about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/PIL/ImageStat.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/PIL/ImageStat.py')
-rw-r--r--.venv/lib/python3.12/site-packages/PIL/ImageStat.py160
1 files changed, 160 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/PIL/ImageStat.py b/.venv/lib/python3.12/site-packages/PIL/ImageStat.py
new file mode 100644
index 00000000..8bc50452
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/PIL/ImageStat.py
@@ -0,0 +1,160 @@
+#
+# The Python Imaging Library.
+# $Id$
+#
+# global image statistics
+#
+# History:
+# 1996-04-05 fl   Created
+# 1997-05-21 fl   Added mask; added rms, var, stddev attributes
+# 1997-08-05 fl   Added median
+# 1998-07-05 hk   Fixed integer overflow error
+#
+# Notes:
+# This class shows how to implement delayed evaluation of attributes.
+# To get a certain value, simply access the corresponding attribute.
+# The __getattr__ dispatcher takes care of the rest.
+#
+# Copyright (c) Secret Labs AB 1997.
+# Copyright (c) Fredrik Lundh 1996-97.
+#
+# See the README file for information on usage and redistribution.
+#
+from __future__ import annotations
+
+import math
+from functools import cached_property
+
+from . import Image
+
+
+class Stat:
+    def __init__(
+        self, image_or_list: Image.Image | list[int], mask: Image.Image | None = None
+    ) -> None:
+        """
+        Calculate statistics for the given image. If a mask is included,
+        only the regions covered by that mask are included in the
+        statistics. You can also pass in a previously calculated histogram.
+
+        :param image: A PIL image, or a precalculated histogram.
+
+            .. note::
+
+                For a PIL image, calculations rely on the
+                :py:meth:`~PIL.Image.Image.histogram` method. The pixel counts are
+                grouped into 256 bins, even if the image has more than 8 bits per
+                channel. So ``I`` and ``F`` mode images have a maximum ``mean``,
+                ``median`` and ``rms`` of 255, and cannot have an ``extrema`` maximum
+                of more than 255.
+
+        :param mask: An optional mask.
+        """
+        if isinstance(image_or_list, Image.Image):
+            self.h = image_or_list.histogram(mask)
+        elif isinstance(image_or_list, list):
+            self.h = image_or_list
+        else:
+            msg = "first argument must be image or list"  # type: ignore[unreachable]
+            raise TypeError(msg)
+        self.bands = list(range(len(self.h) // 256))
+
+    @cached_property
+    def extrema(self) -> list[tuple[int, int]]:
+        """
+        Min/max values for each band in the image.
+
+        .. note::
+            This relies on the :py:meth:`~PIL.Image.Image.histogram` method, and
+            simply returns the low and high bins used. This is correct for
+            images with 8 bits per channel, but fails for other modes such as
+            ``I`` or ``F``. Instead, use :py:meth:`~PIL.Image.Image.getextrema` to
+            return per-band extrema for the image. This is more correct and
+            efficient because, for non-8-bit modes, the histogram method uses
+            :py:meth:`~PIL.Image.Image.getextrema` to determine the bins used.
+        """
+
+        def minmax(histogram: list[int]) -> tuple[int, int]:
+            res_min, res_max = 255, 0
+            for i in range(256):
+                if histogram[i]:
+                    res_min = i
+                    break
+            for i in range(255, -1, -1):
+                if histogram[i]:
+                    res_max = i
+                    break
+            return res_min, res_max
+
+        return [minmax(self.h[i:]) for i in range(0, len(self.h), 256)]
+
+    @cached_property
+    def count(self) -> list[int]:
+        """Total number of pixels for each band in the image."""
+        return [sum(self.h[i : i + 256]) for i in range(0, len(self.h), 256)]
+
+    @cached_property
+    def sum(self) -> list[float]:
+        """Sum of all pixels for each band in the image."""
+
+        v = []
+        for i in range(0, len(self.h), 256):
+            layer_sum = 0.0
+            for j in range(256):
+                layer_sum += j * self.h[i + j]
+            v.append(layer_sum)
+        return v
+
+    @cached_property
+    def sum2(self) -> list[float]:
+        """Squared sum of all pixels for each band in the image."""
+
+        v = []
+        for i in range(0, len(self.h), 256):
+            sum2 = 0.0
+            for j in range(256):
+                sum2 += (j**2) * float(self.h[i + j])
+            v.append(sum2)
+        return v
+
+    @cached_property
+    def mean(self) -> list[float]:
+        """Average (arithmetic mean) pixel level for each band in the image."""
+        return [self.sum[i] / self.count[i] for i in self.bands]
+
+    @cached_property
+    def median(self) -> list[int]:
+        """Median pixel level for each band in the image."""
+
+        v = []
+        for i in self.bands:
+            s = 0
+            half = self.count[i] // 2
+            b = i * 256
+            for j in range(256):
+                s = s + self.h[b + j]
+                if s > half:
+                    break
+            v.append(j)
+        return v
+
+    @cached_property
+    def rms(self) -> list[float]:
+        """RMS (root-mean-square) for each band in the image."""
+        return [math.sqrt(self.sum2[i] / self.count[i]) for i in self.bands]
+
+    @cached_property
+    def var(self) -> list[float]:
+        """Variance for each band in the image."""
+        return [
+            (self.sum2[i] - (self.sum[i] ** 2.0) / self.count[i]) / self.count[i]
+            for i in self.bands
+        ]
+
+    @cached_property
+    def stddev(self) -> list[float]:
+        """Standard deviation for each band in the image."""
+        return [math.sqrt(self.var[i]) for i in self.bands]
+
+
+Global = Stat  # compatibility