aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane')
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/__init__.py18
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/_azure_machine_learning_workspaces.py102
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/_configuration.py64
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/_patch.py31
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/_vendor.py27
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/_version.py9
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/__init__.py15
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/_azure_machine_learning_workspaces.py95
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/_configuration.py60
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/_patch.py31
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/operations/__init__.py19
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/operations/_assets_operations.py403
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/operations/_extensive_model_operations.py103
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/operations/_migration_operations.py99
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/operations/_models_operations.py875
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/models/__init__.py179
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/models/_azure_machine_learning_workspaces_enums.py89
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/models/_models.py2263
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/models/_models_py3.py2535
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/__init__.py19
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/_assets_operations.py609
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/_extensive_model_operations.py144
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/_migration_operations.py139
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/_models_operations.py1322
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/py.typed1
25 files changed, 9251 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/__init__.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/__init__.py
new file mode 100644
index 00000000..da466144
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/__init__.py
@@ -0,0 +1,18 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from ._azure_machine_learning_workspaces import AzureMachineLearningWorkspaces
+from ._version import VERSION
+
+__version__ = VERSION
+__all__ = ['AzureMachineLearningWorkspaces']
+
+# `._patch.py` is used for handwritten extensions to the generated code
+# Example: https://github.com/Azure/azure-sdk-for-python/blob/main/doc/dev/customize_code/how-to-patch-sdk-code.md
+from ._patch import patch_sdk
+patch_sdk()
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/_azure_machine_learning_workspaces.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/_azure_machine_learning_workspaces.py
new file mode 100644
index 00000000..2c55118d
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/_azure_machine_learning_workspaces.py
@@ -0,0 +1,102 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from copy import deepcopy
+from typing import TYPE_CHECKING
+
+from azure.mgmt.core import ARMPipelineClient
+from msrest import Deserializer, Serializer
+
+from . import models
+from ._configuration import AzureMachineLearningWorkspacesConfiguration
+from .operations import AssetsOperations, ExtensiveModelOperations, MigrationOperations, ModelsOperations
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any, Optional
+
+ from azure.core.credentials import TokenCredential
+ from azure.core.rest import HttpRequest, HttpResponse
+
+class AzureMachineLearningWorkspaces(object):
+ """AzureMachineLearningWorkspaces.
+
+ :ivar assets: AssetsOperations operations
+ :vartype assets: azure.mgmt.machinelearningservices.operations.AssetsOperations
+ :ivar extensive_model: ExtensiveModelOperations operations
+ :vartype extensive_model:
+ azure.mgmt.machinelearningservices.operations.ExtensiveModelOperations
+ :ivar migration: MigrationOperations operations
+ :vartype migration: azure.mgmt.machinelearningservices.operations.MigrationOperations
+ :ivar models: ModelsOperations operations
+ :vartype models: azure.mgmt.machinelearningservices.operations.ModelsOperations
+ :param credential: Credential needed for the client to connect to Azure.
+ :type credential: ~azure.core.credentials.TokenCredential
+ :param base_url: Service URL. Default value is ''.
+ :type base_url: str
+ """
+
+ def __init__(
+ self,
+ credential, # type: "TokenCredential"
+ base_url="", # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> None
+ self._config = AzureMachineLearningWorkspacesConfiguration(credential=credential, **kwargs)
+ self._client = ARMPipelineClient(base_url=base_url, config=self._config, **kwargs)
+
+ client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)}
+ self._serialize = Serializer(client_models)
+ self._deserialize = Deserializer(client_models)
+ self._serialize.client_side_validation = False
+ self.assets = AssetsOperations(self._client, self._config, self._serialize, self._deserialize)
+ self.extensive_model = ExtensiveModelOperations(self._client, self._config, self._serialize, self._deserialize)
+ self.migration = MigrationOperations(self._client, self._config, self._serialize, self._deserialize)
+ self.models = ModelsOperations(self._client, self._config, self._serialize, self._deserialize)
+
+
+ def _send_request(
+ self,
+ request, # type: HttpRequest
+ **kwargs # type: Any
+ ):
+ # type: (...) -> HttpResponse
+ """Runs the network request through the client's chained policies.
+
+ >>> from azure.core.rest import HttpRequest
+ >>> request = HttpRequest("GET", "https://www.example.org/")
+ <HttpRequest [GET], url: 'https://www.example.org/'>
+ >>> response = client._send_request(request)
+ <HttpResponse: 200 OK>
+
+ For more information on this code flow, see https://aka.ms/azsdk/python/protocol/quickstart
+
+ :param request: The network request you want to make. Required.
+ :type request: ~azure.core.rest.HttpRequest
+ :keyword bool stream: Whether the response payload will be streamed. Defaults to False.
+ :return: The response of your network call. Does not do error handling on your response.
+ :rtype: ~azure.core.rest.HttpResponse
+ """
+
+ request_copy = deepcopy(request)
+ request_copy.url = self._client.format_url(request_copy.url)
+ return self._client.send_request(request_copy, **kwargs)
+
+ def close(self):
+ # type: () -> None
+ self._client.close()
+
+ def __enter__(self):
+ # type: () -> AzureMachineLearningWorkspaces
+ self._client.__enter__()
+ return self
+
+ def __exit__(self, *exc_details):
+ # type: (Any) -> None
+ self._client.__exit__(*exc_details)
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/_configuration.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/_configuration.py
new file mode 100644
index 00000000..2ec7eb9e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/_configuration.py
@@ -0,0 +1,64 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from typing import TYPE_CHECKING
+
+from azure.core.configuration import Configuration
+from azure.core.pipeline import policies
+from azure.mgmt.core.policies import ARMChallengeAuthenticationPolicy, ARMHttpLoggingPolicy
+
+from ._version import VERSION
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any
+
+ from azure.core.credentials import TokenCredential
+
+
+class AzureMachineLearningWorkspacesConfiguration(Configuration):
+ """Configuration for AzureMachineLearningWorkspaces.
+
+ Note that all parameters used to create this instance are saved as instance
+ attributes.
+
+ :param credential: Credential needed for the client to connect to Azure.
+ :type credential: ~azure.core.credentials.TokenCredential
+ """
+
+ def __init__(
+ self,
+ credential, # type: "TokenCredential"
+ **kwargs # type: Any
+ ):
+ # type: (...) -> None
+ super(AzureMachineLearningWorkspacesConfiguration, self).__init__(**kwargs)
+ if credential is None:
+ raise ValueError("Parameter 'credential' must not be None.")
+
+ self.credential = credential
+ self.credential_scopes = kwargs.pop('credential_scopes', ['https://management.azure.com/.default'])
+ kwargs.setdefault('sdk_moniker', 'mgmt-machinelearningservices/{}'.format(VERSION))
+ self._configure(**kwargs)
+
+ def _configure(
+ self,
+ **kwargs # type: Any
+ ):
+ # type: (...) -> None
+ self.user_agent_policy = kwargs.get('user_agent_policy') or policies.UserAgentPolicy(**kwargs)
+ self.headers_policy = kwargs.get('headers_policy') or policies.HeadersPolicy(**kwargs)
+ self.proxy_policy = kwargs.get('proxy_policy') or policies.ProxyPolicy(**kwargs)
+ self.logging_policy = kwargs.get('logging_policy') or policies.NetworkTraceLoggingPolicy(**kwargs)
+ self.http_logging_policy = kwargs.get('http_logging_policy') or ARMHttpLoggingPolicy(**kwargs)
+ self.retry_policy = kwargs.get('retry_policy') or policies.RetryPolicy(**kwargs)
+ self.custom_hook_policy = kwargs.get('custom_hook_policy') or policies.CustomHookPolicy(**kwargs)
+ self.redirect_policy = kwargs.get('redirect_policy') or policies.RedirectPolicy(**kwargs)
+ self.authentication_policy = kwargs.get('authentication_policy')
+ if self.credential and not self.authentication_policy:
+ self.authentication_policy = ARMChallengeAuthenticationPolicy(self.credential, *self.credential_scopes, **kwargs)
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/_patch.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/_patch.py
new file mode 100644
index 00000000..74e48ecd
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/_patch.py
@@ -0,0 +1,31 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+#
+# Copyright (c) Microsoft Corporation. All rights reserved.
+#
+# The MIT License (MIT)
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the ""Software""), to
+# deal in the Software without restriction, including without limitation the
+# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+# sell copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in
+# all copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+# IN THE SOFTWARE.
+#
+# --------------------------------------------------------------------------
+
+# This file is used for handwritten extensions to the generated code. Example:
+# https://github.com/Azure/azure-sdk-for-python/blob/main/doc/dev/customize_code/how-to-patch-sdk-code.md
+def patch_sdk():
+ pass \ No newline at end of file
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/_vendor.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/_vendor.py
new file mode 100644
index 00000000..138f663c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/_vendor.py
@@ -0,0 +1,27 @@
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.core.pipeline.transport import HttpRequest
+
+def _convert_request(request, files=None):
+ data = request.content if not files else None
+ request = HttpRequest(method=request.method, url=request.url, headers=request.headers, data=data)
+ if files:
+ request.set_formdata_body(files)
+ return request
+
+def _format_url_section(template, **kwargs):
+ components = template.split("/")
+ while components:
+ try:
+ return template.format(**kwargs)
+ except KeyError as key:
+ formatted_components = template.split("/")
+ components = [
+ c for c in formatted_components if "{}".format(key.args[0]) not in c
+ ]
+ template = "/".join(components)
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/_version.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/_version.py
new file mode 100644
index 00000000..eae7c95b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/_version.py
@@ -0,0 +1,9 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+VERSION = "0.1.0"
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/__init__.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/__init__.py
new file mode 100644
index 00000000..f67ccda9
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/__init__.py
@@ -0,0 +1,15 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from ._azure_machine_learning_workspaces import AzureMachineLearningWorkspaces
+__all__ = ['AzureMachineLearningWorkspaces']
+
+# `._patch.py` is used for handwritten extensions to the generated code
+# Example: https://github.com/Azure/azure-sdk-for-python/blob/main/doc/dev/customize_code/how-to-patch-sdk-code.md
+from ._patch import patch_sdk
+patch_sdk()
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/_azure_machine_learning_workspaces.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/_azure_machine_learning_workspaces.py
new file mode 100644
index 00000000..96732b90
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/_azure_machine_learning_workspaces.py
@@ -0,0 +1,95 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from copy import deepcopy
+from typing import Any, Awaitable, Optional, TYPE_CHECKING
+
+from azure.core.rest import AsyncHttpResponse, HttpRequest
+from azure.mgmt.core import AsyncARMPipelineClient
+from msrest import Deserializer, Serializer
+
+from .. import models
+from ._configuration import AzureMachineLearningWorkspacesConfiguration
+from .operations import AssetsOperations, ExtensiveModelOperations, MigrationOperations, ModelsOperations
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from azure.core.credentials_async import AsyncTokenCredential
+
+class AzureMachineLearningWorkspaces:
+ """AzureMachineLearningWorkspaces.
+
+ :ivar assets: AssetsOperations operations
+ :vartype assets: azure.mgmt.machinelearningservices.aio.operations.AssetsOperations
+ :ivar extensive_model: ExtensiveModelOperations operations
+ :vartype extensive_model:
+ azure.mgmt.machinelearningservices.aio.operations.ExtensiveModelOperations
+ :ivar migration: MigrationOperations operations
+ :vartype migration: azure.mgmt.machinelearningservices.aio.operations.MigrationOperations
+ :ivar models: ModelsOperations operations
+ :vartype models: azure.mgmt.machinelearningservices.aio.operations.ModelsOperations
+ :param credential: Credential needed for the client to connect to Azure.
+ :type credential: ~azure.core.credentials_async.AsyncTokenCredential
+ :param base_url: Service URL. Default value is ''.
+ :type base_url: str
+ """
+
+ def __init__(
+ self,
+ credential: "AsyncTokenCredential",
+ base_url: str = "",
+ **kwargs: Any
+ ) -> None:
+ self._config = AzureMachineLearningWorkspacesConfiguration(credential=credential, **kwargs)
+ self._client = AsyncARMPipelineClient(base_url=base_url, config=self._config, **kwargs)
+
+ client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)}
+ self._serialize = Serializer(client_models)
+ self._deserialize = Deserializer(client_models)
+ self._serialize.client_side_validation = False
+ self.assets = AssetsOperations(self._client, self._config, self._serialize, self._deserialize)
+ self.extensive_model = ExtensiveModelOperations(self._client, self._config, self._serialize, self._deserialize)
+ self.migration = MigrationOperations(self._client, self._config, self._serialize, self._deserialize)
+ self.models = ModelsOperations(self._client, self._config, self._serialize, self._deserialize)
+
+
+ def _send_request(
+ self,
+ request: HttpRequest,
+ **kwargs: Any
+ ) -> Awaitable[AsyncHttpResponse]:
+ """Runs the network request through the client's chained policies.
+
+ >>> from azure.core.rest import HttpRequest
+ >>> request = HttpRequest("GET", "https://www.example.org/")
+ <HttpRequest [GET], url: 'https://www.example.org/'>
+ >>> response = await client._send_request(request)
+ <AsyncHttpResponse: 200 OK>
+
+ For more information on this code flow, see https://aka.ms/azsdk/python/protocol/quickstart
+
+ :param request: The network request you want to make. Required.
+ :type request: ~azure.core.rest.HttpRequest
+ :keyword bool stream: Whether the response payload will be streamed. Defaults to False.
+ :return: The response of your network call. Does not do error handling on your response.
+ :rtype: ~azure.core.rest.AsyncHttpResponse
+ """
+
+ request_copy = deepcopy(request)
+ request_copy.url = self._client.format_url(request_copy.url)
+ return self._client.send_request(request_copy, **kwargs)
+
+ async def close(self) -> None:
+ await self._client.close()
+
+ async def __aenter__(self) -> "AzureMachineLearningWorkspaces":
+ await self._client.__aenter__()
+ return self
+
+ async def __aexit__(self, *exc_details) -> None:
+ await self._client.__aexit__(*exc_details)
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/_configuration.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/_configuration.py
new file mode 100644
index 00000000..26def54e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/_configuration.py
@@ -0,0 +1,60 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from typing import Any, TYPE_CHECKING
+
+from azure.core.configuration import Configuration
+from azure.core.pipeline import policies
+from azure.mgmt.core.policies import ARMHttpLoggingPolicy, AsyncARMChallengeAuthenticationPolicy
+
+from .._version import VERSION
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from azure.core.credentials_async import AsyncTokenCredential
+
+
+class AzureMachineLearningWorkspacesConfiguration(Configuration):
+ """Configuration for AzureMachineLearningWorkspaces.
+
+ Note that all parameters used to create this instance are saved as instance
+ attributes.
+
+ :param credential: Credential needed for the client to connect to Azure.
+ :type credential: ~azure.core.credentials_async.AsyncTokenCredential
+ """
+
+ def __init__(
+ self,
+ credential: "AsyncTokenCredential",
+ **kwargs: Any
+ ) -> None:
+ super(AzureMachineLearningWorkspacesConfiguration, self).__init__(**kwargs)
+ if credential is None:
+ raise ValueError("Parameter 'credential' must not be None.")
+
+ self.credential = credential
+ self.credential_scopes = kwargs.pop('credential_scopes', ['https://management.azure.com/.default'])
+ kwargs.setdefault('sdk_moniker', 'mgmt-machinelearningservices/{}'.format(VERSION))
+ self._configure(**kwargs)
+
+ def _configure(
+ self,
+ **kwargs: Any
+ ) -> None:
+ self.user_agent_policy = kwargs.get('user_agent_policy') or policies.UserAgentPolicy(**kwargs)
+ self.headers_policy = kwargs.get('headers_policy') or policies.HeadersPolicy(**kwargs)
+ self.proxy_policy = kwargs.get('proxy_policy') or policies.ProxyPolicy(**kwargs)
+ self.logging_policy = kwargs.get('logging_policy') or policies.NetworkTraceLoggingPolicy(**kwargs)
+ self.http_logging_policy = kwargs.get('http_logging_policy') or ARMHttpLoggingPolicy(**kwargs)
+ self.retry_policy = kwargs.get('retry_policy') or policies.AsyncRetryPolicy(**kwargs)
+ self.custom_hook_policy = kwargs.get('custom_hook_policy') or policies.CustomHookPolicy(**kwargs)
+ self.redirect_policy = kwargs.get('redirect_policy') or policies.AsyncRedirectPolicy(**kwargs)
+ self.authentication_policy = kwargs.get('authentication_policy')
+ if self.credential and not self.authentication_policy:
+ self.authentication_policy = AsyncARMChallengeAuthenticationPolicy(self.credential, *self.credential_scopes, **kwargs)
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/_patch.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/_patch.py
new file mode 100644
index 00000000..74e48ecd
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/_patch.py
@@ -0,0 +1,31 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+#
+# Copyright (c) Microsoft Corporation. All rights reserved.
+#
+# The MIT License (MIT)
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the ""Software""), to
+# deal in the Software without restriction, including without limitation the
+# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+# sell copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in
+# all copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+# IN THE SOFTWARE.
+#
+# --------------------------------------------------------------------------
+
+# This file is used for handwritten extensions to the generated code. Example:
+# https://github.com/Azure/azure-sdk-for-python/blob/main/doc/dev/customize_code/how-to-patch-sdk-code.md
+def patch_sdk():
+ pass \ No newline at end of file
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/operations/__init__.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/operations/__init__.py
new file mode 100644
index 00000000..261577d5
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/operations/__init__.py
@@ -0,0 +1,19 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from ._assets_operations import AssetsOperations
+from ._extensive_model_operations import ExtensiveModelOperations
+from ._migration_operations import MigrationOperations
+from ._models_operations import ModelsOperations
+
+__all__ = [
+ 'AssetsOperations',
+ 'ExtensiveModelOperations',
+ 'MigrationOperations',
+ 'ModelsOperations',
+]
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/operations/_assets_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/operations/_assets_operations.py
new file mode 100644
index 00000000..20f7a4cb
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/operations/_assets_operations.py
@@ -0,0 +1,403 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import Any, Callable, Dict, Generic, List, Optional, TypeVar, Union
+import warnings
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.mgmt.core.exceptions import ARMErrorFormat
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._assets_operations import build_create_request, build_delete_request, build_list_request, build_patch_request, build_query_by_id_request
+T = TypeVar('T')
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+class AssetsOperations:
+ """AssetsOperations async operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer) -> None:
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace_async
+ async def create(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional["_models.Asset"] = None,
+ **kwargs: Any
+ ) -> "_models.Asset":
+ """create.
+
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.Asset
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Asset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Asset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Asset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json-patch+json") # type: Optional[str]
+
+ _json = None
+ _content = None
+ if content_type.split(";")[0] in ['application/json', 'text/json']:
+ if body is not None:
+ _json = self._serialize.body(body, 'Asset')
+ elif content_type.split(";")[0] in ['application/json-patch+json', 'application/*+json']:
+ if body is not None:
+ _json = self._serialize.body(body, 'Asset')
+ else:
+ raise ValueError(
+ "The content_type '{}' is not one of the allowed values: "
+ "['application/json-patch+json', 'application/json', 'text/json', 'application/*+json']".format(content_type)
+ )
+
+ request = build_create_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self.create.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Asset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ create.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/assets'} # type: ignore
+
+
+ @distributed_trace_async
+ async def list(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ run_id: Optional[str] = None,
+ project_id: Optional[str] = None,
+ name: Optional[str] = None,
+ tag: Optional[str] = None,
+ count: Optional[int] = None,
+ skip_token: Optional[str] = None,
+ tags: Optional[str] = None,
+ properties: Optional[str] = None,
+ type: Optional[str] = None,
+ orderby: Optional[Union[str, "_models.OrderString"]] = None,
+ **kwargs: Any
+ ) -> "_models.AssetPaginatedResult":
+ """list.
+
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param project_id:
+ :type project_id: str
+ :param name:
+ :type name: str
+ :param tag:
+ :type tag: str
+ :param count:
+ :type count: int
+ :param skip_token:
+ :type skip_token: str
+ :param tags:
+ :type tags: str
+ :param properties:
+ :type properties: str
+ :param type:
+ :type type: str
+ :param orderby:
+ :type orderby: str or ~azure.mgmt.machinelearningservices.models.OrderString
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: AssetPaginatedResult, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.AssetPaginatedResult
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.AssetPaginatedResult"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ project_id=project_id,
+ name=name,
+ tag=tag,
+ count=count,
+ skip_token=skip_token,
+ tags=tags,
+ properties=properties,
+ type=type,
+ orderby=orderby,
+ template_url=self.list.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('AssetPaginatedResult', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ list.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/assets'} # type: ignore
+
+
+ @distributed_trace_async
+ async def patch(
+ self,
+ id: str,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ body: List["_models.Operation"],
+ **kwargs: Any
+ ) -> "_models.Asset":
+ """patch.
+
+ :param id:
+ :type id: str
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param body:
+ :type body: list[~azure.mgmt.machinelearningservices.models.Operation]
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Asset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Asset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Asset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json-patch+json") # type: Optional[str]
+
+ _json = None
+ _content = None
+ if content_type.split(";")[0] in ['application/json', 'text/json']:
+ _json = self._serialize.body(body, '[Operation]')
+ elif content_type.split(";")[0] in ['application/json-patch+json', 'application/*+json']:
+ _json = self._serialize.body(body, '[Operation]')
+ else:
+ raise ValueError(
+ "The content_type '{}' is not one of the allowed values: "
+ "['application/json-patch+json', 'application/json', 'text/json', 'application/*+json']".format(content_type)
+ )
+
+ request = build_patch_request(
+ id=id,
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self.patch.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Asset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ patch.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/assets/{id}'} # type: ignore
+
+
+ @distributed_trace_async
+ async def delete(
+ self,
+ id: str,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ **kwargs: Any
+ ) -> None:
+ """delete.
+
+ :param id:
+ :type id: str
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_delete_request(
+ id=id,
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ template_url=self.delete.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 204]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ delete.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/assets/{id}'} # type: ignore
+
+
+ @distributed_trace_async
+ async def query_by_id(
+ self,
+ id: str,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ **kwargs: Any
+ ) -> "_models.Asset":
+ """query_by_id.
+
+ :param id:
+ :type id: str
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Asset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Asset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Asset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_query_by_id_request(
+ id=id,
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ template_url=self.query_by_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Asset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ query_by_id.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/assets/{id}'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/operations/_extensive_model_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/operations/_extensive_model_operations.py
new file mode 100644
index 00000000..6f821f49
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/operations/_extensive_model_operations.py
@@ -0,0 +1,103 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import Any, Callable, Dict, Generic, Optional, TypeVar
+import warnings
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.mgmt.core.exceptions import ARMErrorFormat
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._extensive_model_operations import build_query_by_id_request
+T = TypeVar('T')
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+class ExtensiveModelOperations:
+ """ExtensiveModelOperations async operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer) -> None:
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace_async
+ async def query_by_id(
+ self,
+ id: str,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ **kwargs: Any
+ ) -> "_models.ExtensiveModel":
+ """query_by_id.
+
+ :param id:
+ :type id: str
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: ExtensiveModel, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.ExtensiveModel
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.ExtensiveModel"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_query_by_id_request(
+ id=id,
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ template_url=self.query_by_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('ExtensiveModel', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ query_by_id.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/extensiveModels/{id}'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/operations/_migration_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/operations/_migration_operations.py
new file mode 100644
index 00000000..b6c4b7e4
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/operations/_migration_operations.py
@@ -0,0 +1,99 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import Any, Callable, Dict, Generic, Optional, TypeVar
+import warnings
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.mgmt.core.exceptions import ARMErrorFormat
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._migration_operations import build_start_migration_request
+T = TypeVar('T')
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+class MigrationOperations:
+ """MigrationOperations async operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer) -> None:
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace_async
+ async def start_migration(
+ self,
+ migration: Optional[str] = None,
+ timeout: Optional[str] = "00:01:00",
+ collection_id: Optional[str] = None,
+ workspace_id: Optional[str] = None,
+ **kwargs: Any
+ ) -> None:
+ """start_migration.
+
+ :param migration:
+ :type migration: str
+ :param timeout:
+ :type timeout: str
+ :param collection_id:
+ :type collection_id: str
+ :param workspace_id:
+ :type workspace_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_start_migration_request(
+ migration=migration,
+ timeout=timeout,
+ collection_id=collection_id,
+ workspace_id=workspace_id,
+ template_url=self.start_migration.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ start_migration.metadata = {'url': '/modelregistry/v1.0/meta/migration'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/operations/_models_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/operations/_models_operations.py
new file mode 100644
index 00000000..f666dcec
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/aio/operations/_models_operations.py
@@ -0,0 +1,875 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import Any, Callable, Dict, Generic, List, Optional, TypeVar, Union
+import warnings
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.mgmt.core.exceptions import ARMErrorFormat
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._models_operations import build_batch_get_resolved_uris_request, build_batch_query_request, build_create_unregistered_input_model_request, build_create_unregistered_output_model_request, build_delete_request, build_deployment_settings_request, build_list_query_post_request, build_list_request, build_patch_request, build_query_by_id_request, build_register_request
+T = TypeVar('T')
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+class ModelsOperations:
+ """ModelsOperations async operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer) -> None:
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace_async
+ async def register(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ body: "_models.Model",
+ auto_version: Optional[bool] = True,
+ **kwargs: Any
+ ) -> "_models.Model":
+ """register.
+
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.Model
+ :param auto_version:
+ :type auto_version: bool
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Model, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Model
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Model"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json-patch+json") # type: Optional[str]
+
+ _json = None
+ _content = None
+ if content_type.split(";")[0] in ['application/json', 'text/json']:
+ _json = self._serialize.body(body, 'Model')
+ elif content_type.split(";")[0] in ['application/json-patch+json', 'application/*+json']:
+ _json = self._serialize.body(body, 'Model')
+ else:
+ raise ValueError(
+ "The content_type '{}' is not one of the allowed values: "
+ "['application/json-patch+json', 'application/json', 'text/json', 'application/*+json']".format(content_type)
+ )
+
+ request = build_register_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ auto_version=auto_version,
+ template_url=self.register.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Model', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ register.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models'} # type: ignore
+
+
+ @distributed_trace_async
+ async def list(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ name: Optional[str] = None,
+ tag: Optional[str] = None,
+ version: Optional[str] = None,
+ framework: Optional[str] = None,
+ description: Optional[str] = None,
+ count: Optional[int] = None,
+ offset: Optional[int] = None,
+ skip_token: Optional[str] = None,
+ tags: Optional[str] = None,
+ properties: Optional[str] = None,
+ run_id: Optional[str] = None,
+ dataset_id: Optional[str] = None,
+ order_by: Optional[str] = None,
+ latest_version_only: Optional[bool] = False,
+ feed: Optional[str] = None,
+ list_view_type: Optional[Union[str, "_models.ListViewType"]] = None,
+ **kwargs: Any
+ ) -> "_models.ModelPagedResponse":
+ """list.
+
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param tag:
+ :type tag: str
+ :param version:
+ :type version: str
+ :param framework:
+ :type framework: str
+ :param description:
+ :type description: str
+ :param count:
+ :type count: int
+ :param offset:
+ :type offset: int
+ :param skip_token:
+ :type skip_token: str
+ :param tags:
+ :type tags: str
+ :param properties:
+ :type properties: str
+ :param run_id:
+ :type run_id: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param order_by:
+ :type order_by: str
+ :param latest_version_only:
+ :type latest_version_only: bool
+ :param feed:
+ :type feed: str
+ :param list_view_type:
+ :type list_view_type: str or ~azure.mgmt.machinelearningservices.models.ListViewType
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: ModelPagedResponse, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.ModelPagedResponse
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.ModelPagedResponse"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ tag=tag,
+ version=version,
+ framework=framework,
+ description=description,
+ count=count,
+ offset=offset,
+ skip_token=skip_token,
+ tags=tags,
+ properties=properties,
+ run_id=run_id,
+ dataset_id=dataset_id,
+ order_by=order_by,
+ latest_version_only=latest_version_only,
+ feed=feed,
+ list_view_type=list_view_type,
+ template_url=self.list.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('ModelPagedResponse', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ list.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models'} # type: ignore
+
+
+ @distributed_trace_async
+ async def create_unregistered_input_model(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ body: "_models.CreateUnregisteredInputModelDto",
+ **kwargs: Any
+ ) -> "_models.Model":
+ """create_unregistered_input_model.
+
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.CreateUnregisteredInputModelDto
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Model, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Model
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Model"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json-patch+json") # type: Optional[str]
+
+ _json = None
+ _content = None
+ if content_type.split(";")[0] in ['application/json', 'text/json']:
+ _json = self._serialize.body(body, 'CreateUnregisteredInputModelDto')
+ elif content_type.split(";")[0] in ['application/json-patch+json', 'application/*+json']:
+ _json = self._serialize.body(body, 'CreateUnregisteredInputModelDto')
+ else:
+ raise ValueError(
+ "The content_type '{}' is not one of the allowed values: "
+ "['application/json-patch+json', 'application/json', 'text/json', 'application/*+json']".format(content_type)
+ )
+
+ request = build_create_unregistered_input_model_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self.create_unregistered_input_model.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Model', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ create_unregistered_input_model.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/createUnregisteredInput'} # type: ignore
+
+
+ @distributed_trace_async
+ async def create_unregistered_output_model(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ body: "_models.CreateUnregisteredOutputModelDto",
+ **kwargs: Any
+ ) -> "_models.Model":
+ """create_unregistered_output_model.
+
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.CreateUnregisteredOutputModelDto
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Model, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Model
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Model"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json-patch+json") # type: Optional[str]
+
+ _json = None
+ _content = None
+ if content_type.split(";")[0] in ['application/json', 'text/json']:
+ _json = self._serialize.body(body, 'CreateUnregisteredOutputModelDto')
+ elif content_type.split(";")[0] in ['application/json-patch+json', 'application/*+json']:
+ _json = self._serialize.body(body, 'CreateUnregisteredOutputModelDto')
+ else:
+ raise ValueError(
+ "The content_type '{}' is not one of the allowed values: "
+ "['application/json-patch+json', 'application/json', 'text/json', 'application/*+json']".format(content_type)
+ )
+
+ request = build_create_unregistered_output_model_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self.create_unregistered_output_model.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Model', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ create_unregistered_output_model.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/createUnregisteredOutput'} # type: ignore
+
+
+ @distributed_trace_async
+ async def batch_get_resolved_uris(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional["_models.BatchGetResolvedUrisDto"] = None,
+ **kwargs: Any
+ ) -> "_models.BatchModelPathResponseDto":
+ """batch_get_resolved_uris.
+
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.BatchGetResolvedUrisDto
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: BatchModelPathResponseDto, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.BatchModelPathResponseDto
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.BatchModelPathResponseDto"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json-patch+json") # type: Optional[str]
+
+ _json = None
+ _content = None
+ if content_type.split(";")[0] in ['application/json', 'text/json']:
+ if body is not None:
+ _json = self._serialize.body(body, 'BatchGetResolvedUrisDto')
+ elif content_type.split(";")[0] in ['application/json-patch+json', 'application/*+json']:
+ if body is not None:
+ _json = self._serialize.body(body, 'BatchGetResolvedUrisDto')
+ else:
+ raise ValueError(
+ "The content_type '{}' is not one of the allowed values: "
+ "['application/json-patch+json', 'application/json', 'text/json', 'application/*+json']".format(content_type)
+ )
+
+ request = build_batch_get_resolved_uris_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self.batch_get_resolved_uris.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('BatchModelPathResponseDto', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ batch_get_resolved_uris.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/batchGetResolvedUris'} # type: ignore
+
+
+ @distributed_trace_async
+ async def query_by_id(
+ self,
+ id: str,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ include_deployment_settings: Optional[bool] = False,
+ **kwargs: Any
+ ) -> "_models.Model":
+ """query_by_id.
+
+ :param id:
+ :type id: str
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param include_deployment_settings:
+ :type include_deployment_settings: bool
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Model, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Model
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Model"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_query_by_id_request(
+ id=id,
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ include_deployment_settings=include_deployment_settings,
+ template_url=self.query_by_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Model', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ query_by_id.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/{id}'} # type: ignore
+
+
+ @distributed_trace_async
+ async def delete(
+ self,
+ id: str,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ **kwargs: Any
+ ) -> None:
+ """delete.
+
+ :param id:
+ :type id: str
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_delete_request(
+ id=id,
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ template_url=self.delete.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 204]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ delete.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/{id}'} # type: ignore
+
+
+ @distributed_trace_async
+ async def patch(
+ self,
+ id: str,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ body: List["_models.Operation"],
+ **kwargs: Any
+ ) -> "_models.Model":
+ """patch.
+
+ :param id:
+ :type id: str
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param body:
+ :type body: list[~azure.mgmt.machinelearningservices.models.Operation]
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Model, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Model
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Model"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json-patch+json") # type: Optional[str]
+
+ _json = None
+ _content = None
+ if content_type.split(";")[0] in ['application/json', 'text/json']:
+ _json = self._serialize.body(body, '[Operation]')
+ elif content_type.split(";")[0] in ['application/json-patch+json', 'application/*+json']:
+ _json = self._serialize.body(body, '[Operation]')
+ else:
+ raise ValueError(
+ "The content_type '{}' is not one of the allowed values: "
+ "['application/json-patch+json', 'application/json', 'text/json', 'application/*+json']".format(content_type)
+ )
+
+ request = build_patch_request(
+ id=id,
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self.patch.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Model', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ patch.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/{id}'} # type: ignore
+
+
+ @distributed_trace_async
+ async def list_query_post(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional["_models.ListModelsRequest"] = None,
+ **kwargs: Any
+ ) -> "_models.ModelListModelsRequestPagedResponse":
+ """list_query_post.
+
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.ListModelsRequest
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: ModelListModelsRequestPagedResponse, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.ModelListModelsRequestPagedResponse
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.ModelListModelsRequestPagedResponse"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json-patch+json") # type: Optional[str]
+
+ _json = None
+ _content = None
+ if content_type.split(";")[0] in ['application/json', 'text/json']:
+ if body is not None:
+ _json = self._serialize.body(body, 'ListModelsRequest')
+ elif content_type.split(";")[0] in ['application/json-patch+json', 'application/*+json']:
+ if body is not None:
+ _json = self._serialize.body(body, 'ListModelsRequest')
+ else:
+ raise ValueError(
+ "The content_type '{}' is not one of the allowed values: "
+ "['application/json-patch+json', 'application/json', 'text/json', 'application/*+json']".format(content_type)
+ )
+
+ request = build_list_query_post_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self.list_query_post.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('ModelListModelsRequestPagedResponse', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ list_query_post.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/list'} # type: ignore
+
+
+ @distributed_trace_async
+ async def batch_query(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional["_models.ModelBatchDto"] = None,
+ **kwargs: Any
+ ) -> "_models.ModelBatchResponseDto":
+ """batch_query.
+
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.ModelBatchDto
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: ModelBatchResponseDto, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.ModelBatchResponseDto
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.ModelBatchResponseDto"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json-patch+json") # type: Optional[str]
+
+ _json = None
+ _content = None
+ if content_type.split(";")[0] in ['application/json', 'text/json']:
+ if body is not None:
+ _json = self._serialize.body(body, 'ModelBatchDto')
+ elif content_type.split(";")[0] in ['application/json-patch+json', 'application/*+json']:
+ if body is not None:
+ _json = self._serialize.body(body, 'ModelBatchDto')
+ else:
+ raise ValueError(
+ "The content_type '{}' is not one of the allowed values: "
+ "['application/json-patch+json', 'application/json', 'text/json', 'application/*+json']".format(content_type)
+ )
+
+ request = build_batch_query_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self.batch_query.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('ModelBatchResponseDto', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ batch_query.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/querybatch'} # type: ignore
+
+
+ @distributed_trace_async
+ async def deployment_settings(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional["_models.ModelSettingsIdentifiers"] = None,
+ **kwargs: Any
+ ) -> None:
+ """deployment_settings.
+
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.ModelSettingsIdentifiers
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json-patch+json") # type: Optional[str]
+
+ _json = None
+ _content = None
+ if content_type.split(";")[0] in ['application/json', 'text/json']:
+ if body is not None:
+ _json = self._serialize.body(body, 'ModelSettingsIdentifiers')
+ elif content_type.split(";")[0] in ['application/json-patch+json', 'application/*+json']:
+ if body is not None:
+ _json = self._serialize.body(body, 'ModelSettingsIdentifiers')
+ else:
+ raise ValueError(
+ "The content_type '{}' is not one of the allowed values: "
+ "['application/json-patch+json', 'application/json', 'text/json', 'application/*+json']".format(content_type)
+ )
+
+ request = build_deployment_settings_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self.deployment_settings.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ deployment_settings.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/deploymentSettings'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/models/__init__.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/models/__init__.py
new file mode 100644
index 00000000..c54172db
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/models/__init__.py
@@ -0,0 +1,179 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+try:
+ from ._models_py3 import Artifact
+ from ._models_py3 import Asset
+ from ._models_py3 import AssetDto
+ from ._models_py3 import AssetPaginatedResult
+ from ._models_py3 import BatchGetResolvedUrisDto
+ from ._models_py3 import BatchModelPathResponseDto
+ from ._models_py3 import BlobReference
+ from ._models_py3 import BlobReferenceForConsumptionDto
+ from ._models_py3 import ContainerResourceRequirements
+ from ._models_py3 import CreateUnregisteredInputModelDto
+ from ._models_py3 import CreateUnregisteredOutputModelDto
+ from ._models_py3 import CreatedBy
+ from ._models_py3 import CreationContext
+ from ._models_py3 import DataItem
+ from ._models_py3 import DataReferenceCredentialDto
+ from ._models_py3 import DataReferences
+ from ._models_py3 import DataReferencesForConsumptionDto
+ from ._models_py3 import DatasetReference
+ from ._models_py3 import DependencyMapDto
+ from ._models_py3 import DependencyMapItemDto
+ from ._models_py3 import DependentAsset
+ from ._models_py3 import DependentEntitiesDto
+ from ._models_py3 import ErrorResponse
+ from ._models_py3 import ExtensiveModel
+ from ._models_py3 import FeedIndexEntityDto
+ from ._models_py3 import FeedIndexEntityRequestDto
+ from ._models_py3 import ImageReference
+ from ._models_py3 import ImageReferenceForConsumptionDto
+ from ._models_py3 import IndexAnnotations
+ from ._models_py3 import IndexEntity
+ from ._models_py3 import IndexProperties
+ from ._models_py3 import InnerErrorDetails
+ from ._models_py3 import IntellectualPropertyPublisherInformation
+ from ._models_py3 import ListModelsRequest
+ from ._models_py3 import Model
+ from ._models_py3 import ModelBatchDto
+ from ._models_py3 import ModelBatchResponseDto
+ from ._models_py3 import ModelContainerRequest
+ from ._models_py3 import ModelDeploymentSettings
+ from ._models_py3 import ModelListModelsRequestPagedResponse
+ from ._models_py3 import ModelPagedResponse
+ from ._models_py3 import ModelPathResponseDto
+ from ._models_py3 import ModelSchema
+ from ._models_py3 import ModelSettingsIdentifiers
+ from ._models_py3 import Operation
+ from ._models_py3 import ProviderFeedEntityRequestDto
+ from ._models_py3 import Relationship
+ from ._models_py3 import ServiceResponseBase
+ from ._models_py3 import User
+except (SyntaxError, ImportError):
+ from ._models import Artifact # type: ignore
+ from ._models import Asset # type: ignore
+ from ._models import AssetDto # type: ignore
+ from ._models import AssetPaginatedResult # type: ignore
+ from ._models import BatchGetResolvedUrisDto # type: ignore
+ from ._models import BatchModelPathResponseDto # type: ignore
+ from ._models import BlobReference # type: ignore
+ from ._models import BlobReferenceForConsumptionDto # type: ignore
+ from ._models import ContainerResourceRequirements # type: ignore
+ from ._models import CreateUnregisteredInputModelDto # type: ignore
+ from ._models import CreateUnregisteredOutputModelDto # type: ignore
+ from ._models import CreatedBy # type: ignore
+ from ._models import CreationContext # type: ignore
+ from ._models import DataItem # type: ignore
+ from ._models import DataReferenceCredentialDto # type: ignore
+ from ._models import DataReferences # type: ignore
+ from ._models import DataReferencesForConsumptionDto # type: ignore
+ from ._models import DatasetReference # type: ignore
+ from ._models import DependencyMapDto # type: ignore
+ from ._models import DependencyMapItemDto # type: ignore
+ from ._models import DependentAsset # type: ignore
+ from ._models import DependentEntitiesDto # type: ignore
+ from ._models import ErrorResponse # type: ignore
+ from ._models import ExtensiveModel # type: ignore
+ from ._models import FeedIndexEntityDto # type: ignore
+ from ._models import FeedIndexEntityRequestDto # type: ignore
+ from ._models import ImageReference # type: ignore
+ from ._models import ImageReferenceForConsumptionDto # type: ignore
+ from ._models import IndexAnnotations # type: ignore
+ from ._models import IndexEntity # type: ignore
+ from ._models import IndexProperties # type: ignore
+ from ._models import InnerErrorDetails # type: ignore
+ from ._models import IntellectualPropertyPublisherInformation # type: ignore
+ from ._models import ListModelsRequest # type: ignore
+ from ._models import Model # type: ignore
+ from ._models import ModelBatchDto # type: ignore
+ from ._models import ModelBatchResponseDto # type: ignore
+ from ._models import ModelContainerRequest # type: ignore
+ from ._models import ModelDeploymentSettings # type: ignore
+ from ._models import ModelListModelsRequestPagedResponse # type: ignore
+ from ._models import ModelPagedResponse # type: ignore
+ from ._models import ModelPathResponseDto # type: ignore
+ from ._models import ModelSchema # type: ignore
+ from ._models import ModelSettingsIdentifiers # type: ignore
+ from ._models import Operation # type: ignore
+ from ._models import ProviderFeedEntityRequestDto # type: ignore
+ from ._models import Relationship # type: ignore
+ from ._models import ServiceResponseBase # type: ignore
+ from ._models import User # type: ignore
+
+from ._azure_machine_learning_workspaces_enums import (
+ ComputeEnvironmentType,
+ DeploymentType,
+ EntityKind,
+ ListViewType,
+ ModelFormatEnum,
+ ModelSchemaDataType,
+ OrderString,
+ WebServiceState,
+)
+
+__all__ = [
+ 'Artifact',
+ 'Asset',
+ 'AssetDto',
+ 'AssetPaginatedResult',
+ 'BatchGetResolvedUrisDto',
+ 'BatchModelPathResponseDto',
+ 'BlobReference',
+ 'BlobReferenceForConsumptionDto',
+ 'ContainerResourceRequirements',
+ 'CreateUnregisteredInputModelDto',
+ 'CreateUnregisteredOutputModelDto',
+ 'CreatedBy',
+ 'CreationContext',
+ 'DataItem',
+ 'DataReferenceCredentialDto',
+ 'DataReferences',
+ 'DataReferencesForConsumptionDto',
+ 'DatasetReference',
+ 'DependencyMapDto',
+ 'DependencyMapItemDto',
+ 'DependentAsset',
+ 'DependentEntitiesDto',
+ 'ErrorResponse',
+ 'ExtensiveModel',
+ 'FeedIndexEntityDto',
+ 'FeedIndexEntityRequestDto',
+ 'ImageReference',
+ 'ImageReferenceForConsumptionDto',
+ 'IndexAnnotations',
+ 'IndexEntity',
+ 'IndexProperties',
+ 'InnerErrorDetails',
+ 'IntellectualPropertyPublisherInformation',
+ 'ListModelsRequest',
+ 'Model',
+ 'ModelBatchDto',
+ 'ModelBatchResponseDto',
+ 'ModelContainerRequest',
+ 'ModelDeploymentSettings',
+ 'ModelListModelsRequestPagedResponse',
+ 'ModelPagedResponse',
+ 'ModelPathResponseDto',
+ 'ModelSchema',
+ 'ModelSettingsIdentifiers',
+ 'Operation',
+ 'ProviderFeedEntityRequestDto',
+ 'Relationship',
+ 'ServiceResponseBase',
+ 'User',
+ 'ComputeEnvironmentType',
+ 'DeploymentType',
+ 'EntityKind',
+ 'ListViewType',
+ 'ModelFormatEnum',
+ 'ModelSchemaDataType',
+ 'OrderString',
+ 'WebServiceState',
+]
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/models/_azure_machine_learning_workspaces_enums.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/models/_azure_machine_learning_workspaces_enums.py
new file mode 100644
index 00000000..f8290bfb
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/models/_azure_machine_learning_workspaces_enums.py
@@ -0,0 +1,89 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from enum import Enum
+from azure.core import CaseInsensitiveEnumMeta
+
+
+class ComputeEnvironmentType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+
+ ACS = "ACS"
+ FPGA = "FPGA"
+ ACI = "ACI"
+ AKS = "AKS"
+ AMLCOMPUTE = "AMLCOMPUTE"
+ IOT = "IOT"
+ MIR = "MIR"
+ AKSENDPOINT = "AKSENDPOINT"
+ MIRSINGLEMODEL = "MIRSINGLEMODEL"
+ MIRAMLCOMPUTE = "MIRAMLCOMPUTE"
+ MIRGA = "MIRGA"
+ AMLARC = "AMLARC"
+ BATCHAMLCOMPUTE = "BATCHAMLCOMPUTE"
+ UNKNOWN = "UNKNOWN"
+
+class DeploymentType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+
+ GRPC_REALTIME_ENDPOINT = "GRPCRealtimeEndpoint"
+ HTTP_REALTIME_ENDPOINT = "HttpRealtimeEndpoint"
+ BATCH = "Batch"
+
+class EntityKind(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+
+ INVALID = "Invalid"
+ LINEAGE_ROOT = "LineageRoot"
+ VERSIONED = "Versioned"
+ UNVERSIONED = "Unversioned"
+
+class ListViewType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+
+ ACTIVE_ONLY = "ActiveOnly"
+ ARCHIVED_ONLY = "ArchivedOnly"
+ ALL = "All"
+
+class ModelFormatEnum(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+
+ CUSTOM = "CUSTOM"
+ MLFLOW = "MLFLOW"
+ TRITON = "TRITON"
+ PRESETS = "PRESETS"
+
+class ModelSchemaDataType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+
+ UNDEFINED = "undefined"
+ BOOL = "bool"
+ UINT8 = "uint8"
+ UINT16 = "uint16"
+ UINT32 = "uint32"
+ UINT64 = "uint64"
+ INT8 = "int8"
+ INT16 = "int16"
+ INT32 = "int32"
+ INT64 = "int64"
+ FLOAT16 = "float16"
+ FLOAT32 = "float32"
+ FLOAT64 = "float64"
+ BFLOAT16 = "bfloat16"
+ COMPLEX64 = "complex64"
+ COMPLEX128 = "complex128"
+ STRING = "string"
+
+class OrderString(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+
+ CREATED_AT_DESC = "CreatedAtDesc"
+ CREATED_AT_ASC = "CreatedAtAsc"
+ UPDATED_AT_DESC = "UpdatedAtDesc"
+ UPDATED_AT_ASC = "UpdatedAtAsc"
+
+class WebServiceState(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+
+ TRANSITIONING = "Transitioning"
+ HEALTHY = "Healthy"
+ UNHEALTHY = "Unhealthy"
+ FAILED = "Failed"
+ UNSCHEDULABLE = "Unschedulable"
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/models/_models.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/models/_models.py
new file mode 100644
index 00000000..fc90156b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/models/_models.py
@@ -0,0 +1,2263 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+import msrest.serialization
+
+
+class Artifact(msrest.serialization.Model):
+ """Artifact.
+
+ :ivar id:
+ :vartype id: str
+ :ivar prefix:
+ :vartype prefix: str
+ """
+
+ _attribute_map = {
+ 'id': {'key': 'id', 'type': 'str'},
+ 'prefix': {'key': 'prefix', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword id:
+ :paramtype id: str
+ :keyword prefix:
+ :paramtype prefix: str
+ """
+ super(Artifact, self).__init__(**kwargs)
+ self.id = kwargs.get('id', None)
+ self.prefix = kwargs.get('prefix', None)
+
+
+class Asset(msrest.serialization.Model):
+ """Asset.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar id:
+ :vartype id: str
+ :ivar name: Required.
+ :vartype name: str
+ :ivar type:
+ :vartype type: str
+ :ivar description:
+ :vartype description: str
+ :ivar artifacts:
+ :vartype artifacts: list[~azure.mgmt.machinelearningservices.models.Artifact]
+ :ivar kv_tags: Dictionary of :code:`<string>`.
+ :vartype kv_tags: dict[str, str]
+ :ivar properties: Dictionary of :code:`<string>`.
+ :vartype properties: dict[str, str]
+ :ivar runid:
+ :vartype runid: str
+ :ivar projectid:
+ :vartype projectid: str
+ :ivar meta: Dictionary of :code:`<string>`.
+ :vartype meta: dict[str, str]
+ :ivar created_time:
+ :vartype created_time: ~datetime.datetime
+ """
+
+ _validation = {
+ 'name': {'required': True},
+ }
+
+ _attribute_map = {
+ 'id': {'key': 'id', 'type': 'str'},
+ 'name': {'key': 'name', 'type': 'str'},
+ 'type': {'key': 'type', 'type': 'str'},
+ 'description': {'key': 'description', 'type': 'str'},
+ 'artifacts': {'key': 'artifacts', 'type': '[Artifact]'},
+ 'kv_tags': {'key': 'kvTags', 'type': '{str}'},
+ 'properties': {'key': 'properties', 'type': '{str}'},
+ 'runid': {'key': 'runid', 'type': 'str'},
+ 'projectid': {'key': 'projectid', 'type': 'str'},
+ 'meta': {'key': 'meta', 'type': '{str}'},
+ 'created_time': {'key': 'createdTime', 'type': 'iso-8601'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword id:
+ :paramtype id: str
+ :keyword name: Required.
+ :paramtype name: str
+ :keyword type:
+ :paramtype type: str
+ :keyword description:
+ :paramtype description: str
+ :keyword artifacts:
+ :paramtype artifacts: list[~azure.mgmt.machinelearningservices.models.Artifact]
+ :keyword kv_tags: Dictionary of :code:`<string>`.
+ :paramtype kv_tags: dict[str, str]
+ :keyword properties: Dictionary of :code:`<string>`.
+ :paramtype properties: dict[str, str]
+ :keyword runid:
+ :paramtype runid: str
+ :keyword projectid:
+ :paramtype projectid: str
+ :keyword meta: Dictionary of :code:`<string>`.
+ :paramtype meta: dict[str, str]
+ :keyword created_time:
+ :paramtype created_time: ~datetime.datetime
+ """
+ super(Asset, self).__init__(**kwargs)
+ self.id = kwargs.get('id', None)
+ self.name = kwargs['name']
+ self.type = kwargs.get('type', None)
+ self.description = kwargs.get('description', None)
+ self.artifacts = kwargs.get('artifacts', None)
+ self.kv_tags = kwargs.get('kv_tags', None)
+ self.properties = kwargs.get('properties', None)
+ self.runid = kwargs.get('runid', None)
+ self.projectid = kwargs.get('projectid', None)
+ self.meta = kwargs.get('meta', None)
+ self.created_time = kwargs.get('created_time', None)
+
+
+class AssetDto(msrest.serialization.Model):
+ """AssetDto.
+
+ :ivar asset_id:
+ :vartype asset_id: str
+ :ivar entity_id:
+ :vartype entity_id: str
+ :ivar data_items: Dictionary of :code:`<DataItem>`.
+ :vartype data_items: dict[str, ~azure.mgmt.machinelearningservices.models.DataItem]
+ :ivar data_references:
+ :vartype data_references: ~azure.mgmt.machinelearningservices.models.DataReferences
+ :ivar should_index:
+ :vartype should_index: bool
+ :ivar dependencies:
+ :vartype dependencies: list[~azure.mgmt.machinelearningservices.models.DependentAsset]
+ :ivar intellectual_property_publisher_information:
+ :vartype intellectual_property_publisher_information:
+ ~azure.mgmt.machinelearningservices.models.IntellectualPropertyPublisherInformation
+ """
+
+ _attribute_map = {
+ 'asset_id': {'key': 'assetId', 'type': 'str'},
+ 'entity_id': {'key': 'entityId', 'type': 'str'},
+ 'data_items': {'key': 'dataItems', 'type': '{DataItem}'},
+ 'data_references': {'key': 'dataReferences', 'type': 'DataReferences'},
+ 'should_index': {'key': 'shouldIndex', 'type': 'bool'},
+ 'dependencies': {'key': 'dependencies', 'type': '[DependentAsset]'},
+ 'intellectual_property_publisher_information': {'key': 'intellectualPropertyPublisherInformation', 'type': 'IntellectualPropertyPublisherInformation'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword asset_id:
+ :paramtype asset_id: str
+ :keyword entity_id:
+ :paramtype entity_id: str
+ :keyword data_items: Dictionary of :code:`<DataItem>`.
+ :paramtype data_items: dict[str, ~azure.mgmt.machinelearningservices.models.DataItem]
+ :keyword data_references:
+ :paramtype data_references: ~azure.mgmt.machinelearningservices.models.DataReferences
+ :keyword should_index:
+ :paramtype should_index: bool
+ :keyword dependencies:
+ :paramtype dependencies: list[~azure.mgmt.machinelearningservices.models.DependentAsset]
+ :keyword intellectual_property_publisher_information:
+ :paramtype intellectual_property_publisher_information:
+ ~azure.mgmt.machinelearningservices.models.IntellectualPropertyPublisherInformation
+ """
+ super(AssetDto, self).__init__(**kwargs)
+ self.asset_id = kwargs.get('asset_id', None)
+ self.entity_id = kwargs.get('entity_id', None)
+ self.data_items = kwargs.get('data_items', None)
+ self.data_references = kwargs.get('data_references', None)
+ self.should_index = kwargs.get('should_index', None)
+ self.dependencies = kwargs.get('dependencies', None)
+ self.intellectual_property_publisher_information = kwargs.get('intellectual_property_publisher_information', None)
+
+
+class AssetPaginatedResult(msrest.serialization.Model):
+ """AssetPaginatedResult.
+
+ :ivar value:
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.Asset]
+ :ivar continuation_token:
+ :vartype continuation_token: str
+ :ivar next_link:
+ :vartype next_link: str
+ """
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': '[Asset]'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'next_link': {'key': 'nextLink', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword value:
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.Asset]
+ :keyword continuation_token:
+ :paramtype continuation_token: str
+ :keyword next_link:
+ :paramtype next_link: str
+ """
+ super(AssetPaginatedResult, self).__init__(**kwargs)
+ self.value = kwargs.get('value', None)
+ self.continuation_token = kwargs.get('continuation_token', None)
+ self.next_link = kwargs.get('next_link', None)
+
+
+class BatchGetResolvedUrisDto(msrest.serialization.Model):
+ """BatchGetResolvedUrisDto.
+
+ :ivar values:
+ :vartype values: list[str]
+ """
+
+ _attribute_map = {
+ 'values': {'key': 'values', 'type': '[str]'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword values:
+ :paramtype values: list[str]
+ """
+ super(BatchGetResolvedUrisDto, self).__init__(**kwargs)
+ self.values = kwargs.get('values', None)
+
+
+class BatchModelPathResponseDto(msrest.serialization.Model):
+ """BatchModelPathResponseDto.
+
+ :ivar values: Dictionary of :code:`<ModelPathResponseDto>`.
+ :vartype values: dict[str, ~azure.mgmt.machinelearningservices.models.ModelPathResponseDto]
+ """
+
+ _attribute_map = {
+ 'values': {'key': 'values', 'type': '{ModelPathResponseDto}'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword values: Dictionary of :code:`<ModelPathResponseDto>`.
+ :paramtype values: dict[str, ~azure.mgmt.machinelearningservices.models.ModelPathResponseDto]
+ """
+ super(BatchModelPathResponseDto, self).__init__(**kwargs)
+ self.values = kwargs.get('values', None)
+
+
+class BlobReference(msrest.serialization.Model):
+ """BlobReference.
+
+ :ivar blob_uri:
+ :vartype blob_uri: str
+ :ivar storage_account_arm_id:
+ :vartype storage_account_arm_id: str
+ """
+
+ _attribute_map = {
+ 'blob_uri': {'key': 'blobUri', 'type': 'str'},
+ 'storage_account_arm_id': {'key': 'storageAccountArmId', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword blob_uri:
+ :paramtype blob_uri: str
+ :keyword storage_account_arm_id:
+ :paramtype storage_account_arm_id: str
+ """
+ super(BlobReference, self).__init__(**kwargs)
+ self.blob_uri = kwargs.get('blob_uri', None)
+ self.storage_account_arm_id = kwargs.get('storage_account_arm_id', None)
+
+
+class BlobReferenceForConsumptionDto(msrest.serialization.Model):
+ """BlobReferenceForConsumptionDto.
+
+ :ivar blob_uri:
+ :vartype blob_uri: str
+ :ivar storage_account_arm_id:
+ :vartype storage_account_arm_id: str
+ :ivar credential:
+ :vartype credential: ~azure.mgmt.machinelearningservices.models.DataReferenceCredentialDto
+ """
+
+ _attribute_map = {
+ 'blob_uri': {'key': 'blobUri', 'type': 'str'},
+ 'storage_account_arm_id': {'key': 'storageAccountArmId', 'type': 'str'},
+ 'credential': {'key': 'credential', 'type': 'DataReferenceCredentialDto'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword blob_uri:
+ :paramtype blob_uri: str
+ :keyword storage_account_arm_id:
+ :paramtype storage_account_arm_id: str
+ :keyword credential:
+ :paramtype credential: ~azure.mgmt.machinelearningservices.models.DataReferenceCredentialDto
+ """
+ super(BlobReferenceForConsumptionDto, self).__init__(**kwargs)
+ self.blob_uri = kwargs.get('blob_uri', None)
+ self.storage_account_arm_id = kwargs.get('storage_account_arm_id', None)
+ self.credential = kwargs.get('credential', None)
+
+
+class ContainerResourceRequirements(msrest.serialization.Model):
+ """ContainerResourceRequirements.
+
+ :ivar cpu:
+ :vartype cpu: float
+ :ivar cpu_limit:
+ :vartype cpu_limit: float
+ :ivar memory_in_gb:
+ :vartype memory_in_gb: float
+ :ivar memory_in_gb_limit:
+ :vartype memory_in_gb_limit: float
+ :ivar gpu_enabled:
+ :vartype gpu_enabled: bool
+ :ivar gpu:
+ :vartype gpu: int
+ :ivar fpga:
+ :vartype fpga: int
+ """
+
+ _attribute_map = {
+ 'cpu': {'key': 'cpu', 'type': 'float'},
+ 'cpu_limit': {'key': 'cpuLimit', 'type': 'float'},
+ 'memory_in_gb': {'key': 'memoryInGB', 'type': 'float'},
+ 'memory_in_gb_limit': {'key': 'memoryInGBLimit', 'type': 'float'},
+ 'gpu_enabled': {'key': 'gpuEnabled', 'type': 'bool'},
+ 'gpu': {'key': 'gpu', 'type': 'int'},
+ 'fpga': {'key': 'fpga', 'type': 'int'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword cpu:
+ :paramtype cpu: float
+ :keyword cpu_limit:
+ :paramtype cpu_limit: float
+ :keyword memory_in_gb:
+ :paramtype memory_in_gb: float
+ :keyword memory_in_gb_limit:
+ :paramtype memory_in_gb_limit: float
+ :keyword gpu_enabled:
+ :paramtype gpu_enabled: bool
+ :keyword gpu:
+ :paramtype gpu: int
+ :keyword fpga:
+ :paramtype fpga: int
+ """
+ super(ContainerResourceRequirements, self).__init__(**kwargs)
+ self.cpu = kwargs.get('cpu', None)
+ self.cpu_limit = kwargs.get('cpu_limit', None)
+ self.memory_in_gb = kwargs.get('memory_in_gb', None)
+ self.memory_in_gb_limit = kwargs.get('memory_in_gb_limit', None)
+ self.gpu_enabled = kwargs.get('gpu_enabled', None)
+ self.gpu = kwargs.get('gpu', None)
+ self.fpga = kwargs.get('fpga', None)
+
+
+class CreatedBy(msrest.serialization.Model):
+ """CreatedBy.
+
+ :ivar user_object_id:
+ :vartype user_object_id: str
+ :ivar user_tenant_id:
+ :vartype user_tenant_id: str
+ :ivar user_name:
+ :vartype user_name: str
+ """
+
+ _attribute_map = {
+ 'user_object_id': {'key': 'userObjectId', 'type': 'str'},
+ 'user_tenant_id': {'key': 'userTenantId', 'type': 'str'},
+ 'user_name': {'key': 'userName', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword user_object_id:
+ :paramtype user_object_id: str
+ :keyword user_tenant_id:
+ :paramtype user_tenant_id: str
+ :keyword user_name:
+ :paramtype user_name: str
+ """
+ super(CreatedBy, self).__init__(**kwargs)
+ self.user_object_id = kwargs.get('user_object_id', None)
+ self.user_tenant_id = kwargs.get('user_tenant_id', None)
+ self.user_name = kwargs.get('user_name', None)
+
+
+class CreateUnregisteredInputModelDto(msrest.serialization.Model):
+ """CreateUnregisteredInputModelDto.
+
+ :ivar run_id:
+ :vartype run_id: str
+ :ivar input_name:
+ :vartype input_name: str
+ :ivar path:
+ :vartype path: str
+ :ivar type:
+ :vartype type: str
+ """
+
+ _attribute_map = {
+ 'run_id': {'key': 'runId', 'type': 'str'},
+ 'input_name': {'key': 'inputName', 'type': 'str'},
+ 'path': {'key': 'path', 'type': 'str'},
+ 'type': {'key': 'type', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword run_id:
+ :paramtype run_id: str
+ :keyword input_name:
+ :paramtype input_name: str
+ :keyword path:
+ :paramtype path: str
+ :keyword type:
+ :paramtype type: str
+ """
+ super(CreateUnregisteredInputModelDto, self).__init__(**kwargs)
+ self.run_id = kwargs.get('run_id', None)
+ self.input_name = kwargs.get('input_name', None)
+ self.path = kwargs.get('path', None)
+ self.type = kwargs.get('type', None)
+
+
+class CreateUnregisteredOutputModelDto(msrest.serialization.Model):
+ """CreateUnregisteredOutputModelDto.
+
+ :ivar run_id:
+ :vartype run_id: str
+ :ivar output_name:
+ :vartype output_name: str
+ :ivar path:
+ :vartype path: str
+ :ivar type:
+ :vartype type: str
+ """
+
+ _attribute_map = {
+ 'run_id': {'key': 'runId', 'type': 'str'},
+ 'output_name': {'key': 'outputName', 'type': 'str'},
+ 'path': {'key': 'path', 'type': 'str'},
+ 'type': {'key': 'type', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword run_id:
+ :paramtype run_id: str
+ :keyword output_name:
+ :paramtype output_name: str
+ :keyword path:
+ :paramtype path: str
+ :keyword type:
+ :paramtype type: str
+ """
+ super(CreateUnregisteredOutputModelDto, self).__init__(**kwargs)
+ self.run_id = kwargs.get('run_id', None)
+ self.output_name = kwargs.get('output_name', None)
+ self.path = kwargs.get('path', None)
+ self.type = kwargs.get('type', None)
+
+
+class CreationContext(msrest.serialization.Model):
+ """CreationContext.
+
+ :ivar additional_properties: Unmatched properties from the message are deserialized to this
+ collection.
+ :vartype additional_properties: dict[str, any]
+ :ivar created_time:
+ :vartype created_time: ~datetime.datetime
+ :ivar created_by:
+ :vartype created_by: ~azure.mgmt.machinelearningservices.models.CreatedBy
+ :ivar creation_source:
+ :vartype creation_source: str
+ """
+
+ _attribute_map = {
+ 'additional_properties': {'key': '', 'type': '{object}'},
+ 'created_time': {'key': 'createdTime', 'type': 'iso-8601'},
+ 'created_by': {'key': 'createdBy', 'type': 'CreatedBy'},
+ 'creation_source': {'key': 'creationSource', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword additional_properties: Unmatched properties from the message are deserialized to this
+ collection.
+ :paramtype additional_properties: dict[str, any]
+ :keyword created_time:
+ :paramtype created_time: ~datetime.datetime
+ :keyword created_by:
+ :paramtype created_by: ~azure.mgmt.machinelearningservices.models.CreatedBy
+ :keyword creation_source:
+ :paramtype creation_source: str
+ """
+ super(CreationContext, self).__init__(**kwargs)
+ self.additional_properties = kwargs.get('additional_properties', None)
+ self.created_time = kwargs.get('created_time', None)
+ self.created_by = kwargs.get('created_by', None)
+ self.creation_source = kwargs.get('creation_source', None)
+
+
+class DataItem(msrest.serialization.Model):
+ """DataItem.
+
+ :ivar data: Anything.
+ :vartype data: any
+ """
+
+ _attribute_map = {
+ 'data': {'key': 'data', 'type': 'object'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword data: Anything.
+ :paramtype data: any
+ """
+ super(DataItem, self).__init__(**kwargs)
+ self.data = kwargs.get('data', None)
+
+
+class DataReferenceCredentialDto(msrest.serialization.Model):
+ """DataReferenceCredentialDto.
+
+ :ivar additional_properties: Unmatched properties from the message are deserialized to this
+ collection.
+ :vartype additional_properties: dict[str, any]
+ :ivar credential_type:
+ :vartype credential_type: str
+ """
+
+ _attribute_map = {
+ 'additional_properties': {'key': '', 'type': '{object}'},
+ 'credential_type': {'key': 'credentialType', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword additional_properties: Unmatched properties from the message are deserialized to this
+ collection.
+ :paramtype additional_properties: dict[str, any]
+ :keyword credential_type:
+ :paramtype credential_type: str
+ """
+ super(DataReferenceCredentialDto, self).__init__(**kwargs)
+ self.additional_properties = kwargs.get('additional_properties', None)
+ self.credential_type = kwargs.get('credential_type', None)
+
+
+class DataReferences(msrest.serialization.Model):
+ """DataReferences.
+
+ :ivar blob_references: Dictionary of :code:`<BlobReference>`.
+ :vartype blob_references: dict[str, ~azure.mgmt.machinelearningservices.models.BlobReference]
+ :ivar image_registry_references: Dictionary of :code:`<ImageReference>`.
+ :vartype image_registry_references: dict[str,
+ ~azure.mgmt.machinelearningservices.models.ImageReference]
+ """
+
+ _attribute_map = {
+ 'blob_references': {'key': 'blobReferences', 'type': '{BlobReference}'},
+ 'image_registry_references': {'key': 'imageRegistryReferences', 'type': '{ImageReference}'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword blob_references: Dictionary of :code:`<BlobReference>`.
+ :paramtype blob_references: dict[str, ~azure.mgmt.machinelearningservices.models.BlobReference]
+ :keyword image_registry_references: Dictionary of :code:`<ImageReference>`.
+ :paramtype image_registry_references: dict[str,
+ ~azure.mgmt.machinelearningservices.models.ImageReference]
+ """
+ super(DataReferences, self).__init__(**kwargs)
+ self.blob_references = kwargs.get('blob_references', None)
+ self.image_registry_references = kwargs.get('image_registry_references', None)
+
+
+class DataReferencesForConsumptionDto(msrest.serialization.Model):
+ """DataReferencesForConsumptionDto.
+
+ :ivar blob_references: Dictionary of :code:`<BlobReferenceForConsumptionDto>`.
+ :vartype blob_references: dict[str,
+ ~azure.mgmt.machinelearningservices.models.BlobReferenceForConsumptionDto]
+ :ivar image_registry_references: Dictionary of :code:`<ImageReferenceForConsumptionDto>`.
+ :vartype image_registry_references: dict[str,
+ ~azure.mgmt.machinelearningservices.models.ImageReferenceForConsumptionDto]
+ """
+
+ _attribute_map = {
+ 'blob_references': {'key': 'blobReferences', 'type': '{BlobReferenceForConsumptionDto}'},
+ 'image_registry_references': {'key': 'imageRegistryReferences', 'type': '{ImageReferenceForConsumptionDto}'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword blob_references: Dictionary of :code:`<BlobReferenceForConsumptionDto>`.
+ :paramtype blob_references: dict[str,
+ ~azure.mgmt.machinelearningservices.models.BlobReferenceForConsumptionDto]
+ :keyword image_registry_references: Dictionary of :code:`<ImageReferenceForConsumptionDto>`.
+ :paramtype image_registry_references: dict[str,
+ ~azure.mgmt.machinelearningservices.models.ImageReferenceForConsumptionDto]
+ """
+ super(DataReferencesForConsumptionDto, self).__init__(**kwargs)
+ self.blob_references = kwargs.get('blob_references', None)
+ self.image_registry_references = kwargs.get('image_registry_references', None)
+
+
+class DatasetReference(msrest.serialization.Model):
+ """DatasetReference.
+
+ :ivar name:
+ :vartype name: str
+ :ivar id:
+ :vartype id: str
+ """
+
+ _attribute_map = {
+ 'name': {'key': 'name', 'type': 'str'},
+ 'id': {'key': 'id', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword name:
+ :paramtype name: str
+ :keyword id:
+ :paramtype id: str
+ """
+ super(DatasetReference, self).__init__(**kwargs)
+ self.name = kwargs.get('name', None)
+ self.id = kwargs.get('id', None)
+
+
+class DependencyMapDto(msrest.serialization.Model):
+ """DependencyMapDto.
+
+ :ivar dependencies:
+ :vartype dependencies: list[~azure.mgmt.machinelearningservices.models.DependencyMapItemDto]
+ """
+
+ _attribute_map = {
+ 'dependencies': {'key': 'dependencies', 'type': '[DependencyMapItemDto]'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword dependencies:
+ :paramtype dependencies: list[~azure.mgmt.machinelearningservices.models.DependencyMapItemDto]
+ """
+ super(DependencyMapDto, self).__init__(**kwargs)
+ self.dependencies = kwargs.get('dependencies', None)
+
+
+class DependencyMapItemDto(msrest.serialization.Model):
+ """DependencyMapItemDto.
+
+ :ivar source_id:
+ :vartype source_id: str
+ :ivar destination_id:
+ :vartype destination_id: str
+ """
+
+ _attribute_map = {
+ 'source_id': {'key': 'sourceId', 'type': 'str'},
+ 'destination_id': {'key': 'destinationId', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword source_id:
+ :paramtype source_id: str
+ :keyword destination_id:
+ :paramtype destination_id: str
+ """
+ super(DependencyMapItemDto, self).__init__(**kwargs)
+ self.source_id = kwargs.get('source_id', None)
+ self.destination_id = kwargs.get('destination_id', None)
+
+
+class DependentAsset(msrest.serialization.Model):
+ """DependentAsset.
+
+ :ivar asset_id:
+ :vartype asset_id: str
+ """
+
+ _attribute_map = {
+ 'asset_id': {'key': 'assetId', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword asset_id:
+ :paramtype asset_id: str
+ """
+ super(DependentAsset, self).__init__(**kwargs)
+ self.asset_id = kwargs.get('asset_id', None)
+
+
+class DependentEntitiesDto(msrest.serialization.Model):
+ """DependentEntitiesDto.
+
+ :ivar asset_id:
+ :vartype asset_id: str
+ :ivar dependencies:
+ :vartype dependencies: list[~azure.mgmt.machinelearningservices.models.DependentAsset]
+ """
+
+ _attribute_map = {
+ 'asset_id': {'key': 'assetId', 'type': 'str'},
+ 'dependencies': {'key': 'dependencies', 'type': '[DependentAsset]'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword asset_id:
+ :paramtype asset_id: str
+ :keyword dependencies:
+ :paramtype dependencies: list[~azure.mgmt.machinelearningservices.models.DependentAsset]
+ """
+ super(DependentEntitiesDto, self).__init__(**kwargs)
+ self.asset_id = kwargs.get('asset_id', None)
+ self.dependencies = kwargs.get('dependencies', None)
+
+
+class ErrorResponse(msrest.serialization.Model):
+ """ErrorResponse.
+
+ :ivar code:
+ :vartype code: str
+ :ivar status_code:
+ :vartype status_code: int
+ :ivar message:
+ :vartype message: str
+ :ivar target:
+ :vartype target: str
+ :ivar details:
+ :vartype details: list[~azure.mgmt.machinelearningservices.models.InnerErrorDetails]
+ :ivar correlation: Dictionary of :code:`<string>`.
+ :vartype correlation: dict[str, str]
+ """
+
+ _attribute_map = {
+ 'code': {'key': 'code', 'type': 'str'},
+ 'status_code': {'key': 'statusCode', 'type': 'int'},
+ 'message': {'key': 'message', 'type': 'str'},
+ 'target': {'key': 'target', 'type': 'str'},
+ 'details': {'key': 'details', 'type': '[InnerErrorDetails]'},
+ 'correlation': {'key': 'correlation', 'type': '{str}'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword code:
+ :paramtype code: str
+ :keyword status_code:
+ :paramtype status_code: int
+ :keyword message:
+ :paramtype message: str
+ :keyword target:
+ :paramtype target: str
+ :keyword details:
+ :paramtype details: list[~azure.mgmt.machinelearningservices.models.InnerErrorDetails]
+ :keyword correlation: Dictionary of :code:`<string>`.
+ :paramtype correlation: dict[str, str]
+ """
+ super(ErrorResponse, self).__init__(**kwargs)
+ self.code = kwargs.get('code', None)
+ self.status_code = kwargs.get('status_code', None)
+ self.message = kwargs.get('message', None)
+ self.target = kwargs.get('target', None)
+ self.details = kwargs.get('details', None)
+ self.correlation = kwargs.get('correlation', None)
+
+
+class ExtensiveModel(msrest.serialization.Model):
+ """ExtensiveModel.
+
+ :ivar model:
+ :vartype model: ~azure.mgmt.machinelearningservices.models.Model
+ :ivar service_list:
+ :vartype service_list: list[~azure.mgmt.machinelearningservices.models.ServiceResponseBase]
+ :ivar asset_list:
+ :vartype asset_list: list[~azure.mgmt.machinelearningservices.models.Asset]
+ """
+
+ _attribute_map = {
+ 'model': {'key': 'Model', 'type': 'Model'},
+ 'service_list': {'key': 'ServiceList', 'type': '[ServiceResponseBase]'},
+ 'asset_list': {'key': 'AssetList', 'type': '[Asset]'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword model:
+ :paramtype model: ~azure.mgmt.machinelearningservices.models.Model
+ :keyword service_list:
+ :paramtype service_list: list[~azure.mgmt.machinelearningservices.models.ServiceResponseBase]
+ :keyword asset_list:
+ :paramtype asset_list: list[~azure.mgmt.machinelearningservices.models.Asset]
+ """
+ super(ExtensiveModel, self).__init__(**kwargs)
+ self.model = kwargs.get('model', None)
+ self.service_list = kwargs.get('service_list', None)
+ self.asset_list = kwargs.get('asset_list', None)
+
+
+class FeedIndexEntityDto(msrest.serialization.Model):
+ """FeedIndexEntityDto.
+
+ :ivar index_entity:
+ :vartype index_entity: ~azure.mgmt.machinelearningservices.models.IndexEntity
+ :ivar schema_id:
+ :vartype schema_id: str
+ :ivar entity_schema: Anything.
+ :vartype entity_schema: any
+ """
+
+ _attribute_map = {
+ 'index_entity': {'key': 'indexEntity', 'type': 'IndexEntity'},
+ 'schema_id': {'key': 'schemaId', 'type': 'str'},
+ 'entity_schema': {'key': 'entitySchema', 'type': 'object'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword index_entity:
+ :paramtype index_entity: ~azure.mgmt.machinelearningservices.models.IndexEntity
+ :keyword schema_id:
+ :paramtype schema_id: str
+ :keyword entity_schema: Anything.
+ :paramtype entity_schema: any
+ """
+ super(FeedIndexEntityDto, self).__init__(**kwargs)
+ self.index_entity = kwargs.get('index_entity', None)
+ self.schema_id = kwargs.get('schema_id', None)
+ self.entity_schema = kwargs.get('entity_schema', None)
+
+
+class FeedIndexEntityRequestDto(msrest.serialization.Model):
+ """FeedIndexEntityRequestDto.
+
+ :ivar feed_entity:
+ :vartype feed_entity: ~azure.mgmt.machinelearningservices.models.AssetDto
+ :ivar label_to_version_mapping: Dictionary of :code:`<string>`.
+ :vartype label_to_version_mapping: dict[str, str]
+ """
+
+ _attribute_map = {
+ 'feed_entity': {'key': 'feedEntity', 'type': 'AssetDto'},
+ 'label_to_version_mapping': {'key': 'labelToVersionMapping', 'type': '{str}'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword feed_entity:
+ :paramtype feed_entity: ~azure.mgmt.machinelearningservices.models.AssetDto
+ :keyword label_to_version_mapping: Dictionary of :code:`<string>`.
+ :paramtype label_to_version_mapping: dict[str, str]
+ """
+ super(FeedIndexEntityRequestDto, self).__init__(**kwargs)
+ self.feed_entity = kwargs.get('feed_entity', None)
+ self.label_to_version_mapping = kwargs.get('label_to_version_mapping', None)
+
+
+class ImageReference(msrest.serialization.Model):
+ """ImageReference.
+
+ :ivar image_registry_reference:
+ :vartype image_registry_reference: str
+ """
+
+ _attribute_map = {
+ 'image_registry_reference': {'key': 'imageRegistryReference', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword image_registry_reference:
+ :paramtype image_registry_reference: str
+ """
+ super(ImageReference, self).__init__(**kwargs)
+ self.image_registry_reference = kwargs.get('image_registry_reference', None)
+
+
+class ImageReferenceForConsumptionDto(msrest.serialization.Model):
+ """ImageReferenceForConsumptionDto.
+
+ :ivar image_registry_reference:
+ :vartype image_registry_reference: str
+ :ivar credential:
+ :vartype credential: ~azure.mgmt.machinelearningservices.models.DataReferenceCredentialDto
+ """
+
+ _attribute_map = {
+ 'image_registry_reference': {'key': 'imageRegistryReference', 'type': 'str'},
+ 'credential': {'key': 'credential', 'type': 'DataReferenceCredentialDto'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword image_registry_reference:
+ :paramtype image_registry_reference: str
+ :keyword credential:
+ :paramtype credential: ~azure.mgmt.machinelearningservices.models.DataReferenceCredentialDto
+ """
+ super(ImageReferenceForConsumptionDto, self).__init__(**kwargs)
+ self.image_registry_reference = kwargs.get('image_registry_reference', None)
+ self.credential = kwargs.get('credential', None)
+
+
+class IndexAnnotations(msrest.serialization.Model):
+ """IndexAnnotations.
+
+ :ivar additional_properties: Unmatched properties from the message are deserialized to this
+ collection.
+ :vartype additional_properties: dict[str, any]
+ :ivar archived:
+ :vartype archived: bool
+ :ivar tags: A set of tags. Dictionary of :code:`<string>`.
+ :vartype tags: dict[str, str]
+ """
+
+ _attribute_map = {
+ 'additional_properties': {'key': '', 'type': '{object}'},
+ 'archived': {'key': 'archived', 'type': 'bool'},
+ 'tags': {'key': 'tags', 'type': '{str}'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword additional_properties: Unmatched properties from the message are deserialized to this
+ collection.
+ :paramtype additional_properties: dict[str, any]
+ :keyword archived:
+ :paramtype archived: bool
+ :keyword tags: A set of tags. Dictionary of :code:`<string>`.
+ :paramtype tags: dict[str, str]
+ """
+ super(IndexAnnotations, self).__init__(**kwargs)
+ self.additional_properties = kwargs.get('additional_properties', None)
+ self.archived = kwargs.get('archived', None)
+ self.tags = kwargs.get('tags', None)
+
+
+class IndexEntity(msrest.serialization.Model):
+ """IndexEntity.
+
+ Variables are only populated by the server, and will be ignored when sending a request.
+
+ :ivar schema_id:
+ :vartype schema_id: str
+ :ivar entity_id:
+ :vartype entity_id: str
+ :ivar kind: Possible values include: "Invalid", "LineageRoot", "Versioned", "Unversioned".
+ :vartype kind: str or ~azure.mgmt.machinelearningservices.models.EntityKind
+ :ivar annotations:
+ :vartype annotations: ~azure.mgmt.machinelearningservices.models.IndexAnnotations
+ :ivar properties:
+ :vartype properties: ~azure.mgmt.machinelearningservices.models.IndexProperties
+ :ivar internal: Dictionary of :code:`<any>`.
+ :vartype internal: dict[str, any]
+ :ivar update_sequence:
+ :vartype update_sequence: long
+ :ivar type:
+ :vartype type: str
+ :ivar version:
+ :vartype version: str
+ :ivar entity_container_id:
+ :vartype entity_container_id: str
+ :ivar entity_object_id:
+ :vartype entity_object_id: str
+ :ivar resource_type:
+ :vartype resource_type: str
+ :ivar relationships:
+ :vartype relationships: list[~azure.mgmt.machinelearningservices.models.Relationship]
+ :ivar asset_id:
+ :vartype asset_id: str
+ """
+
+ _validation = {
+ 'version': {'readonly': True},
+ 'entity_container_id': {'readonly': True},
+ 'entity_object_id': {'readonly': True},
+ 'resource_type': {'readonly': True},
+ }
+
+ _attribute_map = {
+ 'schema_id': {'key': 'schemaId', 'type': 'str'},
+ 'entity_id': {'key': 'entityId', 'type': 'str'},
+ 'kind': {'key': 'kind', 'type': 'str'},
+ 'annotations': {'key': 'annotations', 'type': 'IndexAnnotations'},
+ 'properties': {'key': 'properties', 'type': 'IndexProperties'},
+ 'internal': {'key': 'internal', 'type': '{object}'},
+ 'update_sequence': {'key': 'updateSequence', 'type': 'long'},
+ 'type': {'key': 'type', 'type': 'str'},
+ 'version': {'key': 'version', 'type': 'str'},
+ 'entity_container_id': {'key': 'entityContainerId', 'type': 'str'},
+ 'entity_object_id': {'key': 'entityObjectId', 'type': 'str'},
+ 'resource_type': {'key': 'resourceType', 'type': 'str'},
+ 'relationships': {'key': 'relationships', 'type': '[Relationship]'},
+ 'asset_id': {'key': 'assetId', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword schema_id:
+ :paramtype schema_id: str
+ :keyword entity_id:
+ :paramtype entity_id: str
+ :keyword kind: Possible values include: "Invalid", "LineageRoot", "Versioned", "Unversioned".
+ :paramtype kind: str or ~azure.mgmt.machinelearningservices.models.EntityKind
+ :keyword annotations:
+ :paramtype annotations: ~azure.mgmt.machinelearningservices.models.IndexAnnotations
+ :keyword properties:
+ :paramtype properties: ~azure.mgmt.machinelearningservices.models.IndexProperties
+ :keyword internal: Dictionary of :code:`<any>`.
+ :paramtype internal: dict[str, any]
+ :keyword update_sequence:
+ :paramtype update_sequence: long
+ :keyword type:
+ :paramtype type: str
+ :keyword relationships:
+ :paramtype relationships: list[~azure.mgmt.machinelearningservices.models.Relationship]
+ :keyword asset_id:
+ :paramtype asset_id: str
+ """
+ super(IndexEntity, self).__init__(**kwargs)
+ self.schema_id = kwargs.get('schema_id', None)
+ self.entity_id = kwargs.get('entity_id', None)
+ self.kind = kwargs.get('kind', None)
+ self.annotations = kwargs.get('annotations', None)
+ self.properties = kwargs.get('properties', None)
+ self.internal = kwargs.get('internal', None)
+ self.update_sequence = kwargs.get('update_sequence', None)
+ self.type = kwargs.get('type', None)
+ self.version = None
+ self.entity_container_id = None
+ self.entity_object_id = None
+ self.resource_type = None
+ self.relationships = kwargs.get('relationships', None)
+ self.asset_id = kwargs.get('asset_id', None)
+
+
+class IndexProperties(msrest.serialization.Model):
+ """IndexProperties.
+
+ :ivar additional_properties: Unmatched properties from the message are deserialized to this
+ collection.
+ :vartype additional_properties: dict[str, any]
+ :ivar creation_context:
+ :vartype creation_context: ~azure.mgmt.machinelearningservices.models.CreationContext
+ """
+
+ _attribute_map = {
+ 'additional_properties': {'key': '', 'type': '{object}'},
+ 'creation_context': {'key': 'creationContext', 'type': 'CreationContext'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword additional_properties: Unmatched properties from the message are deserialized to this
+ collection.
+ :paramtype additional_properties: dict[str, any]
+ :keyword creation_context:
+ :paramtype creation_context: ~azure.mgmt.machinelearningservices.models.CreationContext
+ """
+ super(IndexProperties, self).__init__(**kwargs)
+ self.additional_properties = kwargs.get('additional_properties', None)
+ self.creation_context = kwargs.get('creation_context', None)
+
+
+class InnerErrorDetails(msrest.serialization.Model):
+ """InnerErrorDetails.
+
+ :ivar code:
+ :vartype code: str
+ :ivar message:
+ :vartype message: str
+ :ivar target:
+ :vartype target: str
+ """
+
+ _attribute_map = {
+ 'code': {'key': 'code', 'type': 'str'},
+ 'message': {'key': 'message', 'type': 'str'},
+ 'target': {'key': 'target', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword code:
+ :paramtype code: str
+ :keyword message:
+ :paramtype message: str
+ :keyword target:
+ :paramtype target: str
+ """
+ super(InnerErrorDetails, self).__init__(**kwargs)
+ self.code = kwargs.get('code', None)
+ self.message = kwargs.get('message', None)
+ self.target = kwargs.get('target', None)
+
+
+class IntellectualPropertyPublisherInformation(msrest.serialization.Model):
+ """IntellectualPropertyPublisherInformation.
+
+ :ivar intellectual_property_publisher:
+ :vartype intellectual_property_publisher: str
+ """
+
+ _attribute_map = {
+ 'intellectual_property_publisher': {'key': 'intellectualPropertyPublisher', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword intellectual_property_publisher:
+ :paramtype intellectual_property_publisher: str
+ """
+ super(IntellectualPropertyPublisherInformation, self).__init__(**kwargs)
+ self.intellectual_property_publisher = kwargs.get('intellectual_property_publisher', None)
+
+
+class ListModelsRequest(msrest.serialization.Model):
+ """ListModelsRequest.
+
+ :ivar name:
+ :vartype name: str
+ :ivar tag:
+ :vartype tag: str
+ :ivar version:
+ :vartype version: str
+ :ivar framework:
+ :vartype framework: str
+ :ivar description:
+ :vartype description: str
+ :ivar count:
+ :vartype count: int
+ :ivar offset:
+ :vartype offset: int
+ :ivar skip_token:
+ :vartype skip_token: str
+ :ivar tags: A set of tags.
+ :vartype tags: str
+ :ivar properties:
+ :vartype properties: str
+ :ivar run_id:
+ :vartype run_id: str
+ :ivar dataset_id:
+ :vartype dataset_id: str
+ :ivar order_by: Possible values include: "CreatedAtDesc", "CreatedAtAsc", "UpdatedAtDesc",
+ "UpdatedAtAsc".
+ :vartype order_by: str or ~azure.mgmt.machinelearningservices.models.OrderString
+ :ivar latest_version_only:
+ :vartype latest_version_only: bool
+ :ivar modified_after:
+ :vartype modified_after: ~datetime.datetime
+ :ivar modified_before:
+ :vartype modified_before: ~datetime.datetime
+ :ivar list_view_type: Possible values include: "ActiveOnly", "ArchivedOnly", "All".
+ :vartype list_view_type: str or ~azure.mgmt.machinelearningservices.models.ListViewType
+ """
+
+ _attribute_map = {
+ 'name': {'key': 'name', 'type': 'str'},
+ 'tag': {'key': 'tag', 'type': 'str'},
+ 'version': {'key': 'version', 'type': 'str'},
+ 'framework': {'key': 'framework', 'type': 'str'},
+ 'description': {'key': 'description', 'type': 'str'},
+ 'count': {'key': 'count', 'type': 'int'},
+ 'offset': {'key': 'offset', 'type': 'int'},
+ 'skip_token': {'key': 'skipToken', 'type': 'str'},
+ 'tags': {'key': 'tags', 'type': 'str'},
+ 'properties': {'key': 'properties', 'type': 'str'},
+ 'run_id': {'key': 'runId', 'type': 'str'},
+ 'dataset_id': {'key': 'datasetId', 'type': 'str'},
+ 'order_by': {'key': 'orderBy', 'type': 'str'},
+ 'latest_version_only': {'key': 'latestVersionOnly', 'type': 'bool'},
+ 'modified_after': {'key': 'modifiedAfter', 'type': 'iso-8601'},
+ 'modified_before': {'key': 'modifiedBefore', 'type': 'iso-8601'},
+ 'list_view_type': {'key': 'listViewType', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword name:
+ :paramtype name: str
+ :keyword tag:
+ :paramtype tag: str
+ :keyword version:
+ :paramtype version: str
+ :keyword framework:
+ :paramtype framework: str
+ :keyword description:
+ :paramtype description: str
+ :keyword count:
+ :paramtype count: int
+ :keyword offset:
+ :paramtype offset: int
+ :keyword skip_token:
+ :paramtype skip_token: str
+ :keyword tags: A set of tags.
+ :paramtype tags: str
+ :keyword properties:
+ :paramtype properties: str
+ :keyword run_id:
+ :paramtype run_id: str
+ :keyword dataset_id:
+ :paramtype dataset_id: str
+ :keyword order_by: Possible values include: "CreatedAtDesc", "CreatedAtAsc", "UpdatedAtDesc",
+ "UpdatedAtAsc".
+ :paramtype order_by: str or ~azure.mgmt.machinelearningservices.models.OrderString
+ :keyword latest_version_only:
+ :paramtype latest_version_only: bool
+ :keyword modified_after:
+ :paramtype modified_after: ~datetime.datetime
+ :keyword modified_before:
+ :paramtype modified_before: ~datetime.datetime
+ :keyword list_view_type: Possible values include: "ActiveOnly", "ArchivedOnly", "All".
+ :paramtype list_view_type: str or ~azure.mgmt.machinelearningservices.models.ListViewType
+ """
+ super(ListModelsRequest, self).__init__(**kwargs)
+ self.name = kwargs.get('name', None)
+ self.tag = kwargs.get('tag', None)
+ self.version = kwargs.get('version', None)
+ self.framework = kwargs.get('framework', None)
+ self.description = kwargs.get('description', None)
+ self.count = kwargs.get('count', None)
+ self.offset = kwargs.get('offset', None)
+ self.skip_token = kwargs.get('skip_token', None)
+ self.tags = kwargs.get('tags', None)
+ self.properties = kwargs.get('properties', None)
+ self.run_id = kwargs.get('run_id', None)
+ self.dataset_id = kwargs.get('dataset_id', None)
+ self.order_by = kwargs.get('order_by', None)
+ self.latest_version_only = kwargs.get('latest_version_only', None)
+ self.modified_after = kwargs.get('modified_after', None)
+ self.modified_before = kwargs.get('modified_before', None)
+ self.list_view_type = kwargs.get('list_view_type', None)
+
+
+class Model(msrest.serialization.Model):
+ """Model.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar id:
+ :vartype id: str
+ :ivar name: Required.
+ :vartype name: str
+ :ivar framework:
+ :vartype framework: str
+ :ivar framework_version:
+ :vartype framework_version: str
+ :ivar version:
+ :vartype version: long
+ :ivar tags: A set of tags.
+ :vartype tags: list[str]
+ :ivar datasets:
+ :vartype datasets: list[~azure.mgmt.machinelearningservices.models.DatasetReference]
+ :ivar url:
+ :vartype url: str
+ :ivar mime_type: Required.
+ :vartype mime_type: str
+ :ivar description:
+ :vartype description: str
+ :ivar created_time:
+ :vartype created_time: ~datetime.datetime
+ :ivar modified_time:
+ :vartype modified_time: ~datetime.datetime
+ :ivar unpack:
+ :vartype unpack: bool
+ :ivar parent_model_id:
+ :vartype parent_model_id: str
+ :ivar run_id:
+ :vartype run_id: str
+ :ivar experiment_name:
+ :vartype experiment_name: str
+ :ivar kv_tags: Dictionary of :code:`<string>`.
+ :vartype kv_tags: dict[str, str]
+ :ivar properties: Dictionary of :code:`<string>`.
+ :vartype properties: dict[str, str]
+ :ivar derived_model_ids:
+ :vartype derived_model_ids: list[str]
+ :ivar inputs_schema:
+ :vartype inputs_schema: list[~azure.mgmt.machinelearningservices.models.ModelSchema]
+ :ivar outputs_schema:
+ :vartype outputs_schema: list[~azure.mgmt.machinelearningservices.models.ModelSchema]
+ :ivar sample_input_data:
+ :vartype sample_input_data: str
+ :ivar sample_output_data:
+ :vartype sample_output_data: str
+ :ivar resource_requirements:
+ :vartype resource_requirements:
+ ~azure.mgmt.machinelearningservices.models.ContainerResourceRequirements
+ :ivar created_by:
+ :vartype created_by: ~azure.mgmt.machinelearningservices.models.User
+ :ivar modified_by:
+ :vartype modified_by: ~azure.mgmt.machinelearningservices.models.User
+ :ivar flavors: Dictionary of
+ <components·8urbg9·schemas·model·properties·flavors·additionalproperties>.
+ :vartype flavors: dict[str, dict[str, str]]
+ :ivar model_format: Possible values include: "CUSTOM", "MLFLOW", "TRITON", "PRESETS".
+ :vartype model_format: str or ~azure.mgmt.machinelearningservices.models.ModelFormatEnum
+ :ivar stage:
+ :vartype stage: str
+ :ivar model_container_id:
+ :vartype model_container_id: str
+ :ivar mms_id:
+ :vartype mms_id: str
+ :ivar default_deployment_settings:
+ :vartype default_deployment_settings:
+ ~azure.mgmt.machinelearningservices.models.ModelDeploymentSettings
+ :ivar is_anonymous:
+ :vartype is_anonymous: bool
+ :ivar is_archived:
+ :vartype is_archived: bool
+ :ivar is_registered:
+ :vartype is_registered: bool
+ :ivar data_path:
+ :vartype data_path: str
+ :ivar model_type:
+ :vartype model_type: str
+ :ivar asset_id:
+ :vartype asset_id: str
+ """
+
+ _validation = {
+ 'name': {'required': True},
+ 'mime_type': {'required': True},
+ }
+
+ _attribute_map = {
+ 'id': {'key': 'id', 'type': 'str'},
+ 'name': {'key': 'name', 'type': 'str'},
+ 'framework': {'key': 'framework', 'type': 'str'},
+ 'framework_version': {'key': 'frameworkVersion', 'type': 'str'},
+ 'version': {'key': 'version', 'type': 'long'},
+ 'tags': {'key': 'tags', 'type': '[str]'},
+ 'datasets': {'key': 'datasets', 'type': '[DatasetReference]'},
+ 'url': {'key': 'url', 'type': 'str'},
+ 'mime_type': {'key': 'mimeType', 'type': 'str'},
+ 'description': {'key': 'description', 'type': 'str'},
+ 'created_time': {'key': 'createdTime', 'type': 'iso-8601'},
+ 'modified_time': {'key': 'modifiedTime', 'type': 'iso-8601'},
+ 'unpack': {'key': 'unpack', 'type': 'bool'},
+ 'parent_model_id': {'key': 'parentModelId', 'type': 'str'},
+ 'run_id': {'key': 'runId', 'type': 'str'},
+ 'experiment_name': {'key': 'experimentName', 'type': 'str'},
+ 'kv_tags': {'key': 'kvTags', 'type': '{str}'},
+ 'properties': {'key': 'properties', 'type': '{str}'},
+ 'derived_model_ids': {'key': 'derivedModelIds', 'type': '[str]'},
+ 'inputs_schema': {'key': 'inputsSchema', 'type': '[ModelSchema]'},
+ 'outputs_schema': {'key': 'outputsSchema', 'type': '[ModelSchema]'},
+ 'sample_input_data': {'key': 'sampleInputData', 'type': 'str'},
+ 'sample_output_data': {'key': 'sampleOutputData', 'type': 'str'},
+ 'resource_requirements': {'key': 'resourceRequirements', 'type': 'ContainerResourceRequirements'},
+ 'created_by': {'key': 'createdBy', 'type': 'User'},
+ 'modified_by': {'key': 'modifiedBy', 'type': 'User'},
+ 'flavors': {'key': 'flavors', 'type': '{{str}}'},
+ 'model_format': {'key': 'modelFormat', 'type': 'str'},
+ 'stage': {'key': 'stage', 'type': 'str'},
+ 'model_container_id': {'key': 'modelContainerId', 'type': 'str'},
+ 'mms_id': {'key': 'mmsId', 'type': 'str'},
+ 'default_deployment_settings': {'key': 'defaultDeploymentSettings', 'type': 'ModelDeploymentSettings'},
+ 'is_anonymous': {'key': 'isAnonymous', 'type': 'bool'},
+ 'is_archived': {'key': 'isArchived', 'type': 'bool'},
+ 'is_registered': {'key': 'isRegistered', 'type': 'bool'},
+ 'data_path': {'key': 'dataPath', 'type': 'str'},
+ 'model_type': {'key': 'modelType', 'type': 'str'},
+ 'asset_id': {'key': 'assetId', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword id:
+ :paramtype id: str
+ :keyword name: Required.
+ :paramtype name: str
+ :keyword framework:
+ :paramtype framework: str
+ :keyword framework_version:
+ :paramtype framework_version: str
+ :keyword version:
+ :paramtype version: long
+ :keyword tags: A set of tags.
+ :paramtype tags: list[str]
+ :keyword datasets:
+ :paramtype datasets: list[~azure.mgmt.machinelearningservices.models.DatasetReference]
+ :keyword url:
+ :paramtype url: str
+ :keyword mime_type: Required.
+ :paramtype mime_type: str
+ :keyword description:
+ :paramtype description: str
+ :keyword created_time:
+ :paramtype created_time: ~datetime.datetime
+ :keyword modified_time:
+ :paramtype modified_time: ~datetime.datetime
+ :keyword unpack:
+ :paramtype unpack: bool
+ :keyword parent_model_id:
+ :paramtype parent_model_id: str
+ :keyword run_id:
+ :paramtype run_id: str
+ :keyword experiment_name:
+ :paramtype experiment_name: str
+ :keyword kv_tags: Dictionary of :code:`<string>`.
+ :paramtype kv_tags: dict[str, str]
+ :keyword properties: Dictionary of :code:`<string>`.
+ :paramtype properties: dict[str, str]
+ :keyword derived_model_ids:
+ :paramtype derived_model_ids: list[str]
+ :keyword inputs_schema:
+ :paramtype inputs_schema: list[~azure.mgmt.machinelearningservices.models.ModelSchema]
+ :keyword outputs_schema:
+ :paramtype outputs_schema: list[~azure.mgmt.machinelearningservices.models.ModelSchema]
+ :keyword sample_input_data:
+ :paramtype sample_input_data: str
+ :keyword sample_output_data:
+ :paramtype sample_output_data: str
+ :keyword resource_requirements:
+ :paramtype resource_requirements:
+ ~azure.mgmt.machinelearningservices.models.ContainerResourceRequirements
+ :keyword created_by:
+ :paramtype created_by: ~azure.mgmt.machinelearningservices.models.User
+ :keyword modified_by:
+ :paramtype modified_by: ~azure.mgmt.machinelearningservices.models.User
+ :keyword flavors: Dictionary of
+ <components·8urbg9·schemas·model·properties·flavors·additionalproperties>.
+ :paramtype flavors: dict[str, dict[str, str]]
+ :keyword model_format: Possible values include: "CUSTOM", "MLFLOW", "TRITON", "PRESETS".
+ :paramtype model_format: str or ~azure.mgmt.machinelearningservices.models.ModelFormatEnum
+ :keyword stage:
+ :paramtype stage: str
+ :keyword model_container_id:
+ :paramtype model_container_id: str
+ :keyword mms_id:
+ :paramtype mms_id: str
+ :keyword default_deployment_settings:
+ :paramtype default_deployment_settings:
+ ~azure.mgmt.machinelearningservices.models.ModelDeploymentSettings
+ :keyword is_anonymous:
+ :paramtype is_anonymous: bool
+ :keyword is_archived:
+ :paramtype is_archived: bool
+ :keyword is_registered:
+ :paramtype is_registered: bool
+ :keyword data_path:
+ :paramtype data_path: str
+ :keyword model_type:
+ :paramtype model_type: str
+ :keyword asset_id:
+ :paramtype asset_id: str
+ """
+ super(Model, self).__init__(**kwargs)
+ self.id = kwargs.get('id', None)
+ self.name = kwargs['name']
+ self.framework = kwargs.get('framework', None)
+ self.framework_version = kwargs.get('framework_version', None)
+ self.version = kwargs.get('version', None)
+ self.tags = kwargs.get('tags', None)
+ self.datasets = kwargs.get('datasets', None)
+ self.url = kwargs.get('url', None)
+ self.mime_type = kwargs['mime_type']
+ self.description = kwargs.get('description', None)
+ self.created_time = kwargs.get('created_time', None)
+ self.modified_time = kwargs.get('modified_time', None)
+ self.unpack = kwargs.get('unpack', None)
+ self.parent_model_id = kwargs.get('parent_model_id', None)
+ self.run_id = kwargs.get('run_id', None)
+ self.experiment_name = kwargs.get('experiment_name', None)
+ self.kv_tags = kwargs.get('kv_tags', None)
+ self.properties = kwargs.get('properties', None)
+ self.derived_model_ids = kwargs.get('derived_model_ids', None)
+ self.inputs_schema = kwargs.get('inputs_schema', None)
+ self.outputs_schema = kwargs.get('outputs_schema', None)
+ self.sample_input_data = kwargs.get('sample_input_data', None)
+ self.sample_output_data = kwargs.get('sample_output_data', None)
+ self.resource_requirements = kwargs.get('resource_requirements', None)
+ self.created_by = kwargs.get('created_by', None)
+ self.modified_by = kwargs.get('modified_by', None)
+ self.flavors = kwargs.get('flavors', None)
+ self.model_format = kwargs.get('model_format', None)
+ self.stage = kwargs.get('stage', None)
+ self.model_container_id = kwargs.get('model_container_id', None)
+ self.mms_id = kwargs.get('mms_id', None)
+ self.default_deployment_settings = kwargs.get('default_deployment_settings', None)
+ self.is_anonymous = kwargs.get('is_anonymous', None)
+ self.is_archived = kwargs.get('is_archived', None)
+ self.is_registered = kwargs.get('is_registered', None)
+ self.data_path = kwargs.get('data_path', None)
+ self.model_type = kwargs.get('model_type', None)
+ self.asset_id = kwargs.get('asset_id', None)
+
+
+class ModelBatchDto(msrest.serialization.Model):
+ """ModelBatchDto.
+
+ :ivar model_ids:
+ :vartype model_ids: list[str]
+ """
+
+ _attribute_map = {
+ 'model_ids': {'key': 'modelIds', 'type': '[str]'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword model_ids:
+ :paramtype model_ids: list[str]
+ """
+ super(ModelBatchDto, self).__init__(**kwargs)
+ self.model_ids = kwargs.get('model_ids', None)
+
+
+class ModelBatchResponseDto(msrest.serialization.Model):
+ """ModelBatchResponseDto.
+
+ :ivar models: Dictionary of :code:`<Model>`.
+ :vartype models: dict[str, ~azure.mgmt.machinelearningservices.models.Model]
+ """
+
+ _attribute_map = {
+ 'models': {'key': 'models', 'type': '{Model}'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword models: Dictionary of :code:`<Model>`.
+ :paramtype models: dict[str, ~azure.mgmt.machinelearningservices.models.Model]
+ """
+ super(ModelBatchResponseDto, self).__init__(**kwargs)
+ self.models = kwargs.get('models', None)
+
+
+class ModelContainerRequest(msrest.serialization.Model):
+ """ModelContainerRequest.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar name: Required.
+ :vartype name: str
+ :ivar description:
+ :vartype description: str
+ :ivar kv_tags: Dictionary of :code:`<string>`.
+ :vartype kv_tags: dict[str, str]
+ :ivar is_archived:
+ :vartype is_archived: bool
+ :ivar is_registered:
+ :vartype is_registered: bool
+ """
+
+ _validation = {
+ 'name': {'required': True},
+ }
+
+ _attribute_map = {
+ 'name': {'key': 'name', 'type': 'str'},
+ 'description': {'key': 'description', 'type': 'str'},
+ 'kv_tags': {'key': 'kvTags', 'type': '{str}'},
+ 'is_archived': {'key': 'isArchived', 'type': 'bool'},
+ 'is_registered': {'key': 'isRegistered', 'type': 'bool'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword name: Required.
+ :paramtype name: str
+ :keyword description:
+ :paramtype description: str
+ :keyword kv_tags: Dictionary of :code:`<string>`.
+ :paramtype kv_tags: dict[str, str]
+ :keyword is_archived:
+ :paramtype is_archived: bool
+ :keyword is_registered:
+ :paramtype is_registered: bool
+ """
+ super(ModelContainerRequest, self).__init__(**kwargs)
+ self.name = kwargs['name']
+ self.description = kwargs.get('description', None)
+ self.kv_tags = kwargs.get('kv_tags', None)
+ self.is_archived = kwargs.get('is_archived', None)
+ self.is_registered = kwargs.get('is_registered', None)
+
+
+class ModelDeploymentSettings(msrest.serialization.Model):
+ """ModelDeploymentSettings.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar model_format: Required. Possible values include: "CUSTOM", "MLFLOW", "TRITON", "PRESETS".
+ :vartype model_format: str or ~azure.mgmt.machinelearningservices.models.ModelFormatEnum
+ :ivar model_name:
+ :vartype model_name: str
+ :ivar model_version:
+ :vartype model_version: str
+ :ivar model_type:
+ :vartype model_type: str
+ """
+
+ _validation = {
+ 'model_format': {'required': True},
+ }
+
+ _attribute_map = {
+ 'model_format': {'key': 'modelFormat', 'type': 'str'},
+ 'model_name': {'key': 'ModelName', 'type': 'str'},
+ 'model_version': {'key': 'ModelVersion', 'type': 'str'},
+ 'model_type': {'key': 'ModelType', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword model_format: Required. Possible values include: "CUSTOM", "MLFLOW", "TRITON",
+ "PRESETS".
+ :paramtype model_format: str or ~azure.mgmt.machinelearningservices.models.ModelFormatEnum
+ :keyword model_name:
+ :paramtype model_name: str
+ :keyword model_version:
+ :paramtype model_version: str
+ :keyword model_type:
+ :paramtype model_type: str
+ """
+ super(ModelDeploymentSettings, self).__init__(**kwargs)
+ self.model_format = kwargs['model_format']
+ self.model_name = kwargs.get('model_name', None)
+ self.model_version = kwargs.get('model_version', None)
+ self.model_type = kwargs.get('model_type', None)
+
+
+class ModelListModelsRequestPagedResponse(msrest.serialization.Model):
+ """ModelListModelsRequestPagedResponse.
+
+ :ivar value:
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.Model]
+ :ivar next_link:
+ :vartype next_link: str
+ :ivar continuation_token:
+ :vartype continuation_token: str
+ :ivar next_request:
+ :vartype next_request: ~azure.mgmt.machinelearningservices.models.ListModelsRequest
+ """
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': '[Model]'},
+ 'next_link': {'key': 'nextLink', 'type': 'str'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'next_request': {'key': 'nextRequest', 'type': 'ListModelsRequest'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword value:
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.Model]
+ :keyword next_link:
+ :paramtype next_link: str
+ :keyword continuation_token:
+ :paramtype continuation_token: str
+ :keyword next_request:
+ :paramtype next_request: ~azure.mgmt.machinelearningservices.models.ListModelsRequest
+ """
+ super(ModelListModelsRequestPagedResponse, self).__init__(**kwargs)
+ self.value = kwargs.get('value', None)
+ self.next_link = kwargs.get('next_link', None)
+ self.continuation_token = kwargs.get('continuation_token', None)
+ self.next_request = kwargs.get('next_request', None)
+
+
+class ModelPagedResponse(msrest.serialization.Model):
+ """ModelPagedResponse.
+
+ :ivar value:
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.Model]
+ :ivar continuation_token:
+ :vartype continuation_token: str
+ :ivar next_link:
+ :vartype next_link: str
+ """
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': '[Model]'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'next_link': {'key': 'nextLink', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword value:
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.Model]
+ :keyword continuation_token:
+ :paramtype continuation_token: str
+ :keyword next_link:
+ :paramtype next_link: str
+ """
+ super(ModelPagedResponse, self).__init__(**kwargs)
+ self.value = kwargs.get('value', None)
+ self.continuation_token = kwargs.get('continuation_token', None)
+ self.next_link = kwargs.get('next_link', None)
+
+
+class ModelPathResponseDto(msrest.serialization.Model):
+ """ModelPathResponseDto.
+
+ :ivar path:
+ :vartype path: str
+ :ivar type:
+ :vartype type: str
+ """
+
+ _attribute_map = {
+ 'path': {'key': 'path', 'type': 'str'},
+ 'type': {'key': 'type', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword path:
+ :paramtype path: str
+ :keyword type:
+ :paramtype type: str
+ """
+ super(ModelPathResponseDto, self).__init__(**kwargs)
+ self.path = kwargs.get('path', None)
+ self.type = kwargs.get('type', None)
+
+
+class ModelSchema(msrest.serialization.Model):
+ """ModelSchema.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar name: Required.
+ :vartype name: str
+ :ivar data_type: Possible values include: "undefined", "bool", "uint8", "uint16", "uint32",
+ "uint64", "int8", "int16", "int32", "int64", "float16", "float32", "float64", "bfloat16",
+ "complex64", "complex128", "string".
+ :vartype data_type: str or ~azure.mgmt.machinelearningservices.models.ModelSchemaDataType
+ :ivar shape:
+ :vartype shape: list[int]
+ """
+
+ _validation = {
+ 'name': {'required': True},
+ }
+
+ _attribute_map = {
+ 'name': {'key': 'name', 'type': 'str'},
+ 'data_type': {'key': 'dataType', 'type': 'str'},
+ 'shape': {'key': 'shape', 'type': '[int]'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword name: Required.
+ :paramtype name: str
+ :keyword data_type: Possible values include: "undefined", "bool", "uint8", "uint16", "uint32",
+ "uint64", "int8", "int16", "int32", "int64", "float16", "float32", "float64", "bfloat16",
+ "complex64", "complex128", "string".
+ :paramtype data_type: str or ~azure.mgmt.machinelearningservices.models.ModelSchemaDataType
+ :keyword shape:
+ :paramtype shape: list[int]
+ """
+ super(ModelSchema, self).__init__(**kwargs)
+ self.name = kwargs['name']
+ self.data_type = kwargs.get('data_type', None)
+ self.shape = kwargs.get('shape', None)
+
+
+class ModelSettingsIdentifiers(msrest.serialization.Model):
+ """ModelSettingsIdentifiers.
+
+ :ivar model_id:
+ :vartype model_id: str
+ :ivar engine_id:
+ :vartype engine_id: str
+ """
+
+ _attribute_map = {
+ 'model_id': {'key': 'modelId', 'type': 'str'},
+ 'engine_id': {'key': 'engineId', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword model_id:
+ :paramtype model_id: str
+ :keyword engine_id:
+ :paramtype engine_id: str
+ """
+ super(ModelSettingsIdentifiers, self).__init__(**kwargs)
+ self.model_id = kwargs.get('model_id', None)
+ self.engine_id = kwargs.get('engine_id', None)
+
+
+class Operation(msrest.serialization.Model):
+ """Operation.
+
+ :ivar value: Anything.
+ :vartype value: any
+ :ivar path:
+ :vartype path: str
+ :ivar op:
+ :vartype op: str
+ :ivar from_property:
+ :vartype from_property: str
+ """
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': 'object'},
+ 'path': {'key': 'path', 'type': 'str'},
+ 'op': {'key': 'op', 'type': 'str'},
+ 'from_property': {'key': 'from', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword value: Anything.
+ :paramtype value: any
+ :keyword path:
+ :paramtype path: str
+ :keyword op:
+ :paramtype op: str
+ :keyword from_property:
+ :paramtype from_property: str
+ """
+ super(Operation, self).__init__(**kwargs)
+ self.value = kwargs.get('value', None)
+ self.path = kwargs.get('path', None)
+ self.op = kwargs.get('op', None)
+ self.from_property = kwargs.get('from_property', None)
+
+
+class ProviderFeedEntityRequestDto(msrest.serialization.Model):
+ """ProviderFeedEntityRequestDto.
+
+ :ivar source_and_target_asset_ids:
+ :vartype source_and_target_asset_ids:
+ ~azure.mgmt.machinelearningservices.models.DependencyMapItemDto
+ :ivar dependency_map_dto:
+ :vartype dependency_map_dto: ~azure.mgmt.machinelearningservices.models.DependencyMapDto
+ :ivar label_to_version_mapping: Dictionary of :code:`<string>`.
+ :vartype label_to_version_mapping: dict[str, str]
+ """
+
+ _attribute_map = {
+ 'source_and_target_asset_ids': {'key': 'sourceAndTargetAssetIds', 'type': 'DependencyMapItemDto'},
+ 'dependency_map_dto': {'key': 'dependencyMapDto', 'type': 'DependencyMapDto'},
+ 'label_to_version_mapping': {'key': 'labelToVersionMapping', 'type': '{str}'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword source_and_target_asset_ids:
+ :paramtype source_and_target_asset_ids:
+ ~azure.mgmt.machinelearningservices.models.DependencyMapItemDto
+ :keyword dependency_map_dto:
+ :paramtype dependency_map_dto: ~azure.mgmt.machinelearningservices.models.DependencyMapDto
+ :keyword label_to_version_mapping: Dictionary of :code:`<string>`.
+ :paramtype label_to_version_mapping: dict[str, str]
+ """
+ super(ProviderFeedEntityRequestDto, self).__init__(**kwargs)
+ self.source_and_target_asset_ids = kwargs.get('source_and_target_asset_ids', None)
+ self.dependency_map_dto = kwargs.get('dependency_map_dto', None)
+ self.label_to_version_mapping = kwargs.get('label_to_version_mapping', None)
+
+
+class Relationship(msrest.serialization.Model):
+ """Relationship.
+
+ Variables are only populated by the server, and will be ignored when sending a request.
+
+ :ivar additional_properties: Unmatched properties from the message are deserialized to this
+ collection.
+ :vartype additional_properties: dict[str, any]
+ :ivar relation_type:
+ :vartype relation_type: str
+ :ivar target_entity_id:
+ :vartype target_entity_id: str
+ :ivar asset_id:
+ :vartype asset_id: str
+ :ivar entity_type:
+ :vartype entity_type: str
+ :ivar direction:
+ :vartype direction: str
+ :ivar entity_container_id:
+ :vartype entity_container_id: str
+ """
+
+ _validation = {
+ 'entity_type': {'readonly': True},
+ 'entity_container_id': {'readonly': True},
+ }
+
+ _attribute_map = {
+ 'additional_properties': {'key': '', 'type': '{object}'},
+ 'relation_type': {'key': 'relationType', 'type': 'str'},
+ 'target_entity_id': {'key': 'targetEntityId', 'type': 'str'},
+ 'asset_id': {'key': 'assetId', 'type': 'str'},
+ 'entity_type': {'key': 'entityType', 'type': 'str'},
+ 'direction': {'key': 'direction', 'type': 'str'},
+ 'entity_container_id': {'key': 'entityContainerId', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword additional_properties: Unmatched properties from the message are deserialized to this
+ collection.
+ :paramtype additional_properties: dict[str, any]
+ :keyword relation_type:
+ :paramtype relation_type: str
+ :keyword target_entity_id:
+ :paramtype target_entity_id: str
+ :keyword asset_id:
+ :paramtype asset_id: str
+ :keyword direction:
+ :paramtype direction: str
+ """
+ super(Relationship, self).__init__(**kwargs)
+ self.additional_properties = kwargs.get('additional_properties', None)
+ self.relation_type = kwargs.get('relation_type', None)
+ self.target_entity_id = kwargs.get('target_entity_id', None)
+ self.asset_id = kwargs.get('asset_id', None)
+ self.entity_type = None
+ self.direction = kwargs.get('direction', None)
+ self.entity_container_id = None
+
+
+class ServiceResponseBase(msrest.serialization.Model):
+ """ServiceResponseBase.
+
+ :ivar id:
+ :vartype id: str
+ :ivar name:
+ :vartype name: str
+ :ivar description:
+ :vartype description: str
+ :ivar tags: A set of tags.
+ :vartype tags: list[str]
+ :ivar kv_tags: Dictionary of :code:`<string>`.
+ :vartype kv_tags: dict[str, str]
+ :ivar properties: Dictionary of :code:`<string>`.
+ :vartype properties: dict[str, str]
+ :ivar operation_id:
+ :vartype operation_id: str
+ :ivar state: Possible values include: "Transitioning", "Healthy", "Unhealthy", "Failed",
+ "Unschedulable".
+ :vartype state: str or ~azure.mgmt.machinelearningservices.models.WebServiceState
+ :ivar created_time:
+ :vartype created_time: ~datetime.datetime
+ :ivar updated_time:
+ :vartype updated_time: ~datetime.datetime
+ :ivar error:
+ :vartype error: ~azure.mgmt.machinelearningservices.models.ErrorResponse
+ :ivar compute_type: Possible values include: "ACS", "FPGA", "ACI", "AKS", "AMLCOMPUTE", "IOT",
+ "MIR", "AKSENDPOINT", "MIRSINGLEMODEL", "MIRAMLCOMPUTE", "MIRGA", "AMLARC", "BATCHAMLCOMPUTE",
+ "UNKNOWN".
+ :vartype compute_type: str or ~azure.mgmt.machinelearningservices.models.ComputeEnvironmentType
+ :ivar deployment_type: Possible values include: "GRPCRealtimeEndpoint", "HttpRealtimeEndpoint",
+ "Batch".
+ :vartype deployment_type: str or ~azure.mgmt.machinelearningservices.models.DeploymentType
+ :ivar created_by:
+ :vartype created_by: ~azure.mgmt.machinelearningservices.models.User
+ :ivar endpoint_name:
+ :vartype endpoint_name: str
+ """
+
+ _attribute_map = {
+ 'id': {'key': 'id', 'type': 'str'},
+ 'name': {'key': 'name', 'type': 'str'},
+ 'description': {'key': 'description', 'type': 'str'},
+ 'tags': {'key': 'tags', 'type': '[str]'},
+ 'kv_tags': {'key': 'kvTags', 'type': '{str}'},
+ 'properties': {'key': 'properties', 'type': '{str}'},
+ 'operation_id': {'key': 'operationId', 'type': 'str'},
+ 'state': {'key': 'state', 'type': 'str'},
+ 'created_time': {'key': 'createdTime', 'type': 'iso-8601'},
+ 'updated_time': {'key': 'updatedTime', 'type': 'iso-8601'},
+ 'error': {'key': 'error', 'type': 'ErrorResponse'},
+ 'compute_type': {'key': 'computeType', 'type': 'str'},
+ 'deployment_type': {'key': 'deploymentType', 'type': 'str'},
+ 'created_by': {'key': 'createdBy', 'type': 'User'},
+ 'endpoint_name': {'key': 'endpointName', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword id:
+ :paramtype id: str
+ :keyword name:
+ :paramtype name: str
+ :keyword description:
+ :paramtype description: str
+ :keyword tags: A set of tags.
+ :paramtype tags: list[str]
+ :keyword kv_tags: Dictionary of :code:`<string>`.
+ :paramtype kv_tags: dict[str, str]
+ :keyword properties: Dictionary of :code:`<string>`.
+ :paramtype properties: dict[str, str]
+ :keyword operation_id:
+ :paramtype operation_id: str
+ :keyword state: Possible values include: "Transitioning", "Healthy", "Unhealthy", "Failed",
+ "Unschedulable".
+ :paramtype state: str or ~azure.mgmt.machinelearningservices.models.WebServiceState
+ :keyword created_time:
+ :paramtype created_time: ~datetime.datetime
+ :keyword updated_time:
+ :paramtype updated_time: ~datetime.datetime
+ :keyword error:
+ :paramtype error: ~azure.mgmt.machinelearningservices.models.ErrorResponse
+ :keyword compute_type: Possible values include: "ACS", "FPGA", "ACI", "AKS", "AMLCOMPUTE",
+ "IOT", "MIR", "AKSENDPOINT", "MIRSINGLEMODEL", "MIRAMLCOMPUTE", "MIRGA", "AMLARC",
+ "BATCHAMLCOMPUTE", "UNKNOWN".
+ :paramtype compute_type: str or
+ ~azure.mgmt.machinelearningservices.models.ComputeEnvironmentType
+ :keyword deployment_type: Possible values include: "GRPCRealtimeEndpoint",
+ "HttpRealtimeEndpoint", "Batch".
+ :paramtype deployment_type: str or ~azure.mgmt.machinelearningservices.models.DeploymentType
+ :keyword created_by:
+ :paramtype created_by: ~azure.mgmt.machinelearningservices.models.User
+ :keyword endpoint_name:
+ :paramtype endpoint_name: str
+ """
+ super(ServiceResponseBase, self).__init__(**kwargs)
+ self.id = kwargs.get('id', None)
+ self.name = kwargs.get('name', None)
+ self.description = kwargs.get('description', None)
+ self.tags = kwargs.get('tags', None)
+ self.kv_tags = kwargs.get('kv_tags', None)
+ self.properties = kwargs.get('properties', None)
+ self.operation_id = kwargs.get('operation_id', None)
+ self.state = kwargs.get('state', None)
+ self.created_time = kwargs.get('created_time', None)
+ self.updated_time = kwargs.get('updated_time', None)
+ self.error = kwargs.get('error', None)
+ self.compute_type = kwargs.get('compute_type', None)
+ self.deployment_type = kwargs.get('deployment_type', None)
+ self.created_by = kwargs.get('created_by', None)
+ self.endpoint_name = kwargs.get('endpoint_name', None)
+
+
+class User(msrest.serialization.Model):
+ """User.
+
+ :ivar user_object_id:
+ :vartype user_object_id: str
+ :ivar user_pu_id:
+ :vartype user_pu_id: str
+ :ivar user_idp:
+ :vartype user_idp: str
+ :ivar user_alt_sec_id:
+ :vartype user_alt_sec_id: str
+ :ivar user_iss:
+ :vartype user_iss: str
+ :ivar user_tenant_id:
+ :vartype user_tenant_id: str
+ :ivar user_name:
+ :vartype user_name: str
+ :ivar upn:
+ :vartype upn: str
+ """
+
+ _attribute_map = {
+ 'user_object_id': {'key': 'userObjectId', 'type': 'str'},
+ 'user_pu_id': {'key': 'userPuId', 'type': 'str'},
+ 'user_idp': {'key': 'userIdp', 'type': 'str'},
+ 'user_alt_sec_id': {'key': 'userAltSecId', 'type': 'str'},
+ 'user_iss': {'key': 'userIss', 'type': 'str'},
+ 'user_tenant_id': {'key': 'userTenantId', 'type': 'str'},
+ 'user_name': {'key': 'userName', 'type': 'str'},
+ 'upn': {'key': 'upn', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword user_object_id:
+ :paramtype user_object_id: str
+ :keyword user_pu_id:
+ :paramtype user_pu_id: str
+ :keyword user_idp:
+ :paramtype user_idp: str
+ :keyword user_alt_sec_id:
+ :paramtype user_alt_sec_id: str
+ :keyword user_iss:
+ :paramtype user_iss: str
+ :keyword user_tenant_id:
+ :paramtype user_tenant_id: str
+ :keyword user_name:
+ :paramtype user_name: str
+ :keyword upn:
+ :paramtype upn: str
+ """
+ super(User, self).__init__(**kwargs)
+ self.user_object_id = kwargs.get('user_object_id', None)
+ self.user_pu_id = kwargs.get('user_pu_id', None)
+ self.user_idp = kwargs.get('user_idp', None)
+ self.user_alt_sec_id = kwargs.get('user_alt_sec_id', None)
+ self.user_iss = kwargs.get('user_iss', None)
+ self.user_tenant_id = kwargs.get('user_tenant_id', None)
+ self.user_name = kwargs.get('user_name', None)
+ self.upn = kwargs.get('upn', None)
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/models/_models_py3.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/models/_models_py3.py
new file mode 100644
index 00000000..d44c7acc
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/models/_models_py3.py
@@ -0,0 +1,2535 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+import datetime
+from typing import Any, Dict, List, Optional, Union
+
+import msrest.serialization
+
+from ._azure_machine_learning_workspaces_enums import *
+
+
+class Artifact(msrest.serialization.Model):
+ """Artifact.
+
+ :ivar id:
+ :vartype id: str
+ :ivar prefix:
+ :vartype prefix: str
+ """
+
+ _attribute_map = {
+ 'id': {'key': 'id', 'type': 'str'},
+ 'prefix': {'key': 'prefix', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ id: Optional[str] = None,
+ prefix: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword id:
+ :paramtype id: str
+ :keyword prefix:
+ :paramtype prefix: str
+ """
+ super(Artifact, self).__init__(**kwargs)
+ self.id = id
+ self.prefix = prefix
+
+
+class Asset(msrest.serialization.Model):
+ """Asset.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar id:
+ :vartype id: str
+ :ivar name: Required.
+ :vartype name: str
+ :ivar type:
+ :vartype type: str
+ :ivar description:
+ :vartype description: str
+ :ivar artifacts:
+ :vartype artifacts: list[~azure.mgmt.machinelearningservices.models.Artifact]
+ :ivar kv_tags: Dictionary of :code:`<string>`.
+ :vartype kv_tags: dict[str, str]
+ :ivar properties: Dictionary of :code:`<string>`.
+ :vartype properties: dict[str, str]
+ :ivar runid:
+ :vartype runid: str
+ :ivar projectid:
+ :vartype projectid: str
+ :ivar meta: Dictionary of :code:`<string>`.
+ :vartype meta: dict[str, str]
+ :ivar created_time:
+ :vartype created_time: ~datetime.datetime
+ """
+
+ _validation = {
+ 'name': {'required': True},
+ }
+
+ _attribute_map = {
+ 'id': {'key': 'id', 'type': 'str'},
+ 'name': {'key': 'name', 'type': 'str'},
+ 'type': {'key': 'type', 'type': 'str'},
+ 'description': {'key': 'description', 'type': 'str'},
+ 'artifacts': {'key': 'artifacts', 'type': '[Artifact]'},
+ 'kv_tags': {'key': 'kvTags', 'type': '{str}'},
+ 'properties': {'key': 'properties', 'type': '{str}'},
+ 'runid': {'key': 'runid', 'type': 'str'},
+ 'projectid': {'key': 'projectid', 'type': 'str'},
+ 'meta': {'key': 'meta', 'type': '{str}'},
+ 'created_time': {'key': 'createdTime', 'type': 'iso-8601'},
+ }
+
+ def __init__(
+ self,
+ *,
+ name: str,
+ id: Optional[str] = None,
+ type: Optional[str] = None,
+ description: Optional[str] = None,
+ artifacts: Optional[List["Artifact"]] = None,
+ kv_tags: Optional[Dict[str, str]] = None,
+ properties: Optional[Dict[str, str]] = None,
+ runid: Optional[str] = None,
+ projectid: Optional[str] = None,
+ meta: Optional[Dict[str, str]] = None,
+ created_time: Optional[datetime.datetime] = None,
+ **kwargs
+ ):
+ """
+ :keyword id:
+ :paramtype id: str
+ :keyword name: Required.
+ :paramtype name: str
+ :keyword type:
+ :paramtype type: str
+ :keyword description:
+ :paramtype description: str
+ :keyword artifacts:
+ :paramtype artifacts: list[~azure.mgmt.machinelearningservices.models.Artifact]
+ :keyword kv_tags: Dictionary of :code:`<string>`.
+ :paramtype kv_tags: dict[str, str]
+ :keyword properties: Dictionary of :code:`<string>`.
+ :paramtype properties: dict[str, str]
+ :keyword runid:
+ :paramtype runid: str
+ :keyword projectid:
+ :paramtype projectid: str
+ :keyword meta: Dictionary of :code:`<string>`.
+ :paramtype meta: dict[str, str]
+ :keyword created_time:
+ :paramtype created_time: ~datetime.datetime
+ """
+ super(Asset, self).__init__(**kwargs)
+ self.id = id
+ self.name = name
+ self.type = type
+ self.description = description
+ self.artifacts = artifacts
+ self.kv_tags = kv_tags
+ self.properties = properties
+ self.runid = runid
+ self.projectid = projectid
+ self.meta = meta
+ self.created_time = created_time
+
+
+class AssetDto(msrest.serialization.Model):
+ """AssetDto.
+
+ :ivar asset_id:
+ :vartype asset_id: str
+ :ivar entity_id:
+ :vartype entity_id: str
+ :ivar data_items: Dictionary of :code:`<DataItem>`.
+ :vartype data_items: dict[str, ~azure.mgmt.machinelearningservices.models.DataItem]
+ :ivar data_references:
+ :vartype data_references: ~azure.mgmt.machinelearningservices.models.DataReferences
+ :ivar should_index:
+ :vartype should_index: bool
+ :ivar dependencies:
+ :vartype dependencies: list[~azure.mgmt.machinelearningservices.models.DependentAsset]
+ :ivar intellectual_property_publisher_information:
+ :vartype intellectual_property_publisher_information:
+ ~azure.mgmt.machinelearningservices.models.IntellectualPropertyPublisherInformation
+ """
+
+ _attribute_map = {
+ 'asset_id': {'key': 'assetId', 'type': 'str'},
+ 'entity_id': {'key': 'entityId', 'type': 'str'},
+ 'data_items': {'key': 'dataItems', 'type': '{DataItem}'},
+ 'data_references': {'key': 'dataReferences', 'type': 'DataReferences'},
+ 'should_index': {'key': 'shouldIndex', 'type': 'bool'},
+ 'dependencies': {'key': 'dependencies', 'type': '[DependentAsset]'},
+ 'intellectual_property_publisher_information': {'key': 'intellectualPropertyPublisherInformation', 'type': 'IntellectualPropertyPublisherInformation'},
+ }
+
+ def __init__(
+ self,
+ *,
+ asset_id: Optional[str] = None,
+ entity_id: Optional[str] = None,
+ data_items: Optional[Dict[str, "DataItem"]] = None,
+ data_references: Optional["DataReferences"] = None,
+ should_index: Optional[bool] = None,
+ dependencies: Optional[List["DependentAsset"]] = None,
+ intellectual_property_publisher_information: Optional["IntellectualPropertyPublisherInformation"] = None,
+ **kwargs
+ ):
+ """
+ :keyword asset_id:
+ :paramtype asset_id: str
+ :keyword entity_id:
+ :paramtype entity_id: str
+ :keyword data_items: Dictionary of :code:`<DataItem>`.
+ :paramtype data_items: dict[str, ~azure.mgmt.machinelearningservices.models.DataItem]
+ :keyword data_references:
+ :paramtype data_references: ~azure.mgmt.machinelearningservices.models.DataReferences
+ :keyword should_index:
+ :paramtype should_index: bool
+ :keyword dependencies:
+ :paramtype dependencies: list[~azure.mgmt.machinelearningservices.models.DependentAsset]
+ :keyword intellectual_property_publisher_information:
+ :paramtype intellectual_property_publisher_information:
+ ~azure.mgmt.machinelearningservices.models.IntellectualPropertyPublisherInformation
+ """
+ super(AssetDto, self).__init__(**kwargs)
+ self.asset_id = asset_id
+ self.entity_id = entity_id
+ self.data_items = data_items
+ self.data_references = data_references
+ self.should_index = should_index
+ self.dependencies = dependencies
+ self.intellectual_property_publisher_information = intellectual_property_publisher_information
+
+
+class AssetPaginatedResult(msrest.serialization.Model):
+ """AssetPaginatedResult.
+
+ :ivar value:
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.Asset]
+ :ivar continuation_token:
+ :vartype continuation_token: str
+ :ivar next_link:
+ :vartype next_link: str
+ """
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': '[Asset]'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'next_link': {'key': 'nextLink', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ value: Optional[List["Asset"]] = None,
+ continuation_token: Optional[str] = None,
+ next_link: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword value:
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.Asset]
+ :keyword continuation_token:
+ :paramtype continuation_token: str
+ :keyword next_link:
+ :paramtype next_link: str
+ """
+ super(AssetPaginatedResult, self).__init__(**kwargs)
+ self.value = value
+ self.continuation_token = continuation_token
+ self.next_link = next_link
+
+
+class BatchGetResolvedUrisDto(msrest.serialization.Model):
+ """BatchGetResolvedUrisDto.
+
+ :ivar values:
+ :vartype values: list[str]
+ """
+
+ _attribute_map = {
+ 'values': {'key': 'values', 'type': '[str]'},
+ }
+
+ def __init__(
+ self,
+ *,
+ values: Optional[List[str]] = None,
+ **kwargs
+ ):
+ """
+ :keyword values:
+ :paramtype values: list[str]
+ """
+ super(BatchGetResolvedUrisDto, self).__init__(**kwargs)
+ self.values = values
+
+
+class BatchModelPathResponseDto(msrest.serialization.Model):
+ """BatchModelPathResponseDto.
+
+ :ivar values: Dictionary of :code:`<ModelPathResponseDto>`.
+ :vartype values: dict[str, ~azure.mgmt.machinelearningservices.models.ModelPathResponseDto]
+ """
+
+ _attribute_map = {
+ 'values': {'key': 'values', 'type': '{ModelPathResponseDto}'},
+ }
+
+ def __init__(
+ self,
+ *,
+ values: Optional[Dict[str, "ModelPathResponseDto"]] = None,
+ **kwargs
+ ):
+ """
+ :keyword values: Dictionary of :code:`<ModelPathResponseDto>`.
+ :paramtype values: dict[str, ~azure.mgmt.machinelearningservices.models.ModelPathResponseDto]
+ """
+ super(BatchModelPathResponseDto, self).__init__(**kwargs)
+ self.values = values
+
+
+class BlobReference(msrest.serialization.Model):
+ """BlobReference.
+
+ :ivar blob_uri:
+ :vartype blob_uri: str
+ :ivar storage_account_arm_id:
+ :vartype storage_account_arm_id: str
+ """
+
+ _attribute_map = {
+ 'blob_uri': {'key': 'blobUri', 'type': 'str'},
+ 'storage_account_arm_id': {'key': 'storageAccountArmId', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ blob_uri: Optional[str] = None,
+ storage_account_arm_id: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword blob_uri:
+ :paramtype blob_uri: str
+ :keyword storage_account_arm_id:
+ :paramtype storage_account_arm_id: str
+ """
+ super(BlobReference, self).__init__(**kwargs)
+ self.blob_uri = blob_uri
+ self.storage_account_arm_id = storage_account_arm_id
+
+
+class BlobReferenceForConsumptionDto(msrest.serialization.Model):
+ """BlobReferenceForConsumptionDto.
+
+ :ivar blob_uri:
+ :vartype blob_uri: str
+ :ivar storage_account_arm_id:
+ :vartype storage_account_arm_id: str
+ :ivar credential:
+ :vartype credential: ~azure.mgmt.machinelearningservices.models.DataReferenceCredentialDto
+ """
+
+ _attribute_map = {
+ 'blob_uri': {'key': 'blobUri', 'type': 'str'},
+ 'storage_account_arm_id': {'key': 'storageAccountArmId', 'type': 'str'},
+ 'credential': {'key': 'credential', 'type': 'DataReferenceCredentialDto'},
+ }
+
+ def __init__(
+ self,
+ *,
+ blob_uri: Optional[str] = None,
+ storage_account_arm_id: Optional[str] = None,
+ credential: Optional["DataReferenceCredentialDto"] = None,
+ **kwargs
+ ):
+ """
+ :keyword blob_uri:
+ :paramtype blob_uri: str
+ :keyword storage_account_arm_id:
+ :paramtype storage_account_arm_id: str
+ :keyword credential:
+ :paramtype credential: ~azure.mgmt.machinelearningservices.models.DataReferenceCredentialDto
+ """
+ super(BlobReferenceForConsumptionDto, self).__init__(**kwargs)
+ self.blob_uri = blob_uri
+ self.storage_account_arm_id = storage_account_arm_id
+ self.credential = credential
+
+
+class ContainerResourceRequirements(msrest.serialization.Model):
+ """ContainerResourceRequirements.
+
+ :ivar cpu:
+ :vartype cpu: float
+ :ivar cpu_limit:
+ :vartype cpu_limit: float
+ :ivar memory_in_gb:
+ :vartype memory_in_gb: float
+ :ivar memory_in_gb_limit:
+ :vartype memory_in_gb_limit: float
+ :ivar gpu_enabled:
+ :vartype gpu_enabled: bool
+ :ivar gpu:
+ :vartype gpu: int
+ :ivar fpga:
+ :vartype fpga: int
+ """
+
+ _attribute_map = {
+ 'cpu': {'key': 'cpu', 'type': 'float'},
+ 'cpu_limit': {'key': 'cpuLimit', 'type': 'float'},
+ 'memory_in_gb': {'key': 'memoryInGB', 'type': 'float'},
+ 'memory_in_gb_limit': {'key': 'memoryInGBLimit', 'type': 'float'},
+ 'gpu_enabled': {'key': 'gpuEnabled', 'type': 'bool'},
+ 'gpu': {'key': 'gpu', 'type': 'int'},
+ 'fpga': {'key': 'fpga', 'type': 'int'},
+ }
+
+ def __init__(
+ self,
+ *,
+ cpu: Optional[float] = None,
+ cpu_limit: Optional[float] = None,
+ memory_in_gb: Optional[float] = None,
+ memory_in_gb_limit: Optional[float] = None,
+ gpu_enabled: Optional[bool] = None,
+ gpu: Optional[int] = None,
+ fpga: Optional[int] = None,
+ **kwargs
+ ):
+ """
+ :keyword cpu:
+ :paramtype cpu: float
+ :keyword cpu_limit:
+ :paramtype cpu_limit: float
+ :keyword memory_in_gb:
+ :paramtype memory_in_gb: float
+ :keyword memory_in_gb_limit:
+ :paramtype memory_in_gb_limit: float
+ :keyword gpu_enabled:
+ :paramtype gpu_enabled: bool
+ :keyword gpu:
+ :paramtype gpu: int
+ :keyword fpga:
+ :paramtype fpga: int
+ """
+ super(ContainerResourceRequirements, self).__init__(**kwargs)
+ self.cpu = cpu
+ self.cpu_limit = cpu_limit
+ self.memory_in_gb = memory_in_gb
+ self.memory_in_gb_limit = memory_in_gb_limit
+ self.gpu_enabled = gpu_enabled
+ self.gpu = gpu
+ self.fpga = fpga
+
+
+class CreatedBy(msrest.serialization.Model):
+ """CreatedBy.
+
+ :ivar user_object_id:
+ :vartype user_object_id: str
+ :ivar user_tenant_id:
+ :vartype user_tenant_id: str
+ :ivar user_name:
+ :vartype user_name: str
+ """
+
+ _attribute_map = {
+ 'user_object_id': {'key': 'userObjectId', 'type': 'str'},
+ 'user_tenant_id': {'key': 'userTenantId', 'type': 'str'},
+ 'user_name': {'key': 'userName', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ user_object_id: Optional[str] = None,
+ user_tenant_id: Optional[str] = None,
+ user_name: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword user_object_id:
+ :paramtype user_object_id: str
+ :keyword user_tenant_id:
+ :paramtype user_tenant_id: str
+ :keyword user_name:
+ :paramtype user_name: str
+ """
+ super(CreatedBy, self).__init__(**kwargs)
+ self.user_object_id = user_object_id
+ self.user_tenant_id = user_tenant_id
+ self.user_name = user_name
+
+
+class CreateUnregisteredInputModelDto(msrest.serialization.Model):
+ """CreateUnregisteredInputModelDto.
+
+ :ivar run_id:
+ :vartype run_id: str
+ :ivar input_name:
+ :vartype input_name: str
+ :ivar path:
+ :vartype path: str
+ :ivar type:
+ :vartype type: str
+ """
+
+ _attribute_map = {
+ 'run_id': {'key': 'runId', 'type': 'str'},
+ 'input_name': {'key': 'inputName', 'type': 'str'},
+ 'path': {'key': 'path', 'type': 'str'},
+ 'type': {'key': 'type', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ run_id: Optional[str] = None,
+ input_name: Optional[str] = None,
+ path: Optional[str] = None,
+ type: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword run_id:
+ :paramtype run_id: str
+ :keyword input_name:
+ :paramtype input_name: str
+ :keyword path:
+ :paramtype path: str
+ :keyword type:
+ :paramtype type: str
+ """
+ super(CreateUnregisteredInputModelDto, self).__init__(**kwargs)
+ self.run_id = run_id
+ self.input_name = input_name
+ self.path = path
+ self.type = type
+
+
+class CreateUnregisteredOutputModelDto(msrest.serialization.Model):
+ """CreateUnregisteredOutputModelDto.
+
+ :ivar run_id:
+ :vartype run_id: str
+ :ivar output_name:
+ :vartype output_name: str
+ :ivar path:
+ :vartype path: str
+ :ivar type:
+ :vartype type: str
+ """
+
+ _attribute_map = {
+ 'run_id': {'key': 'runId', 'type': 'str'},
+ 'output_name': {'key': 'outputName', 'type': 'str'},
+ 'path': {'key': 'path', 'type': 'str'},
+ 'type': {'key': 'type', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ run_id: Optional[str] = None,
+ output_name: Optional[str] = None,
+ path: Optional[str] = None,
+ type: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword run_id:
+ :paramtype run_id: str
+ :keyword output_name:
+ :paramtype output_name: str
+ :keyword path:
+ :paramtype path: str
+ :keyword type:
+ :paramtype type: str
+ """
+ super(CreateUnregisteredOutputModelDto, self).__init__(**kwargs)
+ self.run_id = run_id
+ self.output_name = output_name
+ self.path = path
+ self.type = type
+
+
+class CreationContext(msrest.serialization.Model):
+ """CreationContext.
+
+ :ivar additional_properties: Unmatched properties from the message are deserialized to this
+ collection.
+ :vartype additional_properties: dict[str, any]
+ :ivar created_time:
+ :vartype created_time: ~datetime.datetime
+ :ivar created_by:
+ :vartype created_by: ~azure.mgmt.machinelearningservices.models.CreatedBy
+ :ivar creation_source:
+ :vartype creation_source: str
+ """
+
+ _attribute_map = {
+ 'additional_properties': {'key': '', 'type': '{object}'},
+ 'created_time': {'key': 'createdTime', 'type': 'iso-8601'},
+ 'created_by': {'key': 'createdBy', 'type': 'CreatedBy'},
+ 'creation_source': {'key': 'creationSource', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ additional_properties: Optional[Dict[str, Any]] = None,
+ created_time: Optional[datetime.datetime] = None,
+ created_by: Optional["CreatedBy"] = None,
+ creation_source: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword additional_properties: Unmatched properties from the message are deserialized to this
+ collection.
+ :paramtype additional_properties: dict[str, any]
+ :keyword created_time:
+ :paramtype created_time: ~datetime.datetime
+ :keyword created_by:
+ :paramtype created_by: ~azure.mgmt.machinelearningservices.models.CreatedBy
+ :keyword creation_source:
+ :paramtype creation_source: str
+ """
+ super(CreationContext, self).__init__(**kwargs)
+ self.additional_properties = additional_properties
+ self.created_time = created_time
+ self.created_by = created_by
+ self.creation_source = creation_source
+
+
+class DataItem(msrest.serialization.Model):
+ """DataItem.
+
+ :ivar data: Anything.
+ :vartype data: any
+ """
+
+ _attribute_map = {
+ 'data': {'key': 'data', 'type': 'object'},
+ }
+
+ def __init__(
+ self,
+ *,
+ data: Optional[Any] = None,
+ **kwargs
+ ):
+ """
+ :keyword data: Anything.
+ :paramtype data: any
+ """
+ super(DataItem, self).__init__(**kwargs)
+ self.data = data
+
+
+class DataReferenceCredentialDto(msrest.serialization.Model):
+ """DataReferenceCredentialDto.
+
+ :ivar additional_properties: Unmatched properties from the message are deserialized to this
+ collection.
+ :vartype additional_properties: dict[str, any]
+ :ivar credential_type:
+ :vartype credential_type: str
+ """
+
+ _attribute_map = {
+ 'additional_properties': {'key': '', 'type': '{object}'},
+ 'credential_type': {'key': 'credentialType', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ additional_properties: Optional[Dict[str, Any]] = None,
+ credential_type: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword additional_properties: Unmatched properties from the message are deserialized to this
+ collection.
+ :paramtype additional_properties: dict[str, any]
+ :keyword credential_type:
+ :paramtype credential_type: str
+ """
+ super(DataReferenceCredentialDto, self).__init__(**kwargs)
+ self.additional_properties = additional_properties
+ self.credential_type = credential_type
+
+
+class DataReferences(msrest.serialization.Model):
+ """DataReferences.
+
+ :ivar blob_references: Dictionary of :code:`<BlobReference>`.
+ :vartype blob_references: dict[str, ~azure.mgmt.machinelearningservices.models.BlobReference]
+ :ivar image_registry_references: Dictionary of :code:`<ImageReference>`.
+ :vartype image_registry_references: dict[str,
+ ~azure.mgmt.machinelearningservices.models.ImageReference]
+ """
+
+ _attribute_map = {
+ 'blob_references': {'key': 'blobReferences', 'type': '{BlobReference}'},
+ 'image_registry_references': {'key': 'imageRegistryReferences', 'type': '{ImageReference}'},
+ }
+
+ def __init__(
+ self,
+ *,
+ blob_references: Optional[Dict[str, "BlobReference"]] = None,
+ image_registry_references: Optional[Dict[str, "ImageReference"]] = None,
+ **kwargs
+ ):
+ """
+ :keyword blob_references: Dictionary of :code:`<BlobReference>`.
+ :paramtype blob_references: dict[str, ~azure.mgmt.machinelearningservices.models.BlobReference]
+ :keyword image_registry_references: Dictionary of :code:`<ImageReference>`.
+ :paramtype image_registry_references: dict[str,
+ ~azure.mgmt.machinelearningservices.models.ImageReference]
+ """
+ super(DataReferences, self).__init__(**kwargs)
+ self.blob_references = blob_references
+ self.image_registry_references = image_registry_references
+
+
+class DataReferencesForConsumptionDto(msrest.serialization.Model):
+ """DataReferencesForConsumptionDto.
+
+ :ivar blob_references: Dictionary of :code:`<BlobReferenceForConsumptionDto>`.
+ :vartype blob_references: dict[str,
+ ~azure.mgmt.machinelearningservices.models.BlobReferenceForConsumptionDto]
+ :ivar image_registry_references: Dictionary of :code:`<ImageReferenceForConsumptionDto>`.
+ :vartype image_registry_references: dict[str,
+ ~azure.mgmt.machinelearningservices.models.ImageReferenceForConsumptionDto]
+ """
+
+ _attribute_map = {
+ 'blob_references': {'key': 'blobReferences', 'type': '{BlobReferenceForConsumptionDto}'},
+ 'image_registry_references': {'key': 'imageRegistryReferences', 'type': '{ImageReferenceForConsumptionDto}'},
+ }
+
+ def __init__(
+ self,
+ *,
+ blob_references: Optional[Dict[str, "BlobReferenceForConsumptionDto"]] = None,
+ image_registry_references: Optional[Dict[str, "ImageReferenceForConsumptionDto"]] = None,
+ **kwargs
+ ):
+ """
+ :keyword blob_references: Dictionary of :code:`<BlobReferenceForConsumptionDto>`.
+ :paramtype blob_references: dict[str,
+ ~azure.mgmt.machinelearningservices.models.BlobReferenceForConsumptionDto]
+ :keyword image_registry_references: Dictionary of :code:`<ImageReferenceForConsumptionDto>`.
+ :paramtype image_registry_references: dict[str,
+ ~azure.mgmt.machinelearningservices.models.ImageReferenceForConsumptionDto]
+ """
+ super(DataReferencesForConsumptionDto, self).__init__(**kwargs)
+ self.blob_references = blob_references
+ self.image_registry_references = image_registry_references
+
+
+class DatasetReference(msrest.serialization.Model):
+ """DatasetReference.
+
+ :ivar name:
+ :vartype name: str
+ :ivar id:
+ :vartype id: str
+ """
+
+ _attribute_map = {
+ 'name': {'key': 'name', 'type': 'str'},
+ 'id': {'key': 'id', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ name: Optional[str] = None,
+ id: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword name:
+ :paramtype name: str
+ :keyword id:
+ :paramtype id: str
+ """
+ super(DatasetReference, self).__init__(**kwargs)
+ self.name = name
+ self.id = id
+
+
+class DependencyMapDto(msrest.serialization.Model):
+ """DependencyMapDto.
+
+ :ivar dependencies:
+ :vartype dependencies: list[~azure.mgmt.machinelearningservices.models.DependencyMapItemDto]
+ """
+
+ _attribute_map = {
+ 'dependencies': {'key': 'dependencies', 'type': '[DependencyMapItemDto]'},
+ }
+
+ def __init__(
+ self,
+ *,
+ dependencies: Optional[List["DependencyMapItemDto"]] = None,
+ **kwargs
+ ):
+ """
+ :keyword dependencies:
+ :paramtype dependencies: list[~azure.mgmt.machinelearningservices.models.DependencyMapItemDto]
+ """
+ super(DependencyMapDto, self).__init__(**kwargs)
+ self.dependencies = dependencies
+
+
+class DependencyMapItemDto(msrest.serialization.Model):
+ """DependencyMapItemDto.
+
+ :ivar source_id:
+ :vartype source_id: str
+ :ivar destination_id:
+ :vartype destination_id: str
+ """
+
+ _attribute_map = {
+ 'source_id': {'key': 'sourceId', 'type': 'str'},
+ 'destination_id': {'key': 'destinationId', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ source_id: Optional[str] = None,
+ destination_id: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword source_id:
+ :paramtype source_id: str
+ :keyword destination_id:
+ :paramtype destination_id: str
+ """
+ super(DependencyMapItemDto, self).__init__(**kwargs)
+ self.source_id = source_id
+ self.destination_id = destination_id
+
+
+class DependentAsset(msrest.serialization.Model):
+ """DependentAsset.
+
+ :ivar asset_id:
+ :vartype asset_id: str
+ """
+
+ _attribute_map = {
+ 'asset_id': {'key': 'assetId', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ asset_id: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword asset_id:
+ :paramtype asset_id: str
+ """
+ super(DependentAsset, self).__init__(**kwargs)
+ self.asset_id = asset_id
+
+
+class DependentEntitiesDto(msrest.serialization.Model):
+ """DependentEntitiesDto.
+
+ :ivar asset_id:
+ :vartype asset_id: str
+ :ivar dependencies:
+ :vartype dependencies: list[~azure.mgmt.machinelearningservices.models.DependentAsset]
+ """
+
+ _attribute_map = {
+ 'asset_id': {'key': 'assetId', 'type': 'str'},
+ 'dependencies': {'key': 'dependencies', 'type': '[DependentAsset]'},
+ }
+
+ def __init__(
+ self,
+ *,
+ asset_id: Optional[str] = None,
+ dependencies: Optional[List["DependentAsset"]] = None,
+ **kwargs
+ ):
+ """
+ :keyword asset_id:
+ :paramtype asset_id: str
+ :keyword dependencies:
+ :paramtype dependencies: list[~azure.mgmt.machinelearningservices.models.DependentAsset]
+ """
+ super(DependentEntitiesDto, self).__init__(**kwargs)
+ self.asset_id = asset_id
+ self.dependencies = dependencies
+
+
+class ErrorResponse(msrest.serialization.Model):
+ """ErrorResponse.
+
+ :ivar code:
+ :vartype code: str
+ :ivar status_code:
+ :vartype status_code: int
+ :ivar message:
+ :vartype message: str
+ :ivar target:
+ :vartype target: str
+ :ivar details:
+ :vartype details: list[~azure.mgmt.machinelearningservices.models.InnerErrorDetails]
+ :ivar correlation: Dictionary of :code:`<string>`.
+ :vartype correlation: dict[str, str]
+ """
+
+ _attribute_map = {
+ 'code': {'key': 'code', 'type': 'str'},
+ 'status_code': {'key': 'statusCode', 'type': 'int'},
+ 'message': {'key': 'message', 'type': 'str'},
+ 'target': {'key': 'target', 'type': 'str'},
+ 'details': {'key': 'details', 'type': '[InnerErrorDetails]'},
+ 'correlation': {'key': 'correlation', 'type': '{str}'},
+ }
+
+ def __init__(
+ self,
+ *,
+ code: Optional[str] = None,
+ status_code: Optional[int] = None,
+ message: Optional[str] = None,
+ target: Optional[str] = None,
+ details: Optional[List["InnerErrorDetails"]] = None,
+ correlation: Optional[Dict[str, str]] = None,
+ **kwargs
+ ):
+ """
+ :keyword code:
+ :paramtype code: str
+ :keyword status_code:
+ :paramtype status_code: int
+ :keyword message:
+ :paramtype message: str
+ :keyword target:
+ :paramtype target: str
+ :keyword details:
+ :paramtype details: list[~azure.mgmt.machinelearningservices.models.InnerErrorDetails]
+ :keyword correlation: Dictionary of :code:`<string>`.
+ :paramtype correlation: dict[str, str]
+ """
+ super(ErrorResponse, self).__init__(**kwargs)
+ self.code = code
+ self.status_code = status_code
+ self.message = message
+ self.target = target
+ self.details = details
+ self.correlation = correlation
+
+
+class ExtensiveModel(msrest.serialization.Model):
+ """ExtensiveModel.
+
+ :ivar model:
+ :vartype model: ~azure.mgmt.machinelearningservices.models.Model
+ :ivar service_list:
+ :vartype service_list: list[~azure.mgmt.machinelearningservices.models.ServiceResponseBase]
+ :ivar asset_list:
+ :vartype asset_list: list[~azure.mgmt.machinelearningservices.models.Asset]
+ """
+
+ _attribute_map = {
+ 'model': {'key': 'Model', 'type': 'Model'},
+ 'service_list': {'key': 'ServiceList', 'type': '[ServiceResponseBase]'},
+ 'asset_list': {'key': 'AssetList', 'type': '[Asset]'},
+ }
+
+ def __init__(
+ self,
+ *,
+ model: Optional["Model"] = None,
+ service_list: Optional[List["ServiceResponseBase"]] = None,
+ asset_list: Optional[List["Asset"]] = None,
+ **kwargs
+ ):
+ """
+ :keyword model:
+ :paramtype model: ~azure.mgmt.machinelearningservices.models.Model
+ :keyword service_list:
+ :paramtype service_list: list[~azure.mgmt.machinelearningservices.models.ServiceResponseBase]
+ :keyword asset_list:
+ :paramtype asset_list: list[~azure.mgmt.machinelearningservices.models.Asset]
+ """
+ super(ExtensiveModel, self).__init__(**kwargs)
+ self.model = model
+ self.service_list = service_list
+ self.asset_list = asset_list
+
+
+class FeedIndexEntityDto(msrest.serialization.Model):
+ """FeedIndexEntityDto.
+
+ :ivar index_entity:
+ :vartype index_entity: ~azure.mgmt.machinelearningservices.models.IndexEntity
+ :ivar schema_id:
+ :vartype schema_id: str
+ :ivar entity_schema: Anything.
+ :vartype entity_schema: any
+ """
+
+ _attribute_map = {
+ 'index_entity': {'key': 'indexEntity', 'type': 'IndexEntity'},
+ 'schema_id': {'key': 'schemaId', 'type': 'str'},
+ 'entity_schema': {'key': 'entitySchema', 'type': 'object'},
+ }
+
+ def __init__(
+ self,
+ *,
+ index_entity: Optional["IndexEntity"] = None,
+ schema_id: Optional[str] = None,
+ entity_schema: Optional[Any] = None,
+ **kwargs
+ ):
+ """
+ :keyword index_entity:
+ :paramtype index_entity: ~azure.mgmt.machinelearningservices.models.IndexEntity
+ :keyword schema_id:
+ :paramtype schema_id: str
+ :keyword entity_schema: Anything.
+ :paramtype entity_schema: any
+ """
+ super(FeedIndexEntityDto, self).__init__(**kwargs)
+ self.index_entity = index_entity
+ self.schema_id = schema_id
+ self.entity_schema = entity_schema
+
+
+class FeedIndexEntityRequestDto(msrest.serialization.Model):
+ """FeedIndexEntityRequestDto.
+
+ :ivar feed_entity:
+ :vartype feed_entity: ~azure.mgmt.machinelearningservices.models.AssetDto
+ :ivar label_to_version_mapping: Dictionary of :code:`<string>`.
+ :vartype label_to_version_mapping: dict[str, str]
+ """
+
+ _attribute_map = {
+ 'feed_entity': {'key': 'feedEntity', 'type': 'AssetDto'},
+ 'label_to_version_mapping': {'key': 'labelToVersionMapping', 'type': '{str}'},
+ }
+
+ def __init__(
+ self,
+ *,
+ feed_entity: Optional["AssetDto"] = None,
+ label_to_version_mapping: Optional[Dict[str, str]] = None,
+ **kwargs
+ ):
+ """
+ :keyword feed_entity:
+ :paramtype feed_entity: ~azure.mgmt.machinelearningservices.models.AssetDto
+ :keyword label_to_version_mapping: Dictionary of :code:`<string>`.
+ :paramtype label_to_version_mapping: dict[str, str]
+ """
+ super(FeedIndexEntityRequestDto, self).__init__(**kwargs)
+ self.feed_entity = feed_entity
+ self.label_to_version_mapping = label_to_version_mapping
+
+
+class ImageReference(msrest.serialization.Model):
+ """ImageReference.
+
+ :ivar image_registry_reference:
+ :vartype image_registry_reference: str
+ """
+
+ _attribute_map = {
+ 'image_registry_reference': {'key': 'imageRegistryReference', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ image_registry_reference: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword image_registry_reference:
+ :paramtype image_registry_reference: str
+ """
+ super(ImageReference, self).__init__(**kwargs)
+ self.image_registry_reference = image_registry_reference
+
+
+class ImageReferenceForConsumptionDto(msrest.serialization.Model):
+ """ImageReferenceForConsumptionDto.
+
+ :ivar image_registry_reference:
+ :vartype image_registry_reference: str
+ :ivar credential:
+ :vartype credential: ~azure.mgmt.machinelearningservices.models.DataReferenceCredentialDto
+ """
+
+ _attribute_map = {
+ 'image_registry_reference': {'key': 'imageRegistryReference', 'type': 'str'},
+ 'credential': {'key': 'credential', 'type': 'DataReferenceCredentialDto'},
+ }
+
+ def __init__(
+ self,
+ *,
+ image_registry_reference: Optional[str] = None,
+ credential: Optional["DataReferenceCredentialDto"] = None,
+ **kwargs
+ ):
+ """
+ :keyword image_registry_reference:
+ :paramtype image_registry_reference: str
+ :keyword credential:
+ :paramtype credential: ~azure.mgmt.machinelearningservices.models.DataReferenceCredentialDto
+ """
+ super(ImageReferenceForConsumptionDto, self).__init__(**kwargs)
+ self.image_registry_reference = image_registry_reference
+ self.credential = credential
+
+
+class IndexAnnotations(msrest.serialization.Model):
+ """IndexAnnotations.
+
+ :ivar additional_properties: Unmatched properties from the message are deserialized to this
+ collection.
+ :vartype additional_properties: dict[str, any]
+ :ivar archived:
+ :vartype archived: bool
+ :ivar tags: A set of tags. Dictionary of :code:`<string>`.
+ :vartype tags: dict[str, str]
+ """
+
+ _attribute_map = {
+ 'additional_properties': {'key': '', 'type': '{object}'},
+ 'archived': {'key': 'archived', 'type': 'bool'},
+ 'tags': {'key': 'tags', 'type': '{str}'},
+ }
+
+ def __init__(
+ self,
+ *,
+ additional_properties: Optional[Dict[str, Any]] = None,
+ archived: Optional[bool] = None,
+ tags: Optional[Dict[str, str]] = None,
+ **kwargs
+ ):
+ """
+ :keyword additional_properties: Unmatched properties from the message are deserialized to this
+ collection.
+ :paramtype additional_properties: dict[str, any]
+ :keyword archived:
+ :paramtype archived: bool
+ :keyword tags: A set of tags. Dictionary of :code:`<string>`.
+ :paramtype tags: dict[str, str]
+ """
+ super(IndexAnnotations, self).__init__(**kwargs)
+ self.additional_properties = additional_properties
+ self.archived = archived
+ self.tags = tags
+
+
+class IndexEntity(msrest.serialization.Model):
+ """IndexEntity.
+
+ Variables are only populated by the server, and will be ignored when sending a request.
+
+ :ivar schema_id:
+ :vartype schema_id: str
+ :ivar entity_id:
+ :vartype entity_id: str
+ :ivar kind: Possible values include: "Invalid", "LineageRoot", "Versioned", "Unversioned".
+ :vartype kind: str or ~azure.mgmt.machinelearningservices.models.EntityKind
+ :ivar annotations:
+ :vartype annotations: ~azure.mgmt.machinelearningservices.models.IndexAnnotations
+ :ivar properties:
+ :vartype properties: ~azure.mgmt.machinelearningservices.models.IndexProperties
+ :ivar internal: Dictionary of :code:`<any>`.
+ :vartype internal: dict[str, any]
+ :ivar update_sequence:
+ :vartype update_sequence: long
+ :ivar type:
+ :vartype type: str
+ :ivar version:
+ :vartype version: str
+ :ivar entity_container_id:
+ :vartype entity_container_id: str
+ :ivar entity_object_id:
+ :vartype entity_object_id: str
+ :ivar resource_type:
+ :vartype resource_type: str
+ :ivar relationships:
+ :vartype relationships: list[~azure.mgmt.machinelearningservices.models.Relationship]
+ :ivar asset_id:
+ :vartype asset_id: str
+ """
+
+ _validation = {
+ 'version': {'readonly': True},
+ 'entity_container_id': {'readonly': True},
+ 'entity_object_id': {'readonly': True},
+ 'resource_type': {'readonly': True},
+ }
+
+ _attribute_map = {
+ 'schema_id': {'key': 'schemaId', 'type': 'str'},
+ 'entity_id': {'key': 'entityId', 'type': 'str'},
+ 'kind': {'key': 'kind', 'type': 'str'},
+ 'annotations': {'key': 'annotations', 'type': 'IndexAnnotations'},
+ 'properties': {'key': 'properties', 'type': 'IndexProperties'},
+ 'internal': {'key': 'internal', 'type': '{object}'},
+ 'update_sequence': {'key': 'updateSequence', 'type': 'long'},
+ 'type': {'key': 'type', 'type': 'str'},
+ 'version': {'key': 'version', 'type': 'str'},
+ 'entity_container_id': {'key': 'entityContainerId', 'type': 'str'},
+ 'entity_object_id': {'key': 'entityObjectId', 'type': 'str'},
+ 'resource_type': {'key': 'resourceType', 'type': 'str'},
+ 'relationships': {'key': 'relationships', 'type': '[Relationship]'},
+ 'asset_id': {'key': 'assetId', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ schema_id: Optional[str] = None,
+ entity_id: Optional[str] = None,
+ kind: Optional[Union[str, "EntityKind"]] = None,
+ annotations: Optional["IndexAnnotations"] = None,
+ properties: Optional["IndexProperties"] = None,
+ internal: Optional[Dict[str, Any]] = None,
+ update_sequence: Optional[int] = None,
+ type: Optional[str] = None,
+ relationships: Optional[List["Relationship"]] = None,
+ asset_id: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword schema_id:
+ :paramtype schema_id: str
+ :keyword entity_id:
+ :paramtype entity_id: str
+ :keyword kind: Possible values include: "Invalid", "LineageRoot", "Versioned", "Unversioned".
+ :paramtype kind: str or ~azure.mgmt.machinelearningservices.models.EntityKind
+ :keyword annotations:
+ :paramtype annotations: ~azure.mgmt.machinelearningservices.models.IndexAnnotations
+ :keyword properties:
+ :paramtype properties: ~azure.mgmt.machinelearningservices.models.IndexProperties
+ :keyword internal: Dictionary of :code:`<any>`.
+ :paramtype internal: dict[str, any]
+ :keyword update_sequence:
+ :paramtype update_sequence: long
+ :keyword type:
+ :paramtype type: str
+ :keyword relationships:
+ :paramtype relationships: list[~azure.mgmt.machinelearningservices.models.Relationship]
+ :keyword asset_id:
+ :paramtype asset_id: str
+ """
+ super(IndexEntity, self).__init__(**kwargs)
+ self.schema_id = schema_id
+ self.entity_id = entity_id
+ self.kind = kind
+ self.annotations = annotations
+ self.properties = properties
+ self.internal = internal
+ self.update_sequence = update_sequence
+ self.type = type
+ self.version = None
+ self.entity_container_id = None
+ self.entity_object_id = None
+ self.resource_type = None
+ self.relationships = relationships
+ self.asset_id = asset_id
+
+
+class IndexProperties(msrest.serialization.Model):
+ """IndexProperties.
+
+ :ivar additional_properties: Unmatched properties from the message are deserialized to this
+ collection.
+ :vartype additional_properties: dict[str, any]
+ :ivar creation_context:
+ :vartype creation_context: ~azure.mgmt.machinelearningservices.models.CreationContext
+ """
+
+ _attribute_map = {
+ 'additional_properties': {'key': '', 'type': '{object}'},
+ 'creation_context': {'key': 'creationContext', 'type': 'CreationContext'},
+ }
+
+ def __init__(
+ self,
+ *,
+ additional_properties: Optional[Dict[str, Any]] = None,
+ creation_context: Optional["CreationContext"] = None,
+ **kwargs
+ ):
+ """
+ :keyword additional_properties: Unmatched properties from the message are deserialized to this
+ collection.
+ :paramtype additional_properties: dict[str, any]
+ :keyword creation_context:
+ :paramtype creation_context: ~azure.mgmt.machinelearningservices.models.CreationContext
+ """
+ super(IndexProperties, self).__init__(**kwargs)
+ self.additional_properties = additional_properties
+ self.creation_context = creation_context
+
+
+class InnerErrorDetails(msrest.serialization.Model):
+ """InnerErrorDetails.
+
+ :ivar code:
+ :vartype code: str
+ :ivar message:
+ :vartype message: str
+ :ivar target:
+ :vartype target: str
+ """
+
+ _attribute_map = {
+ 'code': {'key': 'code', 'type': 'str'},
+ 'message': {'key': 'message', 'type': 'str'},
+ 'target': {'key': 'target', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ code: Optional[str] = None,
+ message: Optional[str] = None,
+ target: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword code:
+ :paramtype code: str
+ :keyword message:
+ :paramtype message: str
+ :keyword target:
+ :paramtype target: str
+ """
+ super(InnerErrorDetails, self).__init__(**kwargs)
+ self.code = code
+ self.message = message
+ self.target = target
+
+
+class IntellectualPropertyPublisherInformation(msrest.serialization.Model):
+ """IntellectualPropertyPublisherInformation.
+
+ :ivar intellectual_property_publisher:
+ :vartype intellectual_property_publisher: str
+ """
+
+ _attribute_map = {
+ 'intellectual_property_publisher': {'key': 'intellectualPropertyPublisher', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ intellectual_property_publisher: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword intellectual_property_publisher:
+ :paramtype intellectual_property_publisher: str
+ """
+ super(IntellectualPropertyPublisherInformation, self).__init__(**kwargs)
+ self.intellectual_property_publisher = intellectual_property_publisher
+
+
+class ListModelsRequest(msrest.serialization.Model):
+ """ListModelsRequest.
+
+ :ivar name:
+ :vartype name: str
+ :ivar tag:
+ :vartype tag: str
+ :ivar version:
+ :vartype version: str
+ :ivar framework:
+ :vartype framework: str
+ :ivar description:
+ :vartype description: str
+ :ivar count:
+ :vartype count: int
+ :ivar offset:
+ :vartype offset: int
+ :ivar skip_token:
+ :vartype skip_token: str
+ :ivar tags: A set of tags.
+ :vartype tags: str
+ :ivar properties:
+ :vartype properties: str
+ :ivar run_id:
+ :vartype run_id: str
+ :ivar dataset_id:
+ :vartype dataset_id: str
+ :ivar order_by: Possible values include: "CreatedAtDesc", "CreatedAtAsc", "UpdatedAtDesc",
+ "UpdatedAtAsc".
+ :vartype order_by: str or ~azure.mgmt.machinelearningservices.models.OrderString
+ :ivar latest_version_only:
+ :vartype latest_version_only: bool
+ :ivar modified_after:
+ :vartype modified_after: ~datetime.datetime
+ :ivar modified_before:
+ :vartype modified_before: ~datetime.datetime
+ :ivar list_view_type: Possible values include: "ActiveOnly", "ArchivedOnly", "All".
+ :vartype list_view_type: str or ~azure.mgmt.machinelearningservices.models.ListViewType
+ """
+
+ _attribute_map = {
+ 'name': {'key': 'name', 'type': 'str'},
+ 'tag': {'key': 'tag', 'type': 'str'},
+ 'version': {'key': 'version', 'type': 'str'},
+ 'framework': {'key': 'framework', 'type': 'str'},
+ 'description': {'key': 'description', 'type': 'str'},
+ 'count': {'key': 'count', 'type': 'int'},
+ 'offset': {'key': 'offset', 'type': 'int'},
+ 'skip_token': {'key': 'skipToken', 'type': 'str'},
+ 'tags': {'key': 'tags', 'type': 'str'},
+ 'properties': {'key': 'properties', 'type': 'str'},
+ 'run_id': {'key': 'runId', 'type': 'str'},
+ 'dataset_id': {'key': 'datasetId', 'type': 'str'},
+ 'order_by': {'key': 'orderBy', 'type': 'str'},
+ 'latest_version_only': {'key': 'latestVersionOnly', 'type': 'bool'},
+ 'modified_after': {'key': 'modifiedAfter', 'type': 'iso-8601'},
+ 'modified_before': {'key': 'modifiedBefore', 'type': 'iso-8601'},
+ 'list_view_type': {'key': 'listViewType', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ name: Optional[str] = None,
+ tag: Optional[str] = None,
+ version: Optional[str] = None,
+ framework: Optional[str] = None,
+ description: Optional[str] = None,
+ count: Optional[int] = None,
+ offset: Optional[int] = None,
+ skip_token: Optional[str] = None,
+ tags: Optional[str] = None,
+ properties: Optional[str] = None,
+ run_id: Optional[str] = None,
+ dataset_id: Optional[str] = None,
+ order_by: Optional[Union[str, "OrderString"]] = None,
+ latest_version_only: Optional[bool] = None,
+ modified_after: Optional[datetime.datetime] = None,
+ modified_before: Optional[datetime.datetime] = None,
+ list_view_type: Optional[Union[str, "ListViewType"]] = None,
+ **kwargs
+ ):
+ """
+ :keyword name:
+ :paramtype name: str
+ :keyword tag:
+ :paramtype tag: str
+ :keyword version:
+ :paramtype version: str
+ :keyword framework:
+ :paramtype framework: str
+ :keyword description:
+ :paramtype description: str
+ :keyword count:
+ :paramtype count: int
+ :keyword offset:
+ :paramtype offset: int
+ :keyword skip_token:
+ :paramtype skip_token: str
+ :keyword tags: A set of tags.
+ :paramtype tags: str
+ :keyword properties:
+ :paramtype properties: str
+ :keyword run_id:
+ :paramtype run_id: str
+ :keyword dataset_id:
+ :paramtype dataset_id: str
+ :keyword order_by: Possible values include: "CreatedAtDesc", "CreatedAtAsc", "UpdatedAtDesc",
+ "UpdatedAtAsc".
+ :paramtype order_by: str or ~azure.mgmt.machinelearningservices.models.OrderString
+ :keyword latest_version_only:
+ :paramtype latest_version_only: bool
+ :keyword modified_after:
+ :paramtype modified_after: ~datetime.datetime
+ :keyword modified_before:
+ :paramtype modified_before: ~datetime.datetime
+ :keyword list_view_type: Possible values include: "ActiveOnly", "ArchivedOnly", "All".
+ :paramtype list_view_type: str or ~azure.mgmt.machinelearningservices.models.ListViewType
+ """
+ super(ListModelsRequest, self).__init__(**kwargs)
+ self.name = name
+ self.tag = tag
+ self.version = version
+ self.framework = framework
+ self.description = description
+ self.count = count
+ self.offset = offset
+ self.skip_token = skip_token
+ self.tags = tags
+ self.properties = properties
+ self.run_id = run_id
+ self.dataset_id = dataset_id
+ self.order_by = order_by
+ self.latest_version_only = latest_version_only
+ self.modified_after = modified_after
+ self.modified_before = modified_before
+ self.list_view_type = list_view_type
+
+
+class Model(msrest.serialization.Model):
+ """Model.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar id:
+ :vartype id: str
+ :ivar name: Required.
+ :vartype name: str
+ :ivar framework:
+ :vartype framework: str
+ :ivar framework_version:
+ :vartype framework_version: str
+ :ivar version:
+ :vartype version: long
+ :ivar tags: A set of tags.
+ :vartype tags: list[str]
+ :ivar datasets:
+ :vartype datasets: list[~azure.mgmt.machinelearningservices.models.DatasetReference]
+ :ivar url:
+ :vartype url: str
+ :ivar mime_type: Required.
+ :vartype mime_type: str
+ :ivar description:
+ :vartype description: str
+ :ivar created_time:
+ :vartype created_time: ~datetime.datetime
+ :ivar modified_time:
+ :vartype modified_time: ~datetime.datetime
+ :ivar unpack:
+ :vartype unpack: bool
+ :ivar parent_model_id:
+ :vartype parent_model_id: str
+ :ivar run_id:
+ :vartype run_id: str
+ :ivar experiment_name:
+ :vartype experiment_name: str
+ :ivar kv_tags: Dictionary of :code:`<string>`.
+ :vartype kv_tags: dict[str, str]
+ :ivar properties: Dictionary of :code:`<string>`.
+ :vartype properties: dict[str, str]
+ :ivar derived_model_ids:
+ :vartype derived_model_ids: list[str]
+ :ivar inputs_schema:
+ :vartype inputs_schema: list[~azure.mgmt.machinelearningservices.models.ModelSchema]
+ :ivar outputs_schema:
+ :vartype outputs_schema: list[~azure.mgmt.machinelearningservices.models.ModelSchema]
+ :ivar sample_input_data:
+ :vartype sample_input_data: str
+ :ivar sample_output_data:
+ :vartype sample_output_data: str
+ :ivar resource_requirements:
+ :vartype resource_requirements:
+ ~azure.mgmt.machinelearningservices.models.ContainerResourceRequirements
+ :ivar created_by:
+ :vartype created_by: ~azure.mgmt.machinelearningservices.models.User
+ :ivar modified_by:
+ :vartype modified_by: ~azure.mgmt.machinelearningservices.models.User
+ :ivar flavors: Dictionary of
+ <components·8urbg9·schemas·model·properties·flavors·additionalproperties>.
+ :vartype flavors: dict[str, dict[str, str]]
+ :ivar model_format: Possible values include: "CUSTOM", "MLFLOW", "TRITON", "PRESETS".
+ :vartype model_format: str or ~azure.mgmt.machinelearningservices.models.ModelFormatEnum
+ :ivar stage:
+ :vartype stage: str
+ :ivar model_container_id:
+ :vartype model_container_id: str
+ :ivar mms_id:
+ :vartype mms_id: str
+ :ivar default_deployment_settings:
+ :vartype default_deployment_settings:
+ ~azure.mgmt.machinelearningservices.models.ModelDeploymentSettings
+ :ivar is_anonymous:
+ :vartype is_anonymous: bool
+ :ivar is_archived:
+ :vartype is_archived: bool
+ :ivar is_registered:
+ :vartype is_registered: bool
+ :ivar data_path:
+ :vartype data_path: str
+ :ivar model_type:
+ :vartype model_type: str
+ :ivar asset_id:
+ :vartype asset_id: str
+ """
+
+ _validation = {
+ 'name': {'required': True},
+ 'mime_type': {'required': True},
+ }
+
+ _attribute_map = {
+ 'id': {'key': 'id', 'type': 'str'},
+ 'name': {'key': 'name', 'type': 'str'},
+ 'framework': {'key': 'framework', 'type': 'str'},
+ 'framework_version': {'key': 'frameworkVersion', 'type': 'str'},
+ 'version': {'key': 'version', 'type': 'long'},
+ 'tags': {'key': 'tags', 'type': '[str]'},
+ 'datasets': {'key': 'datasets', 'type': '[DatasetReference]'},
+ 'url': {'key': 'url', 'type': 'str'},
+ 'mime_type': {'key': 'mimeType', 'type': 'str'},
+ 'description': {'key': 'description', 'type': 'str'},
+ 'created_time': {'key': 'createdTime', 'type': 'iso-8601'},
+ 'modified_time': {'key': 'modifiedTime', 'type': 'iso-8601'},
+ 'unpack': {'key': 'unpack', 'type': 'bool'},
+ 'parent_model_id': {'key': 'parentModelId', 'type': 'str'},
+ 'run_id': {'key': 'runId', 'type': 'str'},
+ 'experiment_name': {'key': 'experimentName', 'type': 'str'},
+ 'kv_tags': {'key': 'kvTags', 'type': '{str}'},
+ 'properties': {'key': 'properties', 'type': '{str}'},
+ 'derived_model_ids': {'key': 'derivedModelIds', 'type': '[str]'},
+ 'inputs_schema': {'key': 'inputsSchema', 'type': '[ModelSchema]'},
+ 'outputs_schema': {'key': 'outputsSchema', 'type': '[ModelSchema]'},
+ 'sample_input_data': {'key': 'sampleInputData', 'type': 'str'},
+ 'sample_output_data': {'key': 'sampleOutputData', 'type': 'str'},
+ 'resource_requirements': {'key': 'resourceRequirements', 'type': 'ContainerResourceRequirements'},
+ 'created_by': {'key': 'createdBy', 'type': 'User'},
+ 'modified_by': {'key': 'modifiedBy', 'type': 'User'},
+ 'flavors': {'key': 'flavors', 'type': '{{str}}'},
+ 'model_format': {'key': 'modelFormat', 'type': 'str'},
+ 'stage': {'key': 'stage', 'type': 'str'},
+ 'model_container_id': {'key': 'modelContainerId', 'type': 'str'},
+ 'mms_id': {'key': 'mmsId', 'type': 'str'},
+ 'default_deployment_settings': {'key': 'defaultDeploymentSettings', 'type': 'ModelDeploymentSettings'},
+ 'is_anonymous': {'key': 'isAnonymous', 'type': 'bool'},
+ 'is_archived': {'key': 'isArchived', 'type': 'bool'},
+ 'is_registered': {'key': 'isRegistered', 'type': 'bool'},
+ 'data_path': {'key': 'dataPath', 'type': 'str'},
+ 'model_type': {'key': 'modelType', 'type': 'str'},
+ 'asset_id': {'key': 'assetId', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ name: str,
+ mime_type: str,
+ id: Optional[str] = None,
+ framework: Optional[str] = None,
+ framework_version: Optional[str] = None,
+ version: Optional[int] = None,
+ tags: Optional[List[str]] = None,
+ datasets: Optional[List["DatasetReference"]] = None,
+ url: Optional[str] = None,
+ description: Optional[str] = None,
+ created_time: Optional[datetime.datetime] = None,
+ modified_time: Optional[datetime.datetime] = None,
+ unpack: Optional[bool] = None,
+ parent_model_id: Optional[str] = None,
+ run_id: Optional[str] = None,
+ experiment_name: Optional[str] = None,
+ kv_tags: Optional[Dict[str, str]] = None,
+ properties: Optional[Dict[str, str]] = None,
+ derived_model_ids: Optional[List[str]] = None,
+ inputs_schema: Optional[List["ModelSchema"]] = None,
+ outputs_schema: Optional[List["ModelSchema"]] = None,
+ sample_input_data: Optional[str] = None,
+ sample_output_data: Optional[str] = None,
+ resource_requirements: Optional["ContainerResourceRequirements"] = None,
+ created_by: Optional["User"] = None,
+ modified_by: Optional["User"] = None,
+ flavors: Optional[Dict[str, Dict[str, str]]] = None,
+ model_format: Optional[Union[str, "ModelFormatEnum"]] = None,
+ stage: Optional[str] = None,
+ model_container_id: Optional[str] = None,
+ mms_id: Optional[str] = None,
+ default_deployment_settings: Optional["ModelDeploymentSettings"] = None,
+ is_anonymous: Optional[bool] = None,
+ is_archived: Optional[bool] = None,
+ is_registered: Optional[bool] = None,
+ data_path: Optional[str] = None,
+ model_type: Optional[str] = None,
+ asset_id: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword id:
+ :paramtype id: str
+ :keyword name: Required.
+ :paramtype name: str
+ :keyword framework:
+ :paramtype framework: str
+ :keyword framework_version:
+ :paramtype framework_version: str
+ :keyword version:
+ :paramtype version: long
+ :keyword tags: A set of tags.
+ :paramtype tags: list[str]
+ :keyword datasets:
+ :paramtype datasets: list[~azure.mgmt.machinelearningservices.models.DatasetReference]
+ :keyword url:
+ :paramtype url: str
+ :keyword mime_type: Required.
+ :paramtype mime_type: str
+ :keyword description:
+ :paramtype description: str
+ :keyword created_time:
+ :paramtype created_time: ~datetime.datetime
+ :keyword modified_time:
+ :paramtype modified_time: ~datetime.datetime
+ :keyword unpack:
+ :paramtype unpack: bool
+ :keyword parent_model_id:
+ :paramtype parent_model_id: str
+ :keyword run_id:
+ :paramtype run_id: str
+ :keyword experiment_name:
+ :paramtype experiment_name: str
+ :keyword kv_tags: Dictionary of :code:`<string>`.
+ :paramtype kv_tags: dict[str, str]
+ :keyword properties: Dictionary of :code:`<string>`.
+ :paramtype properties: dict[str, str]
+ :keyword derived_model_ids:
+ :paramtype derived_model_ids: list[str]
+ :keyword inputs_schema:
+ :paramtype inputs_schema: list[~azure.mgmt.machinelearningservices.models.ModelSchema]
+ :keyword outputs_schema:
+ :paramtype outputs_schema: list[~azure.mgmt.machinelearningservices.models.ModelSchema]
+ :keyword sample_input_data:
+ :paramtype sample_input_data: str
+ :keyword sample_output_data:
+ :paramtype sample_output_data: str
+ :keyword resource_requirements:
+ :paramtype resource_requirements:
+ ~azure.mgmt.machinelearningservices.models.ContainerResourceRequirements
+ :keyword created_by:
+ :paramtype created_by: ~azure.mgmt.machinelearningservices.models.User
+ :keyword modified_by:
+ :paramtype modified_by: ~azure.mgmt.machinelearningservices.models.User
+ :keyword flavors: Dictionary of
+ <components·8urbg9·schemas·model·properties·flavors·additionalproperties>.
+ :paramtype flavors: dict[str, dict[str, str]]
+ :keyword model_format: Possible values include: "CUSTOM", "MLFLOW", "TRITON", "PRESETS".
+ :paramtype model_format: str or ~azure.mgmt.machinelearningservices.models.ModelFormatEnum
+ :keyword stage:
+ :paramtype stage: str
+ :keyword model_container_id:
+ :paramtype model_container_id: str
+ :keyword mms_id:
+ :paramtype mms_id: str
+ :keyword default_deployment_settings:
+ :paramtype default_deployment_settings:
+ ~azure.mgmt.machinelearningservices.models.ModelDeploymentSettings
+ :keyword is_anonymous:
+ :paramtype is_anonymous: bool
+ :keyword is_archived:
+ :paramtype is_archived: bool
+ :keyword is_registered:
+ :paramtype is_registered: bool
+ :keyword data_path:
+ :paramtype data_path: str
+ :keyword model_type:
+ :paramtype model_type: str
+ :keyword asset_id:
+ :paramtype asset_id: str
+ """
+ super(Model, self).__init__(**kwargs)
+ self.id = id
+ self.name = name
+ self.framework = framework
+ self.framework_version = framework_version
+ self.version = version
+ self.tags = tags
+ self.datasets = datasets
+ self.url = url
+ self.mime_type = mime_type
+ self.description = description
+ self.created_time = created_time
+ self.modified_time = modified_time
+ self.unpack = unpack
+ self.parent_model_id = parent_model_id
+ self.run_id = run_id
+ self.experiment_name = experiment_name
+ self.kv_tags = kv_tags
+ self.properties = properties
+ self.derived_model_ids = derived_model_ids
+ self.inputs_schema = inputs_schema
+ self.outputs_schema = outputs_schema
+ self.sample_input_data = sample_input_data
+ self.sample_output_data = sample_output_data
+ self.resource_requirements = resource_requirements
+ self.created_by = created_by
+ self.modified_by = modified_by
+ self.flavors = flavors
+ self.model_format = model_format
+ self.stage = stage
+ self.model_container_id = model_container_id
+ self.mms_id = mms_id
+ self.default_deployment_settings = default_deployment_settings
+ self.is_anonymous = is_anonymous
+ self.is_archived = is_archived
+ self.is_registered = is_registered
+ self.data_path = data_path
+ self.model_type = model_type
+ self.asset_id = asset_id
+
+
+class ModelBatchDto(msrest.serialization.Model):
+ """ModelBatchDto.
+
+ :ivar model_ids:
+ :vartype model_ids: list[str]
+ """
+
+ _attribute_map = {
+ 'model_ids': {'key': 'modelIds', 'type': '[str]'},
+ }
+
+ def __init__(
+ self,
+ *,
+ model_ids: Optional[List[str]] = None,
+ **kwargs
+ ):
+ """
+ :keyword model_ids:
+ :paramtype model_ids: list[str]
+ """
+ super(ModelBatchDto, self).__init__(**kwargs)
+ self.model_ids = model_ids
+
+
+class ModelBatchResponseDto(msrest.serialization.Model):
+ """ModelBatchResponseDto.
+
+ :ivar models: Dictionary of :code:`<Model>`.
+ :vartype models: dict[str, ~azure.mgmt.machinelearningservices.models.Model]
+ """
+
+ _attribute_map = {
+ 'models': {'key': 'models', 'type': '{Model}'},
+ }
+
+ def __init__(
+ self,
+ *,
+ models: Optional[Dict[str, "Model"]] = None,
+ **kwargs
+ ):
+ """
+ :keyword models: Dictionary of :code:`<Model>`.
+ :paramtype models: dict[str, ~azure.mgmt.machinelearningservices.models.Model]
+ """
+ super(ModelBatchResponseDto, self).__init__(**kwargs)
+ self.models = models
+
+
+class ModelContainerRequest(msrest.serialization.Model):
+ """ModelContainerRequest.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar name: Required.
+ :vartype name: str
+ :ivar description:
+ :vartype description: str
+ :ivar kv_tags: Dictionary of :code:`<string>`.
+ :vartype kv_tags: dict[str, str]
+ :ivar is_archived:
+ :vartype is_archived: bool
+ :ivar is_registered:
+ :vartype is_registered: bool
+ """
+
+ _validation = {
+ 'name': {'required': True},
+ }
+
+ _attribute_map = {
+ 'name': {'key': 'name', 'type': 'str'},
+ 'description': {'key': 'description', 'type': 'str'},
+ 'kv_tags': {'key': 'kvTags', 'type': '{str}'},
+ 'is_archived': {'key': 'isArchived', 'type': 'bool'},
+ 'is_registered': {'key': 'isRegistered', 'type': 'bool'},
+ }
+
+ def __init__(
+ self,
+ *,
+ name: str,
+ description: Optional[str] = None,
+ kv_tags: Optional[Dict[str, str]] = None,
+ is_archived: Optional[bool] = None,
+ is_registered: Optional[bool] = None,
+ **kwargs
+ ):
+ """
+ :keyword name: Required.
+ :paramtype name: str
+ :keyword description:
+ :paramtype description: str
+ :keyword kv_tags: Dictionary of :code:`<string>`.
+ :paramtype kv_tags: dict[str, str]
+ :keyword is_archived:
+ :paramtype is_archived: bool
+ :keyword is_registered:
+ :paramtype is_registered: bool
+ """
+ super(ModelContainerRequest, self).__init__(**kwargs)
+ self.name = name
+ self.description = description
+ self.kv_tags = kv_tags
+ self.is_archived = is_archived
+ self.is_registered = is_registered
+
+
+class ModelDeploymentSettings(msrest.serialization.Model):
+ """ModelDeploymentSettings.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar model_format: Required. Possible values include: "CUSTOM", "MLFLOW", "TRITON", "PRESETS".
+ :vartype model_format: str or ~azure.mgmt.machinelearningservices.models.ModelFormatEnum
+ :ivar model_name:
+ :vartype model_name: str
+ :ivar model_version:
+ :vartype model_version: str
+ :ivar model_type:
+ :vartype model_type: str
+ """
+
+ _validation = {
+ 'model_format': {'required': True},
+ }
+
+ _attribute_map = {
+ 'model_format': {'key': 'modelFormat', 'type': 'str'},
+ 'model_name': {'key': 'ModelName', 'type': 'str'},
+ 'model_version': {'key': 'ModelVersion', 'type': 'str'},
+ 'model_type': {'key': 'ModelType', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ model_format: Union[str, "ModelFormatEnum"],
+ model_name: Optional[str] = None,
+ model_version: Optional[str] = None,
+ model_type: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword model_format: Required. Possible values include: "CUSTOM", "MLFLOW", "TRITON",
+ "PRESETS".
+ :paramtype model_format: str or ~azure.mgmt.machinelearningservices.models.ModelFormatEnum
+ :keyword model_name:
+ :paramtype model_name: str
+ :keyword model_version:
+ :paramtype model_version: str
+ :keyword model_type:
+ :paramtype model_type: str
+ """
+ super(ModelDeploymentSettings, self).__init__(**kwargs)
+ self.model_format = model_format
+ self.model_name = model_name
+ self.model_version = model_version
+ self.model_type = model_type
+
+
+class ModelListModelsRequestPagedResponse(msrest.serialization.Model):
+ """ModelListModelsRequestPagedResponse.
+
+ :ivar value:
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.Model]
+ :ivar next_link:
+ :vartype next_link: str
+ :ivar continuation_token:
+ :vartype continuation_token: str
+ :ivar next_request:
+ :vartype next_request: ~azure.mgmt.machinelearningservices.models.ListModelsRequest
+ """
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': '[Model]'},
+ 'next_link': {'key': 'nextLink', 'type': 'str'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'next_request': {'key': 'nextRequest', 'type': 'ListModelsRequest'},
+ }
+
+ def __init__(
+ self,
+ *,
+ value: Optional[List["Model"]] = None,
+ next_link: Optional[str] = None,
+ continuation_token: Optional[str] = None,
+ next_request: Optional["ListModelsRequest"] = None,
+ **kwargs
+ ):
+ """
+ :keyword value:
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.Model]
+ :keyword next_link:
+ :paramtype next_link: str
+ :keyword continuation_token:
+ :paramtype continuation_token: str
+ :keyword next_request:
+ :paramtype next_request: ~azure.mgmt.machinelearningservices.models.ListModelsRequest
+ """
+ super(ModelListModelsRequestPagedResponse, self).__init__(**kwargs)
+ self.value = value
+ self.next_link = next_link
+ self.continuation_token = continuation_token
+ self.next_request = next_request
+
+
+class ModelPagedResponse(msrest.serialization.Model):
+ """ModelPagedResponse.
+
+ :ivar value:
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.Model]
+ :ivar continuation_token:
+ :vartype continuation_token: str
+ :ivar next_link:
+ :vartype next_link: str
+ """
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': '[Model]'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'next_link': {'key': 'nextLink', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ value: Optional[List["Model"]] = None,
+ continuation_token: Optional[str] = None,
+ next_link: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword value:
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.Model]
+ :keyword continuation_token:
+ :paramtype continuation_token: str
+ :keyword next_link:
+ :paramtype next_link: str
+ """
+ super(ModelPagedResponse, self).__init__(**kwargs)
+ self.value = value
+ self.continuation_token = continuation_token
+ self.next_link = next_link
+
+
+class ModelPathResponseDto(msrest.serialization.Model):
+ """ModelPathResponseDto.
+
+ :ivar path:
+ :vartype path: str
+ :ivar type:
+ :vartype type: str
+ """
+
+ _attribute_map = {
+ 'path': {'key': 'path', 'type': 'str'},
+ 'type': {'key': 'type', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ path: Optional[str] = None,
+ type: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword path:
+ :paramtype path: str
+ :keyword type:
+ :paramtype type: str
+ """
+ super(ModelPathResponseDto, self).__init__(**kwargs)
+ self.path = path
+ self.type = type
+
+
+class ModelSchema(msrest.serialization.Model):
+ """ModelSchema.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar name: Required.
+ :vartype name: str
+ :ivar data_type: Possible values include: "undefined", "bool", "uint8", "uint16", "uint32",
+ "uint64", "int8", "int16", "int32", "int64", "float16", "float32", "float64", "bfloat16",
+ "complex64", "complex128", "string".
+ :vartype data_type: str or ~azure.mgmt.machinelearningservices.models.ModelSchemaDataType
+ :ivar shape:
+ :vartype shape: list[int]
+ """
+
+ _validation = {
+ 'name': {'required': True},
+ }
+
+ _attribute_map = {
+ 'name': {'key': 'name', 'type': 'str'},
+ 'data_type': {'key': 'dataType', 'type': 'str'},
+ 'shape': {'key': 'shape', 'type': '[int]'},
+ }
+
+ def __init__(
+ self,
+ *,
+ name: str,
+ data_type: Optional[Union[str, "ModelSchemaDataType"]] = None,
+ shape: Optional[List[int]] = None,
+ **kwargs
+ ):
+ """
+ :keyword name: Required.
+ :paramtype name: str
+ :keyword data_type: Possible values include: "undefined", "bool", "uint8", "uint16", "uint32",
+ "uint64", "int8", "int16", "int32", "int64", "float16", "float32", "float64", "bfloat16",
+ "complex64", "complex128", "string".
+ :paramtype data_type: str or ~azure.mgmt.machinelearningservices.models.ModelSchemaDataType
+ :keyword shape:
+ :paramtype shape: list[int]
+ """
+ super(ModelSchema, self).__init__(**kwargs)
+ self.name = name
+ self.data_type = data_type
+ self.shape = shape
+
+
+class ModelSettingsIdentifiers(msrest.serialization.Model):
+ """ModelSettingsIdentifiers.
+
+ :ivar model_id:
+ :vartype model_id: str
+ :ivar engine_id:
+ :vartype engine_id: str
+ """
+
+ _attribute_map = {
+ 'model_id': {'key': 'modelId', 'type': 'str'},
+ 'engine_id': {'key': 'engineId', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ model_id: Optional[str] = None,
+ engine_id: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword model_id:
+ :paramtype model_id: str
+ :keyword engine_id:
+ :paramtype engine_id: str
+ """
+ super(ModelSettingsIdentifiers, self).__init__(**kwargs)
+ self.model_id = model_id
+ self.engine_id = engine_id
+
+
+class Operation(msrest.serialization.Model):
+ """Operation.
+
+ :ivar value: Anything.
+ :vartype value: any
+ :ivar path:
+ :vartype path: str
+ :ivar op:
+ :vartype op: str
+ :ivar from_property:
+ :vartype from_property: str
+ """
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': 'object'},
+ 'path': {'key': 'path', 'type': 'str'},
+ 'op': {'key': 'op', 'type': 'str'},
+ 'from_property': {'key': 'from', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ value: Optional[Any] = None,
+ path: Optional[str] = None,
+ op: Optional[str] = None,
+ from_property: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword value: Anything.
+ :paramtype value: any
+ :keyword path:
+ :paramtype path: str
+ :keyword op:
+ :paramtype op: str
+ :keyword from_property:
+ :paramtype from_property: str
+ """
+ super(Operation, self).__init__(**kwargs)
+ self.value = value
+ self.path = path
+ self.op = op
+ self.from_property = from_property
+
+
+class ProviderFeedEntityRequestDto(msrest.serialization.Model):
+ """ProviderFeedEntityRequestDto.
+
+ :ivar source_and_target_asset_ids:
+ :vartype source_and_target_asset_ids:
+ ~azure.mgmt.machinelearningservices.models.DependencyMapItemDto
+ :ivar dependency_map_dto:
+ :vartype dependency_map_dto: ~azure.mgmt.machinelearningservices.models.DependencyMapDto
+ :ivar label_to_version_mapping: Dictionary of :code:`<string>`.
+ :vartype label_to_version_mapping: dict[str, str]
+ """
+
+ _attribute_map = {
+ 'source_and_target_asset_ids': {'key': 'sourceAndTargetAssetIds', 'type': 'DependencyMapItemDto'},
+ 'dependency_map_dto': {'key': 'dependencyMapDto', 'type': 'DependencyMapDto'},
+ 'label_to_version_mapping': {'key': 'labelToVersionMapping', 'type': '{str}'},
+ }
+
+ def __init__(
+ self,
+ *,
+ source_and_target_asset_ids: Optional["DependencyMapItemDto"] = None,
+ dependency_map_dto: Optional["DependencyMapDto"] = None,
+ label_to_version_mapping: Optional[Dict[str, str]] = None,
+ **kwargs
+ ):
+ """
+ :keyword source_and_target_asset_ids:
+ :paramtype source_and_target_asset_ids:
+ ~azure.mgmt.machinelearningservices.models.DependencyMapItemDto
+ :keyword dependency_map_dto:
+ :paramtype dependency_map_dto: ~azure.mgmt.machinelearningservices.models.DependencyMapDto
+ :keyword label_to_version_mapping: Dictionary of :code:`<string>`.
+ :paramtype label_to_version_mapping: dict[str, str]
+ """
+ super(ProviderFeedEntityRequestDto, self).__init__(**kwargs)
+ self.source_and_target_asset_ids = source_and_target_asset_ids
+ self.dependency_map_dto = dependency_map_dto
+ self.label_to_version_mapping = label_to_version_mapping
+
+
+class Relationship(msrest.serialization.Model):
+ """Relationship.
+
+ Variables are only populated by the server, and will be ignored when sending a request.
+
+ :ivar additional_properties: Unmatched properties from the message are deserialized to this
+ collection.
+ :vartype additional_properties: dict[str, any]
+ :ivar relation_type:
+ :vartype relation_type: str
+ :ivar target_entity_id:
+ :vartype target_entity_id: str
+ :ivar asset_id:
+ :vartype asset_id: str
+ :ivar entity_type:
+ :vartype entity_type: str
+ :ivar direction:
+ :vartype direction: str
+ :ivar entity_container_id:
+ :vartype entity_container_id: str
+ """
+
+ _validation = {
+ 'entity_type': {'readonly': True},
+ 'entity_container_id': {'readonly': True},
+ }
+
+ _attribute_map = {
+ 'additional_properties': {'key': '', 'type': '{object}'},
+ 'relation_type': {'key': 'relationType', 'type': 'str'},
+ 'target_entity_id': {'key': 'targetEntityId', 'type': 'str'},
+ 'asset_id': {'key': 'assetId', 'type': 'str'},
+ 'entity_type': {'key': 'entityType', 'type': 'str'},
+ 'direction': {'key': 'direction', 'type': 'str'},
+ 'entity_container_id': {'key': 'entityContainerId', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ additional_properties: Optional[Dict[str, Any]] = None,
+ relation_type: Optional[str] = None,
+ target_entity_id: Optional[str] = None,
+ asset_id: Optional[str] = None,
+ direction: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword additional_properties: Unmatched properties from the message are deserialized to this
+ collection.
+ :paramtype additional_properties: dict[str, any]
+ :keyword relation_type:
+ :paramtype relation_type: str
+ :keyword target_entity_id:
+ :paramtype target_entity_id: str
+ :keyword asset_id:
+ :paramtype asset_id: str
+ :keyword direction:
+ :paramtype direction: str
+ """
+ super(Relationship, self).__init__(**kwargs)
+ self.additional_properties = additional_properties
+ self.relation_type = relation_type
+ self.target_entity_id = target_entity_id
+ self.asset_id = asset_id
+ self.entity_type = None
+ self.direction = direction
+ self.entity_container_id = None
+
+
+class ServiceResponseBase(msrest.serialization.Model):
+ """ServiceResponseBase.
+
+ :ivar id:
+ :vartype id: str
+ :ivar name:
+ :vartype name: str
+ :ivar description:
+ :vartype description: str
+ :ivar tags: A set of tags.
+ :vartype tags: list[str]
+ :ivar kv_tags: Dictionary of :code:`<string>`.
+ :vartype kv_tags: dict[str, str]
+ :ivar properties: Dictionary of :code:`<string>`.
+ :vartype properties: dict[str, str]
+ :ivar operation_id:
+ :vartype operation_id: str
+ :ivar state: Possible values include: "Transitioning", "Healthy", "Unhealthy", "Failed",
+ "Unschedulable".
+ :vartype state: str or ~azure.mgmt.machinelearningservices.models.WebServiceState
+ :ivar created_time:
+ :vartype created_time: ~datetime.datetime
+ :ivar updated_time:
+ :vartype updated_time: ~datetime.datetime
+ :ivar error:
+ :vartype error: ~azure.mgmt.machinelearningservices.models.ErrorResponse
+ :ivar compute_type: Possible values include: "ACS", "FPGA", "ACI", "AKS", "AMLCOMPUTE", "IOT",
+ "MIR", "AKSENDPOINT", "MIRSINGLEMODEL", "MIRAMLCOMPUTE", "MIRGA", "AMLARC", "BATCHAMLCOMPUTE",
+ "UNKNOWN".
+ :vartype compute_type: str or ~azure.mgmt.machinelearningservices.models.ComputeEnvironmentType
+ :ivar deployment_type: Possible values include: "GRPCRealtimeEndpoint", "HttpRealtimeEndpoint",
+ "Batch".
+ :vartype deployment_type: str or ~azure.mgmt.machinelearningservices.models.DeploymentType
+ :ivar created_by:
+ :vartype created_by: ~azure.mgmt.machinelearningservices.models.User
+ :ivar endpoint_name:
+ :vartype endpoint_name: str
+ """
+
+ _attribute_map = {
+ 'id': {'key': 'id', 'type': 'str'},
+ 'name': {'key': 'name', 'type': 'str'},
+ 'description': {'key': 'description', 'type': 'str'},
+ 'tags': {'key': 'tags', 'type': '[str]'},
+ 'kv_tags': {'key': 'kvTags', 'type': '{str}'},
+ 'properties': {'key': 'properties', 'type': '{str}'},
+ 'operation_id': {'key': 'operationId', 'type': 'str'},
+ 'state': {'key': 'state', 'type': 'str'},
+ 'created_time': {'key': 'createdTime', 'type': 'iso-8601'},
+ 'updated_time': {'key': 'updatedTime', 'type': 'iso-8601'},
+ 'error': {'key': 'error', 'type': 'ErrorResponse'},
+ 'compute_type': {'key': 'computeType', 'type': 'str'},
+ 'deployment_type': {'key': 'deploymentType', 'type': 'str'},
+ 'created_by': {'key': 'createdBy', 'type': 'User'},
+ 'endpoint_name': {'key': 'endpointName', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ id: Optional[str] = None,
+ name: Optional[str] = None,
+ description: Optional[str] = None,
+ tags: Optional[List[str]] = None,
+ kv_tags: Optional[Dict[str, str]] = None,
+ properties: Optional[Dict[str, str]] = None,
+ operation_id: Optional[str] = None,
+ state: Optional[Union[str, "WebServiceState"]] = None,
+ created_time: Optional[datetime.datetime] = None,
+ updated_time: Optional[datetime.datetime] = None,
+ error: Optional["ErrorResponse"] = None,
+ compute_type: Optional[Union[str, "ComputeEnvironmentType"]] = None,
+ deployment_type: Optional[Union[str, "DeploymentType"]] = None,
+ created_by: Optional["User"] = None,
+ endpoint_name: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword id:
+ :paramtype id: str
+ :keyword name:
+ :paramtype name: str
+ :keyword description:
+ :paramtype description: str
+ :keyword tags: A set of tags.
+ :paramtype tags: list[str]
+ :keyword kv_tags: Dictionary of :code:`<string>`.
+ :paramtype kv_tags: dict[str, str]
+ :keyword properties: Dictionary of :code:`<string>`.
+ :paramtype properties: dict[str, str]
+ :keyword operation_id:
+ :paramtype operation_id: str
+ :keyword state: Possible values include: "Transitioning", "Healthy", "Unhealthy", "Failed",
+ "Unschedulable".
+ :paramtype state: str or ~azure.mgmt.machinelearningservices.models.WebServiceState
+ :keyword created_time:
+ :paramtype created_time: ~datetime.datetime
+ :keyword updated_time:
+ :paramtype updated_time: ~datetime.datetime
+ :keyword error:
+ :paramtype error: ~azure.mgmt.machinelearningservices.models.ErrorResponse
+ :keyword compute_type: Possible values include: "ACS", "FPGA", "ACI", "AKS", "AMLCOMPUTE",
+ "IOT", "MIR", "AKSENDPOINT", "MIRSINGLEMODEL", "MIRAMLCOMPUTE", "MIRGA", "AMLARC",
+ "BATCHAMLCOMPUTE", "UNKNOWN".
+ :paramtype compute_type: str or
+ ~azure.mgmt.machinelearningservices.models.ComputeEnvironmentType
+ :keyword deployment_type: Possible values include: "GRPCRealtimeEndpoint",
+ "HttpRealtimeEndpoint", "Batch".
+ :paramtype deployment_type: str or ~azure.mgmt.machinelearningservices.models.DeploymentType
+ :keyword created_by:
+ :paramtype created_by: ~azure.mgmt.machinelearningservices.models.User
+ :keyword endpoint_name:
+ :paramtype endpoint_name: str
+ """
+ super(ServiceResponseBase, self).__init__(**kwargs)
+ self.id = id
+ self.name = name
+ self.description = description
+ self.tags = tags
+ self.kv_tags = kv_tags
+ self.properties = properties
+ self.operation_id = operation_id
+ self.state = state
+ self.created_time = created_time
+ self.updated_time = updated_time
+ self.error = error
+ self.compute_type = compute_type
+ self.deployment_type = deployment_type
+ self.created_by = created_by
+ self.endpoint_name = endpoint_name
+
+
+class User(msrest.serialization.Model):
+ """User.
+
+ :ivar user_object_id:
+ :vartype user_object_id: str
+ :ivar user_pu_id:
+ :vartype user_pu_id: str
+ :ivar user_idp:
+ :vartype user_idp: str
+ :ivar user_alt_sec_id:
+ :vartype user_alt_sec_id: str
+ :ivar user_iss:
+ :vartype user_iss: str
+ :ivar user_tenant_id:
+ :vartype user_tenant_id: str
+ :ivar user_name:
+ :vartype user_name: str
+ :ivar upn:
+ :vartype upn: str
+ """
+
+ _attribute_map = {
+ 'user_object_id': {'key': 'userObjectId', 'type': 'str'},
+ 'user_pu_id': {'key': 'userPuId', 'type': 'str'},
+ 'user_idp': {'key': 'userIdp', 'type': 'str'},
+ 'user_alt_sec_id': {'key': 'userAltSecId', 'type': 'str'},
+ 'user_iss': {'key': 'userIss', 'type': 'str'},
+ 'user_tenant_id': {'key': 'userTenantId', 'type': 'str'},
+ 'user_name': {'key': 'userName', 'type': 'str'},
+ 'upn': {'key': 'upn', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ user_object_id: Optional[str] = None,
+ user_pu_id: Optional[str] = None,
+ user_idp: Optional[str] = None,
+ user_alt_sec_id: Optional[str] = None,
+ user_iss: Optional[str] = None,
+ user_tenant_id: Optional[str] = None,
+ user_name: Optional[str] = None,
+ upn: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword user_object_id:
+ :paramtype user_object_id: str
+ :keyword user_pu_id:
+ :paramtype user_pu_id: str
+ :keyword user_idp:
+ :paramtype user_idp: str
+ :keyword user_alt_sec_id:
+ :paramtype user_alt_sec_id: str
+ :keyword user_iss:
+ :paramtype user_iss: str
+ :keyword user_tenant_id:
+ :paramtype user_tenant_id: str
+ :keyword user_name:
+ :paramtype user_name: str
+ :keyword upn:
+ :paramtype upn: str
+ """
+ super(User, self).__init__(**kwargs)
+ self.user_object_id = user_object_id
+ self.user_pu_id = user_pu_id
+ self.user_idp = user_idp
+ self.user_alt_sec_id = user_alt_sec_id
+ self.user_iss = user_iss
+ self.user_tenant_id = user_tenant_id
+ self.user_name = user_name
+ self.upn = upn
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/__init__.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/__init__.py
new file mode 100644
index 00000000..261577d5
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/__init__.py
@@ -0,0 +1,19 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from ._assets_operations import AssetsOperations
+from ._extensive_model_operations import ExtensiveModelOperations
+from ._migration_operations import MigrationOperations
+from ._models_operations import ModelsOperations
+
+__all__ = [
+ 'AssetsOperations',
+ 'ExtensiveModelOperations',
+ 'MigrationOperations',
+ 'ModelsOperations',
+]
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/_assets_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/_assets_operations.py
new file mode 100644
index 00000000..65afa16f
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/_assets_operations.py
@@ -0,0 +1,609 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import TYPE_CHECKING
+import warnings
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from msrest import Serializer
+
+from .. import models as _models
+from .._vendor import _convert_request, _format_url_section
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any, Callable, Dict, Generic, List, Optional, TypeVar, Union
+ T = TypeVar('T')
+ ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+# fmt: off
+
+def build_create_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json, text/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/assets')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_list_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ run_id = kwargs.pop('run_id', None) # type: Optional[str]
+ project_id = kwargs.pop('project_id', None) # type: Optional[str]
+ name = kwargs.pop('name', None) # type: Optional[str]
+ tag = kwargs.pop('tag', None) # type: Optional[str]
+ count = kwargs.pop('count', None) # type: Optional[int]
+ skip_token = kwargs.pop('skip_token', None) # type: Optional[str]
+ tags = kwargs.pop('tags', None) # type: Optional[str]
+ properties = kwargs.pop('properties', None) # type: Optional[str]
+ type = kwargs.pop('type', None) # type: Optional[str]
+ orderby = kwargs.pop('orderby', None) # type: Optional[Union[str, "_models.OrderString"]]
+
+ accept = "application/json, text/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/assets')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if run_id is not None:
+ query_parameters['runId'] = _SERIALIZER.query("run_id", run_id, 'str')
+ if project_id is not None:
+ query_parameters['projectId'] = _SERIALIZER.query("project_id", project_id, 'str')
+ if name is not None:
+ query_parameters['name'] = _SERIALIZER.query("name", name, 'str')
+ if tag is not None:
+ query_parameters['tag'] = _SERIALIZER.query("tag", tag, 'str')
+ if count is not None:
+ query_parameters['count'] = _SERIALIZER.query("count", count, 'int')
+ if skip_token is not None:
+ query_parameters['$skipToken'] = _SERIALIZER.query("skip_token", skip_token, 'str')
+ if tags is not None:
+ query_parameters['tags'] = _SERIALIZER.query("tags", tags, 'str')
+ if properties is not None:
+ query_parameters['properties'] = _SERIALIZER.query("properties", properties, 'str')
+ if type is not None:
+ query_parameters['type'] = _SERIALIZER.query("type", type, 'str')
+ if orderby is not None:
+ query_parameters['orderby'] = _SERIALIZER.query("orderby", orderby, 'str')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_patch_request(
+ id, # type: str
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json, text/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/assets/{id}')
+ path_format_arguments = {
+ "id": _SERIALIZER.url("id", id, 'str'),
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="PATCH",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_delete_request(
+ id, # type: str
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/assets/{id}')
+ path_format_arguments = {
+ "id": _SERIALIZER.url("id", id, 'str'),
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ return HttpRequest(
+ method="DELETE",
+ url=url,
+ **kwargs
+ )
+
+
+def build_query_by_id_request(
+ id, # type: str
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json, text/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/assets/{id}')
+ path_format_arguments = {
+ "id": _SERIALIZER.url("id", id, 'str'),
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+# fmt: on
+class AssetsOperations(object):
+ """AssetsOperations operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer):
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace
+ def create(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body=None, # type: Optional["_models.Asset"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Asset"
+ """create.
+
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.Asset
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Asset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Asset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Asset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json-patch+json") # type: Optional[str]
+
+ _json = None
+ _content = None
+ if content_type.split(";")[0] in ['application/json', 'text/json']:
+ if body is not None:
+ _json = self._serialize.body(body, 'Asset')
+ elif content_type.split(";")[0] in ['application/json-patch+json', 'application/*+json']:
+ if body is not None:
+ _json = self._serialize.body(body, 'Asset')
+ else:
+ raise ValueError(
+ "The content_type '{}' is not one of the allowed values: "
+ "['application/json-patch+json', 'application/json', 'text/json', 'application/*+json']".format(content_type)
+ )
+
+ request = build_create_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self.create.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Asset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ create.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/assets'} # type: ignore
+
+
+ @distributed_trace
+ def list(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ run_id=None, # type: Optional[str]
+ project_id=None, # type: Optional[str]
+ name=None, # type: Optional[str]
+ tag=None, # type: Optional[str]
+ count=None, # type: Optional[int]
+ skip_token=None, # type: Optional[str]
+ tags=None, # type: Optional[str]
+ properties=None, # type: Optional[str]
+ type=None, # type: Optional[str]
+ orderby=None, # type: Optional[Union[str, "_models.OrderString"]]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.AssetPaginatedResult"
+ """list.
+
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param run_id:
+ :type run_id: str
+ :param project_id:
+ :type project_id: str
+ :param name:
+ :type name: str
+ :param tag:
+ :type tag: str
+ :param count:
+ :type count: int
+ :param skip_token:
+ :type skip_token: str
+ :param tags:
+ :type tags: str
+ :param properties:
+ :type properties: str
+ :param type:
+ :type type: str
+ :param orderby:
+ :type orderby: str or ~azure.mgmt.machinelearningservices.models.OrderString
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: AssetPaginatedResult, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.AssetPaginatedResult
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.AssetPaginatedResult"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ run_id=run_id,
+ project_id=project_id,
+ name=name,
+ tag=tag,
+ count=count,
+ skip_token=skip_token,
+ tags=tags,
+ properties=properties,
+ type=type,
+ orderby=orderby,
+ template_url=self.list.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('AssetPaginatedResult', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ list.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/assets'} # type: ignore
+
+
+ @distributed_trace
+ def patch(
+ self,
+ id, # type: str
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body, # type: List["_models.Operation"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Asset"
+ """patch.
+
+ :param id:
+ :type id: str
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param body:
+ :type body: list[~azure.mgmt.machinelearningservices.models.Operation]
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Asset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Asset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Asset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json-patch+json") # type: Optional[str]
+
+ _json = None
+ _content = None
+ if content_type.split(";")[0] in ['application/json', 'text/json']:
+ _json = self._serialize.body(body, '[Operation]')
+ elif content_type.split(";")[0] in ['application/json-patch+json', 'application/*+json']:
+ _json = self._serialize.body(body, '[Operation]')
+ else:
+ raise ValueError(
+ "The content_type '{}' is not one of the allowed values: "
+ "['application/json-patch+json', 'application/json', 'text/json', 'application/*+json']".format(content_type)
+ )
+
+ request = build_patch_request(
+ id=id,
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self.patch.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Asset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ patch.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/assets/{id}'} # type: ignore
+
+
+ @distributed_trace
+ def delete(
+ self,
+ id, # type: str
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> None
+ """delete.
+
+ :param id:
+ :type id: str
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_delete_request(
+ id=id,
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ template_url=self.delete.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 204]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ delete.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/assets/{id}'} # type: ignore
+
+
+ @distributed_trace
+ def query_by_id(
+ self,
+ id, # type: str
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Asset"
+ """query_by_id.
+
+ :param id:
+ :type id: str
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Asset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Asset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Asset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_query_by_id_request(
+ id=id,
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ template_url=self.query_by_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Asset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ query_by_id.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/assets/{id}'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/_extensive_model_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/_extensive_model_operations.py
new file mode 100644
index 00000000..cd7703c6
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/_extensive_model_operations.py
@@ -0,0 +1,144 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import TYPE_CHECKING
+import warnings
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from msrest import Serializer
+
+from .. import models as _models
+from .._vendor import _convert_request, _format_url_section
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any, Callable, Dict, Generic, Optional, TypeVar
+ T = TypeVar('T')
+ ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+# fmt: off
+
+def build_query_by_id_request(
+ id, # type: str
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json, text/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/extensiveModels/{id}')
+ path_format_arguments = {
+ "id": _SERIALIZER.url("id", id, 'str'),
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+# fmt: on
+class ExtensiveModelOperations(object):
+ """ExtensiveModelOperations operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer):
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace
+ def query_by_id(
+ self,
+ id, # type: str
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.ExtensiveModel"
+ """query_by_id.
+
+ :param id:
+ :type id: str
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: ExtensiveModel, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.ExtensiveModel
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.ExtensiveModel"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_query_by_id_request(
+ id=id,
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ template_url=self.query_by_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('ExtensiveModel', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ query_by_id.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/extensiveModels/{id}'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/_migration_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/_migration_operations.py
new file mode 100644
index 00000000..e8a39933
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/_migration_operations.py
@@ -0,0 +1,139 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import TYPE_CHECKING
+import warnings
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from msrest import Serializer
+
+from .. import models as _models
+from .._vendor import _convert_request
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any, Callable, Dict, Generic, Optional, TypeVar
+ T = TypeVar('T')
+ ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+# fmt: off
+
+def build_start_migration_request(
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ migration = kwargs.pop('migration', None) # type: Optional[str]
+ timeout = kwargs.pop('timeout', "00:01:00") # type: Optional[str]
+ collection_id = kwargs.pop('collection_id', None) # type: Optional[str]
+ workspace_id = kwargs.pop('workspace_id', None) # type: Optional[str]
+
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/meta/migration')
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if migration is not None:
+ query_parameters['migration'] = _SERIALIZER.query("migration", migration, 'str')
+ if timeout is not None:
+ query_parameters['timeout'] = _SERIALIZER.query("timeout", timeout, 'str')
+ if collection_id is not None:
+ query_parameters['collectionId'] = _SERIALIZER.query("collection_id", collection_id, 'str')
+ if workspace_id is not None:
+ query_parameters['workspaceId'] = _SERIALIZER.query("workspace_id", workspace_id, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ params=query_parameters,
+ **kwargs
+ )
+
+# fmt: on
+class MigrationOperations(object):
+ """MigrationOperations operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer):
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace
+ def start_migration(
+ self,
+ migration=None, # type: Optional[str]
+ timeout="00:01:00", # type: Optional[str]
+ collection_id=None, # type: Optional[str]
+ workspace_id=None, # type: Optional[str]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> None
+ """start_migration.
+
+ :param migration:
+ :type migration: str
+ :param timeout:
+ :type timeout: str
+ :param collection_id:
+ :type collection_id: str
+ :param workspace_id:
+ :type workspace_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_start_migration_request(
+ migration=migration,
+ timeout=timeout,
+ collection_id=collection_id,
+ workspace_id=workspace_id,
+ template_url=self.start_migration.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ start_migration.metadata = {'url': '/modelregistry/v1.0/meta/migration'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/_models_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/_models_operations.py
new file mode 100644
index 00000000..e65f830d
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/operations/_models_operations.py
@@ -0,0 +1,1322 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import TYPE_CHECKING
+import warnings
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from msrest import Serializer
+
+from .. import models as _models
+from .._vendor import _convert_request, _format_url_section
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any, Callable, Dict, Generic, List, Optional, TypeVar, Union
+ T = TypeVar('T')
+ ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+# fmt: off
+
+def build_register_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+ auto_version = kwargs.pop('auto_version', True) # type: Optional[bool]
+
+ accept = "application/json, text/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if auto_version is not None:
+ query_parameters['autoVersion'] = _SERIALIZER.query("auto_version", auto_version, 'bool')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_list_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ name = kwargs.pop('name', None) # type: Optional[str]
+ tag = kwargs.pop('tag', None) # type: Optional[str]
+ version = kwargs.pop('version', None) # type: Optional[str]
+ framework = kwargs.pop('framework', None) # type: Optional[str]
+ description = kwargs.pop('description', None) # type: Optional[str]
+ count = kwargs.pop('count', None) # type: Optional[int]
+ offset = kwargs.pop('offset', None) # type: Optional[int]
+ skip_token = kwargs.pop('skip_token', None) # type: Optional[str]
+ tags = kwargs.pop('tags', None) # type: Optional[str]
+ properties = kwargs.pop('properties', None) # type: Optional[str]
+ run_id = kwargs.pop('run_id', None) # type: Optional[str]
+ dataset_id = kwargs.pop('dataset_id', None) # type: Optional[str]
+ order_by = kwargs.pop('order_by', None) # type: Optional[str]
+ latest_version_only = kwargs.pop('latest_version_only', False) # type: Optional[bool]
+ feed = kwargs.pop('feed', None) # type: Optional[str]
+ list_view_type = kwargs.pop('list_view_type', None) # type: Optional[Union[str, "_models.ListViewType"]]
+
+ accept = "application/json, text/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if name is not None:
+ query_parameters['name'] = _SERIALIZER.query("name", name, 'str')
+ if tag is not None:
+ query_parameters['tag'] = _SERIALIZER.query("tag", tag, 'str')
+ if version is not None:
+ query_parameters['version'] = _SERIALIZER.query("version", version, 'str')
+ if framework is not None:
+ query_parameters['framework'] = _SERIALIZER.query("framework", framework, 'str')
+ if description is not None:
+ query_parameters['description'] = _SERIALIZER.query("description", description, 'str')
+ if count is not None:
+ query_parameters['count'] = _SERIALIZER.query("count", count, 'int')
+ if offset is not None:
+ query_parameters['offset'] = _SERIALIZER.query("offset", offset, 'int')
+ if skip_token is not None:
+ query_parameters['$skipToken'] = _SERIALIZER.query("skip_token", skip_token, 'str')
+ if tags is not None:
+ query_parameters['tags'] = _SERIALIZER.query("tags", tags, 'str')
+ if properties is not None:
+ query_parameters['properties'] = _SERIALIZER.query("properties", properties, 'str')
+ if run_id is not None:
+ query_parameters['runId'] = _SERIALIZER.query("run_id", run_id, 'str')
+ if dataset_id is not None:
+ query_parameters['datasetId'] = _SERIALIZER.query("dataset_id", dataset_id, 'str')
+ if order_by is not None:
+ query_parameters['orderBy'] = _SERIALIZER.query("order_by", order_by, 'str')
+ if latest_version_only is not None:
+ query_parameters['latestVersionOnly'] = _SERIALIZER.query("latest_version_only", latest_version_only, 'bool')
+ if feed is not None:
+ query_parameters['feed'] = _SERIALIZER.query("feed", feed, 'str')
+ if list_view_type is not None:
+ query_parameters['listViewType'] = _SERIALIZER.query("list_view_type", list_view_type, 'str')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_create_unregistered_input_model_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json, text/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/createUnregisteredInput')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_create_unregistered_output_model_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json, text/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/createUnregisteredOutput')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_batch_get_resolved_uris_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json, text/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/batchGetResolvedUris')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_query_by_id_request(
+ id, # type: str
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ include_deployment_settings = kwargs.pop('include_deployment_settings', False) # type: Optional[bool]
+
+ accept = "application/json, text/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/{id}')
+ path_format_arguments = {
+ "id": _SERIALIZER.url("id", id, 'str'),
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if include_deployment_settings is not None:
+ query_parameters['includeDeploymentSettings'] = _SERIALIZER.query("include_deployment_settings", include_deployment_settings, 'bool')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_delete_request(
+ id, # type: str
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/{id}')
+ path_format_arguments = {
+ "id": _SERIALIZER.url("id", id, 'str'),
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ return HttpRequest(
+ method="DELETE",
+ url=url,
+ **kwargs
+ )
+
+
+def build_patch_request(
+ id, # type: str
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json, text/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/{id}')
+ path_format_arguments = {
+ "id": _SERIALIZER.url("id", id, 'str'),
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="PATCH",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_list_query_post_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json, text/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/list')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_batch_query_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json, text/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/querybatch')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_deployment_settings_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ # Construct URL
+ url = kwargs.pop("template_url", '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/deploymentSettings')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+# fmt: on
+class ModelsOperations(object):
+ """ModelsOperations operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer):
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace
+ def register(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body, # type: "_models.Model"
+ auto_version=True, # type: Optional[bool]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Model"
+ """register.
+
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.Model
+ :param auto_version:
+ :type auto_version: bool
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Model, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Model
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Model"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json-patch+json") # type: Optional[str]
+
+ _json = None
+ _content = None
+ if content_type.split(";")[0] in ['application/json', 'text/json']:
+ _json = self._serialize.body(body, 'Model')
+ elif content_type.split(";")[0] in ['application/json-patch+json', 'application/*+json']:
+ _json = self._serialize.body(body, 'Model')
+ else:
+ raise ValueError(
+ "The content_type '{}' is not one of the allowed values: "
+ "['application/json-patch+json', 'application/json', 'text/json', 'application/*+json']".format(content_type)
+ )
+
+ request = build_register_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ auto_version=auto_version,
+ template_url=self.register.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Model', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ register.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models'} # type: ignore
+
+
+ @distributed_trace
+ def list(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name=None, # type: Optional[str]
+ tag=None, # type: Optional[str]
+ version=None, # type: Optional[str]
+ framework=None, # type: Optional[str]
+ description=None, # type: Optional[str]
+ count=None, # type: Optional[int]
+ offset=None, # type: Optional[int]
+ skip_token=None, # type: Optional[str]
+ tags=None, # type: Optional[str]
+ properties=None, # type: Optional[str]
+ run_id=None, # type: Optional[str]
+ dataset_id=None, # type: Optional[str]
+ order_by=None, # type: Optional[str]
+ latest_version_only=False, # type: Optional[bool]
+ feed=None, # type: Optional[str]
+ list_view_type=None, # type: Optional[Union[str, "_models.ListViewType"]]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.ModelPagedResponse"
+ """list.
+
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param tag:
+ :type tag: str
+ :param version:
+ :type version: str
+ :param framework:
+ :type framework: str
+ :param description:
+ :type description: str
+ :param count:
+ :type count: int
+ :param offset:
+ :type offset: int
+ :param skip_token:
+ :type skip_token: str
+ :param tags:
+ :type tags: str
+ :param properties:
+ :type properties: str
+ :param run_id:
+ :type run_id: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param order_by:
+ :type order_by: str
+ :param latest_version_only:
+ :type latest_version_only: bool
+ :param feed:
+ :type feed: str
+ :param list_view_type:
+ :type list_view_type: str or ~azure.mgmt.machinelearningservices.models.ListViewType
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: ModelPagedResponse, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.ModelPagedResponse
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.ModelPagedResponse"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ tag=tag,
+ version=version,
+ framework=framework,
+ description=description,
+ count=count,
+ offset=offset,
+ skip_token=skip_token,
+ tags=tags,
+ properties=properties,
+ run_id=run_id,
+ dataset_id=dataset_id,
+ order_by=order_by,
+ latest_version_only=latest_version_only,
+ feed=feed,
+ list_view_type=list_view_type,
+ template_url=self.list.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('ModelPagedResponse', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ list.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models'} # type: ignore
+
+
+ @distributed_trace
+ def create_unregistered_input_model(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body, # type: "_models.CreateUnregisteredInputModelDto"
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Model"
+ """create_unregistered_input_model.
+
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.CreateUnregisteredInputModelDto
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Model, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Model
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Model"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json-patch+json") # type: Optional[str]
+
+ _json = None
+ _content = None
+ if content_type.split(";")[0] in ['application/json', 'text/json']:
+ _json = self._serialize.body(body, 'CreateUnregisteredInputModelDto')
+ elif content_type.split(";")[0] in ['application/json-patch+json', 'application/*+json']:
+ _json = self._serialize.body(body, 'CreateUnregisteredInputModelDto')
+ else:
+ raise ValueError(
+ "The content_type '{}' is not one of the allowed values: "
+ "['application/json-patch+json', 'application/json', 'text/json', 'application/*+json']".format(content_type)
+ )
+
+ request = build_create_unregistered_input_model_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self.create_unregistered_input_model.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Model', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ create_unregistered_input_model.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/createUnregisteredInput'} # type: ignore
+
+
+ @distributed_trace
+ def create_unregistered_output_model(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body, # type: "_models.CreateUnregisteredOutputModelDto"
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Model"
+ """create_unregistered_output_model.
+
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.CreateUnregisteredOutputModelDto
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Model, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Model
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Model"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json-patch+json") # type: Optional[str]
+
+ _json = None
+ _content = None
+ if content_type.split(";")[0] in ['application/json', 'text/json']:
+ _json = self._serialize.body(body, 'CreateUnregisteredOutputModelDto')
+ elif content_type.split(";")[0] in ['application/json-patch+json', 'application/*+json']:
+ _json = self._serialize.body(body, 'CreateUnregisteredOutputModelDto')
+ else:
+ raise ValueError(
+ "The content_type '{}' is not one of the allowed values: "
+ "['application/json-patch+json', 'application/json', 'text/json', 'application/*+json']".format(content_type)
+ )
+
+ request = build_create_unregistered_output_model_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self.create_unregistered_output_model.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Model', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ create_unregistered_output_model.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/createUnregisteredOutput'} # type: ignore
+
+
+ @distributed_trace
+ def batch_get_resolved_uris(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body=None, # type: Optional["_models.BatchGetResolvedUrisDto"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.BatchModelPathResponseDto"
+ """batch_get_resolved_uris.
+
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.BatchGetResolvedUrisDto
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: BatchModelPathResponseDto, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.BatchModelPathResponseDto
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.BatchModelPathResponseDto"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json-patch+json") # type: Optional[str]
+
+ _json = None
+ _content = None
+ if content_type.split(";")[0] in ['application/json', 'text/json']:
+ if body is not None:
+ _json = self._serialize.body(body, 'BatchGetResolvedUrisDto')
+ elif content_type.split(";")[0] in ['application/json-patch+json', 'application/*+json']:
+ if body is not None:
+ _json = self._serialize.body(body, 'BatchGetResolvedUrisDto')
+ else:
+ raise ValueError(
+ "The content_type '{}' is not one of the allowed values: "
+ "['application/json-patch+json', 'application/json', 'text/json', 'application/*+json']".format(content_type)
+ )
+
+ request = build_batch_get_resolved_uris_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self.batch_get_resolved_uris.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('BatchModelPathResponseDto', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ batch_get_resolved_uris.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/batchGetResolvedUris'} # type: ignore
+
+
+ @distributed_trace
+ def query_by_id(
+ self,
+ id, # type: str
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ include_deployment_settings=False, # type: Optional[bool]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Model"
+ """query_by_id.
+
+ :param id:
+ :type id: str
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param include_deployment_settings:
+ :type include_deployment_settings: bool
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Model, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Model
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Model"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_query_by_id_request(
+ id=id,
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ include_deployment_settings=include_deployment_settings,
+ template_url=self.query_by_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Model', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ query_by_id.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/{id}'} # type: ignore
+
+
+ @distributed_trace
+ def delete(
+ self,
+ id, # type: str
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> None
+ """delete.
+
+ :param id:
+ :type id: str
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_delete_request(
+ id=id,
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ template_url=self.delete.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 204]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ delete.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/{id}'} # type: ignore
+
+
+ @distributed_trace
+ def patch(
+ self,
+ id, # type: str
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body, # type: List["_models.Operation"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Model"
+ """patch.
+
+ :param id:
+ :type id: str
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param body:
+ :type body: list[~azure.mgmt.machinelearningservices.models.Operation]
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Model, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Model
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Model"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json-patch+json") # type: Optional[str]
+
+ _json = None
+ _content = None
+ if content_type.split(";")[0] in ['application/json', 'text/json']:
+ _json = self._serialize.body(body, '[Operation]')
+ elif content_type.split(";")[0] in ['application/json-patch+json', 'application/*+json']:
+ _json = self._serialize.body(body, '[Operation]')
+ else:
+ raise ValueError(
+ "The content_type '{}' is not one of the allowed values: "
+ "['application/json-patch+json', 'application/json', 'text/json', 'application/*+json']".format(content_type)
+ )
+
+ request = build_patch_request(
+ id=id,
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self.patch.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Model', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ patch.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/{id}'} # type: ignore
+
+
+ @distributed_trace
+ def list_query_post(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body=None, # type: Optional["_models.ListModelsRequest"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.ModelListModelsRequestPagedResponse"
+ """list_query_post.
+
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.ListModelsRequest
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: ModelListModelsRequestPagedResponse, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.ModelListModelsRequestPagedResponse
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.ModelListModelsRequestPagedResponse"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json-patch+json") # type: Optional[str]
+
+ _json = None
+ _content = None
+ if content_type.split(";")[0] in ['application/json', 'text/json']:
+ if body is not None:
+ _json = self._serialize.body(body, 'ListModelsRequest')
+ elif content_type.split(";")[0] in ['application/json-patch+json', 'application/*+json']:
+ if body is not None:
+ _json = self._serialize.body(body, 'ListModelsRequest')
+ else:
+ raise ValueError(
+ "The content_type '{}' is not one of the allowed values: "
+ "['application/json-patch+json', 'application/json', 'text/json', 'application/*+json']".format(content_type)
+ )
+
+ request = build_list_query_post_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self.list_query_post.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('ModelListModelsRequestPagedResponse', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ list_query_post.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/list'} # type: ignore
+
+
+ @distributed_trace
+ def batch_query(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body=None, # type: Optional["_models.ModelBatchDto"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.ModelBatchResponseDto"
+ """batch_query.
+
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.ModelBatchDto
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: ModelBatchResponseDto, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.ModelBatchResponseDto
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.ModelBatchResponseDto"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json-patch+json") # type: Optional[str]
+
+ _json = None
+ _content = None
+ if content_type.split(";")[0] in ['application/json', 'text/json']:
+ if body is not None:
+ _json = self._serialize.body(body, 'ModelBatchDto')
+ elif content_type.split(";")[0] in ['application/json-patch+json', 'application/*+json']:
+ if body is not None:
+ _json = self._serialize.body(body, 'ModelBatchDto')
+ else:
+ raise ValueError(
+ "The content_type '{}' is not one of the allowed values: "
+ "['application/json-patch+json', 'application/json', 'text/json', 'application/*+json']".format(content_type)
+ )
+
+ request = build_batch_query_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self.batch_query.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('ModelBatchResponseDto', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ batch_query.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/querybatch'} # type: ignore
+
+
+ @distributed_trace
+ def deployment_settings(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body=None, # type: Optional["_models.ModelSettingsIdentifiers"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> None
+ """deployment_settings.
+
+ :param subscription_id:
+ :type subscription_id: str
+ :param resource_group_name:
+ :type resource_group_name: str
+ :param workspace_name:
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.ModelSettingsIdentifiers
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json-patch+json") # type: Optional[str]
+
+ _json = None
+ _content = None
+ if content_type.split(";")[0] in ['application/json', 'text/json']:
+ if body is not None:
+ _json = self._serialize.body(body, 'ModelSettingsIdentifiers')
+ elif content_type.split(";")[0] in ['application/json-patch+json', 'application/*+json']:
+ if body is not None:
+ _json = self._serialize.body(body, 'ModelSettingsIdentifiers')
+ else:
+ raise ValueError(
+ "The content_type '{}' is not one of the allowed values: "
+ "['application/json-patch+json', 'application/json', 'text/json', 'application/*+json']".format(content_type)
+ )
+
+ request = build_deployment_settings_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ content=_content,
+ template_url=self.deployment_settings.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ deployment_settings.metadata = {'url': '/modelregistry/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/models/deploymentSettings'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/py.typed b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/py.typed
new file mode 100644
index 00000000..e5aff4f8
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/model_dataplane/py.typed
@@ -0,0 +1 @@
+# Marker file for PEP 561. \ No newline at end of file