.get('instances', None)
+
+
+class RunStatusSpans(msrest.serialization.Model):
+ """RunStatusSpans.
+
+ :ivar spans:
+ :vartype spans: list[~azure.mgmt.machinelearningservices.models.SpanDefinition1]
+ """
+
+ _attribute_map = {
+ 'spans': {'key': 'spans', 'type': '[SpanDefinition1]'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword spans:
+ :paramtype spans: list[~azure.mgmt.machinelearningservices.models.SpanDefinition1]
+ """
+ super(RunStatusSpans, self).__init__(**kwargs)
+ self.spans = kwargs.get('spans', None)
+
+
+class RunTypeV2(msrest.serialization.Model):
+ """RunTypeV2.
+
+ :ivar orchestrator:
+ :vartype orchestrator: str
+ :ivar traits:
+ :vartype traits: list[str]
+ :ivar attribution:
+ :vartype attribution: str
+ :ivar compute_type:
+ :vartype compute_type: str
+ """
+
+ _validation = {
+ 'traits': {'unique': True},
+ }
+
+ _attribute_map = {
+ 'orchestrator': {'key': 'orchestrator', 'type': 'str'},
+ 'traits': {'key': 'traits', 'type': '[str]'},
+ 'attribution': {'key': 'attribution', 'type': 'str'},
+ 'compute_type': {'key': 'computeType', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword orchestrator:
+ :paramtype orchestrator: str
+ :keyword traits:
+ :paramtype traits: list[str]
+ :keyword attribution:
+ :paramtype attribution: str
+ :keyword compute_type:
+ :paramtype compute_type: str
+ """
+ super(RunTypeV2, self).__init__(**kwargs)
+ self.orchestrator = kwargs.get('orchestrator', None)
+ self.traits = kwargs.get('traits', None)
+ self.attribution = kwargs.get('attribution', None)
+ self.compute_type = kwargs.get('compute_type', None)
+
+
+class ServiceInstance(msrest.serialization.Model):
+ """ServiceInstance.
+
+ :ivar is_single_node:
+ :vartype is_single_node: bool
+ :ivar error_message:
+ :vartype error_message: str
+ :ivar port:
+ :vartype port: int
+ :ivar status:
+ :vartype status: str
+ :ivar error: The error response.
+ :vartype error: ~azure.mgmt.machinelearningservices.models.ErrorResponse
+ :ivar properties: Dictionary of :code:`<string>`.
+ :vartype properties: dict[str, str]
+ """
+
+ _attribute_map = {
+ 'is_single_node': {'key': 'isSingleNode', 'type': 'bool'},
+ 'error_message': {'key': 'errorMessage', 'type': 'str'},
+ 'port': {'key': 'port', 'type': 'int'},
+ 'status': {'key': 'status', 'type': 'str'},
+ 'error': {'key': 'error', 'type': 'ErrorResponse'},
+ 'properties': {'key': 'properties', 'type': '{str}'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword is_single_node:
+ :paramtype is_single_node: bool
+ :keyword error_message:
+ :paramtype error_message: str
+ :keyword port:
+ :paramtype port: int
+ :keyword status:
+ :paramtype status: str
+ :keyword error: The error response.
+ :paramtype error: ~azure.mgmt.machinelearningservices.models.ErrorResponse
+ :keyword properties: Dictionary of :code:`<string>`.
+ :paramtype properties: dict[str, str]
+ """
+ super(ServiceInstance, self).__init__(**kwargs)
+ self.is_single_node = kwargs.get('is_single_node', None)
+ self.error_message = kwargs.get('error_message', None)
+ self.port = kwargs.get('port', None)
+ self.status = kwargs.get('status', None)
+ self.error = kwargs.get('error', None)
+ self.properties = kwargs.get('properties', None)
+
+
+class ServiceInstanceResult(msrest.serialization.Model):
+ """ServiceInstanceResult.
+
+ :ivar type:
+ :vartype type: str
+ :ivar port:
+ :vartype port: int
+ :ivar status:
+ :vartype status: str
+ :ivar error: The error response.
+ :vartype error: ~azure.mgmt.machinelearningservices.models.ErrorResponse
+ :ivar endpoint:
+ :vartype endpoint: str
+ :ivar properties: Dictionary of :code:`<string>`.
+ :vartype properties: dict[str, str]
+ """
+
+ _attribute_map = {
+ 'type': {'key': 'type', 'type': 'str'},
+ 'port': {'key': 'port', 'type': 'int'},
+ 'status': {'key': 'status', 'type': 'str'},
+ 'error': {'key': 'error', 'type': 'ErrorResponse'},
+ 'endpoint': {'key': 'endpoint', 'type': 'str'},
+ 'properties': {'key': 'properties', 'type': '{str}'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword type:
+ :paramtype type: str
+ :keyword port:
+ :paramtype port: int
+ :keyword status:
+ :paramtype status: str
+ :keyword error: The error response.
+ :paramtype error: ~azure.mgmt.machinelearningservices.models.ErrorResponse
+ :keyword endpoint:
+ :paramtype endpoint: str
+ :keyword properties: Dictionary of :code:`<string>`.
+ :paramtype properties: dict[str, str]
+ """
+ super(ServiceInstanceResult, self).__init__(**kwargs)
+ self.type = kwargs.get('type', None)
+ self.port = kwargs.get('port', None)
+ self.status = kwargs.get('status', None)
+ self.error = kwargs.get('error', None)
+ self.endpoint = kwargs.get('endpoint', None)
+ self.properties = kwargs.get('properties', None)
+
+
+class SpanContext(msrest.serialization.Model):
+ """SpanContext.
+
+ :ivar trace_id: Gets the TraceId associated with this
+ Microsoft.MachineLearning.RunHistory.Contracts.SpanContext.
+ TODO: In actual spec, it is ActivityTraceId type. But that causes problems in
+ serialization/deserialization.
+ :vartype trace_id: str
+ :ivar span_id: Gets the SpanId associated with this
+ Microsoft.MachineLearning.RunHistory.Contracts.SpanContext.
+ TODO: In actual spec, it is ActivitySpanId type. But that causes problems in
+ serialization/deserialization.
+ :vartype span_id: str
+ :ivar is_remote: Gets a value indicating whether this
+ Microsoft.MachineLearning.RunHistory.Contracts.SpanContext
+ was propagated from a remote parent.
+ :vartype is_remote: bool
+ :ivar is_valid: Gets a value indicating whether this
+ Microsoft.MachineLearning.RunHistory.Contracts.SpanContext is valid.
+ :vartype is_valid: bool
+ :ivar tracestate: Gets the
+ Microsoft.MachineLearning.RunHistory.Contracts.SpanContext.Tracestate associated with this
+ Microsoft.MachineLearning.RunHistory.Contracts.SpanContext.
+ :vartype tracestate: list[~azure.mgmt.machinelearningservices.models.KeyValuePairString]
+ """
+
+ _attribute_map = {
+ 'trace_id': {'key': 'traceId', 'type': 'str'},
+ 'span_id': {'key': 'spanId', 'type': 'str'},
+ 'is_remote': {'key': 'isRemote', 'type': 'bool'},
+ 'is_valid': {'key': 'isValid', 'type': 'bool'},
+ 'tracestate': {'key': 'tracestate', 'type': '[KeyValuePairString]'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword trace_id: Gets the TraceId associated with this
+ Microsoft.MachineLearning.RunHistory.Contracts.SpanContext.
+ TODO: In actual spec, it is ActivityTraceId type. But that causes problems in
+ serialization/deserialization.
+ :paramtype trace_id: str
+ :keyword span_id: Gets the SpanId associated with this
+ Microsoft.MachineLearning.RunHistory.Contracts.SpanContext.
+ TODO: In actual spec, it is ActivitySpanId type. But that causes problems in
+ serialization/deserialization.
+ :paramtype span_id: str
+ :keyword is_remote: Gets a value indicating whether this
+ Microsoft.MachineLearning.RunHistory.Contracts.SpanContext
+ was propagated from a remote parent.
+ :paramtype is_remote: bool
+ :keyword is_valid: Gets a value indicating whether this
+ Microsoft.MachineLearning.RunHistory.Contracts.SpanContext is valid.
+ :paramtype is_valid: bool
+ :keyword tracestate: Gets the
+ Microsoft.MachineLearning.RunHistory.Contracts.SpanContext.Tracestate associated with this
+ Microsoft.MachineLearning.RunHistory.Contracts.SpanContext.
+ :paramtype tracestate: list[~azure.mgmt.machinelearningservices.models.KeyValuePairString]
+ """
+ super(SpanContext, self).__init__(**kwargs)
+ self.trace_id = kwargs.get('trace_id', None)
+ self.span_id = kwargs.get('span_id', None)
+ self.is_remote = kwargs.get('is_remote', None)
+ self.is_valid = kwargs.get('is_valid', None)
+ self.tracestate = kwargs.get('tracestate', None)
+
+
+class SpanDefinition1(msrest.serialization.Model):
+ """Most of the code in this class is vendored from here.
+https://github.com/open-telemetry/opentelemetry-dotnet/blob/master/src/OpenTelemetry/Trace/Export/SpanData.cs
+SpanData on that github link is readonly, we can't set properties on it after creation. So, just vendoring the Span
+contract.
+TStatus is the status enum. For runs, it is RunStatus
+This is the link for span spec https://github.com/open-telemetry/opentelemetry-specification/blob/master/specification/overview.md#span.
+
+ :ivar context:
+ :vartype context: ~azure.mgmt.machinelearningservices.models.SpanContext
+ :ivar name: Gets span name.
+ :vartype name: str
+ :ivar status: Gets span status.
+ OpenTelemetry sets it to
+ https://github.com/open-telemetry/opentelemetry-dotnet/blob/master/src/OpenTelemetry.Api/Trace/Status.cs
+ That status enums are not very meaningful to us, so we customize this. Possible values
+ include: "NotStarted", "Unapproved", "Pausing", "Paused", "Starting", "Preparing", "Queued",
+ "Running", "Finalizing", "CancelRequested", "Completed", "Failed", "Canceled".
+ :vartype status: str or ~azure.mgmt.machinelearningservices.models.RunStatus
+ :ivar parent_span_id: Gets parent span id.
+ TODO: In actual spec, it is ActivitySpanId type. But that causes problems in
+ serialization/deserialization.
+ :vartype parent_span_id: str
+ :ivar attributes: Gets attributes.
+ :vartype attributes: list[~azure.mgmt.machinelearningservices.models.KeyValuePairStringJToken]
+ :ivar events: Gets events.
+ :vartype events: list[~azure.mgmt.machinelearningservices.models.Event]
+ :ivar links: Gets links.
+ :vartype links: list[~azure.mgmt.machinelearningservices.models.Link]
+ :ivar start_timestamp: Gets span start timestamp.
+ :vartype start_timestamp: ~datetime.datetime
+ :ivar end_timestamp: Gets span end timestamp.
+ :vartype end_timestamp: ~datetime.datetime
+ """
+
+ _attribute_map = {
+ 'context': {'key': 'context', 'type': 'SpanContext'},
+ 'name': {'key': 'name', 'type': 'str'},
+ 'status': {'key': 'status', 'type': 'str'},
+ 'parent_span_id': {'key': 'parentSpanId', 'type': 'str'},
+ 'attributes': {'key': 'attributes', 'type': '[KeyValuePairStringJToken]'},
+ 'events': {'key': 'events', 'type': '[Event]'},
+ 'links': {'key': 'links', 'type': '[Link]'},
+ 'start_timestamp': {'key': 'startTimestamp', 'type': 'iso-8601'},
+ 'end_timestamp': {'key': 'endTimestamp', 'type': 'iso-8601'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword context:
+ :paramtype context: ~azure.mgmt.machinelearningservices.models.SpanContext
+ :keyword name: Gets span name.
+ :paramtype name: str
+ :keyword status: Gets span status.
+ OpenTelemetry sets it to
+ https://github.com/open-telemetry/opentelemetry-dotnet/blob/master/src/OpenTelemetry.Api/Trace/Status.cs
+ That status enums are not very meaningful to us, so we customize this. Possible values
+ include: "NotStarted", "Unapproved", "Pausing", "Paused", "Starting", "Preparing", "Queued",
+ "Running", "Finalizing", "CancelRequested", "Completed", "Failed", "Canceled".
+ :paramtype status: str or ~azure.mgmt.machinelearningservices.models.RunStatus
+ :keyword parent_span_id: Gets parent span id.
+ TODO: In actual spec, it is ActivitySpanId type. But that causes problems in
+ serialization/deserialization.
+ :paramtype parent_span_id: str
+ :keyword attributes: Gets attributes.
+ :paramtype attributes:
+ list[~azure.mgmt.machinelearningservices.models.KeyValuePairStringJToken]
+ :keyword events: Gets events.
+ :paramtype events: list[~azure.mgmt.machinelearningservices.models.Event]
+ :keyword links: Gets links.
+ :paramtype links: list[~azure.mgmt.machinelearningservices.models.Link]
+ :keyword start_timestamp: Gets span start timestamp.
+ :paramtype start_timestamp: ~datetime.datetime
+ :keyword end_timestamp: Gets span end timestamp.
+ :paramtype end_timestamp: ~datetime.datetime
+ """
+ super(SpanDefinition1, self).__init__(**kwargs)
+ self.context = kwargs.get('context', None)
+ self.name = kwargs.get('name', None)
+ self.status = kwargs.get('status', None)
+ self.parent_span_id = kwargs.get('parent_span_id', None)
+ self.attributes = kwargs.get('attributes', None)
+ self.events = kwargs.get('events', None)
+ self.links = kwargs.get('links', None)
+ self.start_timestamp = kwargs.get('start_timestamp', None)
+ self.end_timestamp = kwargs.get('end_timestamp', None)
+
+
+class SqlDataPath(msrest.serialization.Model):
+ """SqlDataPath.
+
+ :ivar sql_table_name:
+ :vartype sql_table_name: str
+ :ivar sql_query:
+ :vartype sql_query: str
+ :ivar sql_stored_procedure_name:
+ :vartype sql_stored_procedure_name: str
+ :ivar sql_stored_procedure_params:
+ :vartype sql_stored_procedure_params:
+ list[~azure.mgmt.machinelearningservices.models.StoredProcedureParameter]
+ """
+
+ _attribute_map = {
+ 'sql_table_name': {'key': 'sqlTableName', 'type': 'str'},
+ 'sql_query': {'key': 'sqlQuery', 'type': 'str'},
+ 'sql_stored_procedure_name': {'key': 'sqlStoredProcedureName', 'type': 'str'},
+ 'sql_stored_procedure_params': {'key': 'sqlStoredProcedureParams', 'type': '[StoredProcedureParameter]'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword sql_table_name:
+ :paramtype sql_table_name: str
+ :keyword sql_query:
+ :paramtype sql_query: str
+ :keyword sql_stored_procedure_name:
+ :paramtype sql_stored_procedure_name: str
+ :keyword sql_stored_procedure_params:
+ :paramtype sql_stored_procedure_params:
+ list[~azure.mgmt.machinelearningservices.models.StoredProcedureParameter]
+ """
+ super(SqlDataPath, self).__init__(**kwargs)
+ self.sql_table_name = kwargs.get('sql_table_name', None)
+ self.sql_query = kwargs.get('sql_query', None)
+ self.sql_stored_procedure_name = kwargs.get('sql_stored_procedure_name', None)
+ self.sql_stored_procedure_params = kwargs.get('sql_stored_procedure_params', None)
+
+
+class StoredProcedureParameter(msrest.serialization.Model):
+ """StoredProcedureParameter.
+
+ :ivar name:
+ :vartype name: str
+ :ivar value:
+ :vartype value: str
+ :ivar type: Possible values include: "String", "Int", "Decimal", "Guid", "Boolean", "Date".
+ :vartype type: str or ~azure.mgmt.machinelearningservices.models.StoredProcedureParameterType
+ """
+
+ _attribute_map = {
+ 'name': {'key': 'name', 'type': 'str'},
+ 'value': {'key': 'value', 'type': 'str'},
+ 'type': {'key': 'type', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword name:
+ :paramtype name: str
+ :keyword value:
+ :paramtype value: str
+ :keyword type: Possible values include: "String", "Int", "Decimal", "Guid", "Boolean", "Date".
+ :paramtype type: str or ~azure.mgmt.machinelearningservices.models.StoredProcedureParameterType
+ """
+ super(StoredProcedureParameter, self).__init__(**kwargs)
+ self.name = kwargs.get('name', None)
+ self.value = kwargs.get('value', None)
+ self.type = kwargs.get('type', None)
+
+
+class TypedAssetReference(msrest.serialization.Model):
+ """TypedAssetReference.
+
+ :ivar asset_id:
+ :vartype asset_id: str
+ :ivar type:
+ :vartype type: str
+ """
+
+ _attribute_map = {
+ 'asset_id': {'key': 'assetId', 'type': 'str'},
+ 'type': {'key': 'type', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword asset_id:
+ :paramtype asset_id: str
+ :keyword type:
+ :paramtype type: str
+ """
+ super(TypedAssetReference, self).__init__(**kwargs)
+ self.asset_id = kwargs.get('asset_id', None)
+ self.type = kwargs.get('type', None)
+
+
+class User(msrest.serialization.Model):
+ """User.
+
+ :ivar user_object_id: A user or service principal's object ID.
+ This is EUPI and may only be logged to warm path telemetry.
+ :vartype user_object_id: str
+ :ivar user_pu_id: A user or service principal's PuID.
+ This is PII and should never be logged.
+ :vartype user_pu_id: str
+ :ivar user_idp: A user identity provider. Eg live.com
+ This is PII and should never be logged.
+ :vartype user_idp: str
+ :ivar user_alt_sec_id: A user alternate sec id. This represents the user in a different
+ identity provider system Eg.1:live.com:puid
+ This is PII and should never be logged.
+ :vartype user_alt_sec_id: str
+ :ivar user_iss: The issuer which issed the token for this user.
+ This is PII and should never be logged.
+ :vartype user_iss: str
+ :ivar user_tenant_id: A user or service principal's tenant ID.
+ :vartype user_tenant_id: str
+ :ivar user_name: A user's full name or a service principal's app ID.
+ This is PII and should never be logged.
+ :vartype user_name: str
+ :ivar upn: A user's Principal name (upn)
+ This is PII andshould never be logged.
+ :vartype upn: str
+ """
+
+ _attribute_map = {
+ 'user_object_id': {'key': 'userObjectId', 'type': 'str'},
+ 'user_pu_id': {'key': 'userPuId', 'type': 'str'},
+ 'user_idp': {'key': 'userIdp', 'type': 'str'},
+ 'user_alt_sec_id': {'key': 'userAltSecId', 'type': 'str'},
+ 'user_iss': {'key': 'userIss', 'type': 'str'},
+ 'user_tenant_id': {'key': 'userTenantId', 'type': 'str'},
+ 'user_name': {'key': 'userName', 'type': 'str'},
+ 'upn': {'key': 'upn', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword user_object_id: A user or service principal's object ID.
+ This is EUPI and may only be logged to warm path telemetry.
+ :paramtype user_object_id: str
+ :keyword user_pu_id: A user or service principal's PuID.
+ This is PII and should never be logged.
+ :paramtype user_pu_id: str
+ :keyword user_idp: A user identity provider. Eg live.com
+ This is PII and should never be logged.
+ :paramtype user_idp: str
+ :keyword user_alt_sec_id: A user alternate sec id. This represents the user in a different
+ identity provider system Eg.1:live.com:puid
+ This is PII and should never be logged.
+ :paramtype user_alt_sec_id: str
+ :keyword user_iss: The issuer which issed the token for this user.
+ This is PII and should never be logged.
+ :paramtype user_iss: str
+ :keyword user_tenant_id: A user or service principal's tenant ID.
+ :paramtype user_tenant_id: str
+ :keyword user_name: A user's full name or a service principal's app ID.
+ This is PII and should never be logged.
+ :paramtype user_name: str
+ :keyword upn: A user's Principal name (upn)
+ This is PII andshould never be logged.
+ :paramtype upn: str
+ """
+ super(User, self).__init__(**kwargs)
+ self.user_object_id = kwargs.get('user_object_id', None)
+ self.user_pu_id = kwargs.get('user_pu_id', None)
+ self.user_idp = kwargs.get('user_idp', None)
+ self.user_alt_sec_id = kwargs.get('user_alt_sec_id', None)
+ self.user_iss = kwargs.get('user_iss', None)
+ self.user_tenant_id = kwargs.get('user_tenant_id', None)
+ self.user_name = kwargs.get('user_name', None)
+ self.upn = kwargs.get('upn', None)
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/models/_models_py3.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/models/_models_py3.py
new file mode 100644
index 00000000..4b482905
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/models/_models_py3.py
@@ -0,0 +1,4854 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+import datetime
+from typing import Any, Dict, List, Optional, Union
+
+from azure.core.exceptions import HttpResponseError
+import msrest.serialization
+
+from ._azure_machine_learning_workspaces_enums import *
+
+
+class AddOrModifyRunServiceInstancesRequest(msrest.serialization.Model):
+ """AddOrModifyRunServiceInstancesRequest.
+
+ :ivar instances: Dictionary of :code:`<ServiceInstance>`.
+ :vartype instances: dict[str, ~azure.mgmt.machinelearningservices.models.ServiceInstance]
+ """
+
+ _attribute_map = {
+ 'instances': {'key': 'instances', 'type': '{ServiceInstance}'},
+ }
+
+ def __init__(
+ self,
+ *,
+ instances: Optional[Dict[str, "ServiceInstance"]] = None,
+ **kwargs
+ ):
+ """
+ :keyword instances: Dictionary of :code:`<ServiceInstance>`.
+ :paramtype instances: dict[str, ~azure.mgmt.machinelearningservices.models.ServiceInstance]
+ """
+ super(AddOrModifyRunServiceInstancesRequest, self).__init__(**kwargs)
+ self.instances = instances
+
+
+class Artifact(msrest.serialization.Model):
+ """Details of an Artifact.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar artifact_id: The identifier of an Artifact. Format of ArtifactId -
+ {Origin}/{Container}/{Path}.
+ :vartype artifact_id: str
+ :ivar origin: Required. The origin of the Artifact creation request. Available origins are
+ 'ExperimentRun', 'LocalUpload', 'WebUpload', 'Dataset' and 'Unknown'.
+ :vartype origin: str
+ :ivar container: Required. The name of container. Artifacts can be grouped by container.
+ :vartype container: str
+ :ivar path: Required. The path to the Artifact in a container.
+ :vartype path: str
+ :ivar etag: The Etag of the Artifact.
+ :vartype etag: str
+ :ivar created_time: The Date and Time at which the Artifact is created. The DateTime is in UTC.
+ :vartype created_time: ~datetime.datetime
+ :ivar data_path:
+ :vartype data_path: ~azure.mgmt.machinelearningservices.models.ArtifactDataPath
+ :ivar tags: A set of tags. Dictionary of :code:`<string>`.
+ :vartype tags: dict[str, str]
+ """
+
+ _validation = {
+ 'origin': {'required': True},
+ 'container': {'required': True},
+ 'path': {'required': True},
+ }
+
+ _attribute_map = {
+ 'artifact_id': {'key': 'artifactId', 'type': 'str'},
+ 'origin': {'key': 'origin', 'type': 'str'},
+ 'container': {'key': 'container', 'type': 'str'},
+ 'path': {'key': 'path', 'type': 'str'},
+ 'etag': {'key': 'etag', 'type': 'str'},
+ 'created_time': {'key': 'createdTime', 'type': 'iso-8601'},
+ 'data_path': {'key': 'dataPath', 'type': 'ArtifactDataPath'},
+ 'tags': {'key': 'tags', 'type': '{str}'},
+ }
+
+ def __init__(
+ self,
+ *,
+ origin: str,
+ container: str,
+ path: str,
+ artifact_id: Optional[str] = None,
+ etag: Optional[str] = None,
+ created_time: Optional[datetime.datetime] = None,
+ data_path: Optional["ArtifactDataPath"] = None,
+ tags: Optional[Dict[str, str]] = None,
+ **kwargs
+ ):
+ """
+ :keyword artifact_id: The identifier of an Artifact. Format of ArtifactId -
+ {Origin}/{Container}/{Path}.
+ :paramtype artifact_id: str
+ :keyword origin: Required. The origin of the Artifact creation request. Available origins are
+ 'ExperimentRun', 'LocalUpload', 'WebUpload', 'Dataset' and 'Unknown'.
+ :paramtype origin: str
+ :keyword container: Required. The name of container. Artifacts can be grouped by container.
+ :paramtype container: str
+ :keyword path: Required. The path to the Artifact in a container.
+ :paramtype path: str
+ :keyword etag: The Etag of the Artifact.
+ :paramtype etag: str
+ :keyword created_time: The Date and Time at which the Artifact is created. The DateTime is in
+ UTC.
+ :paramtype created_time: ~datetime.datetime
+ :keyword data_path:
+ :paramtype data_path: ~azure.mgmt.machinelearningservices.models.ArtifactDataPath
+ :keyword tags: A set of tags. Dictionary of :code:`<string>`.
+ :paramtype tags: dict[str, str]
+ """
+ super(Artifact, self).__init__(**kwargs)
+ self.artifact_id = artifact_id
+ self.origin = origin
+ self.container = container
+ self.path = path
+ self.etag = etag
+ self.created_time = created_time
+ self.data_path = data_path
+ self.tags = tags
+
+
+class ArtifactContentInformation(msrest.serialization.Model):
+ """Details of an Artifact Content Information.
+
+ :ivar content_uri: The URI of the content.
+ :vartype content_uri: str
+ :ivar origin: The origin of the Artifact creation request. Available origins are
+ 'ExperimentRun', 'LocalUpload', 'WebUpload', 'Dataset', 'ComputeRecord', 'Metric', and
+ 'Unknown'.
+ :vartype origin: str
+ :ivar container: The name of container. Artifacts can be grouped by container.
+ :vartype container: str
+ :ivar path: The path to the Artifact in a container.
+ :vartype path: str
+ :ivar tags: A set of tags. The tags on the artifact.
+ :vartype tags: dict[str, str]
+ """
+
+ _attribute_map = {
+ 'content_uri': {'key': 'contentUri', 'type': 'str'},
+ 'origin': {'key': 'origin', 'type': 'str'},
+ 'container': {'key': 'container', 'type': 'str'},
+ 'path': {'key': 'path', 'type': 'str'},
+ 'tags': {'key': 'tags', 'type': '{str}'},
+ }
+
+ def __init__(
+ self,
+ *,
+ content_uri: Optional[str] = None,
+ origin: Optional[str] = None,
+ container: Optional[str] = None,
+ path: Optional[str] = None,
+ tags: Optional[Dict[str, str]] = None,
+ **kwargs
+ ):
+ """
+ :keyword content_uri: The URI of the content.
+ :paramtype content_uri: str
+ :keyword origin: The origin of the Artifact creation request. Available origins are
+ 'ExperimentRun', 'LocalUpload', 'WebUpload', 'Dataset', 'ComputeRecord', 'Metric', and
+ 'Unknown'.
+ :paramtype origin: str
+ :keyword container: The name of container. Artifacts can be grouped by container.
+ :paramtype container: str
+ :keyword path: The path to the Artifact in a container.
+ :paramtype path: str
+ :keyword tags: A set of tags. The tags on the artifact.
+ :paramtype tags: dict[str, str]
+ """
+ super(ArtifactContentInformation, self).__init__(**kwargs)
+ self.content_uri = content_uri
+ self.origin = origin
+ self.container = container
+ self.path = path
+ self.tags = tags
+
+
+class ArtifactDataPath(msrest.serialization.Model):
+ """ArtifactDataPath.
+
+ :ivar data_store_name:
+ :vartype data_store_name: str
+ :ivar relative_path:
+ :vartype relative_path: str
+ :ivar sql_data_path:
+ :vartype sql_data_path: ~azure.mgmt.machinelearningservices.models.SqlDataPath
+ """
+
+ _attribute_map = {
+ 'data_store_name': {'key': 'dataStoreName', 'type': 'str'},
+ 'relative_path': {'key': 'relativePath', 'type': 'str'},
+ 'sql_data_path': {'key': 'sqlDataPath', 'type': 'SqlDataPath'},
+ }
+
+ def __init__(
+ self,
+ *,
+ data_store_name: Optional[str] = None,
+ relative_path: Optional[str] = None,
+ sql_data_path: Optional["SqlDataPath"] = None,
+ **kwargs
+ ):
+ """
+ :keyword data_store_name:
+ :paramtype data_store_name: str
+ :keyword relative_path:
+ :paramtype relative_path: str
+ :keyword sql_data_path:
+ :paramtype sql_data_path: ~azure.mgmt.machinelearningservices.models.SqlDataPath
+ """
+ super(ArtifactDataPath, self).__init__(**kwargs)
+ self.data_store_name = data_store_name
+ self.relative_path = relative_path
+ self.sql_data_path = sql_data_path
+
+
+class ArtifactPath(msrest.serialization.Model):
+ """Details of an Artifact Path.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar path: Required. The path to the Artifact in a container.
+ :vartype path: str
+ :ivar tags: A set of tags. Dictionary of :code:`<string>`.
+ :vartype tags: dict[str, str]
+ """
+
+ _validation = {
+ 'path': {'required': True},
+ }
+
+ _attribute_map = {
+ 'path': {'key': 'path', 'type': 'str'},
+ 'tags': {'key': 'tags', 'type': '{str}'},
+ }
+
+ def __init__(
+ self,
+ *,
+ path: str,
+ tags: Optional[Dict[str, str]] = None,
+ **kwargs
+ ):
+ """
+ :keyword path: Required. The path to the Artifact in a container.
+ :paramtype path: str
+ :keyword tags: A set of tags. Dictionary of :code:`<string>`.
+ :paramtype tags: dict[str, str]
+ """
+ super(ArtifactPath, self).__init__(**kwargs)
+ self.path = path
+ self.tags = tags
+
+
+class ArtifactPathList(msrest.serialization.Model):
+ """Contains list of Artifact Paths.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar paths: Required. List of Artifact Paths.
+ :vartype paths: list[~azure.mgmt.machinelearningservices.models.ArtifactPath]
+ """
+
+ _validation = {
+ 'paths': {'required': True},
+ }
+
+ _attribute_map = {
+ 'paths': {'key': 'paths', 'type': '[ArtifactPath]'},
+ }
+
+ def __init__(
+ self,
+ *,
+ paths: List["ArtifactPath"],
+ **kwargs
+ ):
+ """
+ :keyword paths: Required. List of Artifact Paths.
+ :paramtype paths: list[~azure.mgmt.machinelearningservices.models.ArtifactPath]
+ """
+ super(ArtifactPathList, self).__init__(**kwargs)
+ self.paths = paths
+
+
+class BaseEvent(msrest.serialization.Model):
+ """Base event is the envelope used to post event data to the Event controller.
+
+ :ivar timestamp:
+ :vartype timestamp: ~datetime.datetime
+ :ivar name:
+ :vartype name: str
+ :ivar data: Anything.
+ :vartype data: any
+ """
+
+ _attribute_map = {
+ 'timestamp': {'key': 'timestamp', 'type': 'iso-8601'},
+ 'name': {'key': 'name', 'type': 'str'},
+ 'data': {'key': 'data', 'type': 'object'},
+ }
+
+ def __init__(
+ self,
+ *,
+ timestamp: Optional[datetime.datetime] = None,
+ name: Optional[str] = None,
+ data: Optional[Any] = None,
+ **kwargs
+ ):
+ """
+ :keyword timestamp:
+ :paramtype timestamp: ~datetime.datetime
+ :keyword name:
+ :paramtype name: str
+ :keyword data: Anything.
+ :paramtype data: any
+ """
+ super(BaseEvent, self).__init__(**kwargs)
+ self.timestamp = timestamp
+ self.name = name
+ self.data = data
+
+
+class BatchAddOrModifyRunRequest(msrest.serialization.Model):
+ """BatchAddOrModifyRunRequest.
+
+ :ivar runs:
+ :vartype runs: list[~azure.mgmt.machinelearningservices.models.CreateRun]
+ """
+
+ _attribute_map = {
+ 'runs': {'key': 'runs', 'type': '[CreateRun]'},
+ }
+
+ def __init__(
+ self,
+ *,
+ runs: Optional[List["CreateRun"]] = None,
+ **kwargs
+ ):
+ """
+ :keyword runs:
+ :paramtype runs: list[~azure.mgmt.machinelearningservices.models.CreateRun]
+ """
+ super(BatchAddOrModifyRunRequest, self).__init__(**kwargs)
+ self.runs = runs
+
+
+class BatchArtifactContentInformationResult(msrest.serialization.Model):
+ """Results of the Batch Artifact Content Information request.
+
+ :ivar artifacts: Artifact details of the Artifact Ids requested.
+ :vartype artifacts: dict[str, ~azure.mgmt.machinelearningservices.models.Artifact]
+ :ivar artifact_content_information: Artifact Content Information details of the Artifact Ids
+ requested.
+ :vartype artifact_content_information: dict[str,
+ ~azure.mgmt.machinelearningservices.models.ArtifactContentInformation]
+ :ivar errors: Errors occurred while fetching the requested Artifact Ids.
+ :vartype errors: dict[str, ~azure.mgmt.machinelearningservices.models.ErrorResponse]
+ """
+
+ _attribute_map = {
+ 'artifacts': {'key': 'artifacts', 'type': '{Artifact}'},
+ 'artifact_content_information': {'key': 'artifactContentInformation', 'type': '{ArtifactContentInformation}'},
+ 'errors': {'key': 'errors', 'type': '{ErrorResponse}'},
+ }
+
+ def __init__(
+ self,
+ *,
+ artifacts: Optional[Dict[str, "Artifact"]] = None,
+ artifact_content_information: Optional[Dict[str, "ArtifactContentInformation"]] = None,
+ errors: Optional[Dict[str, "ErrorResponse"]] = None,
+ **kwargs
+ ):
+ """
+ :keyword artifacts: Artifact details of the Artifact Ids requested.
+ :paramtype artifacts: dict[str, ~azure.mgmt.machinelearningservices.models.Artifact]
+ :keyword artifact_content_information: Artifact Content Information details of the Artifact Ids
+ requested.
+ :paramtype artifact_content_information: dict[str,
+ ~azure.mgmt.machinelearningservices.models.ArtifactContentInformation]
+ :keyword errors: Errors occurred while fetching the requested Artifact Ids.
+ :paramtype errors: dict[str, ~azure.mgmt.machinelearningservices.models.ErrorResponse]
+ """
+ super(BatchArtifactContentInformationResult, self).__init__(**kwargs)
+ self.artifacts = artifacts
+ self.artifact_content_information = artifact_content_information
+ self.errors = errors
+
+
+class BatchEventCommand(msrest.serialization.Model):
+ """BatchEventCommand.
+
+ :ivar events:
+ :vartype events: list[~azure.mgmt.machinelearningservices.models.BaseEvent]
+ """
+
+ _attribute_map = {
+ 'events': {'key': 'events', 'type': '[BaseEvent]'},
+ }
+
+ def __init__(
+ self,
+ *,
+ events: Optional[List["BaseEvent"]] = None,
+ **kwargs
+ ):
+ """
+ :keyword events:
+ :paramtype events: list[~azure.mgmt.machinelearningservices.models.BaseEvent]
+ """
+ super(BatchEventCommand, self).__init__(**kwargs)
+ self.events = events
+
+
+class BatchEventCommandResult(msrest.serialization.Model):
+ """BatchEventCommandResult.
+
+ :ivar errors:
+ :vartype errors:
+ list[~azure.mgmt.machinelearningservices.models.KeyValuePairBaseEventErrorResponse]
+ :ivar successes:
+ :vartype successes: list[str]
+ """
+
+ _attribute_map = {
+ 'errors': {'key': 'errors', 'type': '[KeyValuePairBaseEventErrorResponse]'},
+ 'successes': {'key': 'successes', 'type': '[str]'},
+ }
+
+ def __init__(
+ self,
+ *,
+ errors: Optional[List["KeyValuePairBaseEventErrorResponse"]] = None,
+ successes: Optional[List[str]] = None,
+ **kwargs
+ ):
+ """
+ :keyword errors:
+ :paramtype errors:
+ list[~azure.mgmt.machinelearningservices.models.KeyValuePairBaseEventErrorResponse]
+ :keyword successes:
+ :paramtype successes: list[str]
+ """
+ super(BatchEventCommandResult, self).__init__(**kwargs)
+ self.errors = errors
+ self.successes = successes
+
+
+class BatchIMetricV2(msrest.serialization.Model):
+ """BatchIMetricV2.
+
+ :ivar values:
+ :vartype values: list[~azure.mgmt.machinelearningservices.models.IMetricV2]
+ :ivar report_errors:
+ :vartype report_errors: bool
+ """
+
+ _attribute_map = {
+ 'values': {'key': 'values', 'type': '[IMetricV2]'},
+ 'report_errors': {'key': 'reportErrors', 'type': 'bool'},
+ }
+
+ def __init__(
+ self,
+ *,
+ values: Optional[List["IMetricV2"]] = None,
+ report_errors: Optional[bool] = None,
+ **kwargs
+ ):
+ """
+ :keyword values:
+ :paramtype values: list[~azure.mgmt.machinelearningservices.models.IMetricV2]
+ :keyword report_errors:
+ :paramtype report_errors: bool
+ """
+ super(BatchIMetricV2, self).__init__(**kwargs)
+ self.values = values
+ self.report_errors = report_errors
+
+
+class BatchRequest1(msrest.serialization.Model):
+ """BatchRequest1.
+
+ :ivar requests: Dictionary of :code:`<GetRunDataRequest>`.
+ :vartype requests: dict[str, ~azure.mgmt.machinelearningservices.models.GetRunDataRequest]
+ """
+
+ _attribute_map = {
+ 'requests': {'key': 'requests', 'type': '{GetRunDataRequest}'},
+ }
+
+ def __init__(
+ self,
+ *,
+ requests: Optional[Dict[str, "GetRunDataRequest"]] = None,
+ **kwargs
+ ):
+ """
+ :keyword requests: Dictionary of :code:`<GetRunDataRequest>`.
+ :paramtype requests: dict[str, ~azure.mgmt.machinelearningservices.models.GetRunDataRequest]
+ """
+ super(BatchRequest1, self).__init__(**kwargs)
+ self.requests = requests
+
+
+class BatchResult1(msrest.serialization.Model):
+ """BatchResult1.
+
+ :ivar successful_results: Dictionary of :code:`<GetRunDataResult>`.
+ :vartype successful_results: dict[str,
+ ~azure.mgmt.machinelearningservices.models.GetRunDataResult]
+ :ivar failed_results: Dictionary of :code:`<ErrorResponse>`.
+ :vartype failed_results: dict[str, ~azure.mgmt.machinelearningservices.models.ErrorResponse]
+ """
+
+ _attribute_map = {
+ 'successful_results': {'key': 'successfulResults', 'type': '{GetRunDataResult}'},
+ 'failed_results': {'key': 'failedResults', 'type': '{ErrorResponse}'},
+ }
+
+ def __init__(
+ self,
+ *,
+ successful_results: Optional[Dict[str, "GetRunDataResult"]] = None,
+ failed_results: Optional[Dict[str, "ErrorResponse"]] = None,
+ **kwargs
+ ):
+ """
+ :keyword successful_results: Dictionary of :code:`<GetRunDataResult>`.
+ :paramtype successful_results: dict[str,
+ ~azure.mgmt.machinelearningservices.models.GetRunDataResult]
+ :keyword failed_results: Dictionary of :code:`<ErrorResponse>`.
+ :paramtype failed_results: dict[str, ~azure.mgmt.machinelearningservices.models.ErrorResponse]
+ """
+ super(BatchResult1, self).__init__(**kwargs)
+ self.successful_results = successful_results
+ self.failed_results = failed_results
+
+
+class BatchRunResult(msrest.serialization.Model):
+ """BatchRunResult.
+
+ :ivar runs: Dictionary of :code:`<Run>`.
+ :vartype runs: dict[str, ~azure.mgmt.machinelearningservices.models.Run]
+ :ivar errors: Dictionary of :code:`<ErrorResponse>`.
+ :vartype errors: dict[str, ~azure.mgmt.machinelearningservices.models.ErrorResponse]
+ """
+
+ _attribute_map = {
+ 'runs': {'key': 'runs', 'type': '{Run}'},
+ 'errors': {'key': 'errors', 'type': '{ErrorResponse}'},
+ }
+
+ def __init__(
+ self,
+ *,
+ runs: Optional[Dict[str, "Run"]] = None,
+ errors: Optional[Dict[str, "ErrorResponse"]] = None,
+ **kwargs
+ ):
+ """
+ :keyword runs: Dictionary of :code:`<Run>`.
+ :paramtype runs: dict[str, ~azure.mgmt.machinelearningservices.models.Run]
+ :keyword errors: Dictionary of :code:`<ErrorResponse>`.
+ :paramtype errors: dict[str, ~azure.mgmt.machinelearningservices.models.ErrorResponse]
+ """
+ super(BatchRunResult, self).__init__(**kwargs)
+ self.runs = runs
+ self.errors = errors
+
+
+class Compute(msrest.serialization.Model):
+ """Compute.
+
+ :ivar target:
+ :vartype target: str
+ :ivar target_type:
+ :vartype target_type: str
+ :ivar vm_size:
+ :vartype vm_size: str
+ :ivar instance_count:
+ :vartype instance_count: int
+ :ivar gpu_count:
+ :vartype gpu_count: int
+ :ivar priority:
+ :vartype priority: str
+ :ivar region:
+ :vartype region: str
+ """
+
+ _attribute_map = {
+ 'target': {'key': 'target', 'type': 'str'},
+ 'target_type': {'key': 'targetType', 'type': 'str'},
+ 'vm_size': {'key': 'vmSize', 'type': 'str'},
+ 'instance_count': {'key': 'instanceCount', 'type': 'int'},
+ 'gpu_count': {'key': 'gpuCount', 'type': 'int'},
+ 'priority': {'key': 'priority', 'type': 'str'},
+ 'region': {'key': 'region', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ target: Optional[str] = None,
+ target_type: Optional[str] = None,
+ vm_size: Optional[str] = None,
+ instance_count: Optional[int] = None,
+ gpu_count: Optional[int] = None,
+ priority: Optional[str] = None,
+ region: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword target:
+ :paramtype target: str
+ :keyword target_type:
+ :paramtype target_type: str
+ :keyword vm_size:
+ :paramtype vm_size: str
+ :keyword instance_count:
+ :paramtype instance_count: int
+ :keyword gpu_count:
+ :paramtype gpu_count: int
+ :keyword priority:
+ :paramtype priority: str
+ :keyword region:
+ :paramtype region: str
+ """
+ super(Compute, self).__init__(**kwargs)
+ self.target = target
+ self.target_type = target_type
+ self.vm_size = vm_size
+ self.instance_count = instance_count
+ self.gpu_count = gpu_count
+ self.priority = priority
+ self.region = region
+
+
+class ComputeRequest(msrest.serialization.Model):
+ """ComputeRequest.
+
+ :ivar node_count:
+ :vartype node_count: int
+ :ivar gpu_count:
+ :vartype gpu_count: int
+ """
+
+ _attribute_map = {
+ 'node_count': {'key': 'nodeCount', 'type': 'int'},
+ 'gpu_count': {'key': 'gpuCount', 'type': 'int'},
+ }
+
+ def __init__(
+ self,
+ *,
+ node_count: Optional[int] = None,
+ gpu_count: Optional[int] = None,
+ **kwargs
+ ):
+ """
+ :keyword node_count:
+ :paramtype node_count: int
+ :keyword gpu_count:
+ :paramtype gpu_count: int
+ """
+ super(ComputeRequest, self).__init__(**kwargs)
+ self.node_count = node_count
+ self.gpu_count = gpu_count
+
+
+class CreatedFrom(msrest.serialization.Model):
+ """CreatedFrom.
+
+ :ivar type: The only acceptable values to pass in are None and "Notebook". The default value
+ is None.
+ :vartype type: str
+ :ivar location_type: The only acceptable values to pass in are None and "ArtifactId". The
+ default value is None.
+ :vartype location_type: str
+ :ivar location:
+ :vartype location: str
+ """
+
+ _attribute_map = {
+ 'type': {'key': 'type', 'type': 'str'},
+ 'location_type': {'key': 'locationType', 'type': 'str'},
+ 'location': {'key': 'location', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ type: Optional[str] = None,
+ location_type: Optional[str] = None,
+ location: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword type: The only acceptable values to pass in are None and "Notebook". The default
+ value is None.
+ :paramtype type: str
+ :keyword location_type: The only acceptable values to pass in are None and "ArtifactId". The
+ default value is None.
+ :paramtype location_type: str
+ :keyword location:
+ :paramtype location: str
+ """
+ super(CreatedFrom, self).__init__(**kwargs)
+ self.type = type
+ self.location_type = location_type
+ self.location = location
+
+
+class CreateRun(msrest.serialization.Model):
+ """CreateRun.
+
+ :ivar run_id: The identifier for the run. Run IDs must be less than 256 characters and contain
+ only alphanumeric characters with dashes and underscores.
+ :vartype run_id: str
+ :ivar parent_run_id: The parent of the run if the run is hierarchical; otherwise, Null.
+ :vartype parent_run_id: str
+ :ivar experiment_id: The Id of the experiment that created this run.
+ :vartype experiment_id: str
+ :ivar status: The status of the run. The Status string value maps to the RunStatus Enum.
+ :vartype status: str
+ :ivar start_time_utc: The start time of the run in UTC.
+ :vartype start_time_utc: ~datetime.datetime
+ :ivar end_time_utc: The end time of the run in UTC.
+ :vartype end_time_utc: ~datetime.datetime
+ :ivar options:
+ :vartype options: ~azure.mgmt.machinelearningservices.models.RunOptions
+ :ivar is_virtual: A virtual run can set an active child run that will override the virtual run
+ status and properties.
+ :vartype is_virtual: bool
+ :ivar display_name:
+ :vartype display_name: str
+ :ivar name:
+ :vartype name: str
+ :ivar data_container_id:
+ :vartype data_container_id: str
+ :ivar description:
+ :vartype description: str
+ :ivar hidden:
+ :vartype hidden: bool
+ :ivar run_type:
+ :vartype run_type: str
+ :ivar run_type_v2:
+ :vartype run_type_v2: ~azure.mgmt.machinelearningservices.models.RunTypeV2
+ :ivar properties: Dictionary of :code:`<string>`.
+ :vartype properties: dict[str, str]
+ :ivar parameters: Dictionary of :code:`<any>`.
+ :vartype parameters: dict[str, any]
+ :ivar action_uris: Dictionary of :code:`<string>`.
+ :vartype action_uris: dict[str, str]
+ :ivar script_name:
+ :vartype script_name: str
+ :ivar target:
+ :vartype target: str
+ :ivar unique_child_run_compute_targets:
+ :vartype unique_child_run_compute_targets: list[str]
+ :ivar tags: A set of tags. Dictionary of :code:`<string>`.
+ :vartype tags: dict[str, str]
+ :ivar settings: Dictionary of :code:`<string>`.
+ :vartype settings: dict[str, str]
+ :ivar services: Dictionary of :code:`<EndpointSetting>`.
+ :vartype services: dict[str, ~azure.mgmt.machinelearningservices.models.EndpointSetting]
+ :ivar input_datasets:
+ :vartype input_datasets: list[~azure.mgmt.machinelearningservices.models.DatasetLineage]
+ :ivar output_datasets:
+ :vartype output_datasets: list[~azure.mgmt.machinelearningservices.models.OutputDatasetLineage]
+ :ivar run_definition: Anything.
+ :vartype run_definition: any
+ :ivar job_specification: Anything.
+ :vartype job_specification: any
+ :ivar primary_metric_name:
+ :vartype primary_metric_name: str
+ :ivar created_from:
+ :vartype created_from: ~azure.mgmt.machinelearningservices.models.CreatedFrom
+ :ivar cancel_uri:
+ :vartype cancel_uri: str
+ :ivar complete_uri:
+ :vartype complete_uri: str
+ :ivar diagnostics_uri:
+ :vartype diagnostics_uri: str
+ :ivar compute_request:
+ :vartype compute_request: ~azure.mgmt.machinelearningservices.models.ComputeRequest
+ :ivar compute:
+ :vartype compute: ~azure.mgmt.machinelearningservices.models.Compute
+ :ivar retain_for_lifetime_of_workspace:
+ :vartype retain_for_lifetime_of_workspace: bool
+ :ivar queueing_info:
+ :vartype queueing_info: ~azure.mgmt.machinelearningservices.models.QueueingInfo
+ :ivar active_child_run_id: The RunId of the active child on a virtual run.
+ :vartype active_child_run_id: str
+ :ivar inputs: Dictionary of :code:`<TypedAssetReference>`.
+ :vartype inputs: dict[str, ~azure.mgmt.machinelearningservices.models.TypedAssetReference]
+ :ivar outputs: Dictionary of :code:`<TypedAssetReference>`.
+ :vartype outputs: dict[str, ~azure.mgmt.machinelearningservices.models.TypedAssetReference]
+ """
+
+ _validation = {
+ 'unique_child_run_compute_targets': {'unique': True},
+ 'input_datasets': {'unique': True},
+ 'output_datasets': {'unique': True},
+ }
+
+ _attribute_map = {
+ 'run_id': {'key': 'runId', 'type': 'str'},
+ 'parent_run_id': {'key': 'parentRunId', 'type': 'str'},
+ 'experiment_id': {'key': 'experimentId', 'type': 'str'},
+ 'status': {'key': 'status', 'type': 'str'},
+ 'start_time_utc': {'key': 'startTimeUtc', 'type': 'iso-8601'},
+ 'end_time_utc': {'key': 'endTimeUtc', 'type': 'iso-8601'},
+ 'options': {'key': 'options', 'type': 'RunOptions'},
+ 'is_virtual': {'key': 'isVirtual', 'type': 'bool'},
+ 'display_name': {'key': 'displayName', 'type': 'str'},
+ 'name': {'key': 'name', 'type': 'str'},
+ 'data_container_id': {'key': 'dataContainerId', 'type': 'str'},
+ 'description': {'key': 'description', 'type': 'str'},
+ 'hidden': {'key': 'hidden', 'type': 'bool'},
+ 'run_type': {'key': 'runType', 'type': 'str'},
+ 'run_type_v2': {'key': 'runTypeV2', 'type': 'RunTypeV2'},
+ 'properties': {'key': 'properties', 'type': '{str}'},
+ 'parameters': {'key': 'parameters', 'type': '{object}'},
+ 'action_uris': {'key': 'actionUris', 'type': '{str}'},
+ 'script_name': {'key': 'scriptName', 'type': 'str'},
+ 'target': {'key': 'target', 'type': 'str'},
+ 'unique_child_run_compute_targets': {'key': 'uniqueChildRunComputeTargets', 'type': '[str]'},
+ 'tags': {'key': 'tags', 'type': '{str}'},
+ 'settings': {'key': 'settings', 'type': '{str}'},
+ 'services': {'key': 'services', 'type': '{EndpointSetting}'},
+ 'input_datasets': {'key': 'inputDatasets', 'type': '[DatasetLineage]'},
+ 'output_datasets': {'key': 'outputDatasets', 'type': '[OutputDatasetLineage]'},
+ 'run_definition': {'key': 'runDefinition', 'type': 'object'},
+ 'job_specification': {'key': 'jobSpecification', 'type': 'object'},
+ 'primary_metric_name': {'key': 'primaryMetricName', 'type': 'str'},
+ 'created_from': {'key': 'createdFrom', 'type': 'CreatedFrom'},
+ 'cancel_uri': {'key': 'cancelUri', 'type': 'str'},
+ 'complete_uri': {'key': 'completeUri', 'type': 'str'},
+ 'diagnostics_uri': {'key': 'diagnosticsUri', 'type': 'str'},
+ 'compute_request': {'key': 'computeRequest', 'type': 'ComputeRequest'},
+ 'compute': {'key': 'compute', 'type': 'Compute'},
+ 'retain_for_lifetime_of_workspace': {'key': 'retainForLifetimeOfWorkspace', 'type': 'bool'},
+ 'queueing_info': {'key': 'queueingInfo', 'type': 'QueueingInfo'},
+ 'active_child_run_id': {'key': 'activeChildRunId', 'type': 'str'},
+ 'inputs': {'key': 'inputs', 'type': '{TypedAssetReference}'},
+ 'outputs': {'key': 'outputs', 'type': '{TypedAssetReference}'},
+ }
+
+ def __init__(
+ self,
+ *,
+ run_id: Optional[str] = None,
+ parent_run_id: Optional[str] = None,
+ experiment_id: Optional[str] = None,
+ status: Optional[str] = None,
+ start_time_utc: Optional[datetime.datetime] = None,
+ end_time_utc: Optional[datetime.datetime] = None,
+ options: Optional["RunOptions"] = None,
+ is_virtual: Optional[bool] = None,
+ display_name: Optional[str] = None,
+ name: Optional[str] = None,
+ data_container_id: Optional[str] = None,
+ description: Optional[str] = None,
+ hidden: Optional[bool] = None,
+ run_type: Optional[str] = None,
+ run_type_v2: Optional["RunTypeV2"] = None,
+ properties: Optional[Dict[str, str]] = None,
+ parameters: Optional[Dict[str, Any]] = None,
+ action_uris: Optional[Dict[str, str]] = None,
+ script_name: Optional[str] = None,
+ target: Optional[str] = None,
+ unique_child_run_compute_targets: Optional[List[str]] = None,
+ tags: Optional[Dict[str, str]] = None,
+ settings: Optional[Dict[str, str]] = None,
+ services: Optional[Dict[str, "EndpointSetting"]] = None,
+ input_datasets: Optional[List["DatasetLineage"]] = None,
+ output_datasets: Optional[List["OutputDatasetLineage"]] = None,
+ run_definition: Optional[Any] = None,
+ job_specification: Optional[Any] = None,
+ primary_metric_name: Optional[str] = None,
+ created_from: Optional["CreatedFrom"] = None,
+ cancel_uri: Optional[str] = None,
+ complete_uri: Optional[str] = None,
+ diagnostics_uri: Optional[str] = None,
+ compute_request: Optional["ComputeRequest"] = None,
+ compute: Optional["Compute"] = None,
+ retain_for_lifetime_of_workspace: Optional[bool] = None,
+ queueing_info: Optional["QueueingInfo"] = None,
+ active_child_run_id: Optional[str] = None,
+ inputs: Optional[Dict[str, "TypedAssetReference"]] = None,
+ outputs: Optional[Dict[str, "TypedAssetReference"]] = None,
+ **kwargs
+ ):
+ """
+ :keyword run_id: The identifier for the run. Run IDs must be less than 256 characters and
+ contain only alphanumeric characters with dashes and underscores.
+ :paramtype run_id: str
+ :keyword parent_run_id: The parent of the run if the run is hierarchical; otherwise, Null.
+ :paramtype parent_run_id: str
+ :keyword experiment_id: The Id of the experiment that created this run.
+ :paramtype experiment_id: str
+ :keyword status: The status of the run. The Status string value maps to the RunStatus Enum.
+ :paramtype status: str
+ :keyword start_time_utc: The start time of the run in UTC.
+ :paramtype start_time_utc: ~datetime.datetime
+ :keyword end_time_utc: The end time of the run in UTC.
+ :paramtype end_time_utc: ~datetime.datetime
+ :keyword options:
+ :paramtype options: ~azure.mgmt.machinelearningservices.models.RunOptions
+ :keyword is_virtual: A virtual run can set an active child run that will override the virtual
+ run status and properties.
+ :paramtype is_virtual: bool
+ :keyword display_name:
+ :paramtype display_name: str
+ :keyword name:
+ :paramtype name: str
+ :keyword data_container_id:
+ :paramtype data_container_id: str
+ :keyword description:
+ :paramtype description: str
+ :keyword hidden:
+ :paramtype hidden: bool
+ :keyword run_type:
+ :paramtype run_type: str
+ :keyword run_type_v2:
+ :paramtype run_type_v2: ~azure.mgmt.machinelearningservices.models.RunTypeV2
+ :keyword properties: Dictionary of :code:`<string>`.
+ :paramtype properties: dict[str, str]
+ :keyword parameters: Dictionary of :code:`<any>`.
+ :paramtype parameters: dict[str, any]
+ :keyword action_uris: Dictionary of :code:`<string>`.
+ :paramtype action_uris: dict[str, str]
+ :keyword script_name:
+ :paramtype script_name: str
+ :keyword target:
+ :paramtype target: str
+ :keyword unique_child_run_compute_targets:
+ :paramtype unique_child_run_compute_targets: list[str]
+ :keyword tags: A set of tags. Dictionary of :code:`<string>`.
+ :paramtype tags: dict[str, str]
+ :keyword settings: Dictionary of :code:`<string>`.
+ :paramtype settings: dict[str, str]
+ :keyword services: Dictionary of :code:`<EndpointSetting>`.
+ :paramtype services: dict[str, ~azure.mgmt.machinelearningservices.models.EndpointSetting]
+ :keyword input_datasets:
+ :paramtype input_datasets: list[~azure.mgmt.machinelearningservices.models.DatasetLineage]
+ :keyword output_datasets:
+ :paramtype output_datasets:
+ list[~azure.mgmt.machinelearningservices.models.OutputDatasetLineage]
+ :keyword run_definition: Anything.
+ :paramtype run_definition: any
+ :keyword job_specification: Anything.
+ :paramtype job_specification: any
+ :keyword primary_metric_name:
+ :paramtype primary_metric_name: str
+ :keyword created_from:
+ :paramtype created_from: ~azure.mgmt.machinelearningservices.models.CreatedFrom
+ :keyword cancel_uri:
+ :paramtype cancel_uri: str
+ :keyword complete_uri:
+ :paramtype complete_uri: str
+ :keyword diagnostics_uri:
+ :paramtype diagnostics_uri: str
+ :keyword compute_request:
+ :paramtype compute_request: ~azure.mgmt.machinelearningservices.models.ComputeRequest
+ :keyword compute:
+ :paramtype compute: ~azure.mgmt.machinelearningservices.models.Compute
+ :keyword retain_for_lifetime_of_workspace:
+ :paramtype retain_for_lifetime_of_workspace: bool
+ :keyword queueing_info:
+ :paramtype queueing_info: ~azure.mgmt.machinelearningservices.models.QueueingInfo
+ :keyword active_child_run_id: The RunId of the active child on a virtual run.
+ :paramtype active_child_run_id: str
+ :keyword inputs: Dictionary of :code:`<TypedAssetReference>`.
+ :paramtype inputs: dict[str, ~azure.mgmt.machinelearningservices.models.TypedAssetReference]
+ :keyword outputs: Dictionary of :code:`<TypedAssetReference>`.
+ :paramtype outputs: dict[str, ~azure.mgmt.machinelearningservices.models.TypedAssetReference]
+ """
+ super(CreateRun, self).__init__(**kwargs)
+ self.run_id = run_id
+ self.parent_run_id = parent_run_id
+ self.experiment_id = experiment_id
+ self.status = status
+ self.start_time_utc = start_time_utc
+ self.end_time_utc = end_time_utc
+ self.options = options
+ self.is_virtual = is_virtual
+ self.display_name = display_name
+ self.name = name
+ self.data_container_id = data_container_id
+ self.description = description
+ self.hidden = hidden
+ self.run_type = run_type
+ self.run_type_v2 = run_type_v2
+ self.properties = properties
+ self.parameters = parameters
+ self.action_uris = action_uris
+ self.script_name = script_name
+ self.target = target
+ self.unique_child_run_compute_targets = unique_child_run_compute_targets
+ self.tags = tags
+ self.settings = settings
+ self.services = services
+ self.input_datasets = input_datasets
+ self.output_datasets = output_datasets
+ self.run_definition = run_definition
+ self.job_specification = job_specification
+ self.primary_metric_name = primary_metric_name
+ self.created_from = created_from
+ self.cancel_uri = cancel_uri
+ self.complete_uri = complete_uri
+ self.diagnostics_uri = diagnostics_uri
+ self.compute_request = compute_request
+ self.compute = compute
+ self.retain_for_lifetime_of_workspace = retain_for_lifetime_of_workspace
+ self.queueing_info = queueing_info
+ self.active_child_run_id = active_child_run_id
+ self.inputs = inputs
+ self.outputs = outputs
+
+
+class DatasetIdentifier(msrest.serialization.Model):
+ """DatasetIdentifier.
+
+ :ivar saved_id:
+ :vartype saved_id: str
+ :ivar registered_id:
+ :vartype registered_id: str
+ :ivar registered_version:
+ :vartype registered_version: str
+ """
+
+ _attribute_map = {
+ 'saved_id': {'key': 'savedId', 'type': 'str'},
+ 'registered_id': {'key': 'registeredId', 'type': 'str'},
+ 'registered_version': {'key': 'registeredVersion', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ saved_id: Optional[str] = None,
+ registered_id: Optional[str] = None,
+ registered_version: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword saved_id:
+ :paramtype saved_id: str
+ :keyword registered_id:
+ :paramtype registered_id: str
+ :keyword registered_version:
+ :paramtype registered_version: str
+ """
+ super(DatasetIdentifier, self).__init__(**kwargs)
+ self.saved_id = saved_id
+ self.registered_id = registered_id
+ self.registered_version = registered_version
+
+
+class DatasetInputDetails(msrest.serialization.Model):
+ """DatasetInputDetails.
+
+ :ivar input_name:
+ :vartype input_name: str
+ :ivar mechanism: Possible values include: "Direct", "Mount", "Download", "Hdfs".
+ :vartype mechanism: str or ~azure.mgmt.machinelearningservices.models.DatasetDeliveryMechanism
+ :ivar path_on_compute:
+ :vartype path_on_compute: str
+ """
+
+ _attribute_map = {
+ 'input_name': {'key': 'inputName', 'type': 'str'},
+ 'mechanism': {'key': 'mechanism', 'type': 'str'},
+ 'path_on_compute': {'key': 'pathOnCompute', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ input_name: Optional[str] = None,
+ mechanism: Optional[Union[str, "DatasetDeliveryMechanism"]] = None,
+ path_on_compute: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword input_name:
+ :paramtype input_name: str
+ :keyword mechanism: Possible values include: "Direct", "Mount", "Download", "Hdfs".
+ :paramtype mechanism: str or
+ ~azure.mgmt.machinelearningservices.models.DatasetDeliveryMechanism
+ :keyword path_on_compute:
+ :paramtype path_on_compute: str
+ """
+ super(DatasetInputDetails, self).__init__(**kwargs)
+ self.input_name = input_name
+ self.mechanism = mechanism
+ self.path_on_compute = path_on_compute
+
+
+class DatasetLineage(msrest.serialization.Model):
+ """DatasetLineage.
+
+ :ivar identifier:
+ :vartype identifier: ~azure.mgmt.machinelearningservices.models.DatasetIdentifier
+ :ivar consumption_type: Possible values include: "RunInput", "Reference".
+ :vartype consumption_type: str or
+ ~azure.mgmt.machinelearningservices.models.DatasetConsumptionType
+ :ivar input_details:
+ :vartype input_details: ~azure.mgmt.machinelearningservices.models.DatasetInputDetails
+ """
+
+ _attribute_map = {
+ 'identifier': {'key': 'identifier', 'type': 'DatasetIdentifier'},
+ 'consumption_type': {'key': 'consumptionType', 'type': 'str'},
+ 'input_details': {'key': 'inputDetails', 'type': 'DatasetInputDetails'},
+ }
+
+ def __init__(
+ self,
+ *,
+ identifier: Optional["DatasetIdentifier"] = None,
+ consumption_type: Optional[Union[str, "DatasetConsumptionType"]] = None,
+ input_details: Optional["DatasetInputDetails"] = None,
+ **kwargs
+ ):
+ """
+ :keyword identifier:
+ :paramtype identifier: ~azure.mgmt.machinelearningservices.models.DatasetIdentifier
+ :keyword consumption_type: Possible values include: "RunInput", "Reference".
+ :paramtype consumption_type: str or
+ ~azure.mgmt.machinelearningservices.models.DatasetConsumptionType
+ :keyword input_details:
+ :paramtype input_details: ~azure.mgmt.machinelearningservices.models.DatasetInputDetails
+ """
+ super(DatasetLineage, self).__init__(**kwargs)
+ self.identifier = identifier
+ self.consumption_type = consumption_type
+ self.input_details = input_details
+
+
+class DatasetOutputDetails(msrest.serialization.Model):
+ """DatasetOutputDetails.
+
+ :ivar output_name:
+ :vartype output_name: str
+ """
+
+ _attribute_map = {
+ 'output_name': {'key': 'outputName', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ output_name: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword output_name:
+ :paramtype output_name: str
+ """
+ super(DatasetOutputDetails, self).__init__(**kwargs)
+ self.output_name = output_name
+
+
+class DeleteConfiguration(msrest.serialization.Model):
+ """DeleteConfiguration.
+
+ :ivar workspace_id:
+ :vartype workspace_id: str
+ :ivar is_enabled:
+ :vartype is_enabled: bool
+ :ivar cutoff_days:
+ :vartype cutoff_days: int
+ """
+
+ _attribute_map = {
+ 'workspace_id': {'key': 'workspaceId', 'type': 'str'},
+ 'is_enabled': {'key': 'isEnabled', 'type': 'bool'},
+ 'cutoff_days': {'key': 'cutoffDays', 'type': 'int'},
+ }
+
+ def __init__(
+ self,
+ *,
+ workspace_id: Optional[str] = None,
+ is_enabled: Optional[bool] = None,
+ cutoff_days: Optional[int] = None,
+ **kwargs
+ ):
+ """
+ :keyword workspace_id:
+ :paramtype workspace_id: str
+ :keyword is_enabled:
+ :paramtype is_enabled: bool
+ :keyword cutoff_days:
+ :paramtype cutoff_days: int
+ """
+ super(DeleteConfiguration, self).__init__(**kwargs)
+ self.workspace_id = workspace_id
+ self.is_enabled = is_enabled
+ self.cutoff_days = cutoff_days
+
+
+class DeleteExperimentTagsResult(msrest.serialization.Model):
+ """DeleteExperimentTagsResult.
+
+ :ivar errors: Dictionary of :code:`<ErrorResponse>`.
+ :vartype errors: dict[str, ~azure.mgmt.machinelearningservices.models.ErrorResponse]
+ """
+
+ _attribute_map = {
+ 'errors': {'key': 'errors', 'type': '{ErrorResponse}'},
+ }
+
+ def __init__(
+ self,
+ *,
+ errors: Optional[Dict[str, "ErrorResponse"]] = None,
+ **kwargs
+ ):
+ """
+ :keyword errors: Dictionary of :code:`<ErrorResponse>`.
+ :paramtype errors: dict[str, ~azure.mgmt.machinelearningservices.models.ErrorResponse]
+ """
+ super(DeleteExperimentTagsResult, self).__init__(**kwargs)
+ self.errors = errors
+
+
+class DeleteOrModifyTags(msrest.serialization.Model):
+ """The Tags to modify or delete.
+
+ :ivar tags_to_modify: The KV pairs of tags to modify.
+ :vartype tags_to_modify: dict[str, str]
+ :ivar tags_to_delete: The list of tags to delete.
+ :vartype tags_to_delete: list[str]
+ """
+
+ _attribute_map = {
+ 'tags_to_modify': {'key': 'tagsToModify', 'type': '{str}'},
+ 'tags_to_delete': {'key': 'tagsToDelete', 'type': '[str]'},
+ }
+
+ def __init__(
+ self,
+ *,
+ tags_to_modify: Optional[Dict[str, str]] = None,
+ tags_to_delete: Optional[List[str]] = None,
+ **kwargs
+ ):
+ """
+ :keyword tags_to_modify: The KV pairs of tags to modify.
+ :paramtype tags_to_modify: dict[str, str]
+ :keyword tags_to_delete: The list of tags to delete.
+ :paramtype tags_to_delete: list[str]
+ """
+ super(DeleteOrModifyTags, self).__init__(**kwargs)
+ self.tags_to_modify = tags_to_modify
+ self.tags_to_delete = tags_to_delete
+
+
+class DeleteRunServices(msrest.serialization.Model):
+ """The Services to delete.
+
+ :ivar services_to_delete: The list of Services to delete.
+ :vartype services_to_delete: list[str]
+ """
+
+ _attribute_map = {
+ 'services_to_delete': {'key': 'servicesToDelete', 'type': '[str]'},
+ }
+
+ def __init__(
+ self,
+ *,
+ services_to_delete: Optional[List[str]] = None,
+ **kwargs
+ ):
+ """
+ :keyword services_to_delete: The list of Services to delete.
+ :paramtype services_to_delete: list[str]
+ """
+ super(DeleteRunServices, self).__init__(**kwargs)
+ self.services_to_delete = services_to_delete
+
+
+class DeleteTagsCommand(msrest.serialization.Model):
+ """DeleteTagsCommand.
+
+ :ivar tags: A set of tags.
+ :vartype tags: list[str]
+ """
+
+ _attribute_map = {
+ 'tags': {'key': 'tags', 'type': '[str]'},
+ }
+
+ def __init__(
+ self,
+ *,
+ tags: Optional[List[str]] = None,
+ **kwargs
+ ):
+ """
+ :keyword tags: A set of tags.
+ :paramtype tags: list[str]
+ """
+ super(DeleteTagsCommand, self).__init__(**kwargs)
+ self.tags = tags
+
+
+class DerivedMetricKey(msrest.serialization.Model):
+ """DerivedMetricKey.
+
+ :ivar namespace:
+ :vartype namespace: str
+ :ivar name:
+ :vartype name: str
+ :ivar labels:
+ :vartype labels: list[str]
+ :ivar column_names:
+ :vartype column_names: list[str]
+ """
+
+ _validation = {
+ 'labels': {'unique': True},
+ 'column_names': {'unique': True},
+ }
+
+ _attribute_map = {
+ 'namespace': {'key': 'namespace', 'type': 'str'},
+ 'name': {'key': 'name', 'type': 'str'},
+ 'labels': {'key': 'labels', 'type': '[str]'},
+ 'column_names': {'key': 'columnNames', 'type': '[str]'},
+ }
+
+ def __init__(
+ self,
+ *,
+ namespace: Optional[str] = None,
+ name: Optional[str] = None,
+ labels: Optional[List[str]] = None,
+ column_names: Optional[List[str]] = None,
+ **kwargs
+ ):
+ """
+ :keyword namespace:
+ :paramtype namespace: str
+ :keyword name:
+ :paramtype name: str
+ :keyword labels:
+ :paramtype labels: list[str]
+ :keyword column_names:
+ :paramtype column_names: list[str]
+ """
+ super(DerivedMetricKey, self).__init__(**kwargs)
+ self.namespace = namespace
+ self.name = name
+ self.labels = labels
+ self.column_names = column_names
+
+
+class EndpointSetting(msrest.serialization.Model):
+ """EndpointSetting.
+
+ :ivar type:
+ :vartype type: str
+ :ivar port:
+ :vartype port: int
+ :ivar ssl_thumbprint:
+ :vartype ssl_thumbprint: str
+ :ivar endpoint:
+ :vartype endpoint: str
+ :ivar proxy_endpoint:
+ :vartype proxy_endpoint: str
+ :ivar status:
+ :vartype status: str
+ :ivar error_message:
+ :vartype error_message: str
+ :ivar enabled:
+ :vartype enabled: bool
+ :ivar properties: Dictionary of :code:`<string>`.
+ :vartype properties: dict[str, str]
+ """
+
+ _attribute_map = {
+ 'type': {'key': 'type', 'type': 'str'},
+ 'port': {'key': 'port', 'type': 'int'},
+ 'ssl_thumbprint': {'key': 'sslThumbprint', 'type': 'str'},
+ 'endpoint': {'key': 'endpoint', 'type': 'str'},
+ 'proxy_endpoint': {'key': 'proxyEndpoint', 'type': 'str'},
+ 'status': {'key': 'status', 'type': 'str'},
+ 'error_message': {'key': 'errorMessage', 'type': 'str'},
+ 'enabled': {'key': 'enabled', 'type': 'bool'},
+ 'properties': {'key': 'properties', 'type': '{str}'},
+ }
+
+ def __init__(
+ self,
+ *,
+ type: Optional[str] = None,
+ port: Optional[int] = None,
+ ssl_thumbprint: Optional[str] = None,
+ endpoint: Optional[str] = None,
+ proxy_endpoint: Optional[str] = None,
+ status: Optional[str] = None,
+ error_message: Optional[str] = None,
+ enabled: Optional[bool] = None,
+ properties: Optional[Dict[str, str]] = None,
+ **kwargs
+ ):
+ """
+ :keyword type:
+ :paramtype type: str
+ :keyword port:
+ :paramtype port: int
+ :keyword ssl_thumbprint:
+ :paramtype ssl_thumbprint: str
+ :keyword endpoint:
+ :paramtype endpoint: str
+ :keyword proxy_endpoint:
+ :paramtype proxy_endpoint: str
+ :keyword status:
+ :paramtype status: str
+ :keyword error_message:
+ :paramtype error_message: str
+ :keyword enabled:
+ :paramtype enabled: bool
+ :keyword properties: Dictionary of :code:`<string>`.
+ :paramtype properties: dict[str, str]
+ """
+ super(EndpointSetting, self).__init__(**kwargs)
+ self.type = type
+ self.port = port
+ self.ssl_thumbprint = ssl_thumbprint
+ self.endpoint = endpoint
+ self.proxy_endpoint = proxy_endpoint
+ self.status = status
+ self.error_message = error_message
+ self.enabled = enabled
+ self.properties = properties
+
+
+class ErrorAdditionalInfo(msrest.serialization.Model):
+ """The resource management error additional info.
+
+ :ivar type: The additional info type.
+ :vartype type: str
+ :ivar info: The additional info.
+ :vartype info: any
+ """
+
+ _attribute_map = {
+ 'type': {'key': 'type', 'type': 'str'},
+ 'info': {'key': 'info', 'type': 'object'},
+ }
+
+ def __init__(
+ self,
+ *,
+ type: Optional[str] = None,
+ info: Optional[Any] = None,
+ **kwargs
+ ):
+ """
+ :keyword type: The additional info type.
+ :paramtype type: str
+ :keyword info: The additional info.
+ :paramtype info: any
+ """
+ super(ErrorAdditionalInfo, self).__init__(**kwargs)
+ self.type = type
+ self.info = info
+
+
+class ErrorResponse(msrest.serialization.Model):
+ """The error response.
+
+ :ivar error: The root error.
+ :vartype error: ~azure.mgmt.machinelearningservices.models.RootError
+ :ivar correlation: Dictionary containing correlation details for the error.
+ :vartype correlation: dict[str, str]
+ :ivar environment: The hosting environment.
+ :vartype environment: str
+ :ivar location: The Azure region.
+ :vartype location: str
+ :ivar time: The time in UTC.
+ :vartype time: ~datetime.datetime
+ :ivar component_name: Component name where error originated/encountered.
+ :vartype component_name: str
+ """
+
+ _attribute_map = {
+ 'error': {'key': 'error', 'type': 'RootError'},
+ 'correlation': {'key': 'correlation', 'type': '{str}'},
+ 'environment': {'key': 'environment', 'type': 'str'},
+ 'location': {'key': 'location', 'type': 'str'},
+ 'time': {'key': 'time', 'type': 'iso-8601'},
+ 'component_name': {'key': 'componentName', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ error: Optional["RootError"] = None,
+ correlation: Optional[Dict[str, str]] = None,
+ environment: Optional[str] = None,
+ location: Optional[str] = None,
+ time: Optional[datetime.datetime] = None,
+ component_name: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword error: The root error.
+ :paramtype error: ~azure.mgmt.machinelearningservices.models.RootError
+ :keyword correlation: Dictionary containing correlation details for the error.
+ :paramtype correlation: dict[str, str]
+ :keyword environment: The hosting environment.
+ :paramtype environment: str
+ :keyword location: The Azure region.
+ :paramtype location: str
+ :keyword time: The time in UTC.
+ :paramtype time: ~datetime.datetime
+ :keyword component_name: Component name where error originated/encountered.
+ :paramtype component_name: str
+ """
+ super(ErrorResponse, self).__init__(**kwargs)
+ self.error = error
+ self.correlation = correlation
+ self.environment = environment
+ self.location = location
+ self.time = time
+ self.component_name = component_name
+
+
+class Event(msrest.serialization.Model):
+ """Event.
+
+ :ivar name: Gets the Microsoft.MachineLearning.RunHistory.Contracts.Event name.
+ :vartype name: str
+ :ivar timestamp: Gets the Microsoft.MachineLearning.RunHistory.Contracts.Event timestamp.
+ :vartype timestamp: ~datetime.datetime
+ :ivar attributes: Gets the System.Collections.Generic.IDictionary`2 collection of attributes
+ associated with the event.
+ :vartype attributes: dict[str, any]
+ """
+
+ _attribute_map = {
+ 'name': {'key': 'name', 'type': 'str'},
+ 'timestamp': {'key': 'timestamp', 'type': 'iso-8601'},
+ 'attributes': {'key': 'attributes', 'type': '{object}'},
+ }
+
+ def __init__(
+ self,
+ *,
+ name: Optional[str] = None,
+ timestamp: Optional[datetime.datetime] = None,
+ attributes: Optional[Dict[str, Any]] = None,
+ **kwargs
+ ):
+ """
+ :keyword name: Gets the Microsoft.MachineLearning.RunHistory.Contracts.Event name.
+ :paramtype name: str
+ :keyword timestamp: Gets the Microsoft.MachineLearning.RunHistory.Contracts.Event timestamp.
+ :paramtype timestamp: ~datetime.datetime
+ :keyword attributes: Gets the System.Collections.Generic.IDictionary`2 collection of attributes
+ associated with the event.
+ :paramtype attributes: dict[str, any]
+ """
+ super(Event, self).__init__(**kwargs)
+ self.name = name
+ self.timestamp = timestamp
+ self.attributes = attributes
+
+
+class Experiment(msrest.serialization.Model):
+ """Experiment.
+
+ :ivar experiment_id:
+ :vartype experiment_id: str
+ :ivar name:
+ :vartype name: str
+ :ivar description:
+ :vartype description: str
+ :ivar created_utc:
+ :vartype created_utc: ~datetime.datetime
+ :ivar tags: A set of tags. Dictionary of :code:`<string>`.
+ :vartype tags: dict[str, str]
+ :ivar archived_time:
+ :vartype archived_time: ~datetime.datetime
+ :ivar retain_for_lifetime_of_workspace:
+ :vartype retain_for_lifetime_of_workspace: bool
+ :ivar artifact_location:
+ :vartype artifact_location: str
+ """
+
+ _attribute_map = {
+ 'experiment_id': {'key': 'experimentId', 'type': 'str'},
+ 'name': {'key': 'name', 'type': 'str'},
+ 'description': {'key': 'description', 'type': 'str'},
+ 'created_utc': {'key': 'createdUtc', 'type': 'iso-8601'},
+ 'tags': {'key': 'tags', 'type': '{str}'},
+ 'archived_time': {'key': 'archivedTime', 'type': 'iso-8601'},
+ 'retain_for_lifetime_of_workspace': {'key': 'retainForLifetimeOfWorkspace', 'type': 'bool'},
+ 'artifact_location': {'key': 'artifactLocation', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ experiment_id: Optional[str] = None,
+ name: Optional[str] = None,
+ description: Optional[str] = None,
+ created_utc: Optional[datetime.datetime] = None,
+ tags: Optional[Dict[str, str]] = None,
+ archived_time: Optional[datetime.datetime] = None,
+ retain_for_lifetime_of_workspace: Optional[bool] = None,
+ artifact_location: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword experiment_id:
+ :paramtype experiment_id: str
+ :keyword name:
+ :paramtype name: str
+ :keyword description:
+ :paramtype description: str
+ :keyword created_utc:
+ :paramtype created_utc: ~datetime.datetime
+ :keyword tags: A set of tags. Dictionary of :code:`<string>`.
+ :paramtype tags: dict[str, str]
+ :keyword archived_time:
+ :paramtype archived_time: ~datetime.datetime
+ :keyword retain_for_lifetime_of_workspace:
+ :paramtype retain_for_lifetime_of_workspace: bool
+ :keyword artifact_location:
+ :paramtype artifact_location: str
+ """
+ super(Experiment, self).__init__(**kwargs)
+ self.experiment_id = experiment_id
+ self.name = name
+ self.description = description
+ self.created_utc = created_utc
+ self.tags = tags
+ self.archived_time = archived_time
+ self.retain_for_lifetime_of_workspace = retain_for_lifetime_of_workspace
+ self.artifact_location = artifact_location
+
+
+class ExperimentQueryParams(msrest.serialization.Model):
+ """Extends Query Params DTO for ViewType.
+
+ :ivar view_type: ViewType filters experiments by their archived state. Default is ActiveOnly.
+ Possible values include: "Default", "All", "ActiveOnly", "ArchivedOnly".
+ :vartype view_type: str or ~azure.mgmt.machinelearningservices.models.ExperimentViewType
+ :ivar filter: Allows for filtering the collection of resources.
+ The expression specified is evaluated for each resource in the collection, and only items
+ where the expression evaluates to true are included in the response.
+ See https://learn.microsoft.com/azure/search/query-odata-filter-orderby-syntax for
+ details on the expression syntax.
+ :vartype filter: str
+ :ivar continuation_token: The continuation token to use for getting the next set of resources.
+ :vartype continuation_token: str
+ :ivar order_by: The comma separated list of resource properties to use for sorting the
+ requested resources.
+ Optionally, can be followed by either 'asc' or 'desc'.
+ :vartype order_by: str
+ :ivar top: The maximum number of items in the resource collection to be included in the result.
+ If not specified, all items are returned.
+ :vartype top: int
+ """
+
+ _attribute_map = {
+ 'view_type': {'key': 'viewType', 'type': 'str'},
+ 'filter': {'key': 'filter', 'type': 'str'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'order_by': {'key': 'orderBy', 'type': 'str'},
+ 'top': {'key': 'top', 'type': 'int'},
+ }
+
+ def __init__(
+ self,
+ *,
+ view_type: Optional[Union[str, "ExperimentViewType"]] = None,
+ filter: Optional[str] = None,
+ continuation_token: Optional[str] = None,
+ order_by: Optional[str] = None,
+ top: Optional[int] = None,
+ **kwargs
+ ):
+ """
+ :keyword view_type: ViewType filters experiments by their archived state. Default is
+ ActiveOnly. Possible values include: "Default", "All", "ActiveOnly", "ArchivedOnly".
+ :paramtype view_type: str or ~azure.mgmt.machinelearningservices.models.ExperimentViewType
+ :keyword filter: Allows for filtering the collection of resources.
+ The expression specified is evaluated for each resource in the collection, and only items
+ where the expression evaluates to true are included in the response.
+ See https://learn.microsoft.com/azure/search/query-odata-filter-orderby-syntax for
+ details on the expression syntax.
+ :paramtype filter: str
+ :keyword continuation_token: The continuation token to use for getting the next set of
+ resources.
+ :paramtype continuation_token: str
+ :keyword order_by: The comma separated list of resource properties to use for sorting the
+ requested resources.
+ Optionally, can be followed by either 'asc' or 'desc'.
+ :paramtype order_by: str
+ :keyword top: The maximum number of items in the resource collection to be included in the
+ result.
+ If not specified, all items are returned.
+ :paramtype top: int
+ """
+ super(ExperimentQueryParams, self).__init__(**kwargs)
+ self.view_type = view_type
+ self.filter = filter
+ self.continuation_token = continuation_token
+ self.order_by = order_by
+ self.top = top
+
+
+class GetRunDataRequest(msrest.serialization.Model):
+ """GetRunDataRequest.
+
+ :ivar run_id:
+ :vartype run_id: str
+ :ivar select_run_metadata:
+ :vartype select_run_metadata: bool
+ :ivar select_run_definition:
+ :vartype select_run_definition: bool
+ :ivar select_job_specification:
+ :vartype select_job_specification: bool
+ """
+
+ _attribute_map = {
+ 'run_id': {'key': 'runId', 'type': 'str'},
+ 'select_run_metadata': {'key': 'selectRunMetadata', 'type': 'bool'},
+ 'select_run_definition': {'key': 'selectRunDefinition', 'type': 'bool'},
+ 'select_job_specification': {'key': 'selectJobSpecification', 'type': 'bool'},
+ }
+
+ def __init__(
+ self,
+ *,
+ run_id: Optional[str] = None,
+ select_run_metadata: Optional[bool] = None,
+ select_run_definition: Optional[bool] = None,
+ select_job_specification: Optional[bool] = None,
+ **kwargs
+ ):
+ """
+ :keyword run_id:
+ :paramtype run_id: str
+ :keyword select_run_metadata:
+ :paramtype select_run_metadata: bool
+ :keyword select_run_definition:
+ :paramtype select_run_definition: bool
+ :keyword select_job_specification:
+ :paramtype select_job_specification: bool
+ """
+ super(GetRunDataRequest, self).__init__(**kwargs)
+ self.run_id = run_id
+ self.select_run_metadata = select_run_metadata
+ self.select_run_definition = select_run_definition
+ self.select_job_specification = select_job_specification
+
+
+class GetRunDataResult(msrest.serialization.Model):
+ """GetRunDataResult.
+
+ :ivar run_metadata: The definition of a Run.
+ :vartype run_metadata: ~azure.mgmt.machinelearningservices.models.Run
+ :ivar run_definition: Anything.
+ :vartype run_definition: any
+ :ivar job_specification: Anything.
+ :vartype job_specification: any
+ """
+
+ _attribute_map = {
+ 'run_metadata': {'key': 'runMetadata', 'type': 'Run'},
+ 'run_definition': {'key': 'runDefinition', 'type': 'object'},
+ 'job_specification': {'key': 'jobSpecification', 'type': 'object'},
+ }
+
+ def __init__(
+ self,
+ *,
+ run_metadata: Optional["Run"] = None,
+ run_definition: Optional[Any] = None,
+ job_specification: Optional[Any] = None,
+ **kwargs
+ ):
+ """
+ :keyword run_metadata: The definition of a Run.
+ :paramtype run_metadata: ~azure.mgmt.machinelearningservices.models.Run
+ :keyword run_definition: Anything.
+ :paramtype run_definition: any
+ :keyword job_specification: Anything.
+ :paramtype job_specification: any
+ """
+ super(GetRunDataResult, self).__init__(**kwargs)
+ self.run_metadata = run_metadata
+ self.run_definition = run_definition
+ self.job_specification = job_specification
+
+
+class GetRunsByIds(msrest.serialization.Model):
+ """GetRunsByIds.
+
+ :ivar run_ids:
+ :vartype run_ids: list[str]
+ """
+
+ _attribute_map = {
+ 'run_ids': {'key': 'runIds', 'type': '[str]'},
+ }
+
+ def __init__(
+ self,
+ *,
+ run_ids: Optional[List[str]] = None,
+ **kwargs
+ ):
+ """
+ :keyword run_ids:
+ :paramtype run_ids: list[str]
+ """
+ super(GetRunsByIds, self).__init__(**kwargs)
+ self.run_ids = run_ids
+
+
+class GetSampledMetricRequest(msrest.serialization.Model):
+ """GetSampledMetricRequest.
+
+ :ivar metric_name:
+ :vartype metric_name: str
+ :ivar metric_namespace:
+ :vartype metric_namespace: str
+ """
+
+ _attribute_map = {
+ 'metric_name': {'key': 'metricName', 'type': 'str'},
+ 'metric_namespace': {'key': 'metricNamespace', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ metric_name: Optional[str] = None,
+ metric_namespace: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword metric_name:
+ :paramtype metric_name: str
+ :keyword metric_namespace:
+ :paramtype metric_namespace: str
+ """
+ super(GetSampledMetricRequest, self).__init__(**kwargs)
+ self.metric_name = metric_name
+ self.metric_namespace = metric_namespace
+
+
+class IMetricV2(msrest.serialization.Model):
+ """Sequence of one or many values sharing a common DataContainerId, Name, and Schema. Used only for Post Metrics.
+
+ :ivar data_container_id: Data container to which this Metric belongs.
+ :vartype data_container_id: str
+ :ivar name: Name identifying this Metric within the Data Container.
+ :vartype name: str
+ :ivar columns: Schema shared by all values under this Metric
+ Columns.Keys define the column names which are required for each MetricValue
+ Columns.Values define the type of the associated object for each column.
+ :vartype columns: dict[str, str or ~azure.mgmt.machinelearningservices.models.MetricValueType]
+ :ivar namespace: Namespace for this Metric.
+ :vartype namespace: str
+ :ivar standard_schema_id:
+ :vartype standard_schema_id: str
+ :ivar value: The list of values.
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.MetricV2Value]
+ """
+
+ _attribute_map = {
+ 'data_container_id': {'key': 'dataContainerId', 'type': 'str'},
+ 'name': {'key': 'name', 'type': 'str'},
+ 'columns': {'key': 'columns', 'type': '{str}'},
+ 'namespace': {'key': 'namespace', 'type': 'str'},
+ 'standard_schema_id': {'key': 'standardSchemaId', 'type': 'str'},
+ 'value': {'key': 'value', 'type': '[MetricV2Value]'},
+ }
+
+ def __init__(
+ self,
+ *,
+ data_container_id: Optional[str] = None,
+ name: Optional[str] = None,
+ columns: Optional[Dict[str, Union[str, "MetricValueType"]]] = None,
+ namespace: Optional[str] = None,
+ standard_schema_id: Optional[str] = None,
+ value: Optional[List["MetricV2Value"]] = None,
+ **kwargs
+ ):
+ """
+ :keyword data_container_id: Data container to which this Metric belongs.
+ :paramtype data_container_id: str
+ :keyword name: Name identifying this Metric within the Data Container.
+ :paramtype name: str
+ :keyword columns: Schema shared by all values under this Metric
+ Columns.Keys define the column names which are required for each MetricValue
+ Columns.Values define the type of the associated object for each column.
+ :paramtype columns: dict[str, str or
+ ~azure.mgmt.machinelearningservices.models.MetricValueType]
+ :keyword namespace: Namespace for this Metric.
+ :paramtype namespace: str
+ :keyword standard_schema_id:
+ :paramtype standard_schema_id: str
+ :keyword value: The list of values.
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.MetricV2Value]
+ """
+ super(IMetricV2, self).__init__(**kwargs)
+ self.data_container_id = data_container_id
+ self.name = name
+ self.columns = columns
+ self.namespace = namespace
+ self.standard_schema_id = standard_schema_id
+ self.value = value
+
+
+class InnerErrorResponse(msrest.serialization.Model):
+ """A nested structure of errors.
+
+ :ivar code: The error code.
+ :vartype code: str
+ :ivar inner_error: A nested structure of errors.
+ :vartype inner_error: ~azure.mgmt.machinelearningservices.models.InnerErrorResponse
+ """
+
+ _attribute_map = {
+ 'code': {'key': 'code', 'type': 'str'},
+ 'inner_error': {'key': 'innerError', 'type': 'InnerErrorResponse'},
+ }
+
+ def __init__(
+ self,
+ *,
+ code: Optional[str] = None,
+ inner_error: Optional["InnerErrorResponse"] = None,
+ **kwargs
+ ):
+ """
+ :keyword code: The error code.
+ :paramtype code: str
+ :keyword inner_error: A nested structure of errors.
+ :paramtype inner_error: ~azure.mgmt.machinelearningservices.models.InnerErrorResponse
+ """
+ super(InnerErrorResponse, self).__init__(**kwargs)
+ self.code = code
+ self.inner_error = inner_error
+
+
+class JobCost(msrest.serialization.Model):
+ """JobCost.
+
+ :ivar charged_cpu_core_seconds:
+ :vartype charged_cpu_core_seconds: float
+ :ivar charged_cpu_memory_megabyte_seconds:
+ :vartype charged_cpu_memory_megabyte_seconds: float
+ :ivar charged_gpu_seconds:
+ :vartype charged_gpu_seconds: float
+ :ivar charged_node_utilization_seconds:
+ :vartype charged_node_utilization_seconds: float
+ """
+
+ _attribute_map = {
+ 'charged_cpu_core_seconds': {'key': 'chargedCpuCoreSeconds', 'type': 'float'},
+ 'charged_cpu_memory_megabyte_seconds': {'key': 'chargedCpuMemoryMegabyteSeconds', 'type': 'float'},
+ 'charged_gpu_seconds': {'key': 'chargedGpuSeconds', 'type': 'float'},
+ 'charged_node_utilization_seconds': {'key': 'chargedNodeUtilizationSeconds', 'type': 'float'},
+ }
+
+ def __init__(
+ self,
+ *,
+ charged_cpu_core_seconds: Optional[float] = None,
+ charged_cpu_memory_megabyte_seconds: Optional[float] = None,
+ charged_gpu_seconds: Optional[float] = None,
+ charged_node_utilization_seconds: Optional[float] = None,
+ **kwargs
+ ):
+ """
+ :keyword charged_cpu_core_seconds:
+ :paramtype charged_cpu_core_seconds: float
+ :keyword charged_cpu_memory_megabyte_seconds:
+ :paramtype charged_cpu_memory_megabyte_seconds: float
+ :keyword charged_gpu_seconds:
+ :paramtype charged_gpu_seconds: float
+ :keyword charged_node_utilization_seconds:
+ :paramtype charged_node_utilization_seconds: float
+ """
+ super(JobCost, self).__init__(**kwargs)
+ self.charged_cpu_core_seconds = charged_cpu_core_seconds
+ self.charged_cpu_memory_megabyte_seconds = charged_cpu_memory_megabyte_seconds
+ self.charged_gpu_seconds = charged_gpu_seconds
+ self.charged_node_utilization_seconds = charged_node_utilization_seconds
+
+
+class KeyValuePairBaseEventErrorResponse(msrest.serialization.Model):
+ """KeyValuePairBaseEventErrorResponse.
+
+ :ivar key: Base event is the envelope used to post event data to the Event controller.
+ :vartype key: ~azure.mgmt.machinelearningservices.models.BaseEvent
+ :ivar value: The error response.
+ :vartype value: ~azure.mgmt.machinelearningservices.models.ErrorResponse
+ """
+
+ _attribute_map = {
+ 'key': {'key': 'key', 'type': 'BaseEvent'},
+ 'value': {'key': 'value', 'type': 'ErrorResponse'},
+ }
+
+ def __init__(
+ self,
+ *,
+ key: Optional["BaseEvent"] = None,
+ value: Optional["ErrorResponse"] = None,
+ **kwargs
+ ):
+ """
+ :keyword key: Base event is the envelope used to post event data to the Event controller.
+ :paramtype key: ~azure.mgmt.machinelearningservices.models.BaseEvent
+ :keyword value: The error response.
+ :paramtype value: ~azure.mgmt.machinelearningservices.models.ErrorResponse
+ """
+ super(KeyValuePairBaseEventErrorResponse, self).__init__(**kwargs)
+ self.key = key
+ self.value = value
+
+
+class KeyValuePairString(msrest.serialization.Model):
+ """KeyValuePairString.
+
+ :ivar key:
+ :vartype key: str
+ :ivar value:
+ :vartype value: str
+ """
+
+ _attribute_map = {
+ 'key': {'key': 'key', 'type': 'str'},
+ 'value': {'key': 'value', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ key: Optional[str] = None,
+ value: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword key:
+ :paramtype key: str
+ :keyword value:
+ :paramtype value: str
+ """
+ super(KeyValuePairString, self).__init__(**kwargs)
+ self.key = key
+ self.value = value
+
+
+class KeyValuePairStringJToken(msrest.serialization.Model):
+ """KeyValuePairStringJToken.
+
+ :ivar key:
+ :vartype key: str
+ :ivar value: Anything.
+ :vartype value: any
+ """
+
+ _attribute_map = {
+ 'key': {'key': 'key', 'type': 'str'},
+ 'value': {'key': 'value', 'type': 'object'},
+ }
+
+ def __init__(
+ self,
+ *,
+ key: Optional[str] = None,
+ value: Optional[Any] = None,
+ **kwargs
+ ):
+ """
+ :keyword key:
+ :paramtype key: str
+ :keyword value: Anything.
+ :paramtype value: any
+ """
+ super(KeyValuePairStringJToken, self).__init__(**kwargs)
+ self.key = key
+ self.value = value
+
+
+class Link(msrest.serialization.Model):
+ """Link.
+
+ :ivar context:
+ :vartype context: ~azure.mgmt.machinelearningservices.models.SpanContext
+ :ivar attributes: Gets the collection of attributes associated with the link.
+ :vartype attributes: dict[str, any]
+ """
+
+ _attribute_map = {
+ 'context': {'key': 'context', 'type': 'SpanContext'},
+ 'attributes': {'key': 'attributes', 'type': '{object}'},
+ }
+
+ def __init__(
+ self,
+ *,
+ context: Optional["SpanContext"] = None,
+ attributes: Optional[Dict[str, Any]] = None,
+ **kwargs
+ ):
+ """
+ :keyword context:
+ :paramtype context: ~azure.mgmt.machinelearningservices.models.SpanContext
+ :keyword attributes: Gets the collection of attributes associated with the link.
+ :paramtype attributes: dict[str, any]
+ """
+ super(Link, self).__init__(**kwargs)
+ self.context = context
+ self.attributes = attributes
+
+
+class ListGenericResourceMetrics(msrest.serialization.Model):
+ """ListGenericResourceMetrics.
+
+ :ivar resource_id:
+ :vartype resource_id: str
+ :ivar metric_names:
+ :vartype metric_names: list[str]
+ :ivar label_filters: Dictionary of :code:`<string>`.
+ :vartype label_filters: dict[str, str]
+ :ivar metric_namespace:
+ :vartype metric_namespace: str
+ :ivar continuation_token:
+ :vartype continuation_token: str
+ """
+
+ _attribute_map = {
+ 'resource_id': {'key': 'resourceId', 'type': 'str'},
+ 'metric_names': {'key': 'metricNames', 'type': '[str]'},
+ 'label_filters': {'key': 'labelFilters', 'type': '{str}'},
+ 'metric_namespace': {'key': 'metricNamespace', 'type': 'str'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ resource_id: Optional[str] = None,
+ metric_names: Optional[List[str]] = None,
+ label_filters: Optional[Dict[str, str]] = None,
+ metric_namespace: Optional[str] = None,
+ continuation_token: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword resource_id:
+ :paramtype resource_id: str
+ :keyword metric_names:
+ :paramtype metric_names: list[str]
+ :keyword label_filters: Dictionary of :code:`<string>`.
+ :paramtype label_filters: dict[str, str]
+ :keyword metric_namespace:
+ :paramtype metric_namespace: str
+ :keyword continuation_token:
+ :paramtype continuation_token: str
+ """
+ super(ListGenericResourceMetrics, self).__init__(**kwargs)
+ self.resource_id = resource_id
+ self.metric_names = metric_names
+ self.label_filters = label_filters
+ self.metric_namespace = metric_namespace
+ self.continuation_token = continuation_token
+
+
+class ListMetrics(msrest.serialization.Model):
+ """ListMetrics.
+
+ :ivar metric_namespace:
+ :vartype metric_namespace: str
+ :ivar continuation_token:
+ :vartype continuation_token: str
+ """
+
+ _attribute_map = {
+ 'metric_namespace': {'key': 'metricNamespace', 'type': 'str'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ metric_namespace: Optional[str] = None,
+ continuation_token: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword metric_namespace:
+ :paramtype metric_namespace: str
+ :keyword continuation_token:
+ :paramtype continuation_token: str
+ """
+ super(ListMetrics, self).__init__(**kwargs)
+ self.metric_namespace = metric_namespace
+ self.continuation_token = continuation_token
+
+
+class MetricDefinition(msrest.serialization.Model):
+ """MetricDefinition.
+
+ :ivar metric_key:
+ :vartype metric_key: ~azure.mgmt.machinelearningservices.models.DerivedMetricKey
+ :ivar columns: Dictionary of :code:`<MetricValueType>`.
+ :vartype columns: dict[str, str or ~azure.mgmt.machinelearningservices.models.MetricValueType]
+ :ivar properties:
+ :vartype properties: ~azure.mgmt.machinelearningservices.models.MetricProperties
+ """
+
+ _attribute_map = {
+ 'metric_key': {'key': 'metricKey', 'type': 'DerivedMetricKey'},
+ 'columns': {'key': 'columns', 'type': '{str}'},
+ 'properties': {'key': 'properties', 'type': 'MetricProperties'},
+ }
+
+ def __init__(
+ self,
+ *,
+ metric_key: Optional["DerivedMetricKey"] = None,
+ columns: Optional[Dict[str, Union[str, "MetricValueType"]]] = None,
+ properties: Optional["MetricProperties"] = None,
+ **kwargs
+ ):
+ """
+ :keyword metric_key:
+ :paramtype metric_key: ~azure.mgmt.machinelearningservices.models.DerivedMetricKey
+ :keyword columns: Dictionary of :code:`<MetricValueType>`.
+ :paramtype columns: dict[str, str or
+ ~azure.mgmt.machinelearningservices.models.MetricValueType]
+ :keyword properties:
+ :paramtype properties: ~azure.mgmt.machinelearningservices.models.MetricProperties
+ """
+ super(MetricDefinition, self).__init__(**kwargs)
+ self.metric_key = metric_key
+ self.columns = columns
+ self.properties = properties
+
+
+class MetricProperties(msrest.serialization.Model):
+ """MetricProperties.
+
+ :ivar ux_metric_type: String value UX uses to decide how to render your metrics
+ Ex: azureml.v1.scalar or azureml.v1.table.
+ :vartype ux_metric_type: str
+ """
+
+ _attribute_map = {
+ 'ux_metric_type': {'key': 'uxMetricType', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ ux_metric_type: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword ux_metric_type: String value UX uses to decide how to render your metrics
+ Ex: azureml.v1.scalar or azureml.v1.table.
+ :paramtype ux_metric_type: str
+ """
+ super(MetricProperties, self).__init__(**kwargs)
+ self.ux_metric_type = ux_metric_type
+
+
+class MetricSample(msrest.serialization.Model):
+ """MetricSample.
+
+ :ivar derived_label_values: Dictionary of :code:`<string>`.
+ :vartype derived_label_values: dict[str, str]
+ :ivar is_partial_result:
+ :vartype is_partial_result: bool
+ :ivar num_values_logged:
+ :vartype num_values_logged: long
+ :ivar data_container_id: Data container to which this Metric belongs.
+ :vartype data_container_id: str
+ :ivar name: Name identifying this Metric within the Data Container.
+ :vartype name: str
+ :ivar columns: Schema shared by all values under this Metric
+ Columns.Keys define the column names which are required for each MetricValue
+ Columns.Values define the type of the associated object for each column.
+ :vartype columns: dict[str, str or ~azure.mgmt.machinelearningservices.models.MetricValueType]
+ :ivar properties:
+ :vartype properties: ~azure.mgmt.machinelearningservices.models.MetricProperties
+ :ivar namespace: Namespace for this Metric.
+ :vartype namespace: str
+ :ivar standard_schema_id:
+ :vartype standard_schema_id: str
+ :ivar value:
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.MetricV2Value]
+ :ivar continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :vartype continuation_token: str
+ :ivar next_link: The link to the next page constructed using the continuationToken. If null,
+ there are no additional pages.
+ :vartype next_link: str
+ """
+
+ _attribute_map = {
+ 'derived_label_values': {'key': 'derivedLabelValues', 'type': '{str}'},
+ 'is_partial_result': {'key': 'isPartialResult', 'type': 'bool'},
+ 'num_values_logged': {'key': 'numValuesLogged', 'type': 'long'},
+ 'data_container_id': {'key': 'dataContainerId', 'type': 'str'},
+ 'name': {'key': 'name', 'type': 'str'},
+ 'columns': {'key': 'columns', 'type': '{str}'},
+ 'properties': {'key': 'properties', 'type': 'MetricProperties'},
+ 'namespace': {'key': 'namespace', 'type': 'str'},
+ 'standard_schema_id': {'key': 'standardSchemaId', 'type': 'str'},
+ 'value': {'key': 'value', 'type': '[MetricV2Value]'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'next_link': {'key': 'nextLink', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ derived_label_values: Optional[Dict[str, str]] = None,
+ is_partial_result: Optional[bool] = None,
+ num_values_logged: Optional[int] = None,
+ data_container_id: Optional[str] = None,
+ name: Optional[str] = None,
+ columns: Optional[Dict[str, Union[str, "MetricValueType"]]] = None,
+ properties: Optional["MetricProperties"] = None,
+ namespace: Optional[str] = None,
+ standard_schema_id: Optional[str] = None,
+ value: Optional[List["MetricV2Value"]] = None,
+ continuation_token: Optional[str] = None,
+ next_link: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword derived_label_values: Dictionary of :code:`<string>`.
+ :paramtype derived_label_values: dict[str, str]
+ :keyword is_partial_result:
+ :paramtype is_partial_result: bool
+ :keyword num_values_logged:
+ :paramtype num_values_logged: long
+ :keyword data_container_id: Data container to which this Metric belongs.
+ :paramtype data_container_id: str
+ :keyword name: Name identifying this Metric within the Data Container.
+ :paramtype name: str
+ :keyword columns: Schema shared by all values under this Metric
+ Columns.Keys define the column names which are required for each MetricValue
+ Columns.Values define the type of the associated object for each column.
+ :paramtype columns: dict[str, str or
+ ~azure.mgmt.machinelearningservices.models.MetricValueType]
+ :keyword properties:
+ :paramtype properties: ~azure.mgmt.machinelearningservices.models.MetricProperties
+ :keyword namespace: Namespace for this Metric.
+ :paramtype namespace: str
+ :keyword standard_schema_id:
+ :paramtype standard_schema_id: str
+ :keyword value:
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.MetricV2Value]
+ :keyword continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :paramtype continuation_token: str
+ :keyword next_link: The link to the next page constructed using the continuationToken. If
+ null, there are no additional pages.
+ :paramtype next_link: str
+ """
+ super(MetricSample, self).__init__(**kwargs)
+ self.derived_label_values = derived_label_values
+ self.is_partial_result = is_partial_result
+ self.num_values_logged = num_values_logged
+ self.data_container_id = data_container_id
+ self.name = name
+ self.columns = columns
+ self.properties = properties
+ self.namespace = namespace
+ self.standard_schema_id = standard_schema_id
+ self.value = value
+ self.continuation_token = continuation_token
+ self.next_link = next_link
+
+
+class MetricSchema(msrest.serialization.Model):
+ """MetricSchema.
+
+ :ivar num_properties:
+ :vartype num_properties: int
+ :ivar properties:
+ :vartype properties: list[~azure.mgmt.machinelearningservices.models.MetricSchemaProperty]
+ """
+
+ _attribute_map = {
+ 'num_properties': {'key': 'numProperties', 'type': 'int'},
+ 'properties': {'key': 'properties', 'type': '[MetricSchemaProperty]'},
+ }
+
+ def __init__(
+ self,
+ *,
+ num_properties: Optional[int] = None,
+ properties: Optional[List["MetricSchemaProperty"]] = None,
+ **kwargs
+ ):
+ """
+ :keyword num_properties:
+ :paramtype num_properties: int
+ :keyword properties:
+ :paramtype properties: list[~azure.mgmt.machinelearningservices.models.MetricSchemaProperty]
+ """
+ super(MetricSchema, self).__init__(**kwargs)
+ self.num_properties = num_properties
+ self.properties = properties
+
+
+class MetricSchemaProperty(msrest.serialization.Model):
+ """MetricSchemaProperty.
+
+ :ivar property_id:
+ :vartype property_id: str
+ :ivar name:
+ :vartype name: str
+ :ivar type:
+ :vartype type: str
+ """
+
+ _attribute_map = {
+ 'property_id': {'key': 'propertyId', 'type': 'str'},
+ 'name': {'key': 'name', 'type': 'str'},
+ 'type': {'key': 'type', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ property_id: Optional[str] = None,
+ name: Optional[str] = None,
+ type: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword property_id:
+ :paramtype property_id: str
+ :keyword name:
+ :paramtype name: str
+ :keyword type:
+ :paramtype type: str
+ """
+ super(MetricSchemaProperty, self).__init__(**kwargs)
+ self.property_id = property_id
+ self.name = name
+ self.type = type
+
+
+class MetricV2(msrest.serialization.Model):
+ """Sequence of one or many values sharing a common DataContainerId, Name, and Schema.
+
+ :ivar data_container_id: Data container to which this Metric belongs.
+ :vartype data_container_id: str
+ :ivar name: Name identifying this Metric within the Data Container.
+ :vartype name: str
+ :ivar columns: Schema shared by all values under this Metric
+ Columns.Keys define the column names which are required for each MetricValue
+ Columns.Values define the type of the associated object for each column.
+ :vartype columns: dict[str, str or ~azure.mgmt.machinelearningservices.models.MetricValueType]
+ :ivar properties:
+ :vartype properties: ~azure.mgmt.machinelearningservices.models.MetricProperties
+ :ivar namespace: Namespace for this Metric.
+ :vartype namespace: str
+ :ivar standard_schema_id:
+ :vartype standard_schema_id: str
+ :ivar value:
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.MetricV2Value]
+ :ivar continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :vartype continuation_token: str
+ :ivar next_link: The link to the next page constructed using the continuationToken. If null,
+ there are no additional pages.
+ :vartype next_link: str
+ """
+
+ _attribute_map = {
+ 'data_container_id': {'key': 'dataContainerId', 'type': 'str'},
+ 'name': {'key': 'name', 'type': 'str'},
+ 'columns': {'key': 'columns', 'type': '{str}'},
+ 'properties': {'key': 'properties', 'type': 'MetricProperties'},
+ 'namespace': {'key': 'namespace', 'type': 'str'},
+ 'standard_schema_id': {'key': 'standardSchemaId', 'type': 'str'},
+ 'value': {'key': 'value', 'type': '[MetricV2Value]'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'next_link': {'key': 'nextLink', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ data_container_id: Optional[str] = None,
+ name: Optional[str] = None,
+ columns: Optional[Dict[str, Union[str, "MetricValueType"]]] = None,
+ properties: Optional["MetricProperties"] = None,
+ namespace: Optional[str] = None,
+ standard_schema_id: Optional[str] = None,
+ value: Optional[List["MetricV2Value"]] = None,
+ continuation_token: Optional[str] = None,
+ next_link: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword data_container_id: Data container to which this Metric belongs.
+ :paramtype data_container_id: str
+ :keyword name: Name identifying this Metric within the Data Container.
+ :paramtype name: str
+ :keyword columns: Schema shared by all values under this Metric
+ Columns.Keys define the column names which are required for each MetricValue
+ Columns.Values define the type of the associated object for each column.
+ :paramtype columns: dict[str, str or
+ ~azure.mgmt.machinelearningservices.models.MetricValueType]
+ :keyword properties:
+ :paramtype properties: ~azure.mgmt.machinelearningservices.models.MetricProperties
+ :keyword namespace: Namespace for this Metric.
+ :paramtype namespace: str
+ :keyword standard_schema_id:
+ :paramtype standard_schema_id: str
+ :keyword value:
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.MetricV2Value]
+ :keyword continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :paramtype continuation_token: str
+ :keyword next_link: The link to the next page constructed using the continuationToken. If
+ null, there are no additional pages.
+ :paramtype next_link: str
+ """
+ super(MetricV2, self).__init__(**kwargs)
+ self.data_container_id = data_container_id
+ self.name = name
+ self.columns = columns
+ self.properties = properties
+ self.namespace = namespace
+ self.standard_schema_id = standard_schema_id
+ self.value = value
+ self.continuation_token = continuation_token
+ self.next_link = next_link
+
+
+class MetricV2Value(msrest.serialization.Model):
+ """An individual value logged within a Metric.
+
+ :ivar metric_id: Unique Id for this metric value
+ Format is either a Guid or a Guid augmented with an additional int index for cases where
+ multiple metric values shared a
+ MetricId in the old schema.
+ :vartype metric_id: str
+ :ivar created_utc: Client specified timestamp for this metric value.
+ :vartype created_utc: ~datetime.datetime
+ :ivar step:
+ :vartype step: long
+ :ivar data: Dictionary mapping column names (specified as the keys in MetricV2Dto.Columns) to
+ values expressed in type associated
+ with that column in the metric's schema.
+ :vartype data: dict[str, any]
+ """
+
+ _attribute_map = {
+ 'metric_id': {'key': 'metricId', 'type': 'str'},
+ 'created_utc': {'key': 'createdUtc', 'type': 'iso-8601'},
+ 'step': {'key': 'step', 'type': 'long'},
+ 'data': {'key': 'data', 'type': '{object}'},
+ }
+
+ def __init__(
+ self,
+ *,
+ metric_id: Optional[str] = None,
+ created_utc: Optional[datetime.datetime] = None,
+ step: Optional[int] = None,
+ data: Optional[Dict[str, Any]] = None,
+ **kwargs
+ ):
+ """
+ :keyword metric_id: Unique Id for this metric value
+ Format is either a Guid or a Guid augmented with an additional int index for cases where
+ multiple metric values shared a
+ MetricId in the old schema.
+ :paramtype metric_id: str
+ :keyword created_utc: Client specified timestamp for this metric value.
+ :paramtype created_utc: ~datetime.datetime
+ :keyword step:
+ :paramtype step: long
+ :keyword data: Dictionary mapping column names (specified as the keys in MetricV2Dto.Columns)
+ to values expressed in type associated
+ with that column in the metric's schema.
+ :paramtype data: dict[str, any]
+ """
+ super(MetricV2Value, self).__init__(**kwargs)
+ self.metric_id = metric_id
+ self.created_utc = created_utc
+ self.step = step
+ self.data = data
+
+
+class ModifyExperiment(msrest.serialization.Model):
+ """ModifyExperiment.
+
+ :ivar name:
+ :vartype name: str
+ :ivar description:
+ :vartype description: str
+ :ivar tags: A set of tags. Dictionary of :code:`<string>`.
+ :vartype tags: dict[str, str]
+ :ivar archive:
+ :vartype archive: bool
+ :ivar retain_for_lifetime_of_workspace:
+ :vartype retain_for_lifetime_of_workspace: bool
+ """
+
+ _attribute_map = {
+ 'name': {'key': 'name', 'type': 'str'},
+ 'description': {'key': 'description', 'type': 'str'},
+ 'tags': {'key': 'tags', 'type': '{str}'},
+ 'archive': {'key': 'archive', 'type': 'bool'},
+ 'retain_for_lifetime_of_workspace': {'key': 'retainForLifetimeOfWorkspace', 'type': 'bool'},
+ }
+
+ def __init__(
+ self,
+ *,
+ name: Optional[str] = None,
+ description: Optional[str] = None,
+ tags: Optional[Dict[str, str]] = None,
+ archive: Optional[bool] = None,
+ retain_for_lifetime_of_workspace: Optional[bool] = None,
+ **kwargs
+ ):
+ """
+ :keyword name:
+ :paramtype name: str
+ :keyword description:
+ :paramtype description: str
+ :keyword tags: A set of tags. Dictionary of :code:`<string>`.
+ :paramtype tags: dict[str, str]
+ :keyword archive:
+ :paramtype archive: bool
+ :keyword retain_for_lifetime_of_workspace:
+ :paramtype retain_for_lifetime_of_workspace: bool
+ """
+ super(ModifyExperiment, self).__init__(**kwargs)
+ self.name = name
+ self.description = description
+ self.tags = tags
+ self.archive = archive
+ self.retain_for_lifetime_of_workspace = retain_for_lifetime_of_workspace
+
+
+class OutputDatasetLineage(msrest.serialization.Model):
+ """OutputDatasetLineage.
+
+ :ivar identifier:
+ :vartype identifier: ~azure.mgmt.machinelearningservices.models.DatasetIdentifier
+ :ivar output_type: Possible values include: "RunOutput", "Reference".
+ :vartype output_type: str or ~azure.mgmt.machinelearningservices.models.DatasetOutputType
+ :ivar output_details:
+ :vartype output_details: ~azure.mgmt.machinelearningservices.models.DatasetOutputDetails
+ """
+
+ _attribute_map = {
+ 'identifier': {'key': 'identifier', 'type': 'DatasetIdentifier'},
+ 'output_type': {'key': 'outputType', 'type': 'str'},
+ 'output_details': {'key': 'outputDetails', 'type': 'DatasetOutputDetails'},
+ }
+
+ def __init__(
+ self,
+ *,
+ identifier: Optional["DatasetIdentifier"] = None,
+ output_type: Optional[Union[str, "DatasetOutputType"]] = None,
+ output_details: Optional["DatasetOutputDetails"] = None,
+ **kwargs
+ ):
+ """
+ :keyword identifier:
+ :paramtype identifier: ~azure.mgmt.machinelearningservices.models.DatasetIdentifier
+ :keyword output_type: Possible values include: "RunOutput", "Reference".
+ :paramtype output_type: str or ~azure.mgmt.machinelearningservices.models.DatasetOutputType
+ :keyword output_details:
+ :paramtype output_details: ~azure.mgmt.machinelearningservices.models.DatasetOutputDetails
+ """
+ super(OutputDatasetLineage, self).__init__(**kwargs)
+ self.identifier = identifier
+ self.output_type = output_type
+ self.output_details = output_details
+
+
+class PaginatedArtifactContentInformationList(msrest.serialization.Model):
+ """A paginated list of ArtifactContentInformations.
+
+ :ivar value: An array of objects of type ArtifactContentInformation.
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.ArtifactContentInformation]
+ :ivar continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :vartype continuation_token: str
+ :ivar next_link: The link to the next page constructed using the continuationToken. If null,
+ there are no additional pages.
+ :vartype next_link: str
+ """
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': '[ArtifactContentInformation]'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'next_link': {'key': 'nextLink', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ value: Optional[List["ArtifactContentInformation"]] = None,
+ continuation_token: Optional[str] = None,
+ next_link: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword value: An array of objects of type ArtifactContentInformation.
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.ArtifactContentInformation]
+ :keyword continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :paramtype continuation_token: str
+ :keyword next_link: The link to the next page constructed using the continuationToken. If
+ null, there are no additional pages.
+ :paramtype next_link: str
+ """
+ super(PaginatedArtifactContentInformationList, self).__init__(**kwargs)
+ self.value = value
+ self.continuation_token = continuation_token
+ self.next_link = next_link
+
+
+class PaginatedArtifactList(msrest.serialization.Model):
+ """A paginated list of Artifacts.
+
+ :ivar value: An array of objects of type Artifact.
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.Artifact]
+ :ivar continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :vartype continuation_token: str
+ :ivar next_link: The link to the next page constructed using the continuationToken. If null,
+ there are no additional pages.
+ :vartype next_link: str
+ """
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': '[Artifact]'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'next_link': {'key': 'nextLink', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ value: Optional[List["Artifact"]] = None,
+ continuation_token: Optional[str] = None,
+ next_link: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword value: An array of objects of type Artifact.
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.Artifact]
+ :keyword continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :paramtype continuation_token: str
+ :keyword next_link: The link to the next page constructed using the continuationToken. If
+ null, there are no additional pages.
+ :paramtype next_link: str
+ """
+ super(PaginatedArtifactList, self).__init__(**kwargs)
+ self.value = value
+ self.continuation_token = continuation_token
+ self.next_link = next_link
+
+
+class PaginatedExperimentList(msrest.serialization.Model):
+ """A paginated list of Experiments.
+
+ :ivar value: An array of objects of type Experiment.
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.Experiment]
+ :ivar continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :vartype continuation_token: str
+ :ivar next_link: The link to the next page constructed using the continuationToken. If null,
+ there are no additional pages.
+ :vartype next_link: str
+ """
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': '[Experiment]'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'next_link': {'key': 'nextLink', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ value: Optional[List["Experiment"]] = None,
+ continuation_token: Optional[str] = None,
+ next_link: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword value: An array of objects of type Experiment.
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.Experiment]
+ :keyword continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :paramtype continuation_token: str
+ :keyword next_link: The link to the next page constructed using the continuationToken. If
+ null, there are no additional pages.
+ :paramtype next_link: str
+ """
+ super(PaginatedExperimentList, self).__init__(**kwargs)
+ self.value = value
+ self.continuation_token = continuation_token
+ self.next_link = next_link
+
+
+class PaginatedMetricDefinitionList(msrest.serialization.Model):
+ """A paginated list of MetricDefinitions.
+
+ :ivar value: An array of objects of type MetricDefinition.
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.MetricDefinition]
+ :ivar continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :vartype continuation_token: str
+ :ivar next_link: The link to the next page constructed using the continuationToken. If null,
+ there are no additional pages.
+ :vartype next_link: str
+ """
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': '[MetricDefinition]'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'next_link': {'key': 'nextLink', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ value: Optional[List["MetricDefinition"]] = None,
+ continuation_token: Optional[str] = None,
+ next_link: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword value: An array of objects of type MetricDefinition.
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.MetricDefinition]
+ :keyword continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :paramtype continuation_token: str
+ :keyword next_link: The link to the next page constructed using the continuationToken. If
+ null, there are no additional pages.
+ :paramtype next_link: str
+ """
+ super(PaginatedMetricDefinitionList, self).__init__(**kwargs)
+ self.value = value
+ self.continuation_token = continuation_token
+ self.next_link = next_link
+
+
+class PaginatedRunList(msrest.serialization.Model):
+ """A paginated list of Runs.
+
+ :ivar value: An array of objects of type Run.
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.Run]
+ :ivar continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :vartype continuation_token: str
+ :ivar next_link: The link to the next page constructed using the continuationToken. If null,
+ there are no additional pages.
+ :vartype next_link: str
+ """
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': '[Run]'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'next_link': {'key': 'nextLink', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ value: Optional[List["Run"]] = None,
+ continuation_token: Optional[str] = None,
+ next_link: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword value: An array of objects of type Run.
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.Run]
+ :keyword continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :paramtype continuation_token: str
+ :keyword next_link: The link to the next page constructed using the continuationToken. If
+ null, there are no additional pages.
+ :paramtype next_link: str
+ """
+ super(PaginatedRunList, self).__init__(**kwargs)
+ self.value = value
+ self.continuation_token = continuation_token
+ self.next_link = next_link
+
+
+class PaginatedSpanDefinition1List(msrest.serialization.Model):
+ """A paginated list of SpanDefinition`1s.
+
+ :ivar value: An array of objects of type SpanDefinition`1.
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.SpanDefinition1]
+ :ivar continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :vartype continuation_token: str
+ :ivar next_link: The link to the next page constructed using the continuationToken. If null,
+ there are no additional pages.
+ :vartype next_link: str
+ """
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': '[SpanDefinition1]'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'next_link': {'key': 'nextLink', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ value: Optional[List["SpanDefinition1"]] = None,
+ continuation_token: Optional[str] = None,
+ next_link: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword value: An array of objects of type SpanDefinition`1.
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.SpanDefinition1]
+ :keyword continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :paramtype continuation_token: str
+ :keyword next_link: The link to the next page constructed using the continuationToken. If
+ null, there are no additional pages.
+ :paramtype next_link: str
+ """
+ super(PaginatedSpanDefinition1List, self).__init__(**kwargs)
+ self.value = value
+ self.continuation_token = continuation_token
+ self.next_link = next_link
+
+
+class PostRunMetricsError(msrest.serialization.Model):
+ """PostRunMetricsError.
+
+ :ivar metric: Sequence of one or many values sharing a common DataContainerId, Name, and
+ Schema. Used only for Post Metrics.
+ :vartype metric: ~azure.mgmt.machinelearningservices.models.IMetricV2
+ :ivar error_response: The error response.
+ :vartype error_response: ~azure.mgmt.machinelearningservices.models.ErrorResponse
+ """
+
+ _attribute_map = {
+ 'metric': {'key': 'metric', 'type': 'IMetricV2'},
+ 'error_response': {'key': 'errorResponse', 'type': 'ErrorResponse'},
+ }
+
+ def __init__(
+ self,
+ *,
+ metric: Optional["IMetricV2"] = None,
+ error_response: Optional["ErrorResponse"] = None,
+ **kwargs
+ ):
+ """
+ :keyword metric: Sequence of one or many values sharing a common DataContainerId, Name, and
+ Schema. Used only for Post Metrics.
+ :paramtype metric: ~azure.mgmt.machinelearningservices.models.IMetricV2
+ :keyword error_response: The error response.
+ :paramtype error_response: ~azure.mgmt.machinelearningservices.models.ErrorResponse
+ """
+ super(PostRunMetricsError, self).__init__(**kwargs)
+ self.metric = metric
+ self.error_response = error_response
+
+
+class PostRunMetricsResult(msrest.serialization.Model):
+ """PostRunMetricsResult.
+
+ :ivar errors:
+ :vartype errors: list[~azure.mgmt.machinelearningservices.models.PostRunMetricsError]
+ """
+
+ _attribute_map = {
+ 'errors': {'key': 'errors', 'type': '[PostRunMetricsError]'},
+ }
+
+ def __init__(
+ self,
+ *,
+ errors: Optional[List["PostRunMetricsError"]] = None,
+ **kwargs
+ ):
+ """
+ :keyword errors:
+ :paramtype errors: list[~azure.mgmt.machinelearningservices.models.PostRunMetricsError]
+ """
+ super(PostRunMetricsResult, self).__init__(**kwargs)
+ self.errors = errors
+
+
+class QueryParams(msrest.serialization.Model):
+ """The set of supported filters.
+
+ :ivar filter: Allows for filtering the collection of resources.
+ The expression specified is evaluated for each resource in the collection, and only items
+ where the expression evaluates to true are included in the response.
+ See https://learn.microsoft.com/azure/search/query-odata-filter-orderby-syntax for
+ details on the expression syntax.
+ :vartype filter: str
+ :ivar continuation_token: The continuation token to use for getting the next set of resources.
+ :vartype continuation_token: str
+ :ivar order_by: The comma separated list of resource properties to use for sorting the
+ requested resources.
+ Optionally, can be followed by either 'asc' or 'desc'.
+ :vartype order_by: str
+ :ivar top: The maximum number of items in the resource collection to be included in the result.
+ If not specified, all items are returned.
+ :vartype top: int
+ """
+
+ _attribute_map = {
+ 'filter': {'key': 'filter', 'type': 'str'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'order_by': {'key': 'orderBy', 'type': 'str'},
+ 'top': {'key': 'top', 'type': 'int'},
+ }
+
+ def __init__(
+ self,
+ *,
+ filter: Optional[str] = None,
+ continuation_token: Optional[str] = None,
+ order_by: Optional[str] = None,
+ top: Optional[int] = None,
+ **kwargs
+ ):
+ """
+ :keyword filter: Allows for filtering the collection of resources.
+ The expression specified is evaluated for each resource in the collection, and only items
+ where the expression evaluates to true are included in the response.
+ See https://learn.microsoft.com/azure/search/query-odata-filter-orderby-syntax for
+ details on the expression syntax.
+ :paramtype filter: str
+ :keyword continuation_token: The continuation token to use for getting the next set of
+ resources.
+ :paramtype continuation_token: str
+ :keyword order_by: The comma separated list of resource properties to use for sorting the
+ requested resources.
+ Optionally, can be followed by either 'asc' or 'desc'.
+ :paramtype order_by: str
+ :keyword top: The maximum number of items in the resource collection to be included in the
+ result.
+ If not specified, all items are returned.
+ :paramtype top: int
+ """
+ super(QueryParams, self).__init__(**kwargs)
+ self.filter = filter
+ self.continuation_token = continuation_token
+ self.order_by = order_by
+ self.top = top
+
+
+class QueueingInfo(msrest.serialization.Model):
+ """QueueingInfo.
+
+ :ivar code:
+ :vartype code: str
+ :ivar message:
+ :vartype message: str
+ :ivar last_refresh_timestamp:
+ :vartype last_refresh_timestamp: ~datetime.datetime
+ """
+
+ _attribute_map = {
+ 'code': {'key': 'code', 'type': 'str'},
+ 'message': {'key': 'message', 'type': 'str'},
+ 'last_refresh_timestamp': {'key': 'lastRefreshTimestamp', 'type': 'iso-8601'},
+ }
+
+ def __init__(
+ self,
+ *,
+ code: Optional[str] = None,
+ message: Optional[str] = None,
+ last_refresh_timestamp: Optional[datetime.datetime] = None,
+ **kwargs
+ ):
+ """
+ :keyword code:
+ :paramtype code: str
+ :keyword message:
+ :paramtype message: str
+ :keyword last_refresh_timestamp:
+ :paramtype last_refresh_timestamp: ~datetime.datetime
+ """
+ super(QueueingInfo, self).__init__(**kwargs)
+ self.code = code
+ self.message = message
+ self.last_refresh_timestamp = last_refresh_timestamp
+
+
+class RetrieveFullFidelityMetricRequest(msrest.serialization.Model):
+ """RetrieveFullFidelityMetricRequest.
+
+ :ivar metric_name:
+ :vartype metric_name: str
+ :ivar continuation_token:
+ :vartype continuation_token: str
+ :ivar start_time:
+ :vartype start_time: ~datetime.datetime
+ :ivar end_time:
+ :vartype end_time: ~datetime.datetime
+ :ivar metric_namespace:
+ :vartype metric_namespace: str
+ """
+
+ _attribute_map = {
+ 'metric_name': {'key': 'metricName', 'type': 'str'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'start_time': {'key': 'startTime', 'type': 'iso-8601'},
+ 'end_time': {'key': 'endTime', 'type': 'iso-8601'},
+ 'metric_namespace': {'key': 'metricNamespace', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ metric_name: Optional[str] = None,
+ continuation_token: Optional[str] = None,
+ start_time: Optional[datetime.datetime] = None,
+ end_time: Optional[datetime.datetime] = None,
+ metric_namespace: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword metric_name:
+ :paramtype metric_name: str
+ :keyword continuation_token:
+ :paramtype continuation_token: str
+ :keyword start_time:
+ :paramtype start_time: ~datetime.datetime
+ :keyword end_time:
+ :paramtype end_time: ~datetime.datetime
+ :keyword metric_namespace:
+ :paramtype metric_namespace: str
+ """
+ super(RetrieveFullFidelityMetricRequest, self).__init__(**kwargs)
+ self.metric_name = metric_name
+ self.continuation_token = continuation_token
+ self.start_time = start_time
+ self.end_time = end_time
+ self.metric_namespace = metric_namespace
+
+
+class RootError(msrest.serialization.Model):
+ """The root error.
+
+ :ivar code: The service-defined error code. Supported error codes: ServiceError, UserError,
+ ValidationError, AzureStorageError, TransientError, RequestThrottled.
+ :vartype code: str
+ :ivar severity: The Severity of error.
+ :vartype severity: int
+ :ivar message: A human-readable representation of the error.
+ :vartype message: str
+ :ivar message_format: An unformatted version of the message with no variable substitution.
+ :vartype message_format: str
+ :ivar message_parameters: Value substitutions corresponding to the contents of MessageFormat.
+ :vartype message_parameters: dict[str, str]
+ :ivar reference_code: This code can optionally be set by the system generating the error.
+ It should be used to classify the problem and identify the module and code area where the
+ failure occured.
+ :vartype reference_code: str
+ :ivar details_uri: A URI which points to more details about the context of the error.
+ :vartype details_uri: str
+ :ivar target: The target of the error (e.g., the name of the property in error).
+ :vartype target: str
+ :ivar details: The related errors that occurred during the request.
+ :vartype details: list[~azure.mgmt.machinelearningservices.models.RootError]
+ :ivar inner_error: A nested structure of errors.
+ :vartype inner_error: ~azure.mgmt.machinelearningservices.models.InnerErrorResponse
+ :ivar additional_info: The error additional info.
+ :vartype additional_info: list[~azure.mgmt.machinelearningservices.models.ErrorAdditionalInfo]
+ """
+
+ _attribute_map = {
+ 'code': {'key': 'code', 'type': 'str'},
+ 'severity': {'key': 'severity', 'type': 'int'},
+ 'message': {'key': 'message', 'type': 'str'},
+ 'message_format': {'key': 'messageFormat', 'type': 'str'},
+ 'message_parameters': {'key': 'messageParameters', 'type': '{str}'},
+ 'reference_code': {'key': 'referenceCode', 'type': 'str'},
+ 'details_uri': {'key': 'detailsUri', 'type': 'str'},
+ 'target': {'key': 'target', 'type': 'str'},
+ 'details': {'key': 'details', 'type': '[RootError]'},
+ 'inner_error': {'key': 'innerError', 'type': 'InnerErrorResponse'},
+ 'additional_info': {'key': 'additionalInfo', 'type': '[ErrorAdditionalInfo]'},
+ }
+
+ def __init__(
+ self,
+ *,
+ code: Optional[str] = None,
+ severity: Optional[int] = None,
+ message: Optional[str] = None,
+ message_format: Optional[str] = None,
+ message_parameters: Optional[Dict[str, str]] = None,
+ reference_code: Optional[str] = None,
+ details_uri: Optional[str] = None,
+ target: Optional[str] = None,
+ details: Optional[List["RootError"]] = None,
+ inner_error: Optional["InnerErrorResponse"] = None,
+ additional_info: Optional[List["ErrorAdditionalInfo"]] = None,
+ **kwargs
+ ):
+ """
+ :keyword code: The service-defined error code. Supported error codes: ServiceError, UserError,
+ ValidationError, AzureStorageError, TransientError, RequestThrottled.
+ :paramtype code: str
+ :keyword severity: The Severity of error.
+ :paramtype severity: int
+ :keyword message: A human-readable representation of the error.
+ :paramtype message: str
+ :keyword message_format: An unformatted version of the message with no variable substitution.
+ :paramtype message_format: str
+ :keyword message_parameters: Value substitutions corresponding to the contents of
+ MessageFormat.
+ :paramtype message_parameters: dict[str, str]
+ :keyword reference_code: This code can optionally be set by the system generating the error.
+ It should be used to classify the problem and identify the module and code area where the
+ failure occured.
+ :paramtype reference_code: str
+ :keyword details_uri: A URI which points to more details about the context of the error.
+ :paramtype details_uri: str
+ :keyword target: The target of the error (e.g., the name of the property in error).
+ :paramtype target: str
+ :keyword details: The related errors that occurred during the request.
+ :paramtype details: list[~azure.mgmt.machinelearningservices.models.RootError]
+ :keyword inner_error: A nested structure of errors.
+ :paramtype inner_error: ~azure.mgmt.machinelearningservices.models.InnerErrorResponse
+ :keyword additional_info: The error additional info.
+ :paramtype additional_info:
+ list[~azure.mgmt.machinelearningservices.models.ErrorAdditionalInfo]
+ """
+ super(RootError, self).__init__(**kwargs)
+ self.code = code
+ self.severity = severity
+ self.message = message
+ self.message_format = message_format
+ self.message_parameters = message_parameters
+ self.reference_code = reference_code
+ self.details_uri = details_uri
+ self.target = target
+ self.details = details
+ self.inner_error = inner_error
+ self.additional_info = additional_info
+
+
+class Run(msrest.serialization.Model):
+ """The definition of a Run.
+
+ :ivar run_number:
+ :vartype run_number: int
+ :ivar root_run_id:
+ :vartype root_run_id: str
+ :ivar created_utc: The time the run was created in UTC.
+ :vartype created_utc: ~datetime.datetime
+ :ivar created_by:
+ :vartype created_by: ~azure.mgmt.machinelearningservices.models.User
+ :ivar user_id: The Id of the user that created the run.
+ :vartype user_id: str
+ :ivar token: A token used for authenticating a run.
+ :vartype token: str
+ :ivar token_expiry_time_utc: The Token expiration time in UTC.
+ :vartype token_expiry_time_utc: ~datetime.datetime
+ :ivar error: The error response.
+ :vartype error: ~azure.mgmt.machinelearningservices.models.ErrorResponse
+ :ivar warnings: A list of warnings that occurred during the run.
+ :vartype warnings: list[~azure.mgmt.machinelearningservices.models.RunDetailsWarning]
+ :ivar revision:
+ :vartype revision: long
+ :ivar status_revision:
+ :vartype status_revision: long
+ :ivar run_uuid: A system generated Id for the run.
+ :vartype run_uuid: str
+ :ivar parent_run_uuid: A system generated Id for the run's parent.
+ :vartype parent_run_uuid: str
+ :ivar root_run_uuid: A system generated Id for the root of the run's hierarchy.
+ :vartype root_run_uuid: str
+ :ivar has_virtual_parent: Indicates if this is a child of a virtual run.
+ :vartype has_virtual_parent: bool
+ :ivar last_start_time_utc: The last timestamp when a run transitioned from paused to running.
+ Initialized when StartTimeUtc is first set.
+ :vartype last_start_time_utc: ~datetime.datetime
+ :ivar current_compute_time: The cumulative time spent in an active status for an active run.
+ :vartype current_compute_time: str
+ :ivar compute_duration: The cumulative time spent in an active status for a terminal run.
+ :vartype compute_duration: str
+ :ivar effective_start_time_utc: A relative start time set as LastStartTimeUtc - ComputeTime for
+ active runs. This allows sorting active runs on how long they have been active, since an actual
+ active duration cannot be frequently updated.
+ :vartype effective_start_time_utc: ~datetime.datetime
+ :ivar last_modified_by:
+ :vartype last_modified_by: ~azure.mgmt.machinelearningservices.models.User
+ :ivar last_modified_utc: The time the run was created in UTC.
+ :vartype last_modified_utc: ~datetime.datetime
+ :ivar duration: The total duration of a run.
+ :vartype duration: str
+ :ivar cancelation_reason: The cancelation Reason if the run was canceled.
+ :vartype cancelation_reason: str
+ :ivar run_id: The identifier for the run. Run IDs must be less than 256 characters and contain
+ only alphanumeric characters with dashes and underscores.
+ :vartype run_id: str
+ :ivar parent_run_id: The parent of the run if the run is hierarchical; otherwise, Null.
+ :vartype parent_run_id: str
+ :ivar experiment_id: The Id of the experiment that created this run.
+ :vartype experiment_id: str
+ :ivar status: The status of the run. The Status string value maps to the RunStatus Enum.
+ :vartype status: str
+ :ivar start_time_utc: The start time of the run in UTC.
+ :vartype start_time_utc: ~datetime.datetime
+ :ivar end_time_utc: The end time of the run in UTC.
+ :vartype end_time_utc: ~datetime.datetime
+ :ivar options:
+ :vartype options: ~azure.mgmt.machinelearningservices.models.RunOptions
+ :ivar is_virtual: A virtual run can set an active child run that will override the virtual run
+ status and properties.
+ :vartype is_virtual: bool
+ :ivar display_name:
+ :vartype display_name: str
+ :ivar name:
+ :vartype name: str
+ :ivar data_container_id:
+ :vartype data_container_id: str
+ :ivar description:
+ :vartype description: str
+ :ivar hidden:
+ :vartype hidden: bool
+ :ivar run_type:
+ :vartype run_type: str
+ :ivar run_type_v2:
+ :vartype run_type_v2: ~azure.mgmt.machinelearningservices.models.RunTypeV2
+ :ivar properties: Dictionary of :code:`<string>`.
+ :vartype properties: dict[str, str]
+ :ivar parameters: Dictionary of :code:`<any>`.
+ :vartype parameters: dict[str, any]
+ :ivar action_uris: Dictionary of :code:`<string>`.
+ :vartype action_uris: dict[str, str]
+ :ivar script_name:
+ :vartype script_name: str
+ :ivar target:
+ :vartype target: str
+ :ivar unique_child_run_compute_targets:
+ :vartype unique_child_run_compute_targets: list[str]
+ :ivar tags: A set of tags. Dictionary of :code:`<string>`.
+ :vartype tags: dict[str, str]
+ :ivar settings: Dictionary of :code:`<string>`.
+ :vartype settings: dict[str, str]
+ :ivar services: Dictionary of :code:`<EndpointSetting>`.
+ :vartype services: dict[str, ~azure.mgmt.machinelearningservices.models.EndpointSetting]
+ :ivar input_datasets:
+ :vartype input_datasets: list[~azure.mgmt.machinelearningservices.models.DatasetLineage]
+ :ivar output_datasets:
+ :vartype output_datasets: list[~azure.mgmt.machinelearningservices.models.OutputDatasetLineage]
+ :ivar run_definition: Anything.
+ :vartype run_definition: any
+ :ivar job_specification: Anything.
+ :vartype job_specification: any
+ :ivar primary_metric_name:
+ :vartype primary_metric_name: str
+ :ivar created_from:
+ :vartype created_from: ~azure.mgmt.machinelearningservices.models.CreatedFrom
+ :ivar cancel_uri:
+ :vartype cancel_uri: str
+ :ivar complete_uri:
+ :vartype complete_uri: str
+ :ivar diagnostics_uri:
+ :vartype diagnostics_uri: str
+ :ivar compute_request:
+ :vartype compute_request: ~azure.mgmt.machinelearningservices.models.ComputeRequest
+ :ivar compute:
+ :vartype compute: ~azure.mgmt.machinelearningservices.models.Compute
+ :ivar retain_for_lifetime_of_workspace:
+ :vartype retain_for_lifetime_of_workspace: bool
+ :ivar queueing_info:
+ :vartype queueing_info: ~azure.mgmt.machinelearningservices.models.QueueingInfo
+ :ivar active_child_run_id: The RunId of the active child on a virtual run.
+ :vartype active_child_run_id: str
+ :ivar inputs: Dictionary of :code:`<TypedAssetReference>`.
+ :vartype inputs: dict[str, ~azure.mgmt.machinelearningservices.models.TypedAssetReference]
+ :ivar outputs: Dictionary of :code:`<TypedAssetReference>`.
+ :vartype outputs: dict[str, ~azure.mgmt.machinelearningservices.models.TypedAssetReference]
+ """
+
+ _validation = {
+ 'unique_child_run_compute_targets': {'unique': True},
+ 'input_datasets': {'unique': True},
+ 'output_datasets': {'unique': True},
+ }
+
+ _attribute_map = {
+ 'run_number': {'key': 'runNumber', 'type': 'int'},
+ 'root_run_id': {'key': 'rootRunId', 'type': 'str'},
+ 'created_utc': {'key': 'createdUtc', 'type': 'iso-8601'},
+ 'created_by': {'key': 'createdBy', 'type': 'User'},
+ 'user_id': {'key': 'userId', 'type': 'str'},
+ 'token': {'key': 'token', 'type': 'str'},
+ 'token_expiry_time_utc': {'key': 'tokenExpiryTimeUtc', 'type': 'iso-8601'},
+ 'error': {'key': 'error', 'type': 'ErrorResponse'},
+ 'warnings': {'key': 'warnings', 'type': '[RunDetailsWarning]'},
+ 'revision': {'key': 'revision', 'type': 'long'},
+ 'status_revision': {'key': 'statusRevision', 'type': 'long'},
+ 'run_uuid': {'key': 'runUuid', 'type': 'str'},
+ 'parent_run_uuid': {'key': 'parentRunUuid', 'type': 'str'},
+ 'root_run_uuid': {'key': 'rootRunUuid', 'type': 'str'},
+ 'has_virtual_parent': {'key': 'hasVirtualParent', 'type': 'bool'},
+ 'last_start_time_utc': {'key': 'lastStartTimeUtc', 'type': 'iso-8601'},
+ 'current_compute_time': {'key': 'currentComputeTime', 'type': 'str'},
+ 'compute_duration': {'key': 'computeDuration', 'type': 'str'},
+ 'effective_start_time_utc': {'key': 'effectiveStartTimeUtc', 'type': 'iso-8601'},
+ 'last_modified_by': {'key': 'lastModifiedBy', 'type': 'User'},
+ 'last_modified_utc': {'key': 'lastModifiedUtc', 'type': 'iso-8601'},
+ 'duration': {'key': 'duration', 'type': 'str'},
+ 'cancelation_reason': {'key': 'cancelationReason', 'type': 'str'},
+ 'run_id': {'key': 'runId', 'type': 'str'},
+ 'parent_run_id': {'key': 'parentRunId', 'type': 'str'},
+ 'experiment_id': {'key': 'experimentId', 'type': 'str'},
+ 'status': {'key': 'status', 'type': 'str'},
+ 'start_time_utc': {'key': 'startTimeUtc', 'type': 'iso-8601'},
+ 'end_time_utc': {'key': 'endTimeUtc', 'type': 'iso-8601'},
+ 'options': {'key': 'options', 'type': 'RunOptions'},
+ 'is_virtual': {'key': 'isVirtual', 'type': 'bool'},
+ 'display_name': {'key': 'displayName', 'type': 'str'},
+ 'name': {'key': 'name', 'type': 'str'},
+ 'data_container_id': {'key': 'dataContainerId', 'type': 'str'},
+ 'description': {'key': 'description', 'type': 'str'},
+ 'hidden': {'key': 'hidden', 'type': 'bool'},
+ 'run_type': {'key': 'runType', 'type': 'str'},
+ 'run_type_v2': {'key': 'runTypeV2', 'type': 'RunTypeV2'},
+ 'properties': {'key': 'properties', 'type': '{str}'},
+ 'parameters': {'key': 'parameters', 'type': '{object}'},
+ 'action_uris': {'key': 'actionUris', 'type': '{str}'},
+ 'script_name': {'key': 'scriptName', 'type': 'str'},
+ 'target': {'key': 'target', 'type': 'str'},
+ 'unique_child_run_compute_targets': {'key': 'uniqueChildRunComputeTargets', 'type': '[str]'},
+ 'tags': {'key': 'tags', 'type': '{str}'},
+ 'settings': {'key': 'settings', 'type': '{str}'},
+ 'services': {'key': 'services', 'type': '{EndpointSetting}'},
+ 'input_datasets': {'key': 'inputDatasets', 'type': '[DatasetLineage]'},
+ 'output_datasets': {'key': 'outputDatasets', 'type': '[OutputDatasetLineage]'},
+ 'run_definition': {'key': 'runDefinition', 'type': 'object'},
+ 'job_specification': {'key': 'jobSpecification', 'type': 'object'},
+ 'primary_metric_name': {'key': 'primaryMetricName', 'type': 'str'},
+ 'created_from': {'key': 'createdFrom', 'type': 'CreatedFrom'},
+ 'cancel_uri': {'key': 'cancelUri', 'type': 'str'},
+ 'complete_uri': {'key': 'completeUri', 'type': 'str'},
+ 'diagnostics_uri': {'key': 'diagnosticsUri', 'type': 'str'},
+ 'compute_request': {'key': 'computeRequest', 'type': 'ComputeRequest'},
+ 'compute': {'key': 'compute', 'type': 'Compute'},
+ 'retain_for_lifetime_of_workspace': {'key': 'retainForLifetimeOfWorkspace', 'type': 'bool'},
+ 'queueing_info': {'key': 'queueingInfo', 'type': 'QueueingInfo'},
+ 'active_child_run_id': {'key': 'activeChildRunId', 'type': 'str'},
+ 'inputs': {'key': 'inputs', 'type': '{TypedAssetReference}'},
+ 'outputs': {'key': 'outputs', 'type': '{TypedAssetReference}'},
+ }
+
+ def __init__(
+ self,
+ *,
+ run_number: Optional[int] = None,
+ root_run_id: Optional[str] = None,
+ created_utc: Optional[datetime.datetime] = None,
+ created_by: Optional["User"] = None,
+ user_id: Optional[str] = None,
+ token: Optional[str] = None,
+ token_expiry_time_utc: Optional[datetime.datetime] = None,
+ error: Optional["ErrorResponse"] = None,
+ warnings: Optional[List["RunDetailsWarning"]] = None,
+ revision: Optional[int] = None,
+ status_revision: Optional[int] = None,
+ run_uuid: Optional[str] = None,
+ parent_run_uuid: Optional[str] = None,
+ root_run_uuid: Optional[str] = None,
+ has_virtual_parent: Optional[bool] = None,
+ last_start_time_utc: Optional[datetime.datetime] = None,
+ current_compute_time: Optional[str] = None,
+ compute_duration: Optional[str] = None,
+ effective_start_time_utc: Optional[datetime.datetime] = None,
+ last_modified_by: Optional["User"] = None,
+ last_modified_utc: Optional[datetime.datetime] = None,
+ duration: Optional[str] = None,
+ cancelation_reason: Optional[str] = None,
+ run_id: Optional[str] = None,
+ parent_run_id: Optional[str] = None,
+ experiment_id: Optional[str] = None,
+ status: Optional[str] = None,
+ start_time_utc: Optional[datetime.datetime] = None,
+ end_time_utc: Optional[datetime.datetime] = None,
+ options: Optional["RunOptions"] = None,
+ is_virtual: Optional[bool] = None,
+ display_name: Optional[str] = None,
+ name: Optional[str] = None,
+ data_container_id: Optional[str] = None,
+ description: Optional[str] = None,
+ hidden: Optional[bool] = None,
+ run_type: Optional[str] = None,
+ run_type_v2: Optional["RunTypeV2"] = None,
+ properties: Optional[Dict[str, str]] = None,
+ parameters: Optional[Dict[str, Any]] = None,
+ action_uris: Optional[Dict[str, str]] = None,
+ script_name: Optional[str] = None,
+ target: Optional[str] = None,
+ unique_child_run_compute_targets: Optional[List[str]] = None,
+ tags: Optional[Dict[str, str]] = None,
+ settings: Optional[Dict[str, str]] = None,
+ services: Optional[Dict[str, "EndpointSetting"]] = None,
+ input_datasets: Optional[List["DatasetLineage"]] = None,
+ output_datasets: Optional[List["OutputDatasetLineage"]] = None,
+ run_definition: Optional[Any] = None,
+ job_specification: Optional[Any] = None,
+ primary_metric_name: Optional[str] = None,
+ created_from: Optional["CreatedFrom"] = None,
+ cancel_uri: Optional[str] = None,
+ complete_uri: Optional[str] = None,
+ diagnostics_uri: Optional[str] = None,
+ compute_request: Optional["ComputeRequest"] = None,
+ compute: Optional["Compute"] = None,
+ retain_for_lifetime_of_workspace: Optional[bool] = None,
+ queueing_info: Optional["QueueingInfo"] = None,
+ active_child_run_id: Optional[str] = None,
+ inputs: Optional[Dict[str, "TypedAssetReference"]] = None,
+ outputs: Optional[Dict[str, "TypedAssetReference"]] = None,
+ **kwargs
+ ):
+ """
+ :keyword run_number:
+ :paramtype run_number: int
+ :keyword root_run_id:
+ :paramtype root_run_id: str
+ :keyword created_utc: The time the run was created in UTC.
+ :paramtype created_utc: ~datetime.datetime
+ :keyword created_by:
+ :paramtype created_by: ~azure.mgmt.machinelearningservices.models.User
+ :keyword user_id: The Id of the user that created the run.
+ :paramtype user_id: str
+ :keyword token: A token used for authenticating a run.
+ :paramtype token: str
+ :keyword token_expiry_time_utc: The Token expiration time in UTC.
+ :paramtype token_expiry_time_utc: ~datetime.datetime
+ :keyword error: The error response.
+ :paramtype error: ~azure.mgmt.machinelearningservices.models.ErrorResponse
+ :keyword warnings: A list of warnings that occurred during the run.
+ :paramtype warnings: list[~azure.mgmt.machinelearningservices.models.RunDetailsWarning]
+ :keyword revision:
+ :paramtype revision: long
+ :keyword status_revision:
+ :paramtype status_revision: long
+ :keyword run_uuid: A system generated Id for the run.
+ :paramtype run_uuid: str
+ :keyword parent_run_uuid: A system generated Id for the run's parent.
+ :paramtype parent_run_uuid: str
+ :keyword root_run_uuid: A system generated Id for the root of the run's hierarchy.
+ :paramtype root_run_uuid: str
+ :keyword has_virtual_parent: Indicates if this is a child of a virtual run.
+ :paramtype has_virtual_parent: bool
+ :keyword last_start_time_utc: The last timestamp when a run transitioned from paused to
+ running. Initialized when StartTimeUtc is first set.
+ :paramtype last_start_time_utc: ~datetime.datetime
+ :keyword current_compute_time: The cumulative time spent in an active status for an active run.
+ :paramtype current_compute_time: str
+ :keyword compute_duration: The cumulative time spent in an active status for a terminal run.
+ :paramtype compute_duration: str
+ :keyword effective_start_time_utc: A relative start time set as LastStartTimeUtc - ComputeTime
+ for active runs. This allows sorting active runs on how long they have been active, since an
+ actual active duration cannot be frequently updated.
+ :paramtype effective_start_time_utc: ~datetime.datetime
+ :keyword last_modified_by:
+ :paramtype last_modified_by: ~azure.mgmt.machinelearningservices.models.User
+ :keyword last_modified_utc: The time the run was created in UTC.
+ :paramtype last_modified_utc: ~datetime.datetime
+ :keyword duration: The total duration of a run.
+ :paramtype duration: str
+ :keyword cancelation_reason: The cancelation Reason if the run was canceled.
+ :paramtype cancelation_reason: str
+ :keyword run_id: The identifier for the run. Run IDs must be less than 256 characters and
+ contain only alphanumeric characters with dashes and underscores.
+ :paramtype run_id: str
+ :keyword parent_run_id: The parent of the run if the run is hierarchical; otherwise, Null.
+ :paramtype parent_run_id: str
+ :keyword experiment_id: The Id of the experiment that created this run.
+ :paramtype experiment_id: str
+ :keyword status: The status of the run. The Status string value maps to the RunStatus Enum.
+ :paramtype status: str
+ :keyword start_time_utc: The start time of the run in UTC.
+ :paramtype start_time_utc: ~datetime.datetime
+ :keyword end_time_utc: The end time of the run in UTC.
+ :paramtype end_time_utc: ~datetime.datetime
+ :keyword options:
+ :paramtype options: ~azure.mgmt.machinelearningservices.models.RunOptions
+ :keyword is_virtual: A virtual run can set an active child run that will override the virtual
+ run status and properties.
+ :paramtype is_virtual: bool
+ :keyword display_name:
+ :paramtype display_name: str
+ :keyword name:
+ :paramtype name: str
+ :keyword data_container_id:
+ :paramtype data_container_id: str
+ :keyword description:
+ :paramtype description: str
+ :keyword hidden:
+ :paramtype hidden: bool
+ :keyword run_type:
+ :paramtype run_type: str
+ :keyword run_type_v2:
+ :paramtype run_type_v2: ~azure.mgmt.machinelearningservices.models.RunTypeV2
+ :keyword properties: Dictionary of :code:`<string>`.
+ :paramtype properties: dict[str, str]
+ :keyword parameters: Dictionary of :code:`<any>`.
+ :paramtype parameters: dict[str, any]
+ :keyword action_uris: Dictionary of :code:`<string>`.
+ :paramtype action_uris: dict[str, str]
+ :keyword script_name:
+ :paramtype script_name: str
+ :keyword target:
+ :paramtype target: str
+ :keyword unique_child_run_compute_targets:
+ :paramtype unique_child_run_compute_targets: list[str]
+ :keyword tags: A set of tags. Dictionary of :code:`<string>`.
+ :paramtype tags: dict[str, str]
+ :keyword settings: Dictionary of :code:`<string>`.
+ :paramtype settings: dict[str, str]
+ :keyword services: Dictionary of :code:`<EndpointSetting>`.
+ :paramtype services: dict[str, ~azure.mgmt.machinelearningservices.models.EndpointSetting]
+ :keyword input_datasets:
+ :paramtype input_datasets: list[~azure.mgmt.machinelearningservices.models.DatasetLineage]
+ :keyword output_datasets:
+ :paramtype output_datasets:
+ list[~azure.mgmt.machinelearningservices.models.OutputDatasetLineage]
+ :keyword run_definition: Anything.
+ :paramtype run_definition: any
+ :keyword job_specification: Anything.
+ :paramtype job_specification: any
+ :keyword primary_metric_name:
+ :paramtype primary_metric_name: str
+ :keyword created_from:
+ :paramtype created_from: ~azure.mgmt.machinelearningservices.models.CreatedFrom
+ :keyword cancel_uri:
+ :paramtype cancel_uri: str
+ :keyword complete_uri:
+ :paramtype complete_uri: str
+ :keyword diagnostics_uri:
+ :paramtype diagnostics_uri: str
+ :keyword compute_request:
+ :paramtype compute_request: ~azure.mgmt.machinelearningservices.models.ComputeRequest
+ :keyword compute:
+ :paramtype compute: ~azure.mgmt.machinelearningservices.models.Compute
+ :keyword retain_for_lifetime_of_workspace:
+ :paramtype retain_for_lifetime_of_workspace: bool
+ :keyword queueing_info:
+ :paramtype queueing_info: ~azure.mgmt.machinelearningservices.models.QueueingInfo
+ :keyword active_child_run_id: The RunId of the active child on a virtual run.
+ :paramtype active_child_run_id: str
+ :keyword inputs: Dictionary of :code:`<TypedAssetReference>`.
+ :paramtype inputs: dict[str, ~azure.mgmt.machinelearningservices.models.TypedAssetReference]
+ :keyword outputs: Dictionary of :code:`<TypedAssetReference>`.
+ :paramtype outputs: dict[str, ~azure.mgmt.machinelearningservices.models.TypedAssetReference]
+ """
+ super(Run, self).__init__(**kwargs)
+ self.run_number = run_number
+ self.root_run_id = root_run_id
+ self.created_utc = created_utc
+ self.created_by = created_by
+ self.user_id = user_id
+ self.token = token
+ self.token_expiry_time_utc = token_expiry_time_utc
+ self.error = error
+ self.warnings = warnings
+ self.revision = revision
+ self.status_revision = status_revision
+ self.run_uuid = run_uuid
+ self.parent_run_uuid = parent_run_uuid
+ self.root_run_uuid = root_run_uuid
+ self.has_virtual_parent = has_virtual_parent
+ self.last_start_time_utc = last_start_time_utc
+ self.current_compute_time = current_compute_time
+ self.compute_duration = compute_duration
+ self.effective_start_time_utc = effective_start_time_utc
+ self.last_modified_by = last_modified_by
+ self.last_modified_utc = last_modified_utc
+ self.duration = duration
+ self.cancelation_reason = cancelation_reason
+ self.run_id = run_id
+ self.parent_run_id = parent_run_id
+ self.experiment_id = experiment_id
+ self.status = status
+ self.start_time_utc = start_time_utc
+ self.end_time_utc = end_time_utc
+ self.options = options
+ self.is_virtual = is_virtual
+ self.display_name = display_name
+ self.name = name
+ self.data_container_id = data_container_id
+ self.description = description
+ self.hidden = hidden
+ self.run_type = run_type
+ self.run_type_v2 = run_type_v2
+ self.properties = properties
+ self.parameters = parameters
+ self.action_uris = action_uris
+ self.script_name = script_name
+ self.target = target
+ self.unique_child_run_compute_targets = unique_child_run_compute_targets
+ self.tags = tags
+ self.settings = settings
+ self.services = services
+ self.input_datasets = input_datasets
+ self.output_datasets = output_datasets
+ self.run_definition = run_definition
+ self.job_specification = job_specification
+ self.primary_metric_name = primary_metric_name
+ self.created_from = created_from
+ self.cancel_uri = cancel_uri
+ self.complete_uri = complete_uri
+ self.diagnostics_uri = diagnostics_uri
+ self.compute_request = compute_request
+ self.compute = compute
+ self.retain_for_lifetime_of_workspace = retain_for_lifetime_of_workspace
+ self.queueing_info = queueing_info
+ self.active_child_run_id = active_child_run_id
+ self.inputs = inputs
+ self.outputs = outputs
+
+
+class RunDetails(msrest.serialization.Model):
+ """The details of the run.
+
+ :ivar run_id: The identifier for the run.
+ :vartype run_id: str
+ :ivar run_uuid: A system generated Id for the run.
+ :vartype run_uuid: str
+ :ivar parent_run_uuid: A system generated Id for the run's parent.
+ :vartype parent_run_uuid: str
+ :ivar root_run_uuid: A system generated Id for the root of the run's hierarchy.
+ :vartype root_run_uuid: str
+ :ivar target: The name of the compute target where the run is executed.
+ :vartype target: str
+ :ivar status: The status of the run. The Status string value maps to the RunStatus Enum.
+ :vartype status: str
+ :ivar parent_run_id: The parent of the run if the run is hierarchical.
+ :vartype parent_run_id: str
+ :ivar created_time_utc: The creation time of the run in UTC.
+ :vartype created_time_utc: ~datetime.datetime
+ :ivar start_time_utc: The start time of the run in UTC.
+ :vartype start_time_utc: ~datetime.datetime
+ :ivar end_time_utc: The end time of the run in UTC.
+ :vartype end_time_utc: ~datetime.datetime
+ :ivar error: The error response.
+ :vartype error: ~azure.mgmt.machinelearningservices.models.ErrorResponse
+ :ivar warnings: A list of warnings that occurred during the run.
+ :vartype warnings: list[~azure.mgmt.machinelearningservices.models.RunDetailsWarning]
+ :ivar tags: A set of tags. The tag dictionary for the run. Tags are mutable.
+ :vartype tags: dict[str, str]
+ :ivar properties: The properties dictionary for the run. Properties are immutable.
+ :vartype properties: dict[str, str]
+ :ivar parameters: The parameters dictionary for the run. Parameters are immutable.
+ :vartype parameters: dict[str, any]
+ :ivar services: The interactive run services for a run. Services are mutable.
+ :vartype services: dict[str, ~azure.mgmt.machinelearningservices.models.EndpointSetting]
+ :ivar input_datasets: A list of dataset used as input to the run.
+ :vartype input_datasets: list[~azure.mgmt.machinelearningservices.models.DatasetLineage]
+ :ivar output_datasets: A list of dataset used as output to the run.
+ :vartype output_datasets: list[~azure.mgmt.machinelearningservices.models.OutputDatasetLineage]
+ :ivar run_definition: The run definition specification.
+ :vartype run_definition: any
+ :ivar log_files: Dictionary of :code:`<string>`.
+ :vartype log_files: dict[str, str]
+ :ivar job_cost:
+ :vartype job_cost: ~azure.mgmt.machinelearningservices.models.JobCost
+ :ivar revision:
+ :vartype revision: long
+ :ivar run_type_v2:
+ :vartype run_type_v2: ~azure.mgmt.machinelearningservices.models.RunTypeV2
+ :ivar settings: The run settings.
+ :vartype settings: dict[str, str]
+ :ivar compute_request:
+ :vartype compute_request: ~azure.mgmt.machinelearningservices.models.ComputeRequest
+ :ivar compute:
+ :vartype compute: ~azure.mgmt.machinelearningservices.models.Compute
+ :ivar created_by:
+ :vartype created_by: ~azure.mgmt.machinelearningservices.models.User
+ :ivar compute_duration: Time spent in an active state for terminal runs.
+ :vartype compute_duration: str
+ :ivar effective_start_time_utc: Relative start time of active runs for ordering and computing
+ active compute duration.
+ Compute duration of an active run is now() - EffectiveStartTimeUtc.
+ :vartype effective_start_time_utc: ~datetime.datetime
+ :ivar run_number: Relative start time of active runs for ordering and computing active compute
+ duration.
+ Compute duration of an active run is now() - EffectiveStartTimeUtc.
+ :vartype run_number: int
+ :ivar root_run_id:
+ :vartype root_run_id: str
+ :ivar user_id: The Id of the user that created the run.
+ :vartype user_id: str
+ :ivar status_revision:
+ :vartype status_revision: long
+ :ivar has_virtual_parent: Indicates if this is a child of a virtual run.
+ :vartype has_virtual_parent: bool
+ :ivar current_compute_time: The cumulative time spent in an active status for an active run.
+ :vartype current_compute_time: str
+ :ivar last_start_time_utc: The last timestamp when a run transitioned from paused to running.
+ Initialized when StartTimeUtc is first set.
+ :vartype last_start_time_utc: ~datetime.datetime
+ :ivar last_modified_by:
+ :vartype last_modified_by: ~azure.mgmt.machinelearningservices.models.User
+ :ivar last_modified_utc: The time the run was created in UTC.
+ :vartype last_modified_utc: ~datetime.datetime
+ :ivar duration: The total duration of a run.
+ :vartype duration: str
+ :ivar inputs: The inputs for the run.
+ :vartype inputs: dict[str, ~azure.mgmt.machinelearningservices.models.TypedAssetReference]
+ :ivar outputs: The outputs for the run.
+ :vartype outputs: dict[str, ~azure.mgmt.machinelearningservices.models.TypedAssetReference]
+ """
+
+ _validation = {
+ 'input_datasets': {'unique': True},
+ 'output_datasets': {'unique': True},
+ }
+
+ _attribute_map = {
+ 'run_id': {'key': 'runId', 'type': 'str'},
+ 'run_uuid': {'key': 'runUuid', 'type': 'str'},
+ 'parent_run_uuid': {'key': 'parentRunUuid', 'type': 'str'},
+ 'root_run_uuid': {'key': 'rootRunUuid', 'type': 'str'},
+ 'target': {'key': 'target', 'type': 'str'},
+ 'status': {'key': 'status', 'type': 'str'},
+ 'parent_run_id': {'key': 'parentRunId', 'type': 'str'},
+ 'created_time_utc': {'key': 'createdTimeUtc', 'type': 'iso-8601'},
+ 'start_time_utc': {'key': 'startTimeUtc', 'type': 'iso-8601'},
+ 'end_time_utc': {'key': 'endTimeUtc', 'type': 'iso-8601'},
+ 'error': {'key': 'error', 'type': 'ErrorResponse'},
+ 'warnings': {'key': 'warnings', 'type': '[RunDetailsWarning]'},
+ 'tags': {'key': 'tags', 'type': '{str}'},
+ 'properties': {'key': 'properties', 'type': '{str}'},
+ 'parameters': {'key': 'parameters', 'type': '{object}'},
+ 'services': {'key': 'services', 'type': '{EndpointSetting}'},
+ 'input_datasets': {'key': 'inputDatasets', 'type': '[DatasetLineage]'},
+ 'output_datasets': {'key': 'outputDatasets', 'type': '[OutputDatasetLineage]'},
+ 'run_definition': {'key': 'runDefinition', 'type': 'object'},
+ 'log_files': {'key': 'logFiles', 'type': '{str}'},
+ 'job_cost': {'key': 'jobCost', 'type': 'JobCost'},
+ 'revision': {'key': 'revision', 'type': 'long'},
+ 'run_type_v2': {'key': 'runTypeV2', 'type': 'RunTypeV2'},
+ 'settings': {'key': 'settings', 'type': '{str}'},
+ 'compute_request': {'key': 'computeRequest', 'type': 'ComputeRequest'},
+ 'compute': {'key': 'compute', 'type': 'Compute'},
+ 'created_by': {'key': 'createdBy', 'type': 'User'},
+ 'compute_duration': {'key': 'computeDuration', 'type': 'str'},
+ 'effective_start_time_utc': {'key': 'effectiveStartTimeUtc', 'type': 'iso-8601'},
+ 'run_number': {'key': 'runNumber', 'type': 'int'},
+ 'root_run_id': {'key': 'rootRunId', 'type': 'str'},
+ 'user_id': {'key': 'userId', 'type': 'str'},
+ 'status_revision': {'key': 'statusRevision', 'type': 'long'},
+ 'has_virtual_parent': {'key': 'hasVirtualParent', 'type': 'bool'},
+ 'current_compute_time': {'key': 'currentComputeTime', 'type': 'str'},
+ 'last_start_time_utc': {'key': 'lastStartTimeUtc', 'type': 'iso-8601'},
+ 'last_modified_by': {'key': 'lastModifiedBy', 'type': 'User'},
+ 'last_modified_utc': {'key': 'lastModifiedUtc', 'type': 'iso-8601'},
+ 'duration': {'key': 'duration', 'type': 'str'},
+ 'inputs': {'key': 'inputs', 'type': '{TypedAssetReference}'},
+ 'outputs': {'key': 'outputs', 'type': '{TypedAssetReference}'},
+ }
+
+ def __init__(
+ self,
+ *,
+ run_id: Optional[str] = None,
+ run_uuid: Optional[str] = None,
+ parent_run_uuid: Optional[str] = None,
+ root_run_uuid: Optional[str] = None,
+ target: Optional[str] = None,
+ status: Optional[str] = None,
+ parent_run_id: Optional[str] = None,
+ created_time_utc: Optional[datetime.datetime] = None,
+ start_time_utc: Optional[datetime.datetime] = None,
+ end_time_utc: Optional[datetime.datetime] = None,
+ error: Optional["ErrorResponse"] = None,
+ warnings: Optional[List["RunDetailsWarning"]] = None,
+ tags: Optional[Dict[str, str]] = None,
+ properties: Optional[Dict[str, str]] = None,
+ parameters: Optional[Dict[str, Any]] = None,
+ services: Optional[Dict[str, "EndpointSetting"]] = None,
+ input_datasets: Optional[List["DatasetLineage"]] = None,
+ output_datasets: Optional[List["OutputDatasetLineage"]] = None,
+ run_definition: Optional[Any] = None,
+ log_files: Optional[Dict[str, str]] = None,
+ job_cost: Optional["JobCost"] = None,
+ revision: Optional[int] = None,
+ run_type_v2: Optional["RunTypeV2"] = None,
+ settings: Optional[Dict[str, str]] = None,
+ compute_request: Optional["ComputeRequest"] = None,
+ compute: Optional["Compute"] = None,
+ created_by: Optional["User"] = None,
+ compute_duration: Optional[str] = None,
+ effective_start_time_utc: Optional[datetime.datetime] = None,
+ run_number: Optional[int] = None,
+ root_run_id: Optional[str] = None,
+ user_id: Optional[str] = None,
+ status_revision: Optional[int] = None,
+ has_virtual_parent: Optional[bool] = None,
+ current_compute_time: Optional[str] = None,
+ last_start_time_utc: Optional[datetime.datetime] = None,
+ last_modified_by: Optional["User"] = None,
+ last_modified_utc: Optional[datetime.datetime] = None,
+ duration: Optional[str] = None,
+ inputs: Optional[Dict[str, "TypedAssetReference"]] = None,
+ outputs: Optional[Dict[str, "TypedAssetReference"]] = None,
+ **kwargs
+ ):
+ """
+ :keyword run_id: The identifier for the run.
+ :paramtype run_id: str
+ :keyword run_uuid: A system generated Id for the run.
+ :paramtype run_uuid: str
+ :keyword parent_run_uuid: A system generated Id for the run's parent.
+ :paramtype parent_run_uuid: str
+ :keyword root_run_uuid: A system generated Id for the root of the run's hierarchy.
+ :paramtype root_run_uuid: str
+ :keyword target: The name of the compute target where the run is executed.
+ :paramtype target: str
+ :keyword status: The status of the run. The Status string value maps to the RunStatus Enum.
+ :paramtype status: str
+ :keyword parent_run_id: The parent of the run if the run is hierarchical.
+ :paramtype parent_run_id: str
+ :keyword created_time_utc: The creation time of the run in UTC.
+ :paramtype created_time_utc: ~datetime.datetime
+ :keyword start_time_utc: The start time of the run in UTC.
+ :paramtype start_time_utc: ~datetime.datetime
+ :keyword end_time_utc: The end time of the run in UTC.
+ :paramtype end_time_utc: ~datetime.datetime
+ :keyword error: The error response.
+ :paramtype error: ~azure.mgmt.machinelearningservices.models.ErrorResponse
+ :keyword warnings: A list of warnings that occurred during the run.
+ :paramtype warnings: list[~azure.mgmt.machinelearningservices.models.RunDetailsWarning]
+ :keyword tags: A set of tags. The tag dictionary for the run. Tags are mutable.
+ :paramtype tags: dict[str, str]
+ :keyword properties: The properties dictionary for the run. Properties are immutable.
+ :paramtype properties: dict[str, str]
+ :keyword parameters: The parameters dictionary for the run. Parameters are immutable.
+ :paramtype parameters: dict[str, any]
+ :keyword services: The interactive run services for a run. Services are mutable.
+ :paramtype services: dict[str, ~azure.mgmt.machinelearningservices.models.EndpointSetting]
+ :keyword input_datasets: A list of dataset used as input to the run.
+ :paramtype input_datasets: list[~azure.mgmt.machinelearningservices.models.DatasetLineage]
+ :keyword output_datasets: A list of dataset used as output to the run.
+ :paramtype output_datasets:
+ list[~azure.mgmt.machinelearningservices.models.OutputDatasetLineage]
+ :keyword run_definition: The run definition specification.
+ :paramtype run_definition: any
+ :keyword log_files: Dictionary of :code:`<string>`.
+ :paramtype log_files: dict[str, str]
+ :keyword job_cost:
+ :paramtype job_cost: ~azure.mgmt.machinelearningservices.models.JobCost
+ :keyword revision:
+ :paramtype revision: long
+ :keyword run_type_v2:
+ :paramtype run_type_v2: ~azure.mgmt.machinelearningservices.models.RunTypeV2
+ :keyword settings: The run settings.
+ :paramtype settings: dict[str, str]
+ :keyword compute_request:
+ :paramtype compute_request: ~azure.mgmt.machinelearningservices.models.ComputeRequest
+ :keyword compute:
+ :paramtype compute: ~azure.mgmt.machinelearningservices.models.Compute
+ :keyword created_by:
+ :paramtype created_by: ~azure.mgmt.machinelearningservices.models.User
+ :keyword compute_duration: Time spent in an active state for terminal runs.
+ :paramtype compute_duration: str
+ :keyword effective_start_time_utc: Relative start time of active runs for ordering and
+ computing active compute duration.
+ Compute duration of an active run is now() - EffectiveStartTimeUtc.
+ :paramtype effective_start_time_utc: ~datetime.datetime
+ :keyword run_number: Relative start time of active runs for ordering and computing active
+ compute duration.
+ Compute duration of an active run is now() - EffectiveStartTimeUtc.
+ :paramtype run_number: int
+ :keyword root_run_id:
+ :paramtype root_run_id: str
+ :keyword user_id: The Id of the user that created the run.
+ :paramtype user_id: str
+ :keyword status_revision:
+ :paramtype status_revision: long
+ :keyword has_virtual_parent: Indicates if this is a child of a virtual run.
+ :paramtype has_virtual_parent: bool
+ :keyword current_compute_time: The cumulative time spent in an active status for an active run.
+ :paramtype current_compute_time: str
+ :keyword last_start_time_utc: The last timestamp when a run transitioned from paused to
+ running. Initialized when StartTimeUtc is first set.
+ :paramtype last_start_time_utc: ~datetime.datetime
+ :keyword last_modified_by:
+ :paramtype last_modified_by: ~azure.mgmt.machinelearningservices.models.User
+ :keyword last_modified_utc: The time the run was created in UTC.
+ :paramtype last_modified_utc: ~datetime.datetime
+ :keyword duration: The total duration of a run.
+ :paramtype duration: str
+ :keyword inputs: The inputs for the run.
+ :paramtype inputs: dict[str, ~azure.mgmt.machinelearningservices.models.TypedAssetReference]
+ :keyword outputs: The outputs for the run.
+ :paramtype outputs: dict[str, ~azure.mgmt.machinelearningservices.models.TypedAssetReference]
+ """
+ super(RunDetails, self).__init__(**kwargs)
+ self.run_id = run_id
+ self.run_uuid = run_uuid
+ self.parent_run_uuid = parent_run_uuid
+ self.root_run_uuid = root_run_uuid
+ self.target = target
+ self.status = status
+ self.parent_run_id = parent_run_id
+ self.created_time_utc = created_time_utc
+ self.start_time_utc = start_time_utc
+ self.end_time_utc = end_time_utc
+ self.error = error
+ self.warnings = warnings
+ self.tags = tags
+ self.properties = properties
+ self.parameters = parameters
+ self.services = services
+ self.input_datasets = input_datasets
+ self.output_datasets = output_datasets
+ self.run_definition = run_definition
+ self.log_files = log_files
+ self.job_cost = job_cost
+ self.revision = revision
+ self.run_type_v2 = run_type_v2
+ self.settings = settings
+ self.compute_request = compute_request
+ self.compute = compute
+ self.created_by = created_by
+ self.compute_duration = compute_duration
+ self.effective_start_time_utc = effective_start_time_utc
+ self.run_number = run_number
+ self.root_run_id = root_run_id
+ self.user_id = user_id
+ self.status_revision = status_revision
+ self.has_virtual_parent = has_virtual_parent
+ self.current_compute_time = current_compute_time
+ self.last_start_time_utc = last_start_time_utc
+ self.last_modified_by = last_modified_by
+ self.last_modified_utc = last_modified_utc
+ self.duration = duration
+ self.inputs = inputs
+ self.outputs = outputs
+
+
+class RunDetailsWarning(msrest.serialization.Model):
+ """RunDetailsWarning.
+
+ :ivar source:
+ :vartype source: str
+ :ivar message:
+ :vartype message: str
+ """
+
+ _attribute_map = {
+ 'source': {'key': 'source', 'type': 'str'},
+ 'message': {'key': 'message', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ source: Optional[str] = None,
+ message: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword source:
+ :paramtype source: str
+ :keyword message:
+ :paramtype message: str
+ """
+ super(RunDetailsWarning, self).__init__(**kwargs)
+ self.source = source
+ self.message = message
+
+
+class RunMetric(msrest.serialization.Model):
+ """RunMetric.
+
+ :ivar run_id:
+ :vartype run_id: str
+ :ivar metric_id:
+ :vartype metric_id: str
+ :ivar data_container_id:
+ :vartype data_container_id: str
+ :ivar metric_type:
+ :vartype metric_type: str
+ :ivar created_utc:
+ :vartype created_utc: ~datetime.datetime
+ :ivar name:
+ :vartype name: str
+ :ivar description:
+ :vartype description: str
+ :ivar label:
+ :vartype label: str
+ :ivar num_cells:
+ :vartype num_cells: int
+ :ivar data_location:
+ :vartype data_location: str
+ :ivar cells:
+ :vartype cells: list[dict[str, any]]
+ :ivar schema:
+ :vartype schema: ~azure.mgmt.machinelearningservices.models.MetricSchema
+ """
+
+ _attribute_map = {
+ 'run_id': {'key': 'runId', 'type': 'str'},
+ 'metric_id': {'key': 'metricId', 'type': 'str'},
+ 'data_container_id': {'key': 'dataContainerId', 'type': 'str'},
+ 'metric_type': {'key': 'metricType', 'type': 'str'},
+ 'created_utc': {'key': 'createdUtc', 'type': 'iso-8601'},
+ 'name': {'key': 'name', 'type': 'str'},
+ 'description': {'key': 'description', 'type': 'str'},
+ 'label': {'key': 'label', 'type': 'str'},
+ 'num_cells': {'key': 'numCells', 'type': 'int'},
+ 'data_location': {'key': 'dataLocation', 'type': 'str'},
+ 'cells': {'key': 'cells', 'type': '[{object}]'},
+ 'schema': {'key': 'schema', 'type': 'MetricSchema'},
+ }
+
+ def __init__(
+ self,
+ *,
+ run_id: Optional[str] = None,
+ metric_id: Optional[str] = None,
+ data_container_id: Optional[str] = None,
+ metric_type: Optional[str] = None,
+ created_utc: Optional[datetime.datetime] = None,
+ name: Optional[str] = None,
+ description: Optional[str] = None,
+ label: Optional[str] = None,
+ num_cells: Optional[int] = None,
+ data_location: Optional[str] = None,
+ cells: Optional[List[Dict[str, Any]]] = None,
+ schema: Optional["MetricSchema"] = None,
+ **kwargs
+ ):
+ """
+ :keyword run_id:
+ :paramtype run_id: str
+ :keyword metric_id:
+ :paramtype metric_id: str
+ :keyword data_container_id:
+ :paramtype data_container_id: str
+ :keyword metric_type:
+ :paramtype metric_type: str
+ :keyword created_utc:
+ :paramtype created_utc: ~datetime.datetime
+ :keyword name:
+ :paramtype name: str
+ :keyword description:
+ :paramtype description: str
+ :keyword label:
+ :paramtype label: str
+ :keyword num_cells:
+ :paramtype num_cells: int
+ :keyword data_location:
+ :paramtype data_location: str
+ :keyword cells:
+ :paramtype cells: list[dict[str, any]]
+ :keyword schema:
+ :paramtype schema: ~azure.mgmt.machinelearningservices.models.MetricSchema
+ """
+ super(RunMetric, self).__init__(**kwargs)
+ self.run_id = run_id
+ self.metric_id = metric_id
+ self.data_container_id = data_container_id
+ self.metric_type = metric_type
+ self.created_utc = created_utc
+ self.name = name
+ self.description = description
+ self.label = label
+ self.num_cells = num_cells
+ self.data_location = data_location
+ self.cells = cells
+ self.schema = schema
+
+
+class RunOptions(msrest.serialization.Model):
+ """RunOptions.
+
+ :ivar generate_data_container_id_if_not_specified:
+ :vartype generate_data_container_id_if_not_specified: bool
+ """
+
+ _attribute_map = {
+ 'generate_data_container_id_if_not_specified': {'key': 'generateDataContainerIdIfNotSpecified', 'type': 'bool'},
+ }
+
+ def __init__(
+ self,
+ *,
+ generate_data_container_id_if_not_specified: Optional[bool] = None,
+ **kwargs
+ ):
+ """
+ :keyword generate_data_container_id_if_not_specified:
+ :paramtype generate_data_container_id_if_not_specified: bool
+ """
+ super(RunOptions, self).__init__(**kwargs)
+ self.generate_data_container_id_if_not_specified = generate_data_container_id_if_not_specified
+
+
+class RunServiceInstances(msrest.serialization.Model):
+ """RunServiceInstances.
+
+ :ivar instances: Dictionary of :code:`<ServiceInstanceResult>`.
+ :vartype instances: dict[str, ~azure.mgmt.machinelearningservices.models.ServiceInstanceResult]
+ """
+
+ _attribute_map = {
+ 'instances': {'key': 'instances', 'type': '{ServiceInstanceResult}'},
+ }
+
+ def __init__(
+ self,
+ *,
+ instances: Optional[Dict[str, "ServiceInstanceResult"]] = None,
+ **kwargs
+ ):
+ """
+ :keyword instances: Dictionary of :code:`<ServiceInstanceResult>`.
+ :paramtype instances: dict[str,
+ ~azure.mgmt.machinelearningservices.models.ServiceInstanceResult]
+ """
+ super(RunServiceInstances, self).__init__(**kwargs)
+ self.instances = instances
+
+
+class RunStatusSpans(msrest.serialization.Model):
+ """RunStatusSpans.
+
+ :ivar spans:
+ :vartype spans: list[~azure.mgmt.machinelearningservices.models.SpanDefinition1]
+ """
+
+ _attribute_map = {
+ 'spans': {'key': 'spans', 'type': '[SpanDefinition1]'},
+ }
+
+ def __init__(
+ self,
+ *,
+ spans: Optional[List["SpanDefinition1"]] = None,
+ **kwargs
+ ):
+ """
+ :keyword spans:
+ :paramtype spans: list[~azure.mgmt.machinelearningservices.models.SpanDefinition1]
+ """
+ super(RunStatusSpans, self).__init__(**kwargs)
+ self.spans = spans
+
+
+class RunTypeV2(msrest.serialization.Model):
+ """RunTypeV2.
+
+ :ivar orchestrator:
+ :vartype orchestrator: str
+ :ivar traits:
+ :vartype traits: list[str]
+ :ivar attribution:
+ :vartype attribution: str
+ :ivar compute_type:
+ :vartype compute_type: str
+ """
+
+ _validation = {
+ 'traits': {'unique': True},
+ }
+
+ _attribute_map = {
+ 'orchestrator': {'key': 'orchestrator', 'type': 'str'},
+ 'traits': {'key': 'traits', 'type': '[str]'},
+ 'attribution': {'key': 'attribution', 'type': 'str'},
+ 'compute_type': {'key': 'computeType', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ orchestrator: Optional[str] = None,
+ traits: Optional[List[str]] = None,
+ attribution: Optional[str] = None,
+ compute_type: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword orchestrator:
+ :paramtype orchestrator: str
+ :keyword traits:
+ :paramtype traits: list[str]
+ :keyword attribution:
+ :paramtype attribution: str
+ :keyword compute_type:
+ :paramtype compute_type: str
+ """
+ super(RunTypeV2, self).__init__(**kwargs)
+ self.orchestrator = orchestrator
+ self.traits = traits
+ self.attribution = attribution
+ self.compute_type = compute_type
+
+
+class ServiceInstance(msrest.serialization.Model):
+ """ServiceInstance.
+
+ :ivar is_single_node:
+ :vartype is_single_node: bool
+ :ivar error_message:
+ :vartype error_message: str
+ :ivar port:
+ :vartype port: int
+ :ivar status:
+ :vartype status: str
+ :ivar error: The error response.
+ :vartype error: ~azure.mgmt.machinelearningservices.models.ErrorResponse
+ :ivar properties: Dictionary of :code:`<string>`.
+ :vartype properties: dict[str, str]
+ """
+
+ _attribute_map = {
+ 'is_single_node': {'key': 'isSingleNode', 'type': 'bool'},
+ 'error_message': {'key': 'errorMessage', 'type': 'str'},
+ 'port': {'key': 'port', 'type': 'int'},
+ 'status': {'key': 'status', 'type': 'str'},
+ 'error': {'key': 'error', 'type': 'ErrorResponse'},
+ 'properties': {'key': 'properties', 'type': '{str}'},
+ }
+
+ def __init__(
+ self,
+ *,
+ is_single_node: Optional[bool] = None,
+ error_message: Optional[str] = None,
+ port: Optional[int] = None,
+ status: Optional[str] = None,
+ error: Optional["ErrorResponse"] = None,
+ properties: Optional[Dict[str, str]] = None,
+ **kwargs
+ ):
+ """
+ :keyword is_single_node:
+ :paramtype is_single_node: bool
+ :keyword error_message:
+ :paramtype error_message: str
+ :keyword port:
+ :paramtype port: int
+ :keyword status:
+ :paramtype status: str
+ :keyword error: The error response.
+ :paramtype error: ~azure.mgmt.machinelearningservices.models.ErrorResponse
+ :keyword properties: Dictionary of :code:`<string>`.
+ :paramtype properties: dict[str, str]
+ """
+ super(ServiceInstance, self).__init__(**kwargs)
+ self.is_single_node = is_single_node
+ self.error_message = error_message
+ self.port = port
+ self.status = status
+ self.error = error
+ self.properties = properties
+
+
+class ServiceInstanceResult(msrest.serialization.Model):
+ """ServiceInstanceResult.
+
+ :ivar type:
+ :vartype type: str
+ :ivar port:
+ :vartype port: int
+ :ivar status:
+ :vartype status: str
+ :ivar error: The error response.
+ :vartype error: ~azure.mgmt.machinelearningservices.models.ErrorResponse
+ :ivar endpoint:
+ :vartype endpoint: str
+ :ivar properties: Dictionary of :code:`<string>`.
+ :vartype properties: dict[str, str]
+ """
+
+ _attribute_map = {
+ 'type': {'key': 'type', 'type': 'str'},
+ 'port': {'key': 'port', 'type': 'int'},
+ 'status': {'key': 'status', 'type': 'str'},
+ 'error': {'key': 'error', 'type': 'ErrorResponse'},
+ 'endpoint': {'key': 'endpoint', 'type': 'str'},
+ 'properties': {'key': 'properties', 'type': '{str}'},
+ }
+
+ def __init__(
+ self,
+ *,
+ type: Optional[str] = None,
+ port: Optional[int] = None,
+ status: Optional[str] = None,
+ error: Optional["ErrorResponse"] = None,
+ endpoint: Optional[str] = None,
+ properties: Optional[Dict[str, str]] = None,
+ **kwargs
+ ):
+ """
+ :keyword type:
+ :paramtype type: str
+ :keyword port:
+ :paramtype port: int
+ :keyword status:
+ :paramtype status: str
+ :keyword error: The error response.
+ :paramtype error: ~azure.mgmt.machinelearningservices.models.ErrorResponse
+ :keyword endpoint:
+ :paramtype endpoint: str
+ :keyword properties: Dictionary of :code:`<string>`.
+ :paramtype properties: dict[str, str]
+ """
+ super(ServiceInstanceResult, self).__init__(**kwargs)
+ self.type = type
+ self.port = port
+ self.status = status
+ self.error = error
+ self.endpoint = endpoint
+ self.properties = properties
+
+
+class SpanContext(msrest.serialization.Model):
+ """SpanContext.
+
+ :ivar trace_id: Gets the TraceId associated with this
+ Microsoft.MachineLearning.RunHistory.Contracts.SpanContext.
+ TODO: In actual spec, it is ActivityTraceId type. But that causes problems in
+ serialization/deserialization.
+ :vartype trace_id: str
+ :ivar span_id: Gets the SpanId associated with this
+ Microsoft.MachineLearning.RunHistory.Contracts.SpanContext.
+ TODO: In actual spec, it is ActivitySpanId type. But that causes problems in
+ serialization/deserialization.
+ :vartype span_id: str
+ :ivar is_remote: Gets a value indicating whether this
+ Microsoft.MachineLearning.RunHistory.Contracts.SpanContext
+ was propagated from a remote parent.
+ :vartype is_remote: bool
+ :ivar is_valid: Gets a value indicating whether this
+ Microsoft.MachineLearning.RunHistory.Contracts.SpanContext is valid.
+ :vartype is_valid: bool
+ :ivar tracestate: Gets the
+ Microsoft.MachineLearning.RunHistory.Contracts.SpanContext.Tracestate associated with this
+ Microsoft.MachineLearning.RunHistory.Contracts.SpanContext.
+ :vartype tracestate: list[~azure.mgmt.machinelearningservices.models.KeyValuePairString]
+ """
+
+ _attribute_map = {
+ 'trace_id': {'key': 'traceId', 'type': 'str'},
+ 'span_id': {'key': 'spanId', 'type': 'str'},
+ 'is_remote': {'key': 'isRemote', 'type': 'bool'},
+ 'is_valid': {'key': 'isValid', 'type': 'bool'},
+ 'tracestate': {'key': 'tracestate', 'type': '[KeyValuePairString]'},
+ }
+
+ def __init__(
+ self,
+ *,
+ trace_id: Optional[str] = None,
+ span_id: Optional[str] = None,
+ is_remote: Optional[bool] = None,
+ is_valid: Optional[bool] = None,
+ tracestate: Optional[List["KeyValuePairString"]] = None,
+ **kwargs
+ ):
+ """
+ :keyword trace_id: Gets the TraceId associated with this
+ Microsoft.MachineLearning.RunHistory.Contracts.SpanContext.
+ TODO: In actual spec, it is ActivityTraceId type. But that causes problems in
+ serialization/deserialization.
+ :paramtype trace_id: str
+ :keyword span_id: Gets the SpanId associated with this
+ Microsoft.MachineLearning.RunHistory.Contracts.SpanContext.
+ TODO: In actual spec, it is ActivitySpanId type. But that causes problems in
+ serialization/deserialization.
+ :paramtype span_id: str
+ :keyword is_remote: Gets a value indicating whether this
+ Microsoft.MachineLearning.RunHistory.Contracts.SpanContext
+ was propagated from a remote parent.
+ :paramtype is_remote: bool
+ :keyword is_valid: Gets a value indicating whether this
+ Microsoft.MachineLearning.RunHistory.Contracts.SpanContext is valid.
+ :paramtype is_valid: bool
+ :keyword tracestate: Gets the
+ Microsoft.MachineLearning.RunHistory.Contracts.SpanContext.Tracestate associated with this
+ Microsoft.MachineLearning.RunHistory.Contracts.SpanContext.
+ :paramtype tracestate: list[~azure.mgmt.machinelearningservices.models.KeyValuePairString]
+ """
+ super(SpanContext, self).__init__(**kwargs)
+ self.trace_id = trace_id
+ self.span_id = span_id
+ self.is_remote = is_remote
+ self.is_valid = is_valid
+ self.tracestate = tracestate
+
+
+class SpanDefinition1(msrest.serialization.Model):
+ """Most of the code in this class is vendored from here.
+https://github.com/open-telemetry/opentelemetry-dotnet/blob/master/src/OpenTelemetry/Trace/Export/SpanData.cs
+SpanData on that github link is readonly, we can't set properties on it after creation. So, just vendoring the Span
+contract.
+TStatus is the status enum. For runs, it is RunStatus
+This is the link for span spec https://github.com/open-telemetry/opentelemetry-specification/blob/master/specification/overview.md#span.
+
+ :ivar context:
+ :vartype context: ~azure.mgmt.machinelearningservices.models.SpanContext
+ :ivar name: Gets span name.
+ :vartype name: str
+ :ivar status: Gets span status.
+ OpenTelemetry sets it to
+ https://github.com/open-telemetry/opentelemetry-dotnet/blob/master/src/OpenTelemetry.Api/Trace/Status.cs
+ That status enums are not very meaningful to us, so we customize this. Possible values
+ include: "NotStarted", "Unapproved", "Pausing", "Paused", "Starting", "Preparing", "Queued",
+ "Running", "Finalizing", "CancelRequested", "Completed", "Failed", "Canceled".
+ :vartype status: str or ~azure.mgmt.machinelearningservices.models.RunStatus
+ :ivar parent_span_id: Gets parent span id.
+ TODO: In actual spec, it is ActivitySpanId type. But that causes problems in
+ serialization/deserialization.
+ :vartype parent_span_id: str
+ :ivar attributes: Gets attributes.
+ :vartype attributes: list[~azure.mgmt.machinelearningservices.models.KeyValuePairStringJToken]
+ :ivar events: Gets events.
+ :vartype events: list[~azure.mgmt.machinelearningservices.models.Event]
+ :ivar links: Gets links.
+ :vartype links: list[~azure.mgmt.machinelearningservices.models.Link]
+ :ivar start_timestamp: Gets span start timestamp.
+ :vartype start_timestamp: ~datetime.datetime
+ :ivar end_timestamp: Gets span end timestamp.
+ :vartype end_timestamp: ~datetime.datetime
+ """
+
+ _attribute_map = {
+ 'context': {'key': 'context', 'type': 'SpanContext'},
+ 'name': {'key': 'name', 'type': 'str'},
+ 'status': {'key': 'status', 'type': 'str'},
+ 'parent_span_id': {'key': 'parentSpanId', 'type': 'str'},
+ 'attributes': {'key': 'attributes', 'type': '[KeyValuePairStringJToken]'},
+ 'events': {'key': 'events', 'type': '[Event]'},
+ 'links': {'key': 'links', 'type': '[Link]'},
+ 'start_timestamp': {'key': 'startTimestamp', 'type': 'iso-8601'},
+ 'end_timestamp': {'key': 'endTimestamp', 'type': 'iso-8601'},
+ }
+
+ def __init__(
+ self,
+ *,
+ context: Optional["SpanContext"] = None,
+ name: Optional[str] = None,
+ status: Optional[Union[str, "RunStatus"]] = None,
+ parent_span_id: Optional[str] = None,
+ attributes: Optional[List["KeyValuePairStringJToken"]] = None,
+ events: Optional[List["Event"]] = None,
+ links: Optional[List["Link"]] = None,
+ start_timestamp: Optional[datetime.datetime] = None,
+ end_timestamp: Optional[datetime.datetime] = None,
+ **kwargs
+ ):
+ """
+ :keyword context:
+ :paramtype context: ~azure.mgmt.machinelearningservices.models.SpanContext
+ :keyword name: Gets span name.
+ :paramtype name: str
+ :keyword status: Gets span status.
+ OpenTelemetry sets it to
+ https://github.com/open-telemetry/opentelemetry-dotnet/blob/master/src/OpenTelemetry.Api/Trace/Status.cs
+ That status enums are not very meaningful to us, so we customize this. Possible values
+ include: "NotStarted", "Unapproved", "Pausing", "Paused", "Starting", "Preparing", "Queued",
+ "Running", "Finalizing", "CancelRequested", "Completed", "Failed", "Canceled".
+ :paramtype status: str or ~azure.mgmt.machinelearningservices.models.RunStatus
+ :keyword parent_span_id: Gets parent span id.
+ TODO: In actual spec, it is ActivitySpanId type. But that causes problems in
+ serialization/deserialization.
+ :paramtype parent_span_id: str
+ :keyword attributes: Gets attributes.
+ :paramtype attributes:
+ list[~azure.mgmt.machinelearningservices.models.KeyValuePairStringJToken]
+ :keyword events: Gets events.
+ :paramtype events: list[~azure.mgmt.machinelearningservices.models.Event]
+ :keyword links: Gets links.
+ :paramtype links: list[~azure.mgmt.machinelearningservices.models.Link]
+ :keyword start_timestamp: Gets span start timestamp.
+ :paramtype start_timestamp: ~datetime.datetime
+ :keyword end_timestamp: Gets span end timestamp.
+ :paramtype end_timestamp: ~datetime.datetime
+ """
+ super(SpanDefinition1, self).__init__(**kwargs)
+ self.context = context
+ self.name = name
+ self.status = status
+ self.parent_span_id = parent_span_id
+ self.attributes = attributes
+ self.events = events
+ self.links = links
+ self.start_timestamp = start_timestamp
+ self.end_timestamp = end_timestamp
+
+
+class SqlDataPath(msrest.serialization.Model):
+ """SqlDataPath.
+
+ :ivar sql_table_name:
+ :vartype sql_table_name: str
+ :ivar sql_query:
+ :vartype sql_query: str
+ :ivar sql_stored_procedure_name:
+ :vartype sql_stored_procedure_name: str
+ :ivar sql_stored_procedure_params:
+ :vartype sql_stored_procedure_params:
+ list[~azure.mgmt.machinelearningservices.models.StoredProcedureParameter]
+ """
+
+ _attribute_map = {
+ 'sql_table_name': {'key': 'sqlTableName', 'type': 'str'},
+ 'sql_query': {'key': 'sqlQuery', 'type': 'str'},
+ 'sql_stored_procedure_name': {'key': 'sqlStoredProcedureName', 'type': 'str'},
+ 'sql_stored_procedure_params': {'key': 'sqlStoredProcedureParams', 'type': '[StoredProcedureParameter]'},
+ }
+
+ def __init__(
+ self,
+ *,
+ sql_table_name: Optional[str] = None,
+ sql_query: Optional[str] = None,
+ sql_stored_procedure_name: Optional[str] = None,
+ sql_stored_procedure_params: Optional[List["StoredProcedureParameter"]] = None,
+ **kwargs
+ ):
+ """
+ :keyword sql_table_name:
+ :paramtype sql_table_name: str
+ :keyword sql_query:
+ :paramtype sql_query: str
+ :keyword sql_stored_procedure_name:
+ :paramtype sql_stored_procedure_name: str
+ :keyword sql_stored_procedure_params:
+ :paramtype sql_stored_procedure_params:
+ list[~azure.mgmt.machinelearningservices.models.StoredProcedureParameter]
+ """
+ super(SqlDataPath, self).__init__(**kwargs)
+ self.sql_table_name = sql_table_name
+ self.sql_query = sql_query
+ self.sql_stored_procedure_name = sql_stored_procedure_name
+ self.sql_stored_procedure_params = sql_stored_procedure_params
+
+
+class StoredProcedureParameter(msrest.serialization.Model):
+ """StoredProcedureParameter.
+
+ :ivar name:
+ :vartype name: str
+ :ivar value:
+ :vartype value: str
+ :ivar type: Possible values include: "String", "Int", "Decimal", "Guid", "Boolean", "Date".
+ :vartype type: str or ~azure.mgmt.machinelearningservices.models.StoredProcedureParameterType
+ """
+
+ _attribute_map = {
+ 'name': {'key': 'name', 'type': 'str'},
+ 'value': {'key': 'value', 'type': 'str'},
+ 'type': {'key': 'type', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ name: Optional[str] = None,
+ value: Optional[str] = None,
+ type: Optional[Union[str, "StoredProcedureParameterType"]] = None,
+ **kwargs
+ ):
+ """
+ :keyword name:
+ :paramtype name: str
+ :keyword value:
+ :paramtype value: str
+ :keyword type: Possible values include: "String", "Int", "Decimal", "Guid", "Boolean", "Date".
+ :paramtype type: str or ~azure.mgmt.machinelearningservices.models.StoredProcedureParameterType
+ """
+ super(StoredProcedureParameter, self).__init__(**kwargs)
+ self.name = name
+ self.value = value
+ self.type = type
+
+
+class TypedAssetReference(msrest.serialization.Model):
+ """TypedAssetReference.
+
+ :ivar asset_id:
+ :vartype asset_id: str
+ :ivar type:
+ :vartype type: str
+ """
+
+ _attribute_map = {
+ 'asset_id': {'key': 'assetId', 'type': 'str'},
+ 'type': {'key': 'type', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ asset_id: Optional[str] = None,
+ type: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword asset_id:
+ :paramtype asset_id: str
+ :keyword type:
+ :paramtype type: str
+ """
+ super(TypedAssetReference, self).__init__(**kwargs)
+ self.asset_id = asset_id
+ self.type = type
+
+
+class User(msrest.serialization.Model):
+ """User.
+
+ :ivar user_object_id: A user or service principal's object ID.
+ This is EUPI and may only be logged to warm path telemetry.
+ :vartype user_object_id: str
+ :ivar user_pu_id: A user or service principal's PuID.
+ This is PII and should never be logged.
+ :vartype user_pu_id: str
+ :ivar user_idp: A user identity provider. Eg live.com
+ This is PII and should never be logged.
+ :vartype user_idp: str
+ :ivar user_alt_sec_id: A user alternate sec id. This represents the user in a different
+ identity provider system Eg.1:live.com:puid
+ This is PII and should never be logged.
+ :vartype user_alt_sec_id: str
+ :ivar user_iss: The issuer which issed the token for this user.
+ This is PII and should never be logged.
+ :vartype user_iss: str
+ :ivar user_tenant_id: A user or service principal's tenant ID.
+ :vartype user_tenant_id: str
+ :ivar user_name: A user's full name or a service principal's app ID.
+ This is PII and should never be logged.
+ :vartype user_name: str
+ :ivar upn: A user's Principal name (upn)
+ This is PII andshould never be logged.
+ :vartype upn: str
+ """
+
+ _attribute_map = {
+ 'user_object_id': {'key': 'userObjectId', 'type': 'str'},
+ 'user_pu_id': {'key': 'userPuId', 'type': 'str'},
+ 'user_idp': {'key': 'userIdp', 'type': 'str'},
+ 'user_alt_sec_id': {'key': 'userAltSecId', 'type': 'str'},
+ 'user_iss': {'key': 'userIss', 'type': 'str'},
+ 'user_tenant_id': {'key': 'userTenantId', 'type': 'str'},
+ 'user_name': {'key': 'userName', 'type': 'str'},
+ 'upn': {'key': 'upn', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ user_object_id: Optional[str] = None,
+ user_pu_id: Optional[str] = None,
+ user_idp: Optional[str] = None,
+ user_alt_sec_id: Optional[str] = None,
+ user_iss: Optional[str] = None,
+ user_tenant_id: Optional[str] = None,
+ user_name: Optional[str] = None,
+ upn: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword user_object_id: A user or service principal's object ID.
+ This is EUPI and may only be logged to warm path telemetry.
+ :paramtype user_object_id: str
+ :keyword user_pu_id: A user or service principal's PuID.
+ This is PII and should never be logged.
+ :paramtype user_pu_id: str
+ :keyword user_idp: A user identity provider. Eg live.com
+ This is PII and should never be logged.
+ :paramtype user_idp: str
+ :keyword user_alt_sec_id: A user alternate sec id. This represents the user in a different
+ identity provider system Eg.1:live.com:puid
+ This is PII and should never be logged.
+ :paramtype user_alt_sec_id: str
+ :keyword user_iss: The issuer which issed the token for this user.
+ This is PII and should never be logged.
+ :paramtype user_iss: str
+ :keyword user_tenant_id: A user or service principal's tenant ID.
+ :paramtype user_tenant_id: str
+ :keyword user_name: A user's full name or a service principal's app ID.
+ This is PII and should never be logged.
+ :paramtype user_name: str
+ :keyword upn: A user's Principal name (upn)
+ This is PII andshould never be logged.
+ :paramtype upn: str
+ """
+ super(User, self).__init__(**kwargs)
+ self.user_object_id = user_object_id
+ self.user_pu_id = user_pu_id
+ self.user_idp = user_idp
+ self.user_alt_sec_id = user_alt_sec_id
+ self.user_iss = user_iss
+ self.user_tenant_id = user_tenant_id
+ self.user_name = user_name
+ self.upn = upn
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/__init__.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/__init__.py
new file mode 100644
index 00000000..3e84a44a
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/__init__.py
@@ -0,0 +1,27 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from ._delete_operations import DeleteOperations
+from ._events_operations import EventsOperations
+from ._experiments_operations import ExperimentsOperations
+from ._metric_operations import MetricOperations
+from ._runs_operations import RunsOperations
+from ._run_artifacts_operations import RunArtifactsOperations
+from ._run_operations import RunOperations
+from ._spans_operations import SpansOperations
+
+__all__ = [
+ 'DeleteOperations',
+ 'EventsOperations',
+ 'ExperimentsOperations',
+ 'MetricOperations',
+ 'RunsOperations',
+ 'RunArtifactsOperations',
+ 'RunOperations',
+ 'SpansOperations',
+]
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/_delete_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/_delete_operations.py
new file mode 100644
index 00000000..9080611e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/_delete_operations.py
@@ -0,0 +1,248 @@
+# pylint: disable=too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from typing import TYPE_CHECKING
+
+from msrest import Serializer
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.mgmt.core.exceptions import ARMErrorFormat
+
+from .. import models as _models
+from .._vendor import _convert_request, _format_url_section
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any, Callable, Dict, Optional, TypeVar
+ T = TypeVar('T')
+ ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+# fmt: off
+
+def build_patch_configuration_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/private/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/deleteConfiguration") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="PATCH",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_get_configuration_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/private/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/deleteConfiguration") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+# fmt: on
+class DeleteOperations(object):
+ """DeleteOperations operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer):
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace
+ def patch_configuration(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body=None, # type: Optional["_models.DeleteConfiguration"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DeleteConfiguration"
+ """patch_configuration.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DeleteConfiguration
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DeleteConfiguration, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DeleteConfiguration
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DeleteConfiguration"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DeleteConfiguration')
+ else:
+ _json = None
+
+ request = build_patch_configuration_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.patch_configuration.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DeleteConfiguration', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ patch_configuration.metadata = {'url': "/history/v1.0/private/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/deleteConfiguration"} # type: ignore
+
+
+ @distributed_trace
+ def get_configuration(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DeleteConfiguration"
+ """get_configuration.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DeleteConfiguration, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DeleteConfiguration
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DeleteConfiguration"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_configuration_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ template_url=self.get_configuration.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DeleteConfiguration', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_configuration.metadata = {'url': "/history/v1.0/private/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/deleteConfiguration"} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/_events_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/_events_operations.py
new file mode 100644
index 00000000..f87546d9
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/_events_operations.py
@@ -0,0 +1,713 @@
+# pylint: disable=too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from typing import TYPE_CHECKING
+
+from msrest import Serializer
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.mgmt.core.exceptions import ARMErrorFormat
+
+from .. import models as _models
+from .._vendor import _convert_request, _format_url_section
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any, Callable, Dict, Optional, TypeVar
+ T = TypeVar('T')
+ ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+# fmt: off
+
+def build_batch_post_by_experiment_name_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ experiment_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/batch/events") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "experimentName": _SERIALIZER.url("experiment_name", experiment_name, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_batch_post_by_experiment_id_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ experiment_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/batch/events") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "experimentId": _SERIALIZER.url("experiment_id", experiment_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_batch_post_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/batch/events") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_post_by_experiment_name_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/events") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ "experimentName": _SERIALIZER.url("experiment_name", experiment_name, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_post_by_experiment_id_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/events") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ "experimentId": _SERIALIZER.url("experiment_id", experiment_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_post_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/events") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+# fmt: on
+class EventsOperations(object):
+ """EventsOperations operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer):
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace
+ def batch_post_by_experiment_name(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ experiment_name, # type: str
+ body=None, # type: Optional["_models.BatchEventCommand"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.BatchEventCommandResult"
+ """batch_post_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.BatchEventCommand
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: BatchEventCommandResult, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.BatchEventCommandResult
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.BatchEventCommandResult"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'BatchEventCommand')
+ else:
+ _json = None
+
+ request = build_batch_post_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_name=experiment_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.batch_post_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('BatchEventCommandResult', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ batch_post_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/batch/events"} # type: ignore
+
+
+ @distributed_trace
+ def batch_post_by_experiment_id(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ experiment_id, # type: str
+ body=None, # type: Optional["_models.BatchEventCommand"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.BatchEventCommandResult"
+ """batch_post_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.BatchEventCommand
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: BatchEventCommandResult, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.BatchEventCommandResult
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.BatchEventCommandResult"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'BatchEventCommand')
+ else:
+ _json = None
+
+ request = build_batch_post_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_id=experiment_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.batch_post_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('BatchEventCommandResult', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ batch_post_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/batch/events"} # type: ignore
+
+
+ @distributed_trace
+ def batch_post(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body=None, # type: Optional["_models.BatchEventCommand"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.BatchEventCommandResult"
+ """batch_post.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.BatchEventCommand
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: BatchEventCommandResult, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.BatchEventCommandResult
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.BatchEventCommandResult"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'BatchEventCommand')
+ else:
+ _json = None
+
+ request = build_batch_post_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.batch_post.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('BatchEventCommandResult', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ batch_post.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/batch/events"} # type: ignore
+
+
+ @distributed_trace
+ def post_by_experiment_name( # pylint: disable=inconsistent-return-statements
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_name, # type: str
+ body=None, # type: Optional["_models.BaseEvent"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> None
+ """post_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.BaseEvent
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'BaseEvent')
+ else:
+ _json = None
+
+ request = build_post_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.post_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in []:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ post_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/events"} # type: ignore
+
+
+ @distributed_trace
+ def post_by_experiment_id( # pylint: disable=inconsistent-return-statements
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_id, # type: str
+ body=None, # type: Optional["_models.BaseEvent"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> None
+ """post_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.BaseEvent
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'BaseEvent')
+ else:
+ _json = None
+
+ request = build_post_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.post_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in []:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ post_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/events"} # type: ignore
+
+
+ @distributed_trace
+ def post( # pylint: disable=inconsistent-return-statements
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ body=None, # type: Optional["_models.BaseEvent"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> None
+ """post.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.BaseEvent
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'BaseEvent')
+ else:
+ _json = None
+
+ request = build_post_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.post.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in []:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ post.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/events"} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/_experiments_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/_experiments_operations.py
new file mode 100644
index 00000000..3b12b9c1
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/_experiments_operations.py
@@ -0,0 +1,878 @@
+# pylint: disable=too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from typing import TYPE_CHECKING
+
+from msrest import Serializer
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.paging import ItemPaged
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.polling import LROPoller, NoPolling, PollingMethod
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from azure.mgmt.core.polling.arm_polling import ARMPolling
+
+from .. import models as _models
+from .._vendor import _convert_request, _format_url_section
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any, Callable, Dict, Iterable, Optional, TypeVar, Union
+ T = TypeVar('T')
+ ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+# fmt: off
+
+def build_get_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ experiment_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "experimentName": _SERIALIZER.url("experiment_name", experiment_name, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_create_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ experiment_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "experimentName": _SERIALIZER.url("experiment_name", experiment_name, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_get_by_id_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ experiment_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "experimentId": _SERIALIZER.url("experiment_id", experiment_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_update_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ experiment_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "experimentId": _SERIALIZER.url("experiment_id", experiment_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="PATCH",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_delete_request_initial(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ experiment_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "experimentId": _SERIALIZER.url("experiment_id", experiment_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="DELETE",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_get_by_query_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+ url_safe_experiment_names_only = kwargs.pop('url_safe_experiment_names_only', True) # type: Optional[bool]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments:query") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct parameters
+ _query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if url_safe_experiment_names_only is not None:
+ _query_parameters['urlSafeExperimentNamesOnly'] = _SERIALIZER.query("url_safe_experiment_names_only", url_safe_experiment_names_only, 'bool')
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=_url,
+ params=_query_parameters,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_delete_tags_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ experiment_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/tags:delete") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "experimentId": _SERIALIZER.url("experiment_id", experiment_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+# fmt: on
+class ExperimentsOperations(object):
+ """ExperimentsOperations operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer):
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace
+ def get(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ experiment_name, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Experiment"
+ """Get details of an Experiment.
+
+ Get details of an Experiment with specific Experiment name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param experiment_name: The experiment name.
+ :type experiment_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Experiment, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Experiment
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Experiment"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_name=experiment_name,
+ template_url=self.get.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Experiment', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}"} # type: ignore
+
+
+ @distributed_trace
+ def create(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ experiment_name, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Experiment"
+ """Create an Experiment.
+
+ Create a new Experiment.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param experiment_name: The experiment name.
+ :type experiment_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Experiment, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Experiment
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Experiment"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_create_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_name=experiment_name,
+ template_url=self.create.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Experiment', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ create.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}"} # type: ignore
+
+
+ @distributed_trace
+ def get_by_id(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ experiment_id, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Experiment"
+ """Get details of an Experiment.
+
+ Get details of an Experiment with specific Experiment Id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param experiment_id: The identifier of the experiment.
+ :type experiment_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Experiment, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Experiment
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Experiment"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_by_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_id=experiment_id,
+ template_url=self.get_by_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Experiment', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_by_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}"} # type: ignore
+
+
+ @distributed_trace
+ def update(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ experiment_id, # type: str
+ body=None, # type: Optional["_models.ModifyExperiment"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Experiment"
+ """Update details of an Experiment.
+
+ Update details of an Experiment with specific Experiment Id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param experiment_id: The identifier of the experiment.
+ :type experiment_id: str
+ :param body: Experiment details which needs to be updated.
+ :type body: ~azure.mgmt.machinelearningservices.models.ModifyExperiment
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Experiment, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Experiment
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Experiment"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'ModifyExperiment')
+ else:
+ _json = None
+
+ request = build_update_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_id=experiment_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.update.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Experiment', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ update.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}"} # type: ignore
+
+
+ def _delete_initial(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ experiment_id, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Any
+ cls = kwargs.pop('cls', None) # type: ClsType[Any]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_delete_request_initial(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_id=experiment_id,
+ template_url=self._delete_initial.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('object', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ _delete_initial.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}"} # type: ignore
+
+
+ @distributed_trace
+ def begin_delete(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ experiment_id, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> LROPoller[Any]
+ """Delete an Experiment.
+
+ Delete an existing Empty Experiment.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param experiment_id: The identifier of the experiment.
+ :type experiment_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either any or the result of cls(response)
+ :rtype: ~azure.core.polling.LROPoller[any]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod]
+ cls = kwargs.pop('cls', None) # type: ClsType[Any]
+ lro_delay = kwargs.pop(
+ 'polling_interval',
+ self._config.polling_interval
+ )
+ cont_token = kwargs.pop('continuation_token', None) # type: Optional[str]
+ if cont_token is None:
+ raw_result = self._delete_initial(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_id=experiment_id,
+ cls=lambda x,y,z: x,
+ **kwargs
+ )
+ kwargs.pop('error_map', None)
+
+ def get_long_running_output(pipeline_response):
+ response = pipeline_response.http_response
+ deserialized = self._deserialize('object', pipeline_response)
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+ return deserialized
+
+
+ if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs)
+ elif polling is False: polling_method = NoPolling()
+ else: polling_method = polling
+ if cont_token:
+ return LROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output
+ )
+ return LROPoller(self._client, raw_result, get_long_running_output, polling_method)
+
+ begin_delete.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}"} # type: ignore
+
+ @distributed_trace
+ def get_by_query(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ url_safe_experiment_names_only=True, # type: Optional[bool]
+ body=None, # type: Optional["_models.ExperimentQueryParams"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedExperimentList"]
+ """Get all Experiments in a specific workspace.
+
+ Get all experiments in a specific workspace with the specified query filters.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param url_safe_experiment_names_only:
+ :type url_safe_experiment_names_only: bool
+ :param body: Query parameters for data sorting and filtering.
+ :type body: ~azure.mgmt.machinelearningservices.models.ExperimentQueryParams
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedExperimentList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedExperimentList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedExperimentList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+ if body is not None:
+ _json = self._serialize.body(body, 'ExperimentQueryParams')
+ else:
+ _json = None
+
+ request = build_get_by_query_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ url_safe_experiment_names_only=url_safe_experiment_names_only,
+ template_url=self.get_by_query.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+ if body is not None:
+ _json = self._serialize.body(body, 'ExperimentQueryParams')
+ else:
+ _json = None
+
+ request = build_get_by_query_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ url_safe_experiment_names_only=url_safe_experiment_names_only,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedExperimentList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ get_by_query.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments:query"} # type: ignore
+
+ @distributed_trace
+ def delete_tags(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ experiment_id, # type: str
+ body=None, # type: Optional["_models.DeleteTagsCommand"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DeleteExperimentTagsResult"
+ """Delete list of Tags in an Experiment.
+
+ Delete list of Tags from a specific Experiment Id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param experiment_id: The identifier of the experiment.
+ :type experiment_id: str
+ :param body: The requested tags list to be deleted.
+ :type body: ~azure.mgmt.machinelearningservices.models.DeleteTagsCommand
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DeleteExperimentTagsResult, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DeleteExperimentTagsResult
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DeleteExperimentTagsResult"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DeleteTagsCommand')
+ else:
+ _json = None
+
+ request = build_delete_tags_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_id=experiment_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.delete_tags.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DeleteExperimentTagsResult', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ delete_tags.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/tags:delete"} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/_metric_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/_metric_operations.py
new file mode 100644
index 00000000..f9184554
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/_metric_operations.py
@@ -0,0 +1,1206 @@
+# pylint: disable=too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from typing import TYPE_CHECKING
+
+from msrest import Serializer
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.paging import ItemPaged
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.polling import LROPoller, NoPolling, PollingMethod
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from azure.mgmt.core.polling.arm_polling import ARMPolling
+
+from .. import models as _models
+from .._vendor import _convert_request, _format_url_section
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any, Callable, Dict, Iterable, Optional, TypeVar, Union
+ T = TypeVar('T')
+ ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+# fmt: off
+
+def build_get_full_fidelity_metric_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/metric/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/full") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_list_metric_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/metric/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/list") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_list_generic_resource_metrics_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/metric/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/azuremonitor/list") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_get_sampled_metric_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/metric/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/sample") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_post_run_metrics_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/metric/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/batch") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_delete_metrics_by_data_container_id_request_initial(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ experiment_id, # type: str
+ data_container_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/metric/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentId}/containers/{dataContainerId}/deleteMetrics") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "experimentId": _SERIALIZER.url("experiment_id", experiment_id, 'str'),
+ "dataContainerId": _SERIALIZER.url("data_container_id", data_container_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="DELETE",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_delete_metrics_by_run_id_request_initial(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/metric/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/deleteMetrics") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="DELETE",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_get_metric_details_by_experiment_name_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ metric_id, # type: str
+ experiment_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/metrics/{metricId}") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "metricId": _SERIALIZER.url("metric_id", metric_id, 'str'),
+ "experimentName": _SERIALIZER.url("experiment_name", experiment_name, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_get_metric_details_by_experiment_id_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ metric_id, # type: str
+ experiment_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/metrics/{metricId}") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "metricId": _SERIALIZER.url("metric_id", metric_id, 'str'),
+ "experimentId": _SERIALIZER.url("experiment_id", experiment_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+# fmt: on
+class MetricOperations(object):
+ """MetricOperations operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer):
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace
+ def get_full_fidelity_metric(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ body=None, # type: Optional["_models.RetrieveFullFidelityMetricRequest"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.MetricV2"
+ """API to retrieve the full-fidelity sequence associated with a particular run and metricName.
+
+ API to retrieve the full-fidelity sequence associated with a particular run and metricName.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.RetrieveFullFidelityMetricRequest
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: MetricV2, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.MetricV2
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.MetricV2"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'RetrieveFullFidelityMetricRequest')
+ else:
+ _json = None
+
+ request = build_get_full_fidelity_metric_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.get_full_fidelity_metric.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('MetricV2', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_full_fidelity_metric.metadata = {'url': "/metric/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/full"} # type: ignore
+
+
+ @distributed_trace
+ def list_metric(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ body=None, # type: Optional["_models.ListMetrics"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedMetricDefinitionList"]
+ """API to list metric for a particular datacontainer and metricName.
+
+ API to list metric for a particular datacontainer and metricName.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.ListMetrics
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedMetricDefinitionList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedMetricDefinitionList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedMetricDefinitionList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+ if body is not None:
+ _json = self._serialize.body(body, 'ListMetrics')
+ else:
+ _json = None
+
+ request = build_list_metric_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.list_metric.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+ if body is not None:
+ _json = self._serialize.body(body, 'ListMetrics')
+ else:
+ _json = None
+
+ request = build_list_metric_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ content_type=content_type,
+ json=_json,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedMetricDefinitionList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ list_metric.metadata = {'url': "/metric/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/list"} # type: ignore
+
+ @distributed_trace
+ def list_generic_resource_metrics(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body=None, # type: Optional["_models.ListGenericResourceMetrics"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedMetricDefinitionList"]
+ """API to list workspace/subworkspace resource metrics for a particular ResourceId.
+
+ API to list workspace/subworkspace resource metrics for a particular ResourceId.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.ListGenericResourceMetrics
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedMetricDefinitionList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedMetricDefinitionList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedMetricDefinitionList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+ if body is not None:
+ _json = self._serialize.body(body, 'ListGenericResourceMetrics')
+ else:
+ _json = None
+
+ request = build_list_generic_resource_metrics_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.list_generic_resource_metrics.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+ if body is not None:
+ _json = self._serialize.body(body, 'ListGenericResourceMetrics')
+ else:
+ _json = None
+
+ request = build_list_generic_resource_metrics_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedMetricDefinitionList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ list_generic_resource_metrics.metadata = {'url': "/metric/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/azuremonitor/list"} # type: ignore
+
+ @distributed_trace
+ def get_sampled_metric(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ body=None, # type: Optional["_models.GetSampledMetricRequest"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.MetricSample"
+ """Stub for future action
+ API to retrieve samples for one or many runs to compare a given metricName
+ Throw if schemas don't match across metrics.
+
+ Stub for future action
+ API to retrieve samples for one or many runs to compare a given metricName
+ Throw if schemas don't match across metrics.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.GetSampledMetricRequest
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: MetricSample, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.MetricSample
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.MetricSample"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'GetSampledMetricRequest')
+ else:
+ _json = None
+
+ request = build_get_sampled_metric_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.get_sampled_metric.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('MetricSample', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_sampled_metric.metadata = {'url': "/metric/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/sample"} # type: ignore
+
+
+ @distributed_trace
+ def post_run_metrics(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ body=None, # type: Optional["_models.BatchIMetricV2"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.PostRunMetricsResult"
+ """Post Metrics to a Run.
+
+ Post Metrics to a specific Run Id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.BatchIMetricV2
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: PostRunMetricsResult, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.PostRunMetricsResult
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PostRunMetricsResult"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'BatchIMetricV2')
+ else:
+ _json = None
+
+ request = build_post_run_metrics_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.post_run_metrics.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 207]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if response.status_code == 200:
+ deserialized = self._deserialize('PostRunMetricsResult', pipeline_response)
+
+ if response.status_code == 207:
+ deserialized = self._deserialize('PostRunMetricsResult', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ post_run_metrics.metadata = {'url': "/metric/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/batch"} # type: ignore
+
+
+ def _delete_metrics_by_data_container_id_initial(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ experiment_id, # type: str
+ data_container_id, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Any
+ cls = kwargs.pop('cls', None) # type: ClsType[Any]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_delete_metrics_by_data_container_id_request_initial(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_id=experiment_id,
+ data_container_id=data_container_id,
+ template_url=self._delete_metrics_by_data_container_id_initial.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('object', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ _delete_metrics_by_data_container_id_initial.metadata = {'url': "/metric/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentId}/containers/{dataContainerId}/deleteMetrics"} # type: ignore
+
+
+ @distributed_trace
+ def begin_delete_metrics_by_data_container_id(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ experiment_id, # type: str
+ data_container_id, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> LROPoller[Any]
+ """API to delete metrics by data container id.
+
+ API to delete metrics by data container id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param data_container_id:
+ :type data_container_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either any or the result of cls(response)
+ :rtype: ~azure.core.polling.LROPoller[any]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod]
+ cls = kwargs.pop('cls', None) # type: ClsType[Any]
+ lro_delay = kwargs.pop(
+ 'polling_interval',
+ self._config.polling_interval
+ )
+ cont_token = kwargs.pop('continuation_token', None) # type: Optional[str]
+ if cont_token is None:
+ raw_result = self._delete_metrics_by_data_container_id_initial(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_id=experiment_id,
+ data_container_id=data_container_id,
+ cls=lambda x,y,z: x,
+ **kwargs
+ )
+ kwargs.pop('error_map', None)
+
+ def get_long_running_output(pipeline_response):
+ response = pipeline_response.http_response
+ deserialized = self._deserialize('object', pipeline_response)
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+ return deserialized
+
+
+ if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs)
+ elif polling is False: polling_method = NoPolling()
+ else: polling_method = polling
+ if cont_token:
+ return LROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output
+ )
+ return LROPoller(self._client, raw_result, get_long_running_output, polling_method)
+
+ begin_delete_metrics_by_data_container_id.metadata = {'url': "/metric/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentId}/containers/{dataContainerId}/deleteMetrics"} # type: ignore
+
+ def _delete_metrics_by_run_id_initial(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Any
+ cls = kwargs.pop('cls', None) # type: ClsType[Any]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_delete_metrics_by_run_id_request_initial(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ template_url=self._delete_metrics_by_run_id_initial.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('object', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ _delete_metrics_by_run_id_initial.metadata = {'url': "/metric/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/deleteMetrics"} # type: ignore
+
+
+ @distributed_trace
+ def begin_delete_metrics_by_run_id(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> LROPoller[Any]
+ """API to delete metrics by run id.
+
+ API to delete metrics by run id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either any or the result of cls(response)
+ :rtype: ~azure.core.polling.LROPoller[any]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod]
+ cls = kwargs.pop('cls', None) # type: ClsType[Any]
+ lro_delay = kwargs.pop(
+ 'polling_interval',
+ self._config.polling_interval
+ )
+ cont_token = kwargs.pop('continuation_token', None) # type: Optional[str]
+ if cont_token is None:
+ raw_result = self._delete_metrics_by_run_id_initial(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ cls=lambda x,y,z: x,
+ **kwargs
+ )
+ kwargs.pop('error_map', None)
+
+ def get_long_running_output(pipeline_response):
+ response = pipeline_response.http_response
+ deserialized = self._deserialize('object', pipeline_response)
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+ return deserialized
+
+
+ if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs)
+ elif polling is False: polling_method = NoPolling()
+ else: polling_method = polling
+ if cont_token:
+ return LROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output
+ )
+ return LROPoller(self._client, raw_result, get_long_running_output, polling_method)
+
+ begin_delete_metrics_by_run_id.metadata = {'url': "/metric/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/deleteMetrics"} # type: ignore
+
+ @distributed_trace
+ def get_metric_details_by_experiment_name(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ metric_id, # type: str
+ experiment_name, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.RunMetric"
+ """Get Metric details.
+
+ Get Metric details for a specific Metric Id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param metric_id: The identifier for a Metric.
+ :type metric_id: str
+ :param experiment_name:
+ :type experiment_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: RunMetric, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.RunMetric
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.RunMetric"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_metric_details_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ metric_id=metric_id,
+ experiment_name=experiment_name,
+ template_url=self.get_metric_details_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('RunMetric', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_metric_details_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/metrics/{metricId}"} # type: ignore
+
+
+ @distributed_trace
+ def get_metric_details_by_experiment_id(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ metric_id, # type: str
+ experiment_id, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.RunMetric"
+ """Get Metric details.
+
+ Get Metric details for a specific Metric Id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param metric_id: The identifier for a Metric.
+ :type metric_id: str
+ :param experiment_id:
+ :type experiment_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: RunMetric, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.RunMetric
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.RunMetric"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_metric_details_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ metric_id=metric_id,
+ experiment_id=experiment_id,
+ template_url=self.get_metric_details_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('RunMetric', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_metric_details_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/metrics/{metricId}"} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/_run_artifacts_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/_run_artifacts_operations.py
new file mode 100644
index 00000000..c7dd5930
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/_run_artifacts_operations.py
@@ -0,0 +1,1850 @@
+# pylint: disable=too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from typing import TYPE_CHECKING
+
+from msrest import Serializer
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.paging import ItemPaged
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.mgmt.core.exceptions import ARMErrorFormat
+
+from .. import models as _models
+from .._vendor import _convert_request, _format_url_section
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any, Callable, Dict, Iterable, Optional, TypeVar
+ T = TypeVar('T')
+ ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+# fmt: off
+
+def build_list_in_container_by_experiment_name_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ continuation_token_parameter = kwargs.pop('continuation_token_parameter', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/artifacts") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ "experimentName": _SERIALIZER.url("experiment_name", experiment_name, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct parameters
+ _query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if continuation_token_parameter is not None:
+ _query_parameters['continuationToken'] = _SERIALIZER.query("continuation_token_parameter", continuation_token_parameter, 'str')
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=_url,
+ params=_query_parameters,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_list_in_container_by_experiment_id_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ continuation_token_parameter = kwargs.pop('continuation_token_parameter', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/artifacts") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ "experimentId": _SERIALIZER.url("experiment_id", experiment_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct parameters
+ _query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if continuation_token_parameter is not None:
+ _query_parameters['continuationToken'] = _SERIALIZER.query("continuation_token_parameter", continuation_token_parameter, 'str')
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=_url,
+ params=_query_parameters,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_list_in_path_by_experiment_name_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ path = kwargs.pop('path', None) # type: Optional[str]
+ continuation_token_parameter = kwargs.pop('continuation_token_parameter', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/artifacts/path") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ "experimentName": _SERIALIZER.url("experiment_name", experiment_name, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct parameters
+ _query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if path is not None:
+ _query_parameters['path'] = _SERIALIZER.query("path", path, 'str')
+ if continuation_token_parameter is not None:
+ _query_parameters['continuationToken'] = _SERIALIZER.query("continuation_token_parameter", continuation_token_parameter, 'str')
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=_url,
+ params=_query_parameters,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_list_in_path_by_experiment_id_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ path = kwargs.pop('path', None) # type: Optional[str]
+ continuation_token_parameter = kwargs.pop('continuation_token_parameter', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/artifacts/path") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ "experimentId": _SERIALIZER.url("experiment_id", experiment_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct parameters
+ _query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if path is not None:
+ _query_parameters['path'] = _SERIALIZER.query("path", path, 'str')
+ if continuation_token_parameter is not None:
+ _query_parameters['continuationToken'] = _SERIALIZER.query("continuation_token_parameter", continuation_token_parameter, 'str')
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=_url,
+ params=_query_parameters,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_get_by_id_by_experiment_name_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ path = kwargs.pop('path', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/artifacts/metadata") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ "experimentName": _SERIALIZER.url("experiment_name", experiment_name, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct parameters
+ _query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if path is not None:
+ _query_parameters['path'] = _SERIALIZER.query("path", path, 'str')
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=_url,
+ params=_query_parameters,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_get_by_id_by_experiment_id_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ path = kwargs.pop('path', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/artifacts/metadata") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ "experimentId": _SERIALIZER.url("experiment_id", experiment_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct parameters
+ _query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if path is not None:
+ _query_parameters['path'] = _SERIALIZER.query("path", path, 'str')
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=_url,
+ params=_query_parameters,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_get_content_information_by_experiment_name_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ path = kwargs.pop('path', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/artifacts/contentinfo") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ "experimentName": _SERIALIZER.url("experiment_name", experiment_name, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct parameters
+ _query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if path is not None:
+ _query_parameters['path'] = _SERIALIZER.query("path", path, 'str')
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=_url,
+ params=_query_parameters,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_get_content_information_by_experiment_id_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ path = kwargs.pop('path', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/artifacts/contentinfo") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ "experimentId": _SERIALIZER.url("experiment_id", experiment_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct parameters
+ _query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if path is not None:
+ _query_parameters['path'] = _SERIALIZER.query("path", path, 'str')
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=_url,
+ params=_query_parameters,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_get_sas_uri_by_experiment_name_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ path = kwargs.pop('path', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/artifacts/artifacturi") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ "experimentName": _SERIALIZER.url("experiment_name", experiment_name, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct parameters
+ _query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if path is not None:
+ _query_parameters['path'] = _SERIALIZER.query("path", path, 'str')
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=_url,
+ params=_query_parameters,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_get_sas_uri_by_experiment_id_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ path = kwargs.pop('path', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/artifacts/artifacturi") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ "experimentId": _SERIALIZER.url("experiment_id", experiment_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct parameters
+ _query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if path is not None:
+ _query_parameters['path'] = _SERIALIZER.query("path", path, 'str')
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=_url,
+ params=_query_parameters,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_list_sas_by_prefix_by_experiment_name_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ path = kwargs.pop('path', None) # type: Optional[str]
+ continuation_token_parameter = kwargs.pop('continuation_token_parameter', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/artifacts/prefix/contentinfo") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ "experimentName": _SERIALIZER.url("experiment_name", experiment_name, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct parameters
+ _query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if path is not None:
+ _query_parameters['path'] = _SERIALIZER.query("path", path, 'str')
+ if continuation_token_parameter is not None:
+ _query_parameters['continuationToken'] = _SERIALIZER.query("continuation_token_parameter", continuation_token_parameter, 'str')
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=_url,
+ params=_query_parameters,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_list_sas_by_prefix_by_experiment_id_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ path = kwargs.pop('path', None) # type: Optional[str]
+ continuation_token_parameter = kwargs.pop('continuation_token_parameter', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/artifacts/prefix/contentinfo") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ "experimentId": _SERIALIZER.url("experiment_id", experiment_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct parameters
+ _query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if path is not None:
+ _query_parameters['path'] = _SERIALIZER.query("path", path, 'str')
+ if continuation_token_parameter is not None:
+ _query_parameters['continuationToken'] = _SERIALIZER.query("continuation_token_parameter", continuation_token_parameter, 'str')
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=_url,
+ params=_query_parameters,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_batch_create_empty_artifacts_by_experiment_name_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/artifacts/batch/metadata") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ "experimentName": _SERIALIZER.url("experiment_name", experiment_name, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_batch_create_empty_artifacts_by_experiment_id_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/artifacts/batch/metadata") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ "experimentId": _SERIALIZER.url("experiment_id", experiment_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+# fmt: on
+class RunArtifactsOperations(object):
+ """RunArtifactsOperations operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer):
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace
+ def list_in_container_by_experiment_name(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_name, # type: str
+ continuation_token_parameter=None, # type: Optional[str]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedArtifactList"]
+ """list_in_container_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedArtifactList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedArtifactList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedArtifactList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_in_container_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ continuation_token_parameter=continuation_token_parameter,
+ template_url=self.list_in_container_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_in_container_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ continuation_token_parameter=continuation_token_parameter,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedArtifactList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ list_in_container_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/artifacts"} # type: ignore
+
+ @distributed_trace
+ def list_in_container_by_experiment_id(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_id, # type: str
+ continuation_token_parameter=None, # type: Optional[str]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedArtifactList"]
+ """list_in_container_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedArtifactList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedArtifactList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedArtifactList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_in_container_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ continuation_token_parameter=continuation_token_parameter,
+ template_url=self.list_in_container_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_in_container_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ continuation_token_parameter=continuation_token_parameter,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedArtifactList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ list_in_container_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/artifacts"} # type: ignore
+
+ @distributed_trace
+ def list_in_path_by_experiment_name(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_name, # type: str
+ path=None, # type: Optional[str]
+ continuation_token_parameter=None, # type: Optional[str]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedArtifactList"]
+ """list_in_path_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param path:
+ :type path: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedArtifactList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedArtifactList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedArtifactList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_in_path_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ path=path,
+ continuation_token_parameter=continuation_token_parameter,
+ template_url=self.list_in_path_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_in_path_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ path=path,
+ continuation_token_parameter=continuation_token_parameter,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedArtifactList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ list_in_path_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/artifacts/path"} # type: ignore
+
+ @distributed_trace
+ def list_in_path_by_experiment_id(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_id, # type: str
+ path=None, # type: Optional[str]
+ continuation_token_parameter=None, # type: Optional[str]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedArtifactList"]
+ """list_in_path_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param path:
+ :type path: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedArtifactList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedArtifactList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedArtifactList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_in_path_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ path=path,
+ continuation_token_parameter=continuation_token_parameter,
+ template_url=self.list_in_path_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_in_path_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ path=path,
+ continuation_token_parameter=continuation_token_parameter,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedArtifactList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ list_in_path_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/artifacts/path"} # type: ignore
+
+ @distributed_trace
+ def get_by_id_by_experiment_name(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_name, # type: str
+ path=None, # type: Optional[str]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Artifact"
+ """get_by_id_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param path:
+ :type path: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Artifact, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Artifact
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Artifact"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_by_id_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ path=path,
+ template_url=self.get_by_id_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Artifact', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_by_id_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/artifacts/metadata"} # type: ignore
+
+
+ @distributed_trace
+ def get_by_id_by_experiment_id(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_id, # type: str
+ path=None, # type: Optional[str]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Artifact"
+ """get_by_id_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param path:
+ :type path: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Artifact, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Artifact
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Artifact"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_by_id_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ path=path,
+ template_url=self.get_by_id_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Artifact', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_by_id_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/artifacts/metadata"} # type: ignore
+
+
+ @distributed_trace
+ def get_content_information_by_experiment_name(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_name, # type: str
+ path=None, # type: Optional[str]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.ArtifactContentInformation"
+ """get_content_information_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param path:
+ :type path: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: ArtifactContentInformation, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.ArtifactContentInformation
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.ArtifactContentInformation"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_content_information_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ path=path,
+ template_url=self.get_content_information_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('ArtifactContentInformation', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_content_information_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/artifacts/contentinfo"} # type: ignore
+
+
+ @distributed_trace
+ def get_content_information_by_experiment_id(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_id, # type: str
+ path=None, # type: Optional[str]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.ArtifactContentInformation"
+ """get_content_information_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param path:
+ :type path: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: ArtifactContentInformation, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.ArtifactContentInformation
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.ArtifactContentInformation"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_content_information_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ path=path,
+ template_url=self.get_content_information_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('ArtifactContentInformation', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_content_information_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/artifacts/contentinfo"} # type: ignore
+
+
+ @distributed_trace
+ def get_sas_uri_by_experiment_name(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_name, # type: str
+ path=None, # type: Optional[str]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> str
+ """get_sas_uri_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param path:
+ :type path: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: str, or the result of cls(response)
+ :rtype: str
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[str]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_sas_uri_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ path=path,
+ template_url=self.get_sas_uri_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('str', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_sas_uri_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/artifacts/artifacturi"} # type: ignore
+
+
+ @distributed_trace
+ def get_sas_uri_by_experiment_id(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_id, # type: str
+ path=None, # type: Optional[str]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> str
+ """get_sas_uri_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param path:
+ :type path: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: str, or the result of cls(response)
+ :rtype: str
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[str]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_sas_uri_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ path=path,
+ template_url=self.get_sas_uri_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('str', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_sas_uri_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/artifacts/artifacturi"} # type: ignore
+
+
+ @distributed_trace
+ def list_sas_by_prefix_by_experiment_name(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_name, # type: str
+ path=None, # type: Optional[str]
+ continuation_token_parameter=None, # type: Optional[str]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedArtifactContentInformationList"]
+ """list_sas_by_prefix_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param path:
+ :type path: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedArtifactContentInformationList or the
+ result of cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedArtifactContentInformationList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedArtifactContentInformationList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_sas_by_prefix_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ path=path,
+ continuation_token_parameter=continuation_token_parameter,
+ template_url=self.list_sas_by_prefix_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_sas_by_prefix_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ path=path,
+ continuation_token_parameter=continuation_token_parameter,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedArtifactContentInformationList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ list_sas_by_prefix_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/artifacts/prefix/contentinfo"} # type: ignore
+
+ @distributed_trace
+ def list_sas_by_prefix_by_experiment_id(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_id, # type: str
+ path=None, # type: Optional[str]
+ continuation_token_parameter=None, # type: Optional[str]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedArtifactContentInformationList"]
+ """list_sas_by_prefix_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param path:
+ :type path: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedArtifactContentInformationList or the
+ result of cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedArtifactContentInformationList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedArtifactContentInformationList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_sas_by_prefix_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ path=path,
+ continuation_token_parameter=continuation_token_parameter,
+ template_url=self.list_sas_by_prefix_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_sas_by_prefix_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ path=path,
+ continuation_token_parameter=continuation_token_parameter,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedArtifactContentInformationList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ list_sas_by_prefix_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/artifacts/prefix/contentinfo"} # type: ignore
+
+ @distributed_trace
+ def batch_create_empty_artifacts_by_experiment_name(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_name, # type: str
+ body=None, # type: Optional["_models.ArtifactPathList"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.BatchArtifactContentInformationResult"
+ """batch_create_empty_artifacts_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.ArtifactPathList
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: BatchArtifactContentInformationResult, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.BatchArtifactContentInformationResult
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.BatchArtifactContentInformationResult"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'ArtifactPathList')
+ else:
+ _json = None
+
+ request = build_batch_create_empty_artifacts_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.batch_create_empty_artifacts_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('BatchArtifactContentInformationResult', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ batch_create_empty_artifacts_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/artifacts/batch/metadata"} # type: ignore
+
+
+ @distributed_trace
+ def batch_create_empty_artifacts_by_experiment_id(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_id, # type: str
+ body=None, # type: Optional["_models.ArtifactPathList"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.BatchArtifactContentInformationResult"
+ """batch_create_empty_artifacts_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.ArtifactPathList
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: BatchArtifactContentInformationResult, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.BatchArtifactContentInformationResult
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.BatchArtifactContentInformationResult"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'ArtifactPathList')
+ else:
+ _json = None
+
+ request = build_batch_create_empty_artifacts_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.batch_create_empty_artifacts_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('BatchArtifactContentInformationResult', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ batch_create_empty_artifacts_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/artifacts/batch/metadata"} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/_run_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/_run_operations.py
new file mode 100644
index 00000000..c8591bff
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/_run_operations.py
@@ -0,0 +1,233 @@
+# pylint: disable=too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from typing import TYPE_CHECKING
+
+from msrest import Serializer
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.paging import ItemPaged
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.mgmt.core.exceptions import ARMErrorFormat
+
+from .. import models as _models
+from .._vendor import _convert_request, _format_url_section
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any, Callable, Dict, Iterable, List, Optional, TypeVar, Union
+ T = TypeVar('T')
+ ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+# fmt: off
+
+def build_list_by_compute_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ compute_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ filter = kwargs.pop('filter', None) # type: Optional[str]
+ continuationtoken = kwargs.pop('continuationtoken', None) # type: Optional[str]
+ orderby = kwargs.pop('orderby', None) # type: Optional[List[str]]
+ sortorder = kwargs.pop('sortorder', None) # type: Optional[Union[str, "_models.SortOrderDirection"]]
+ top = kwargs.pop('top', None) # type: Optional[int]
+ count = kwargs.pop('count', None) # type: Optional[bool]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/computes/{computeName}/runs") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "computeName": _SERIALIZER.url("compute_name", compute_name, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct parameters
+ _query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if filter is not None:
+ _query_parameters['$filter'] = _SERIALIZER.query("filter", filter, 'str')
+ if continuationtoken is not None:
+ _query_parameters['$continuationtoken'] = _SERIALIZER.query("continuationtoken", continuationtoken, 'str')
+ if orderby is not None:
+ _query_parameters['$orderby'] = _SERIALIZER.query("orderby", orderby, '[str]')
+ if sortorder is not None:
+ _query_parameters['$sortorder'] = _SERIALIZER.query("sortorder", sortorder, 'str')
+ if top is not None:
+ _query_parameters['$top'] = _SERIALIZER.query("top", top, 'int')
+ if count is not None:
+ _query_parameters['$count'] = _SERIALIZER.query("count", count, 'bool')
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=_url,
+ params=_query_parameters,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+# fmt: on
+class RunOperations(object):
+ """RunOperations operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer):
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace
+ def list_by_compute(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ compute_name, # type: str
+ filter=None, # type: Optional[str]
+ continuationtoken=None, # type: Optional[str]
+ orderby=None, # type: Optional[List[str]]
+ sortorder=None, # type: Optional[Union[str, "_models.SortOrderDirection"]]
+ top=None, # type: Optional[int]
+ count=None, # type: Optional[bool]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedRunList"]
+ """list_by_compute.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param compute_name:
+ :type compute_name: str
+ :param filter: Allows for filtering the collection of resources.
+ The expression specified is evaluated for each resource in the collection, and only items
+ where the expression evaluates to true are included in the response.
+ :type filter: str
+ :param continuationtoken: The continuation token to use for getting the next set of resources.
+ :type continuationtoken: str
+ :param orderby: The list of resource properties to use for sorting the requested resources.
+ :type orderby: list[str]
+ :param sortorder: The sort order of the returned resources. Not used, specify asc or desc after
+ each property name in the OrderBy parameter.
+ :type sortorder: str or ~azure.mgmt.machinelearningservices.models.SortOrderDirection
+ :param top: The maximum number of items in the resource collection to be included in the
+ result.
+ If not specified, all items are returned.
+ :type top: int
+ :param count: Whether to include a count of the matching resources along with the resources
+ returned in the response.
+ :type count: bool
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedRunList or the result of cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedRunList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedRunList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_by_compute_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ compute_name=compute_name,
+ filter=filter,
+ continuationtoken=continuationtoken,
+ orderby=orderby,
+ sortorder=sortorder,
+ top=top,
+ count=count,
+ template_url=self.list_by_compute.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_by_compute_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ compute_name=compute_name,
+ filter=filter,
+ continuationtoken=continuationtoken,
+ orderby=orderby,
+ sortorder=sortorder,
+ top=top,
+ count=count,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedRunList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ list_by_compute.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/computes/{computeName}/runs"} # type: ignore
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/_runs_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/_runs_operations.py
new file mode 100644
index 00000000..a95f5652
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/_runs_operations.py
@@ -0,0 +1,3972 @@
+# pylint: disable=too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from typing import TYPE_CHECKING
+
+from msrest import Serializer
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.paging import ItemPaged
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.mgmt.core.exceptions import ARMErrorFormat
+
+from .. import models as _models
+from .._vendor import _convert_request, _format_url_section
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any, Callable, Dict, Iterable, List, Optional, TypeVar, Union
+ T = TypeVar('T')
+ ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+# fmt: off
+
+def build_get_child_by_experiment_name_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ filter = kwargs.pop('filter', None) # type: Optional[str]
+ continuationtoken = kwargs.pop('continuationtoken', None) # type: Optional[str]
+ orderby = kwargs.pop('orderby', None) # type: Optional[List[str]]
+ sortorder = kwargs.pop('sortorder', None) # type: Optional[Union[str, "_models.SortOrderDirection"]]
+ top = kwargs.pop('top', None) # type: Optional[int]
+ count = kwargs.pop('count', None) # type: Optional[bool]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/children") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ "experimentName": _SERIALIZER.url("experiment_name", experiment_name, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct parameters
+ _query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if filter is not None:
+ _query_parameters['$filter'] = _SERIALIZER.query("filter", filter, 'str')
+ if continuationtoken is not None:
+ _query_parameters['$continuationtoken'] = _SERIALIZER.query("continuationtoken", continuationtoken, 'str')
+ if orderby is not None:
+ _query_parameters['$orderby'] = _SERIALIZER.query("orderby", orderby, '[str]')
+ if sortorder is not None:
+ _query_parameters['$sortorder'] = _SERIALIZER.query("sortorder", sortorder, 'str')
+ if top is not None:
+ _query_parameters['$top'] = _SERIALIZER.query("top", top, 'int')
+ if count is not None:
+ _query_parameters['$count'] = _SERIALIZER.query("count", count, 'bool')
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=_url,
+ params=_query_parameters,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_get_child_by_experiment_id_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ filter = kwargs.pop('filter', None) # type: Optional[str]
+ continuationtoken = kwargs.pop('continuationtoken', None) # type: Optional[str]
+ orderby = kwargs.pop('orderby', None) # type: Optional[List[str]]
+ sortorder = kwargs.pop('sortorder', None) # type: Optional[Union[str, "_models.SortOrderDirection"]]
+ top = kwargs.pop('top', None) # type: Optional[int]
+ count = kwargs.pop('count', None) # type: Optional[bool]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/children") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ "experimentId": _SERIALIZER.url("experiment_id", experiment_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct parameters
+ _query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if filter is not None:
+ _query_parameters['$filter'] = _SERIALIZER.query("filter", filter, 'str')
+ if continuationtoken is not None:
+ _query_parameters['$continuationtoken'] = _SERIALIZER.query("continuationtoken", continuationtoken, 'str')
+ if orderby is not None:
+ _query_parameters['$orderby'] = _SERIALIZER.query("orderby", orderby, '[str]')
+ if sortorder is not None:
+ _query_parameters['$sortorder'] = _SERIALIZER.query("sortorder", sortorder, 'str')
+ if top is not None:
+ _query_parameters['$top'] = _SERIALIZER.query("top", top, 'int')
+ if count is not None:
+ _query_parameters['$count'] = _SERIALIZER.query("count", count, 'bool')
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=_url,
+ params=_query_parameters,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_get_child_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ filter = kwargs.pop('filter', None) # type: Optional[str]
+ continuationtoken = kwargs.pop('continuationtoken', None) # type: Optional[str]
+ orderby = kwargs.pop('orderby', None) # type: Optional[List[str]]
+ sortorder = kwargs.pop('sortorder', None) # type: Optional[Union[str, "_models.SortOrderDirection"]]
+ top = kwargs.pop('top', None) # type: Optional[int]
+ count = kwargs.pop('count', None) # type: Optional[bool]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/children") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct parameters
+ _query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if filter is not None:
+ _query_parameters['$filter'] = _SERIALIZER.query("filter", filter, 'str')
+ if continuationtoken is not None:
+ _query_parameters['$continuationtoken'] = _SERIALIZER.query("continuationtoken", continuationtoken, 'str')
+ if orderby is not None:
+ _query_parameters['$orderby'] = _SERIALIZER.query("orderby", orderby, '[str]')
+ if sortorder is not None:
+ _query_parameters['$sortorder'] = _SERIALIZER.query("sortorder", sortorder, 'str')
+ if top is not None:
+ _query_parameters['$top'] = _SERIALIZER.query("top", top, 'int')
+ if count is not None:
+ _query_parameters['$count'] = _SERIALIZER.query("count", count, 'bool')
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=_url,
+ params=_query_parameters,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_get_details_by_experiment_id_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/details") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ "experimentId": _SERIALIZER.url("experiment_id", experiment_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_get_details_by_experiment_name_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/details") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ "experimentName": _SERIALIZER.url("experiment_name", experiment_name, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_get_details_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/details") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_get_run_data_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/rundata") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_batch_get_run_data_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/batchrundata") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_batch_add_or_modify_by_experiment_id_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ experiment_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/batch/runs") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "experimentId": _SERIALIZER.url("experiment_id", experiment_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="PATCH",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_batch_add_or_modify_by_experiment_name_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ experiment_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/batch/runs") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "experimentName": _SERIALIZER.url("experiment_name", experiment_name, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="PATCH",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_add_or_modify_by_experiment_name_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str', pattern=r'^[a-zA-Z0-9][\w-]{0,255}$'),
+ "experimentName": _SERIALIZER.url("experiment_name", experiment_name, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="PATCH",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_get_by_experiment_name_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ "experimentName": _SERIALIZER.url("experiment_name", experiment_name, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_add_or_modify_by_experiment_id_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str', pattern=r'^[a-zA-Z0-9][\w-]{0,255}$'),
+ "experimentId": _SERIALIZER.url("experiment_id", experiment_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="PATCH",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_get_by_experiment_id_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ "experimentId": _SERIALIZER.url("experiment_id", experiment_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_add_or_modify_experiment_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str', pattern=r'^[a-zA-Z0-9][\w-]{0,255}$'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="PATCH",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_add_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str', pattern=r'^[a-zA-Z0-9][\w-]{0,255}$'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_get_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_delete_tags_by_experiment_id_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/tags") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ "experimentId": _SERIALIZER.url("experiment_id", experiment_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="DELETE",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_modify_or_delete_tags_by_experiment_id_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/tags") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ "experimentId": _SERIALIZER.url("experiment_id", experiment_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="PATCH",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_delete_tags_by_experiment_name_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/tags") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ "experimentName": _SERIALIZER.url("experiment_name", experiment_name, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="DELETE",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_modify_or_delete_tags_by_experiment_name_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/tags") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ "experimentName": _SERIALIZER.url("experiment_name", experiment_name, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="PATCH",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_delete_tags_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/tags") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="DELETE",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_delete_run_services_by_experiment_id_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/services") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ "experimentId": _SERIALIZER.url("experiment_id", experiment_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="DELETE",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_delete_run_services_by_experiment_name_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/services") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ "experimentName": _SERIALIZER.url("experiment_name", experiment_name, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="DELETE",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_delete_run_services_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/services") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="DELETE",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_add_or_modify_run_service_instances_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ node_id, # type: int
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/serviceinstances/{nodeId}") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ "nodeId": _SERIALIZER.url("node_id", node_id, 'int'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="PATCH",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_get_run_service_instances_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ node_id, # type: int
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/serviceinstances/{nodeId}") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ "nodeId": _SERIALIZER.url("node_id", node_id, 'int'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_get_by_query_by_experiment_name_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ experiment_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs:query") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "experimentName": _SERIALIZER.url("experiment_name", experiment_name, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_get_by_query_by_experiment_id_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ experiment_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs:query") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "experimentId": _SERIALIZER.url("experiment_id", experiment_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_get_by_ids_by_experiment_id_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ experiment_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/runIds") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "experimentId": _SERIALIZER.url("experiment_id", experiment_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_get_by_ids_by_experiment_name_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ experiment_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/runIds") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "experimentName": _SERIALIZER.url("experiment_name", experiment_name, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_cancel_run_with_uri_by_experiment_id_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ cancelation_reason = kwargs.pop('cancelation_reason', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/cancel") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ "experimentId": _SERIALIZER.url("experiment_id", experiment_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct parameters
+ _query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if cancelation_reason is not None:
+ _query_parameters['CancelationReason'] = _SERIALIZER.query("cancelation_reason", cancelation_reason, 'str')
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=_url,
+ params=_query_parameters,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_cancel_run_with_uri_by_experiment_name_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ cancelation_reason = kwargs.pop('cancelation_reason', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/cancel") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ "experimentName": _SERIALIZER.url("experiment_name", experiment_name, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct parameters
+ _query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if cancelation_reason is not None:
+ _query_parameters['CancelationReason'] = _SERIALIZER.query("cancelation_reason", cancelation_reason, 'str')
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=_url,
+ params=_query_parameters,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+# fmt: on
+class RunsOperations(object): # pylint: disable=too-many-public-methods
+ """RunsOperations operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer):
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace
+ def get_child_by_experiment_name(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_name, # type: str
+ filter=None, # type: Optional[str]
+ continuationtoken=None, # type: Optional[str]
+ orderby=None, # type: Optional[List[str]]
+ sortorder=None, # type: Optional[Union[str, "_models.SortOrderDirection"]]
+ top=None, # type: Optional[int]
+ count=None, # type: Optional[bool]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedRunList"]
+ """get_child_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param filter: Allows for filtering the collection of resources.
+ The expression specified is evaluated for each resource in the collection, and only items
+ where the expression evaluates to true are included in the response.
+ :type filter: str
+ :param continuationtoken: The continuation token to use for getting the next set of resources.
+ :type continuationtoken: str
+ :param orderby: The list of resource properties to use for sorting the requested resources.
+ :type orderby: list[str]
+ :param sortorder: The sort order of the returned resources. Not used, specify asc or desc after
+ each property name in the OrderBy parameter.
+ :type sortorder: str or ~azure.mgmt.machinelearningservices.models.SortOrderDirection
+ :param top: The maximum number of items in the resource collection to be included in the
+ result.
+ If not specified, all items are returned.
+ :type top: int
+ :param count: Whether to include a count of the matching resources along with the resources
+ returned in the response.
+ :type count: bool
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedRunList or the result of cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedRunList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedRunList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_get_child_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ filter=filter,
+ continuationtoken=continuationtoken,
+ orderby=orderby,
+ sortorder=sortorder,
+ top=top,
+ count=count,
+ template_url=self.get_child_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_get_child_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ filter=filter,
+ continuationtoken=continuationtoken,
+ orderby=orderby,
+ sortorder=sortorder,
+ top=top,
+ count=count,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedRunList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ get_child_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/children"} # type: ignore
+
+ @distributed_trace
+ def get_child_by_experiment_id(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_id, # type: str
+ filter=None, # type: Optional[str]
+ continuationtoken=None, # type: Optional[str]
+ orderby=None, # type: Optional[List[str]]
+ sortorder=None, # type: Optional[Union[str, "_models.SortOrderDirection"]]
+ top=None, # type: Optional[int]
+ count=None, # type: Optional[bool]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedRunList"]
+ """get_child_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param filter: Allows for filtering the collection of resources.
+ The expression specified is evaluated for each resource in the collection, and only items
+ where the expression evaluates to true are included in the response.
+ :type filter: str
+ :param continuationtoken: The continuation token to use for getting the next set of resources.
+ :type continuationtoken: str
+ :param orderby: The list of resource properties to use for sorting the requested resources.
+ :type orderby: list[str]
+ :param sortorder: The sort order of the returned resources. Not used, specify asc or desc after
+ each property name in the OrderBy parameter.
+ :type sortorder: str or ~azure.mgmt.machinelearningservices.models.SortOrderDirection
+ :param top: The maximum number of items in the resource collection to be included in the
+ result.
+ If not specified, all items are returned.
+ :type top: int
+ :param count: Whether to include a count of the matching resources along with the resources
+ returned in the response.
+ :type count: bool
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedRunList or the result of cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedRunList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedRunList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_get_child_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ filter=filter,
+ continuationtoken=continuationtoken,
+ orderby=orderby,
+ sortorder=sortorder,
+ top=top,
+ count=count,
+ template_url=self.get_child_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_get_child_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ filter=filter,
+ continuationtoken=continuationtoken,
+ orderby=orderby,
+ sortorder=sortorder,
+ top=top,
+ count=count,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedRunList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ get_child_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/children"} # type: ignore
+
+ @distributed_trace
+ def get_child(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ filter=None, # type: Optional[str]
+ continuationtoken=None, # type: Optional[str]
+ orderby=None, # type: Optional[List[str]]
+ sortorder=None, # type: Optional[Union[str, "_models.SortOrderDirection"]]
+ top=None, # type: Optional[int]
+ count=None, # type: Optional[bool]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedRunList"]
+ """get_child.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param filter: Allows for filtering the collection of resources.
+ The expression specified is evaluated for each resource in the collection, and only items
+ where the expression evaluates to true are included in the response.
+ :type filter: str
+ :param continuationtoken: The continuation token to use for getting the next set of resources.
+ :type continuationtoken: str
+ :param orderby: The list of resource properties to use for sorting the requested resources.
+ :type orderby: list[str]
+ :param sortorder: The sort order of the returned resources. Not used, specify asc or desc after
+ each property name in the OrderBy parameter.
+ :type sortorder: str or ~azure.mgmt.machinelearningservices.models.SortOrderDirection
+ :param top: The maximum number of items in the resource collection to be included in the
+ result.
+ If not specified, all items are returned.
+ :type top: int
+ :param count: Whether to include a count of the matching resources along with the resources
+ returned in the response.
+ :type count: bool
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedRunList or the result of cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedRunList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedRunList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_get_child_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ filter=filter,
+ continuationtoken=continuationtoken,
+ orderby=orderby,
+ sortorder=sortorder,
+ top=top,
+ count=count,
+ template_url=self.get_child.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_get_child_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ filter=filter,
+ continuationtoken=continuationtoken,
+ orderby=orderby,
+ sortorder=sortorder,
+ top=top,
+ count=count,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedRunList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ get_child.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/children"} # type: ignore
+
+ @distributed_trace
+ def get_details_by_experiment_id(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_id, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.RunDetails"
+ """get_details_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_id:
+ :type experiment_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: RunDetails, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.RunDetails
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.RunDetails"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_details_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ template_url=self.get_details_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('RunDetails', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_details_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/details"} # type: ignore
+
+
+ @distributed_trace
+ def get_details_by_experiment_name(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_name, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.RunDetails"
+ """get_details_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_name:
+ :type experiment_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: RunDetails, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.RunDetails
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.RunDetails"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_details_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ template_url=self.get_details_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('RunDetails', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_details_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/details"} # type: ignore
+
+
+ @distributed_trace
+ def get_details(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.RunDetails"
+ """get_details.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: RunDetails, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.RunDetails
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.RunDetails"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_details_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ template_url=self.get_details.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('RunDetails', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_details.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/details"} # type: ignore
+
+
+ @distributed_trace
+ def get_run_data(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body=None, # type: Optional["_models.GetRunDataRequest"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.GetRunDataResult"
+ """get_run_data.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.GetRunDataRequest
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: GetRunDataResult, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.GetRunDataResult
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.GetRunDataResult"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'GetRunDataRequest')
+ else:
+ _json = None
+
+ request = build_get_run_data_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.get_run_data.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('GetRunDataResult', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_run_data.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/rundata"} # type: ignore
+
+
+ @distributed_trace
+ def batch_get_run_data(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body=None, # type: Optional["_models.BatchRequest1"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.BatchResult1"
+ """batch_get_run_data.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.BatchRequest1
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: BatchResult1, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.BatchResult1
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.BatchResult1"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'BatchRequest1')
+ else:
+ _json = None
+
+ request = build_batch_get_run_data_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.batch_get_run_data.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 207]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if response.status_code == 200:
+ deserialized = self._deserialize('BatchResult1', pipeline_response)
+
+ if response.status_code == 207:
+ deserialized = self._deserialize('BatchResult1', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ batch_get_run_data.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/batchrundata"} # type: ignore
+
+
+ @distributed_trace
+ def batch_add_or_modify_by_experiment_id(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ experiment_id, # type: str
+ body=None, # type: Optional["_models.BatchAddOrModifyRunRequest"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.BatchRunResult"
+ """batch_add_or_modify_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.BatchAddOrModifyRunRequest
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: BatchRunResult, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.BatchRunResult
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.BatchRunResult"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'BatchAddOrModifyRunRequest')
+ else:
+ _json = None
+
+ request = build_batch_add_or_modify_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_id=experiment_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.batch_add_or_modify_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('BatchRunResult', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ batch_add_or_modify_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/batch/runs"} # type: ignore
+
+
+ @distributed_trace
+ def batch_add_or_modify_by_experiment_name(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ experiment_name, # type: str
+ body=None, # type: Optional["_models.BatchAddOrModifyRunRequest"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.BatchRunResult"
+ """batch_add_or_modify_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.BatchAddOrModifyRunRequest
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: BatchRunResult, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.BatchRunResult
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.BatchRunResult"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'BatchAddOrModifyRunRequest')
+ else:
+ _json = None
+
+ request = build_batch_add_or_modify_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_name=experiment_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.batch_add_or_modify_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('BatchRunResult', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ batch_add_or_modify_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/batch/runs"} # type: ignore
+
+
+ @distributed_trace
+ def add_or_modify_by_experiment_name(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_name, # type: str
+ body=None, # type: Optional["_models.CreateRun"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Run"
+ """add_or_modify_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.CreateRun
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Run, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Run
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Run"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'CreateRun')
+ else:
+ _json = None
+
+ request = build_add_or_modify_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.add_or_modify_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Run', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ add_or_modify_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}"} # type: ignore
+
+
+ @distributed_trace
+ def get_by_experiment_name(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_name, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Run"
+ """get_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_name:
+ :type experiment_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Run, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Run
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Run"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ template_url=self.get_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Run', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}"} # type: ignore
+
+
+ @distributed_trace
+ def add_or_modify_by_experiment_id(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_id, # type: str
+ body=None, # type: Optional["_models.CreateRun"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Run"
+ """add_or_modify_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.CreateRun
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Run, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Run
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Run"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'CreateRun')
+ else:
+ _json = None
+
+ request = build_add_or_modify_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.add_or_modify_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Run', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ add_or_modify_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}"} # type: ignore
+
+
+ @distributed_trace
+ def get_by_experiment_id(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_id, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Run"
+ """get_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_id:
+ :type experiment_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Run, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Run
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Run"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ template_url=self.get_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Run', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}"} # type: ignore
+
+
+ @distributed_trace
+ def add_or_modify_experiment(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ body=None, # type: Optional["_models.CreateRun"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Run"
+ """add_or_modify_experiment.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.CreateRun
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Run, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Run
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Run"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'CreateRun')
+ else:
+ _json = None
+
+ request = build_add_or_modify_experiment_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.add_or_modify_experiment.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Run', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ add_or_modify_experiment.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}"} # type: ignore
+
+
+ @distributed_trace
+ def add(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ body=None, # type: Optional["_models.CreateRun"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Run"
+ """add.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.CreateRun
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Run, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Run
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Run"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'CreateRun')
+ else:
+ _json = None
+
+ request = build_add_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.add.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Run', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ add.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}"} # type: ignore
+
+
+ @distributed_trace
+ def get(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Run"
+ """get.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Run, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Run
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Run"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ template_url=self.get.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Run', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}"} # type: ignore
+
+
+ @distributed_trace
+ def delete_tags_by_experiment_id(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_id, # type: str
+ body=None, # type: Optional[List[str]]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Run"
+ """delete_tags_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param body:
+ :type body: list[str]
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Run, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Run
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Run"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, '[str]')
+ else:
+ _json = None
+
+ request = build_delete_tags_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.delete_tags_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Run', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ delete_tags_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/tags"} # type: ignore
+
+
+ @distributed_trace
+ def modify_or_delete_tags_by_experiment_id(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_id, # type: str
+ body=None, # type: Optional["_models.DeleteOrModifyTags"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Run"
+ """modify_or_delete_tags_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DeleteOrModifyTags
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Run, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Run
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Run"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DeleteOrModifyTags')
+ else:
+ _json = None
+
+ request = build_modify_or_delete_tags_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.modify_or_delete_tags_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Run', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ modify_or_delete_tags_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/tags"} # type: ignore
+
+
+ @distributed_trace
+ def delete_tags_by_experiment_name(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_name, # type: str
+ body=None, # type: Optional[List[str]]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Run"
+ """delete_tags_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param body:
+ :type body: list[str]
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Run, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Run
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Run"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, '[str]')
+ else:
+ _json = None
+
+ request = build_delete_tags_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.delete_tags_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Run', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ delete_tags_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/tags"} # type: ignore
+
+
+ @distributed_trace
+ def modify_or_delete_tags_by_experiment_name(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_name, # type: str
+ body=None, # type: Optional["_models.DeleteOrModifyTags"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Run"
+ """modify_or_delete_tags_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DeleteOrModifyTags
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Run, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Run
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Run"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DeleteOrModifyTags')
+ else:
+ _json = None
+
+ request = build_modify_or_delete_tags_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.modify_or_delete_tags_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Run', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ modify_or_delete_tags_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/tags"} # type: ignore
+
+
+ @distributed_trace
+ def delete_tags(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ body=None, # type: Optional[List[str]]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Run"
+ """delete_tags.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param body:
+ :type body: list[str]
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Run, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Run
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Run"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, '[str]')
+ else:
+ _json = None
+
+ request = build_delete_tags_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.delete_tags.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Run', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ delete_tags.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/tags"} # type: ignore
+
+
+ @distributed_trace
+ def delete_run_services_by_experiment_id(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_id, # type: str
+ body=None, # type: Optional["_models.DeleteRunServices"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Run"
+ """delete_run_services_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DeleteRunServices
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Run, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Run
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Run"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DeleteRunServices')
+ else:
+ _json = None
+
+ request = build_delete_run_services_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.delete_run_services_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Run', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ delete_run_services_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/services"} # type: ignore
+
+
+ @distributed_trace
+ def delete_run_services_by_experiment_name(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_name, # type: str
+ body=None, # type: Optional["_models.DeleteRunServices"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Run"
+ """delete_run_services_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DeleteRunServices
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Run, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Run
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Run"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DeleteRunServices')
+ else:
+ _json = None
+
+ request = build_delete_run_services_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.delete_run_services_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Run', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ delete_run_services_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/services"} # type: ignore
+
+
+ @distributed_trace
+ def delete_run_services(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ body=None, # type: Optional["_models.DeleteRunServices"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Run"
+ """delete_run_services.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DeleteRunServices
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Run, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Run
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Run"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DeleteRunServices')
+ else:
+ _json = None
+
+ request = build_delete_run_services_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.delete_run_services.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Run', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ delete_run_services.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/services"} # type: ignore
+
+
+ @distributed_trace
+ def add_or_modify_run_service_instances(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ node_id, # type: int
+ body=None, # type: Optional["_models.AddOrModifyRunServiceInstancesRequest"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.RunServiceInstances"
+ """add_or_modify_run_service_instances.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param node_id:
+ :type node_id: int
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.AddOrModifyRunServiceInstancesRequest
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: RunServiceInstances, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.RunServiceInstances
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.RunServiceInstances"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'AddOrModifyRunServiceInstancesRequest')
+ else:
+ _json = None
+
+ request = build_add_or_modify_run_service_instances_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ node_id=node_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.add_or_modify_run_service_instances.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('RunServiceInstances', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ add_or_modify_run_service_instances.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/serviceinstances/{nodeId}"} # type: ignore
+
+
+ @distributed_trace
+ def get_run_service_instances(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ node_id, # type: int
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.RunServiceInstances"
+ """get_run_service_instances.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param node_id:
+ :type node_id: int
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: RunServiceInstances, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.RunServiceInstances
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.RunServiceInstances"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_run_service_instances_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ node_id=node_id,
+ template_url=self.get_run_service_instances.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('RunServiceInstances', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_run_service_instances.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/serviceinstances/{nodeId}"} # type: ignore
+
+
+ @distributed_trace
+ def get_by_query_by_experiment_name(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ experiment_name, # type: str
+ body=None, # type: Optional["_models.QueryParams"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedRunList"]
+ """get_by_query_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.QueryParams
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedRunList or the result of cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedRunList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedRunList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+ if body is not None:
+ _json = self._serialize.body(body, 'QueryParams')
+ else:
+ _json = None
+
+ request = build_get_by_query_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_name=experiment_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.get_by_query_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+ if body is not None:
+ _json = self._serialize.body(body, 'QueryParams')
+ else:
+ _json = None
+
+ request = build_get_by_query_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_name=experiment_name,
+ content_type=content_type,
+ json=_json,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedRunList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ get_by_query_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs:query"} # type: ignore
+
+ @distributed_trace
+ def get_by_query_by_experiment_id(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ experiment_id, # type: str
+ body=None, # type: Optional["_models.QueryParams"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedRunList"]
+ """get_by_query_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.QueryParams
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedRunList or the result of cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedRunList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedRunList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+ if body is not None:
+ _json = self._serialize.body(body, 'QueryParams')
+ else:
+ _json = None
+
+ request = build_get_by_query_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_id=experiment_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.get_by_query_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+ if body is not None:
+ _json = self._serialize.body(body, 'QueryParams')
+ else:
+ _json = None
+
+ request = build_get_by_query_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_id=experiment_id,
+ content_type=content_type,
+ json=_json,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedRunList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ get_by_query_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs:query"} # type: ignore
+
+ @distributed_trace
+ def get_by_ids_by_experiment_id(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ experiment_id, # type: str
+ body=None, # type: Optional["_models.GetRunsByIds"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.BatchRunResult"
+ """get_by_ids_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.GetRunsByIds
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: BatchRunResult, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.BatchRunResult
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.BatchRunResult"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'GetRunsByIds')
+ else:
+ _json = None
+
+ request = build_get_by_ids_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_id=experiment_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.get_by_ids_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('BatchRunResult', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_by_ids_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/runIds"} # type: ignore
+
+
+ @distributed_trace
+ def get_by_ids_by_experiment_name(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ experiment_name, # type: str
+ body=None, # type: Optional["_models.GetRunsByIds"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.BatchRunResult"
+ """get_by_ids_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.GetRunsByIds
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: BatchRunResult, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.BatchRunResult
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.BatchRunResult"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'GetRunsByIds')
+ else:
+ _json = None
+
+ request = build_get_by_ids_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ experiment_name=experiment_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.get_by_ids_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('BatchRunResult', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_by_ids_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/runIds"} # type: ignore
+
+
+ @distributed_trace
+ def cancel_run_with_uri_by_experiment_id(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_id, # type: str
+ cancelation_reason=None, # type: Optional[str]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Run"
+ """cancel_run_with_uri_by_experiment_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_id:
+ :type experiment_id: str
+ :param cancelation_reason:
+ :type cancelation_reason: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Run, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Run
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Run"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_cancel_run_with_uri_by_experiment_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_id=experiment_id,
+ cancelation_reason=cancelation_reason,
+ template_url=self.cancel_run_with_uri_by_experiment_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Run', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ cancel_run_with_uri_by_experiment_id.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experimentids/{experimentId}/runs/{runId}/cancel"} # type: ignore
+
+
+ @distributed_trace
+ def cancel_run_with_uri_by_experiment_name(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ experiment_name, # type: str
+ cancelation_reason=None, # type: Optional[str]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Run"
+ """cancel_run_with_uri_by_experiment_name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param experiment_name:
+ :type experiment_name: str
+ :param cancelation_reason:
+ :type cancelation_reason: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Run, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Run
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Run"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_cancel_run_with_uri_by_experiment_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ experiment_name=experiment_name,
+ cancelation_reason=cancelation_reason,
+ template_url=self.cancel_run_with_uri_by_experiment_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Run', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ cancel_run_with_uri_by_experiment_name.metadata = {'url': "/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/runs/{runId}/cancel"} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/_spans_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/_spans_operations.py
new file mode 100644
index 00000000..7245f5ed
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/operations/_spans_operations.py
@@ -0,0 +1,429 @@
+# pylint: disable=too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from typing import TYPE_CHECKING
+
+from msrest import Serializer
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.paging import ItemPaged
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.mgmt.core.exceptions import ARMErrorFormat
+
+from .. import models as _models
+from .._vendor import _convert_request, _format_url_section
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any, Callable, Dict, Iterable, Optional, TypeVar
+ T = TypeVar('T')
+ ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+# fmt: off
+
+def build_post_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/private/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/spans") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ _header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=_url,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_list_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ continuation_token_parameter = kwargs.pop('continuation_token_parameter', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/private/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/spans") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct parameters
+ _query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if continuation_token_parameter is not None:
+ _query_parameters['continuationToken'] = _SERIALIZER.query("continuation_token_parameter", continuation_token_parameter, 'str')
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=_url,
+ params=_query_parameters,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+
+def build_get_active_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ continuation_token_parameter = kwargs.pop('continuation_token_parameter', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ _url = kwargs.pop("template_url", "/history/v1.0/private/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/spans/active") # pylint: disable=line-too-long
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "runId": _SERIALIZER.url("run_id", run_id, 'str'),
+ }
+
+ _url = _format_url_section(_url, **path_format_arguments)
+
+ # Construct parameters
+ _query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if continuation_token_parameter is not None:
+ _query_parameters['continuationToken'] = _SERIALIZER.query("continuation_token_parameter", continuation_token_parameter, 'str')
+
+ # Construct headers
+ _header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ _header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=_url,
+ params=_query_parameters,
+ headers=_header_parameters,
+ **kwargs
+ )
+
+# fmt: on
+class SpansOperations(object):
+ """SpansOperations operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer):
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace
+ def post( # pylint: disable=inconsistent-return-statements
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ body=None, # type: Optional["_models.RunStatusSpans"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> None
+ """post.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.RunStatusSpans
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'RunStatusSpans')
+ else:
+ _json = None
+
+ request = build_post_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.post.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in []:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ post.metadata = {'url': "/history/v1.0/private/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/spans"} # type: ignore
+
+
+ @distributed_trace
+ def list(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ continuation_token_parameter=None, # type: Optional[str]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedSpanDefinition1List"]
+ """list.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedSpanDefinition1List or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedSpanDefinition1List]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedSpanDefinition1List"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ continuation_token_parameter=continuation_token_parameter,
+ template_url=self.list.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ continuation_token_parameter=continuation_token_parameter,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedSpanDefinition1List", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ list.metadata = {'url': "/history/v1.0/private/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/spans"} # type: ignore
+
+ @distributed_trace
+ def get_active(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id, # type: str
+ continuation_token_parameter=None, # type: Optional[str]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedSpanDefinition1List"]
+ """get_active.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedSpanDefinition1List or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedSpanDefinition1List]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedSpanDefinition1List"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_get_active_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ continuation_token_parameter=continuation_token_parameter,
+ template_url=self.get_active.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_get_active_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ continuation_token_parameter=continuation_token_parameter,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedSpanDefinition1List", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run( # pylint: disable=protected-access
+ request,
+ stream=False,
+ **kwargs
+ )
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ get_active.metadata = {'url': "/history/v1.0/private/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/runs/{runId}/spans/active"} # type: ignore
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/py.typed b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/py.typed
new file mode 100644
index 00000000..e5aff4f8
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/runhistory/py.typed
@@ -0,0 +1 @@
+# Marker file for PEP 561. \ No newline at end of file