about summary refs log tree commit diff
path: root/R2R/r2r/pipelines/ingestion_pipeline.py
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /R2R/r2r/pipelines/ingestion_pipeline.py
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are here HEAD master
Diffstat (limited to 'R2R/r2r/pipelines/ingestion_pipeline.py')
-rwxr-xr-xR2R/r2r/pipelines/ingestion_pipeline.py144
1 files changed, 144 insertions, 0 deletions
diff --git a/R2R/r2r/pipelines/ingestion_pipeline.py b/R2R/r2r/pipelines/ingestion_pipeline.py
new file mode 100755
index 00000000..df1263f9
--- /dev/null
+++ b/R2R/r2r/pipelines/ingestion_pipeline.py
@@ -0,0 +1,144 @@
+import asyncio
+import logging
+from asyncio import Queue
+from typing import Any, Optional
+
+from r2r.base.logging.kv_logger import KVLoggingSingleton
+from r2r.base.logging.run_manager import RunManager, manage_run
+from r2r.base.pipeline.base_pipeline import AsyncPipeline, dequeue_requests
+from r2r.base.pipes.base_pipe import AsyncPipe, AsyncState
+
+logger = logging.getLogger(__name__)
+
+
+class IngestionPipeline(AsyncPipeline):
+    """A pipeline for ingestion."""
+
+    pipeline_type: str = "ingestion"
+
+    def __init__(
+        self,
+        pipe_logger: Optional[KVLoggingSingleton] = None,
+        run_manager: Optional[RunManager] = None,
+    ):
+        super().__init__(pipe_logger, run_manager)
+        self.parsing_pipe = None
+        self.embedding_pipeline = None
+        self.kg_pipeline = None
+
+    async def run(
+        self,
+        input: Any,
+        state: Optional[AsyncState] = None,
+        stream: bool = False,
+        run_manager: Optional[RunManager] = None,
+        log_run_info: bool = True,
+        *args: Any,
+        **kwargs: Any,
+    ) -> None:
+        self.state = state or AsyncState()
+        async with manage_run(run_manager, self.pipeline_type):
+            if log_run_info:
+                await run_manager.log_run_info(
+                    key="pipeline_type",
+                    value=self.pipeline_type,
+                    is_info_log=True,
+                )
+            if self.parsing_pipe is None:
+                raise ValueError(
+                    "parsing_pipeline must be set before running the ingestion pipeline"
+                )
+            if self.embedding_pipeline is None and self.kg_pipeline is None:
+                raise ValueError(
+                    "At least one of embedding_pipeline or kg_pipeline must be set before running the ingestion pipeline"
+                )
+            # Use queues to duplicate the documents for each pipeline
+            embedding_queue = Queue()
+            kg_queue = Queue()
+
+            async def enqueue_documents():
+                async for document in await self.parsing_pipe.run(
+                    self.parsing_pipe.Input(message=input),
+                    state,
+                    run_manager,
+                    *args,
+                    **kwargs,
+                ):
+                    if self.embedding_pipeline:
+                        await embedding_queue.put(document)
+                    if self.kg_pipeline:
+                        await kg_queue.put(document)
+                await embedding_queue.put(None)
+                await kg_queue.put(None)
+
+            # Start the document enqueuing process
+            enqueue_task = asyncio.create_task(enqueue_documents())
+
+            # Start the embedding and KG pipelines in parallel
+            if self.embedding_pipeline:
+                embedding_task = asyncio.create_task(
+                    self.embedding_pipeline.run(
+                        dequeue_requests(embedding_queue),
+                        state,
+                        stream,
+                        run_manager,
+                        log_run_info=False,  # Do not log run info since we have already done so
+                        *args,
+                        **kwargs,
+                    )
+                )
+
+            if self.kg_pipeline:
+                kg_task = asyncio.create_task(
+                    self.kg_pipeline.run(
+                        dequeue_requests(kg_queue),
+                        state,
+                        stream,
+                        run_manager,
+                        log_run_info=False,  # Do not log run info since we have already done so
+                        *args,
+                        **kwargs,
+                    )
+                )
+
+            # Wait for the enqueueing task to complete
+            await enqueue_task
+
+            results = {}
+            # Wait for the embedding and KG tasks to complete
+            if self.embedding_pipeline:
+                results["embedding_pipeline_output"] = await embedding_task
+            if self.kg_pipeline:
+                results["kg_pipeline_output"] = await kg_task
+            return results
+
+    def add_pipe(
+        self,
+        pipe: AsyncPipe,
+        add_upstream_outputs: Optional[list[dict[str, str]]] = None,
+        parsing_pipe: bool = False,
+        kg_pipe: bool = False,
+        embedding_pipe: bool = False,
+        *args,
+        **kwargs,
+    ) -> None:
+        logger.debug(
+            f"Adding pipe {pipe.config.name} to the IngestionPipeline"
+        )
+
+        if parsing_pipe:
+            self.parsing_pipe = pipe
+        elif kg_pipe:
+            if not self.kg_pipeline:
+                self.kg_pipeline = AsyncPipeline()
+            self.kg_pipeline.add_pipe(
+                pipe, add_upstream_outputs, *args, **kwargs
+            )
+        elif embedding_pipe:
+            if not self.embedding_pipeline:
+                self.embedding_pipeline = AsyncPipeline()
+            self.embedding_pipeline.add_pipe(
+                pipe, add_upstream_outputs, *args, **kwargs
+            )
+        else:
+            raise ValueError("Pipe must be a parsing, embedding, or KG pipe")