about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/tokenizers/implementations/byte_level_bpe.py
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/tokenizers/implementations/byte_level_bpe.py
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-4a52a71956a8d46fcb7294ac71734504bb09bcc2.tar.gz
two version of R2R are here HEAD master
Diffstat (limited to '.venv/lib/python3.12/site-packages/tokenizers/implementations/byte_level_bpe.py')
-rw-r--r--.venv/lib/python3.12/site-packages/tokenizers/implementations/byte_level_bpe.py122
1 files changed, 122 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/tokenizers/implementations/byte_level_bpe.py b/.venv/lib/python3.12/site-packages/tokenizers/implementations/byte_level_bpe.py
new file mode 100644
index 00000000..c7e3dbc4
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/tokenizers/implementations/byte_level_bpe.py
@@ -0,0 +1,122 @@
+from typing import Dict, Iterator, List, Optional, Tuple, Union
+
+from tokenizers import AddedToken, Tokenizer, decoders, pre_tokenizers, processors, trainers
+from tokenizers.models import BPE
+from tokenizers.normalizers import Lowercase, Sequence, unicode_normalizer_from_str
+
+from .base_tokenizer import BaseTokenizer
+
+
+class ByteLevelBPETokenizer(BaseTokenizer):
+    """ByteLevelBPETokenizer
+
+    Represents a Byte-level BPE as introduced by OpenAI with their GPT-2 model
+    """
+
+    def __init__(
+        self,
+        vocab: Optional[Union[str, Dict[str, int]]] = None,
+        merges: Optional[Union[str, Dict[Tuple[int, int], Tuple[int, int]]]] = None,
+        add_prefix_space: bool = False,
+        lowercase: bool = False,
+        dropout: Optional[float] = None,
+        unicode_normalizer: Optional[str] = None,
+        continuing_subword_prefix: Optional[str] = None,
+        end_of_word_suffix: Optional[str] = None,
+        trim_offsets: bool = False,
+    ):
+        if vocab is not None and merges is not None:
+            tokenizer = Tokenizer(
+                BPE(
+                    vocab,
+                    merges,
+                    dropout=dropout,
+                    continuing_subword_prefix=continuing_subword_prefix or "",
+                    end_of_word_suffix=end_of_word_suffix or "",
+                )
+            )
+        else:
+            tokenizer = Tokenizer(BPE())
+
+        # Check for Unicode normalization first (before everything else)
+        normalizers = []
+
+        if unicode_normalizer:
+            normalizers += [unicode_normalizer_from_str(unicode_normalizer)]
+
+        if lowercase:
+            normalizers += [Lowercase()]
+
+        # Create the normalizer structure
+        if len(normalizers) > 0:
+            if len(normalizers) > 1:
+                tokenizer.normalizer = Sequence(normalizers)
+            else:
+                tokenizer.normalizer = normalizers[0]
+
+        tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=add_prefix_space)
+        tokenizer.decoder = decoders.ByteLevel()
+        tokenizer.post_processor = processors.ByteLevel(trim_offsets=trim_offsets)
+
+        parameters = {
+            "model": "ByteLevelBPE",
+            "add_prefix_space": add_prefix_space,
+            "lowercase": lowercase,
+            "dropout": dropout,
+            "unicode_normalizer": unicode_normalizer,
+            "continuing_subword_prefix": continuing_subword_prefix,
+            "end_of_word_suffix": end_of_word_suffix,
+            "trim_offsets": trim_offsets,
+        }
+
+        super().__init__(tokenizer, parameters)
+
+    @staticmethod
+    def from_file(vocab_filename: str, merges_filename: str, **kwargs):
+        vocab, merges = BPE.read_file(vocab_filename, merges_filename)
+        return ByteLevelBPETokenizer(vocab, merges, **kwargs)
+
+    def train(
+        self,
+        files: Union[str, List[str]],
+        vocab_size: int = 30000,
+        min_frequency: int = 2,
+        show_progress: bool = True,
+        special_tokens: List[Union[str, AddedToken]] = [],
+    ):
+        """Train the model using the given files"""
+
+        trainer = trainers.BpeTrainer(
+            vocab_size=vocab_size,
+            min_frequency=min_frequency,
+            show_progress=show_progress,
+            special_tokens=special_tokens,
+            initial_alphabet=pre_tokenizers.ByteLevel.alphabet(),
+        )
+        if isinstance(files, str):
+            files = [files]
+        self._tokenizer.train(files, trainer=trainer)
+
+    def train_from_iterator(
+        self,
+        iterator: Union[Iterator[str], Iterator[Iterator[str]]],
+        vocab_size: int = 30000,
+        min_frequency: int = 2,
+        show_progress: bool = True,
+        special_tokens: List[Union[str, AddedToken]] = [],
+        length: Optional[int] = None,
+    ):
+        """Train the model using the given iterator"""
+
+        trainer = trainers.BpeTrainer(
+            vocab_size=vocab_size,
+            min_frequency=min_frequency,
+            show_progress=show_progress,
+            special_tokens=special_tokens,
+            initial_alphabet=pre_tokenizers.ByteLevel.alphabet(),
+        )
+        self._tokenizer.train_from_iterator(
+            iterator,
+            trainer=trainer,
+            length=length,
+        )