about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/tokenizers/implementations/base_tokenizer.py
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/tokenizers/implementations/base_tokenizer.py
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-4a52a71956a8d46fcb7294ac71734504bb09bcc2.tar.gz
two version of R2R are here HEAD master
Diffstat (limited to '.venv/lib/python3.12/site-packages/tokenizers/implementations/base_tokenizer.py')
-rw-r--r--.venv/lib/python3.12/site-packages/tokenizers/implementations/base_tokenizer.py418
1 files changed, 418 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/tokenizers/implementations/base_tokenizer.py b/.venv/lib/python3.12/site-packages/tokenizers/implementations/base_tokenizer.py
new file mode 100644
index 00000000..4528dceb
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/tokenizers/implementations/base_tokenizer.py
@@ -0,0 +1,418 @@
+from typing import Dict, List, Optional, Tuple, Union
+
+from tokenizers import AddedToken, EncodeInput, Encoding, InputSequence, Tokenizer
+from tokenizers.decoders import Decoder
+from tokenizers.models import Model
+from tokenizers.normalizers import Normalizer
+from tokenizers.pre_tokenizers import PreTokenizer
+from tokenizers.processors import PostProcessor
+
+
+Offsets = Tuple[int, int]
+
+
+class BaseTokenizer:
+    def __init__(self, tokenizer: Tokenizer, parameters=None):
+        self._tokenizer = tokenizer
+        self._parameters = parameters if parameters is not None else {}
+
+    def __repr__(self):
+        return "Tokenizer(vocabulary_size={}, {})".format(
+            self._tokenizer.get_vocab_size(),
+            ", ".join(k + "=" + str(v) for k, v in self._parameters.items()),
+        )
+
+    def num_special_tokens_to_add(self, is_pair: bool) -> int:
+        """
+        Return the number of special tokens that would be added for single/pair sentences.
+        :param is_pair: Boolean indicating if the input would be a single sentence or a pair
+        :return:
+        """
+        return self._tokenizer.num_special_tokens_to_add(is_pair)
+
+    def get_vocab(self, with_added_tokens: bool = True) -> Dict[str, int]:
+        """Returns the vocabulary
+
+        Args:
+            with_added_tokens: boolean:
+                Whether to include the added tokens in the vocabulary
+
+        Returns:
+            The vocabulary
+        """
+        return self._tokenizer.get_vocab(with_added_tokens=with_added_tokens)
+
+    def get_added_tokens_decoder(self) -> Dict[int, AddedToken]:
+        """Returns the added reverse vocabulary
+
+        Returns:
+            The added vocabulary mapping ints to AddedTokens
+        """
+        return self._tokenizer.get_added_tokens_decoder()
+
+    def get_vocab_size(self, with_added_tokens: bool = True) -> int:
+        """Return the size of vocabulary, with or without added tokens.
+
+        Args:
+            with_added_tokens: (`optional`) bool:
+                Whether to count in added special tokens or not
+
+        Returns:
+            Size of vocabulary
+        """
+        return self._tokenizer.get_vocab_size(with_added_tokens=with_added_tokens)
+
+    def enable_padding(
+        self,
+        direction: Optional[str] = "right",
+        pad_to_multiple_of: Optional[int] = None,
+        pad_id: Optional[int] = 0,
+        pad_type_id: Optional[int] = 0,
+        pad_token: Optional[str] = "[PAD]",
+        length: Optional[int] = None,
+    ):
+        """Change the padding strategy
+
+        Args:
+            direction: (`optional`) str:
+                Can be one of: `right` or `left`
+
+            pad_to_multiple_of: (`optional`) unsigned int:
+                If specified, the padding length should always snap to the next multiple of
+                the given value. For example if we were going to pad with a length of 250 but
+                `pad_to_multiple_of=8` then we will pad to 256.
+
+            pad_id: (`optional`) unsigned int:
+                The indice to be used when padding
+
+            pad_type_id: (`optional`) unsigned int:
+                The type indice to be used when padding
+
+            pad_token: (`optional`) str:
+                The pad token to be used when padding
+
+            length: (`optional`) unsigned int:
+                If specified, the length at which to pad. If not specified
+                we pad using the size of the longest sequence in a batch
+        """
+        return self._tokenizer.enable_padding(
+            direction=direction,
+            pad_to_multiple_of=pad_to_multiple_of,
+            pad_id=pad_id,
+            pad_type_id=pad_type_id,
+            pad_token=pad_token,
+            length=length,
+        )
+
+    def no_padding(self):
+        """Disable padding"""
+        return self._tokenizer.no_padding()
+
+    @property
+    def padding(self) -> Optional[dict]:
+        """Get the current padding parameters
+
+        Returns:
+            None if padding is disabled, a dict with the currently set parameters
+            if the padding is enabled.
+        """
+        return self._tokenizer.padding
+
+    def enable_truncation(self, max_length: int, stride: Optional[int] = 0, strategy: Optional[str] = "longest_first"):
+        """Change the truncation options
+
+        Args:
+            max_length: unsigned int:
+                The maximum length at which to truncate
+
+            stride: (`optional`) unsigned int:
+                The length of the previous first sequence to be included
+                in the overflowing sequence
+
+            strategy: (`optional`) str:
+                Can be one of `longest_first`, `only_first` or `only_second`
+        """
+        return self._tokenizer.enable_truncation(max_length, stride=stride, strategy=strategy)
+
+    def no_truncation(self):
+        """Disable truncation"""
+        return self._tokenizer.no_truncation()
+
+    @property
+    def truncation(self) -> Optional[dict]:
+        """Get the current truncation parameters
+
+        Returns:
+            None if truncation is disabled, a dict with the current truncation parameters if
+            truncation is enabled
+        """
+        return self._tokenizer.truncation
+
+    def add_tokens(self, tokens: List[Union[str, AddedToken]]) -> int:
+        """Add the given tokens to the vocabulary
+
+        Args:
+            tokens: List[Union[str, AddedToken]]:
+                A list of tokens to add to the vocabulary. Each token can either be
+                a string, or an instance of AddedToken
+
+        Returns:
+            The number of tokens that were added to the vocabulary
+        """
+        return self._tokenizer.add_tokens(tokens)
+
+    def add_special_tokens(self, special_tokens: List[Union[str, AddedToken]]) -> int:
+        """Add the given special tokens to the vocabulary, and treat them as special tokens.
+
+        The special tokens will never be processed by the model, and will be
+        removed while decoding.
+
+        Args:
+            tokens: List[Union[str, AddedToken]]:
+                A list of special tokens to add to the vocabulary. Each token can either be
+                a string, or an instance of AddedToken
+
+        Returns:
+            The number of tokens that were added to the vocabulary
+        """
+        return self._tokenizer.add_special_tokens(special_tokens)
+
+    def normalize(self, sequence: str) -> str:
+        """Normalize the given sequence
+
+        Args:
+            sequence: str:
+                The sequence to normalize
+
+        Returns:
+            The normalized string
+        """
+        return self._tokenizer.normalize(sequence)
+
+    def encode(
+        self,
+        sequence: InputSequence,
+        pair: Optional[InputSequence] = None,
+        is_pretokenized: bool = False,
+        add_special_tokens: bool = True,
+    ) -> Encoding:
+        """Encode the given sequence and pair. This method can process raw text sequences as well
+        as already pre-tokenized sequences.
+
+        Args:
+            sequence: InputSequence:
+                The sequence we want to encode. This sequence can be either raw text or
+                pre-tokenized, according to the `is_pretokenized` argument:
+
+                - If `is_pretokenized=False`: `InputSequence` is expected to be `str`
+                - If `is_pretokenized=True`: `InputSequence` is expected to be
+                    `Union[List[str], Tuple[str]]`
+
+            is_pretokenized: bool:
+                Whether the input is already pre-tokenized.
+
+            add_special_tokens: bool:
+                Whether to add the special tokens while encoding.
+
+        Returns:
+            An Encoding
+        """
+        if sequence is None:
+            raise ValueError("encode: `sequence` can't be `None`")
+
+        return self._tokenizer.encode(sequence, pair, is_pretokenized, add_special_tokens)
+
+    def encode_batch(
+        self,
+        inputs: List[EncodeInput],
+        is_pretokenized: bool = False,
+        add_special_tokens: bool = True,
+    ) -> List[Encoding]:
+        """Encode the given inputs. This method accept both raw text sequences as well as already
+        pre-tokenized sequences.
+
+        Args:
+            inputs: List[EncodeInput]:
+                A list of single sequences or pair sequences to encode. Each `EncodeInput` is
+                expected to be of the following form:
+                    `Union[InputSequence, Tuple[InputSequence, InputSequence]]`
+
+                Each `InputSequence` can either be raw text or pre-tokenized,
+                according to the `is_pretokenized` argument:
+
+                - If `is_pretokenized=False`: `InputSequence` is expected to be `str`
+                - If `is_pretokenized=True`: `InputSequence` is expected to be
+                    `Union[List[str], Tuple[str]]`
+
+            is_pretokenized: bool:
+                Whether the input is already pre-tokenized.
+
+            add_special_tokens: bool:
+                Whether to add the special tokens while encoding.
+
+        Returns:
+            A list of Encoding
+        """
+
+        if inputs is None:
+            raise ValueError("encode_batch: `inputs` can't be `None`")
+
+        return self._tokenizer.encode_batch(inputs, is_pretokenized, add_special_tokens)
+
+    def decode(self, ids: List[int], skip_special_tokens: Optional[bool] = True) -> str:
+        """Decode the given list of ids to a string sequence
+
+        Args:
+            ids: List[unsigned int]:
+                A list of ids to be decoded
+
+            skip_special_tokens: (`optional`) boolean:
+                Whether to remove all the special tokens from the output string
+
+        Returns:
+            The decoded string
+        """
+        if ids is None:
+            raise ValueError("None input is not valid. Should be a list of integers.")
+
+        return self._tokenizer.decode(ids, skip_special_tokens=skip_special_tokens)
+
+    def decode_batch(self, sequences: List[List[int]], skip_special_tokens: Optional[bool] = True) -> str:
+        """Decode the list of sequences to a list of string sequences
+
+        Args:
+            sequences: List[List[unsigned int]]:
+                A list of sequence of ids to be decoded
+
+            skip_special_tokens: (`optional`) boolean:
+                Whether to remove all the special tokens from the output strings
+
+        Returns:
+            A list of decoded strings
+        """
+        if sequences is None:
+            raise ValueError("None input is not valid. Should be list of list of integers.")
+
+        return self._tokenizer.decode_batch(sequences, skip_special_tokens=skip_special_tokens)
+
+    def token_to_id(self, token: str) -> Optional[int]:
+        """Convert the given token to its corresponding id
+
+        Args:
+            token: str:
+                The token to convert
+
+        Returns:
+            The corresponding id if it exists, None otherwise
+        """
+        return self._tokenizer.token_to_id(token)
+
+    def id_to_token(self, id: int) -> Optional[str]:
+        """Convert the given token id to its corresponding string
+
+        Args:
+            token: id:
+                The token id to convert
+
+        Returns:
+            The corresponding string if it exists, None otherwise
+        """
+        return self._tokenizer.id_to_token(id)
+
+    def save_model(self, directory: str, prefix: Optional[str] = None):
+        """Save the current model to the given directory
+
+        Args:
+            directory: str:
+                A path to the destination directory
+
+            prefix: (Optional) str:
+                An optional prefix, used to prefix each file name
+        """
+        return self._tokenizer.model.save(directory, prefix=prefix)
+
+    def save(self, path: str, pretty: bool = True):
+        """Save the current Tokenizer at the given path
+
+        Args:
+            path: str:
+                A path to the destination Tokenizer file
+        """
+        return self._tokenizer.save(path, pretty)
+
+    def to_str(self, pretty: bool = False):
+        """Get a serialized JSON version of the Tokenizer as a str
+
+        Args:
+            pretty: bool:
+                Whether the JSON string should be prettified
+
+        Returns:
+            str
+        """
+        return self._tokenizer.to_str(pretty)
+
+    def post_process(
+        self, encoding: Encoding, pair: Optional[Encoding] = None, add_special_tokens: bool = True
+    ) -> Encoding:
+        """Apply all the post-processing steps to the given encodings.
+
+        The various steps are:
+            1. Truncate according to global params (provided to `enable_truncation`)
+            2. Apply the PostProcessor
+            3. Pad according to global params. (provided to `enable_padding`)
+
+        Args:
+            encoding: Encoding:
+                The main Encoding to post process
+
+            pair: Optional[Encoding]:
+                An optional pair Encoding
+
+            add_special_tokens: bool:
+                Whether to add special tokens
+
+        Returns:
+            The resulting Encoding
+        """
+        return self._tokenizer.post_process(encoding, pair, add_special_tokens)
+
+    @property
+    def model(self) -> Model:
+        return self._tokenizer.model
+
+    @model.setter
+    def model(self, model: Model):
+        self._tokenizer.model = model
+
+    @property
+    def normalizer(self) -> Normalizer:
+        return self._tokenizer.normalizer
+
+    @normalizer.setter
+    def normalizer(self, normalizer: Normalizer):
+        self._tokenizer.normalizer = normalizer
+
+    @property
+    def pre_tokenizer(self) -> PreTokenizer:
+        return self._tokenizer.pre_tokenizer
+
+    @pre_tokenizer.setter
+    def pre_tokenizer(self, pre_tokenizer: PreTokenizer):
+        self._tokenizer.pre_tokenizer = pre_tokenizer
+
+    @property
+    def post_processor(self) -> PostProcessor:
+        return self._tokenizer.post_processor
+
+    @post_processor.setter
+    def post_processor(self, post_processor: PostProcessor):
+        self._tokenizer.post_processor = post_processor
+
+    @property
+    def decoder(self) -> Decoder:
+        return self._tokenizer.decoder
+
+    @decoder.setter
+    def decoder(self, decoder: Decoder):
+        self._tokenizer.decoder = decoder