about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/tokenizers/__init__.pyi
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/tokenizers/__init__.pyi
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are here HEAD master
Diffstat (limited to '.venv/lib/python3.12/site-packages/tokenizers/__init__.pyi')
-rw-r--r--.venv/lib/python3.12/site-packages/tokenizers/__init__.pyi1200
1 files changed, 1200 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/tokenizers/__init__.pyi b/.venv/lib/python3.12/site-packages/tokenizers/__init__.pyi
new file mode 100644
index 00000000..5dbc665d
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/tokenizers/__init__.pyi
@@ -0,0 +1,1200 @@
+# Generated content DO NOT EDIT
+class AddedToken:
+    """
+    Represents a token that can be be added to a :class:`~tokenizers.Tokenizer`.
+    It can have special options that defines the way it should behave.
+
+    Args:
+        content (:obj:`str`): The content of the token
+
+        single_word (:obj:`bool`, defaults to :obj:`False`):
+            Defines whether this token should only match single words. If :obj:`True`, this
+            token will never match inside of a word. For example the token ``ing`` would match
+            on ``tokenizing`` if this option is :obj:`False`, but not if it is :obj:`True`.
+            The notion of "`inside of a word`" is defined by the word boundaries pattern in
+            regular expressions (ie. the token should start and end with word boundaries).
+
+        lstrip (:obj:`bool`, defaults to :obj:`False`):
+            Defines whether this token should strip all potential whitespaces on its left side.
+            If :obj:`True`, this token will greedily match any whitespace on its left. For
+            example if we try to match the token ``[MASK]`` with ``lstrip=True``, in the text
+            ``"I saw a [MASK]"``, we would match on ``" [MASK]"``. (Note the space on the left).
+
+        rstrip (:obj:`bool`, defaults to :obj:`False`):
+            Defines whether this token should strip all potential whitespaces on its right
+            side. If :obj:`True`, this token will greedily match any whitespace on its right.
+            It works just like :obj:`lstrip` but on the right.
+
+        normalized (:obj:`bool`, defaults to :obj:`True` with :meth:`~tokenizers.Tokenizer.add_tokens` and :obj:`False` with :meth:`~tokenizers.Tokenizer.add_special_tokens`):
+            Defines whether this token should match against the normalized version of the input
+            text. For example, with the added token ``"yesterday"``, and a normalizer in charge of
+            lowercasing the text, the token could be extract from the input ``"I saw a lion
+            Yesterday"``.
+        special (:obj:`bool`, defaults to :obj:`False` with :meth:`~tokenizers.Tokenizer.add_tokens` and :obj:`False` with :meth:`~tokenizers.Tokenizer.add_special_tokens`):
+            Defines whether this token should be skipped when decoding.
+
+    """
+    def __init__(self, content, single_word=False, lstrip=False, rstrip=False, normalized=True, special=False):
+        pass
+
+    @property
+    def content(self):
+        """
+        Get the content of this :obj:`AddedToken`
+        """
+        pass
+
+    @property
+    def lstrip(self):
+        """
+        Get the value of the :obj:`lstrip` option
+        """
+        pass
+
+    @property
+    def normalized(self):
+        """
+        Get the value of the :obj:`normalized` option
+        """
+        pass
+
+    @property
+    def rstrip(self):
+        """
+        Get the value of the :obj:`rstrip` option
+        """
+        pass
+
+    @property
+    def single_word(self):
+        """
+        Get the value of the :obj:`single_word` option
+        """
+        pass
+
+    @property
+    def special(self):
+        """
+        Get the value of the :obj:`special` option
+        """
+        pass
+
+class Encoding:
+    """
+    The :class:`~tokenizers.Encoding` represents the output of a :class:`~tokenizers.Tokenizer`.
+    """
+    @property
+    def attention_mask(self):
+        """
+        The attention mask
+
+        This indicates to the LM which tokens should be attended to, and which should not.
+        This is especially important when batching sequences, where we need to applying
+        padding.
+
+        Returns:
+           :obj:`List[int]`: The attention mask
+        """
+        pass
+
+    def char_to_token(self, char_pos, sequence_index=0):
+        """
+        Get the token that contains the char at the given position in the input sequence.
+
+        Args:
+            char_pos (:obj:`int`):
+                The position of a char in the input string
+            sequence_index (:obj:`int`, defaults to :obj:`0`):
+                The index of the sequence that contains the target char
+
+        Returns:
+            :obj:`int`: The index of the token that contains this char in the encoded sequence
+        """
+        pass
+
+    def char_to_word(self, char_pos, sequence_index=0):
+        """
+        Get the word that contains the char at the given position in the input sequence.
+
+        Args:
+            char_pos (:obj:`int`):
+                The position of a char in the input string
+            sequence_index (:obj:`int`, defaults to :obj:`0`):
+                The index of the sequence that contains the target char
+
+        Returns:
+            :obj:`int`: The index of the word that contains this char in the input sequence
+        """
+        pass
+
+    @property
+    def ids(self):
+        """
+        The generated IDs
+
+        The IDs are the main input to a Language Model. They are the token indices,
+        the numerical representations that a LM understands.
+
+        Returns:
+            :obj:`List[int]`: The list of IDs
+        """
+        pass
+
+    @staticmethod
+    def merge(encodings, growing_offsets=True):
+        """
+        Merge the list of encodings into one final :class:`~tokenizers.Encoding`
+
+        Args:
+            encodings (A :obj:`List` of :class:`~tokenizers.Encoding`):
+                The list of encodings that should be merged in one
+
+            growing_offsets (:obj:`bool`, defaults to :obj:`True`):
+                Whether the offsets should accumulate while merging
+
+        Returns:
+            :class:`~tokenizers.Encoding`: The resulting Encoding
+        """
+        pass
+
+    @property
+    def n_sequences(self):
+        """
+        The number of sequences represented
+
+        Returns:
+            :obj:`int`: The number of sequences in this :class:`~tokenizers.Encoding`
+        """
+        pass
+
+    @property
+    def offsets(self):
+        """
+        The offsets associated to each token
+
+        These offsets let's you slice the input string, and thus retrieve the original
+        part that led to producing the corresponding token.
+
+        Returns:
+            A :obj:`List` of :obj:`Tuple[int, int]`: The list of offsets
+        """
+        pass
+
+    @property
+    def overflowing(self):
+        """
+        A :obj:`List` of overflowing :class:`~tokenizers.Encoding`
+
+        When using truncation, the :class:`~tokenizers.Tokenizer` takes care of splitting
+        the output into as many pieces as required to match the specified maximum length.
+        This field lets you retrieve all the subsequent pieces.
+
+        When you use pairs of sequences, the overflowing pieces will contain enough
+        variations to cover all the possible combinations, while respecting the provided
+        maximum length.
+        """
+        pass
+
+    def pad(self, length, direction="right", pad_id=0, pad_type_id=0, pad_token="[PAD]"):
+        """
+        Pad the :class:`~tokenizers.Encoding` at the given length
+
+        Args:
+            length (:obj:`int`):
+                The desired length
+
+            direction: (:obj:`str`, defaults to :obj:`right`):
+                The expected padding direction. Can be either :obj:`right` or :obj:`left`
+
+            pad_id (:obj:`int`, defaults to :obj:`0`):
+                The ID corresponding to the padding token
+
+            pad_type_id (:obj:`int`, defaults to :obj:`0`):
+                The type ID corresponding to the padding token
+
+            pad_token (:obj:`str`, defaults to `[PAD]`):
+                The pad token to use
+        """
+        pass
+
+    @property
+    def sequence_ids(self):
+        """
+        The generated sequence indices.
+
+        They represent the index of the input sequence associated to each token.
+        The sequence id can be None if the token is not related to any input sequence,
+        like for example with special tokens.
+
+        Returns:
+            A :obj:`List` of :obj:`Optional[int]`: A list of optional sequence index.
+        """
+        pass
+
+    def set_sequence_id(self, sequence_id):
+        """
+        Set the given sequence index
+
+        Set the given sequence index for the whole range of tokens contained in this
+        :class:`~tokenizers.Encoding`.
+        """
+        pass
+
+    @property
+    def special_tokens_mask(self):
+        """
+        The special token mask
+
+        This indicates which tokens are special tokens, and which are not.
+
+        Returns:
+            :obj:`List[int]`: The special tokens mask
+        """
+        pass
+
+    def token_to_chars(self, token_index):
+        """
+        Get the offsets of the token at the given index.
+
+        The returned offsets are related to the input sequence that contains the
+        token.  In order to determine in which input sequence it belongs, you
+        must call :meth:`~tokenizers.Encoding.token_to_sequence()`.
+
+        Args:
+            token_index (:obj:`int`):
+                The index of a token in the encoded sequence.
+
+        Returns:
+            :obj:`Tuple[int, int]`: The token offsets :obj:`(first, last + 1)`
+        """
+        pass
+
+    def token_to_sequence(self, token_index):
+        """
+        Get the index of the sequence represented by the given token.
+
+        In the general use case, this method returns :obj:`0` for a single sequence or
+        the first sequence of a pair, and :obj:`1` for the second sequence of a pair
+
+        Args:
+            token_index (:obj:`int`):
+                The index of a token in the encoded sequence.
+
+        Returns:
+            :obj:`int`: The sequence id of the given token
+        """
+        pass
+
+    def token_to_word(self, token_index):
+        """
+        Get the index of the word that contains the token in one of the input sequences.
+
+        The returned word index is related to the input sequence that contains
+        the token.  In order to determine in which input sequence it belongs, you
+        must call :meth:`~tokenizers.Encoding.token_to_sequence()`.
+
+        Args:
+            token_index (:obj:`int`):
+                The index of a token in the encoded sequence.
+
+        Returns:
+            :obj:`int`: The index of the word in the relevant input sequence.
+        """
+        pass
+
+    @property
+    def tokens(self):
+        """
+        The generated tokens
+
+        They are the string representation of the IDs.
+
+        Returns:
+            :obj:`List[str]`: The list of tokens
+        """
+        pass
+
+    def truncate(self, max_length, stride=0, direction="right"):
+        """
+        Truncate the :class:`~tokenizers.Encoding` at the given length
+
+        If this :class:`~tokenizers.Encoding` represents multiple sequences, when truncating
+        this information is lost. It will be considered as representing a single sequence.
+
+        Args:
+            max_length (:obj:`int`):
+                The desired length
+
+            stride (:obj:`int`, defaults to :obj:`0`):
+                The length of previous content to be included in each overflowing piece
+
+            direction (:obj:`str`, defaults to :obj:`right`):
+                Truncate direction
+        """
+        pass
+
+    @property
+    def type_ids(self):
+        """
+        The generated type IDs
+
+        Generally used for tasks like sequence classification or question answering,
+        these tokens let the LM know which input sequence corresponds to each tokens.
+
+        Returns:
+            :obj:`List[int]`: The list of type ids
+        """
+        pass
+
+    @property
+    def word_ids(self):
+        """
+        The generated word indices.
+
+        They represent the index of the word associated to each token.
+        When the input is pre-tokenized, they correspond to the ID of the given input label,
+        otherwise they correspond to the words indices as defined by the
+        :class:`~tokenizers.pre_tokenizers.PreTokenizer` that was used.
+
+        For special tokens and such (any token that was generated from something that was
+        not part of the input), the output is :obj:`None`
+
+        Returns:
+            A :obj:`List` of :obj:`Optional[int]`: A list of optional word index.
+        """
+        pass
+
+    def word_to_chars(self, word_index, sequence_index=0):
+        """
+        Get the offsets of the word at the given index in one of the input sequences.
+
+        Args:
+            word_index (:obj:`int`):
+                The index of a word in one of the input sequences.
+            sequence_index (:obj:`int`, defaults to :obj:`0`):
+                The index of the sequence that contains the target word
+
+        Returns:
+            :obj:`Tuple[int, int]`: The range of characters (span) :obj:`(first, last + 1)`
+        """
+        pass
+
+    def word_to_tokens(self, word_index, sequence_index=0):
+        """
+        Get the encoded tokens corresponding to the word at the given index
+        in one of the input sequences.
+
+        Args:
+            word_index (:obj:`int`):
+                The index of a word in one of the input sequences.
+            sequence_index (:obj:`int`, defaults to :obj:`0`):
+                The index of the sequence that contains the target word
+
+        Returns:
+            :obj:`Tuple[int, int]`: The range of tokens: :obj:`(first, last + 1)`
+        """
+        pass
+
+    @property
+    def words(self):
+        """
+        The generated word indices.
+
+        .. warning::
+            This is deprecated and will be removed in a future version.
+            Please use :obj:`~tokenizers.Encoding.word_ids` instead.
+
+        They represent the index of the word associated to each token.
+        When the input is pre-tokenized, they correspond to the ID of the given input label,
+        otherwise they correspond to the words indices as defined by the
+        :class:`~tokenizers.pre_tokenizers.PreTokenizer` that was used.
+
+        For special tokens and such (any token that was generated from something that was
+        not part of the input), the output is :obj:`None`
+
+        Returns:
+            A :obj:`List` of :obj:`Optional[int]`: A list of optional word index.
+        """
+        pass
+
+class NormalizedString:
+    """
+    NormalizedString
+
+    A NormalizedString takes care of modifying an "original" string, to obtain a "normalized" one.
+    While making all the requested modifications, it keeps track of the alignment information
+    between the two versions of the string.
+
+    Args:
+        sequence: str:
+            The string sequence used to initialize this NormalizedString
+    """
+    def append(self, s):
+        """
+        Append the given sequence to the string
+        """
+        pass
+
+    def clear(self):
+        """
+        Clears the string
+        """
+        pass
+
+    def filter(self, func):
+        """
+        Filter each character of the string using the given func
+        """
+        pass
+
+    def for_each(self, func):
+        """
+        Calls the given function for each character of the string
+        """
+        pass
+
+    def lowercase(self):
+        """
+        Lowercase the string
+        """
+        pass
+
+    def lstrip(self):
+        """
+        Strip the left of the string
+        """
+        pass
+
+    def map(self, func):
+        """
+        Calls the given function for each character of the string
+
+        Replaces each character of the string using the returned value. Each
+        returned value **must** be a str of length 1 (ie a character).
+        """
+        pass
+
+    def nfc(self):
+        """
+        Runs the NFC normalization
+        """
+        pass
+
+    def nfd(self):
+        """
+        Runs the NFD normalization
+        """
+        pass
+
+    def nfkc(self):
+        """
+        Runs the NFKC normalization
+        """
+        pass
+
+    def nfkd(self):
+        """
+        Runs the NFKD normalization
+        """
+        pass
+
+    @property
+    def normalized(self):
+        """
+        The normalized part of the string
+        """
+        pass
+
+    def prepend(self, s):
+        """
+        Prepend the given sequence to the string
+        """
+        pass
+
+    def replace(self, pattern, content):
+        """
+        Replace the content of the given pattern with the provided content
+
+        Args:
+            pattern: Pattern:
+                A pattern used to match the string. Usually a string or a Regex
+
+            content: str:
+                The content to be used as replacement
+        """
+        pass
+
+    def rstrip(self):
+        """
+        Strip the right of the string
+        """
+        pass
+
+    def slice(self, range):
+        """
+        Slice the string using the given range
+        """
+        pass
+
+    def split(self, pattern, behavior):
+        """
+        Split the NormalizedString using the given pattern and the specified behavior
+
+        Args:
+            pattern: Pattern:
+                A pattern used to split the string. Usually a string or a regex built with `tokenizers.Regex`
+
+            behavior: SplitDelimiterBehavior:
+                The behavior to use when splitting.
+                Choices: "removed", "isolated", "merged_with_previous", "merged_with_next",
+                "contiguous"
+
+        Returns:
+            A list of NormalizedString, representing each split
+        """
+        pass
+
+    def strip(self):
+        """
+        Strip both ends of the string
+        """
+        pass
+
+    def uppercase(self):
+        """
+        Uppercase the string
+        """
+        pass
+
+class PreTokenizedString:
+    """
+    PreTokenizedString
+
+    Wrapper over a string, that provides a way to normalize, pre-tokenize, tokenize the
+    underlying string, while keeping track of the alignment information (offsets).
+
+    The PreTokenizedString manages what we call `splits`. Each split represents a substring
+    which is a subpart of the original string, with the relevant offsets and tokens.
+
+    When calling one of the methods used to modify the PreTokenizedString (namely one of
+    `split`, `normalize` or `tokenize), only the `splits` that don't have any associated
+    tokens will get modified.
+
+    Args:
+        sequence: str:
+            The string sequence used to initialize this PreTokenizedString
+    """
+    def __init__(self, sequence):
+        pass
+
+    def get_splits(self, offset_referential="original", offset_type="char"):
+        """
+        Get the splits currently managed by the PreTokenizedString
+
+        Args:
+            offset_referential: :obj:`str`
+                Whether the returned splits should have offsets expressed relative
+                to the original string, or the normalized one. choices: "original", "normalized".
+
+            offset_type: :obj:`str`
+                Whether the returned splits should have offsets expressed in bytes or chars.
+                When slicing an str, we usually want to use chars, which is the default value.
+                Now in some cases it might be interesting to get these offsets expressed in bytes,
+                so it is possible to change this here.
+                choices: "char", "bytes"
+
+        Returns
+            A list of splits
+        """
+        pass
+
+    def normalize(self, func):
+        """
+        Normalize each split of the `PreTokenizedString` using the given `func`
+
+        Args:
+            func: Callable[[NormalizedString], None]:
+                The function used to normalize each underlying split. This function
+                does not need to return anything, just calling the methods on the provided
+                NormalizedString allow its modification.
+        """
+        pass
+
+    def split(self, func):
+        """
+        Split the PreTokenizedString using the given `func`
+
+        Args:
+            func: Callable[[index, NormalizedString], List[NormalizedString]]:
+                The function used to split each underlying split.
+                It is expected to return a list of `NormalizedString`, that represent the new
+                splits. If the given `NormalizedString` does not need any splitting, we can
+                just return it directly.
+                In order for the offsets to be tracked accurately, any returned `NormalizedString`
+                should come from calling either `.split` or `.slice` on the received one.
+        """
+        pass
+
+    def to_encoding(self, type_id=0, word_idx=None):
+        """
+        Return an Encoding generated from this PreTokenizedString
+
+        Args:
+            type_id: int = 0:
+                The type_id to be used on the generated Encoding.
+
+            word_idx: Optional[int] = None:
+                An optional word index to be used for each token of this Encoding. If provided,
+                all the word indices in the generated Encoding will use this value, instead
+                of the one automatically tracked during pre-tokenization.
+
+        Returns:
+            An Encoding
+        """
+        pass
+
+    def tokenize(self, func):
+        """
+        Tokenize each split of the `PreTokenizedString` using the given `func`
+
+        Args:
+            func: Callable[[str], List[Token]]:
+                The function used to tokenize each underlying split. This function must return
+                a list of Token generated from the input str.
+        """
+        pass
+
+class Regex:
+    """
+    Instantiate a new Regex with the given pattern
+    """
+    def __init__(self, pattern):
+        pass
+
+class Token:
+    pass
+
+class Tokenizer:
+    """
+    A :obj:`Tokenizer` works as a pipeline. It processes some raw text as input
+    and outputs an :class:`~tokenizers.Encoding`.
+
+    Args:
+        model (:class:`~tokenizers.models.Model`):
+            The core algorithm that this :obj:`Tokenizer` should be using.
+
+    """
+    def __init__(self, model):
+        pass
+
+    def add_special_tokens(self, tokens):
+        """
+        Add the given special tokens to the Tokenizer.
+
+        If these tokens are already part of the vocabulary, it just let the Tokenizer know about
+        them. If they don't exist, the Tokenizer creates them, giving them a new id.
+
+        These special tokens will never be processed by the model (ie won't be split into
+        multiple tokens), and they can be removed from the output when decoding.
+
+        Args:
+            tokens (A :obj:`List` of :class:`~tokenizers.AddedToken` or :obj:`str`):
+                The list of special tokens we want to add to the vocabulary. Each token can either
+                be a string or an instance of :class:`~tokenizers.AddedToken` for more
+                customization.
+
+        Returns:
+            :obj:`int`: The number of tokens that were created in the vocabulary
+        """
+        pass
+
+    def add_tokens(self, tokens):
+        """
+        Add the given tokens to the vocabulary
+
+        The given tokens are added only if they don't already exist in the vocabulary.
+        Each token then gets a new attributed id.
+
+        Args:
+            tokens (A :obj:`List` of :class:`~tokenizers.AddedToken` or :obj:`str`):
+                The list of tokens we want to add to the vocabulary. Each token can be either a
+                string or an instance of :class:`~tokenizers.AddedToken` for more customization.
+
+        Returns:
+            :obj:`int`: The number of tokens that were created in the vocabulary
+        """
+        pass
+
+    def decode(self, ids, skip_special_tokens=True):
+        """
+        Decode the given list of ids back to a string
+
+        This is used to decode anything coming back from a Language Model
+
+        Args:
+            ids (A :obj:`List/Tuple` of :obj:`int`):
+                The list of ids that we want to decode
+
+            skip_special_tokens (:obj:`bool`, defaults to :obj:`True`):
+                Whether the special tokens should be removed from the decoded string
+
+        Returns:
+            :obj:`str`: The decoded string
+        """
+        pass
+
+    def decode_batch(self, sequences, skip_special_tokens=True):
+        """
+        Decode a batch of ids back to their corresponding string
+
+        Args:
+            sequences (:obj:`List` of :obj:`List[int]`):
+                The batch of sequences we want to decode
+
+            skip_special_tokens (:obj:`bool`, defaults to :obj:`True`):
+                Whether the special tokens should be removed from the decoded strings
+
+        Returns:
+            :obj:`List[str]`: A list of decoded strings
+        """
+        pass
+
+    @property
+    def decoder(self):
+        """
+        The `optional` :class:`~tokenizers.decoders.Decoder` in use by the Tokenizer
+        """
+        pass
+
+    def enable_padding(
+        self, direction="right", pad_id=0, pad_type_id=0, pad_token="[PAD]", length=None, pad_to_multiple_of=None
+    ):
+        """
+        Enable the padding
+
+        Args:
+            direction (:obj:`str`, `optional`, defaults to :obj:`right`):
+                The direction in which to pad. Can be either ``right`` or ``left``
+
+            pad_to_multiple_of (:obj:`int`, `optional`):
+                If specified, the padding length should always snap to the next multiple of the
+                given value. For example if we were going to pad witha length of 250 but
+                ``pad_to_multiple_of=8`` then we will pad to 256.
+
+            pad_id (:obj:`int`, defaults to 0):
+                The id to be used when padding
+
+            pad_type_id (:obj:`int`, defaults to 0):
+                The type id to be used when padding
+
+            pad_token (:obj:`str`, defaults to :obj:`[PAD]`):
+                The pad token to be used when padding
+
+            length (:obj:`int`, `optional`):
+                If specified, the length at which to pad. If not specified we pad using the size of
+                the longest sequence in a batch.
+        """
+        pass
+
+    def enable_truncation(self, max_length, stride=0, strategy="longest_first", direction="right"):
+        """
+        Enable truncation
+
+        Args:
+            max_length (:obj:`int`):
+                The max length at which to truncate
+
+            stride (:obj:`int`, `optional`):
+                The length of the previous first sequence to be included in the overflowing
+                sequence
+
+            strategy (:obj:`str`, `optional`, defaults to :obj:`longest_first`):
+                The strategy used to truncation. Can be one of ``longest_first``, ``only_first`` or
+                ``only_second``.
+
+            direction (:obj:`str`, defaults to :obj:`right`):
+                Truncate direction
+        """
+        pass
+
+    def encode(self, sequence, pair=None, is_pretokenized=False, add_special_tokens=True):
+        """
+        Encode the given sequence and pair. This method can process raw text sequences
+        as well as already pre-tokenized sequences.
+
+        Example:
+            Here are some examples of the inputs that are accepted::
+
+                encode("A single sequence")`
+                encode("A sequence", "And its pair")`
+                encode([ "A", "pre", "tokenized", "sequence" ], is_pretokenized=True)`
+                encode(
+                    [ "A", "pre", "tokenized", "sequence" ], [ "And", "its", "pair" ],
+                    is_pretokenized=True
+                )
+
+        Args:
+            sequence (:obj:`~tokenizers.InputSequence`):
+                The main input sequence we want to encode. This sequence can be either raw
+                text or pre-tokenized, according to the ``is_pretokenized`` argument:
+
+                - If ``is_pretokenized=False``: :class:`~tokenizers.TextInputSequence`
+                - If ``is_pretokenized=True``: :class:`~tokenizers.PreTokenizedInputSequence`
+
+            pair (:obj:`~tokenizers.InputSequence`, `optional`):
+                An optional input sequence. The expected format is the same that for ``sequence``.
+
+            is_pretokenized (:obj:`bool`, defaults to :obj:`False`):
+                Whether the input is already pre-tokenized
+
+            add_special_tokens (:obj:`bool`, defaults to :obj:`True`):
+                Whether to add the special tokens
+
+        Returns:
+            :class:`~tokenizers.Encoding`: The encoded result
+
+        """
+        pass
+
+    def encode_batch(self, input, is_pretokenized=False, add_special_tokens=True):
+        """
+        Encode the given batch of inputs. This method accept both raw text sequences
+        as well as already pre-tokenized sequences.
+
+        Example:
+            Here are some examples of the inputs that are accepted::
+
+                encode_batch([
+                    "A single sequence",
+                    ("A tuple with a sequence", "And its pair"),
+                    [ "A", "pre", "tokenized", "sequence" ],
+                    ([ "A", "pre", "tokenized", "sequence" ], "And its pair")
+                ])
+
+        Args:
+            input (A :obj:`List`/:obj:`Tuple` of :obj:`~tokenizers.EncodeInput`):
+                A list of single sequences or pair sequences to encode. Each sequence
+                can be either raw text or pre-tokenized, according to the ``is_pretokenized``
+                argument:
+
+                - If ``is_pretokenized=False``: :class:`~tokenizers.TextEncodeInput`
+                - If ``is_pretokenized=True``: :class:`~tokenizers.PreTokenizedEncodeInput`
+
+            is_pretokenized (:obj:`bool`, defaults to :obj:`False`):
+                Whether the input is already pre-tokenized
+
+            add_special_tokens (:obj:`bool`, defaults to :obj:`True`):
+                Whether to add the special tokens
+
+        Returns:
+            A :obj:`List` of :class:`~tokenizers.Encoding`: The encoded batch
+
+        """
+        pass
+
+    @property
+    def encode_special_tokens(self):
+        """
+        Modifies the tokenizer in order to use or not the special tokens
+        during encoding.
+
+        Args:
+            value (:obj:`bool`):
+                Whether to use the special tokens or not
+
+        """
+        pass
+
+    @staticmethod
+    def from_buffer(buffer):
+        """
+        Instantiate a new :class:`~tokenizers.Tokenizer` from the given buffer.
+
+        Args:
+            buffer (:obj:`bytes`):
+                A buffer containing a previously serialized :class:`~tokenizers.Tokenizer`
+
+        Returns:
+            :class:`~tokenizers.Tokenizer`: The new tokenizer
+        """
+        pass
+
+    @staticmethod
+    def from_file(path):
+        """
+        Instantiate a new :class:`~tokenizers.Tokenizer` from the file at the given path.
+
+        Args:
+            path (:obj:`str`):
+                A path to a local JSON file representing a previously serialized
+                :class:`~tokenizers.Tokenizer`
+
+        Returns:
+            :class:`~tokenizers.Tokenizer`: The new tokenizer
+        """
+        pass
+
+    @staticmethod
+    def from_pretrained(identifier, revision="main", auth_token=None):
+        """
+        Instantiate a new :class:`~tokenizers.Tokenizer` from an existing file on the
+        Hugging Face Hub.
+
+        Args:
+            identifier (:obj:`str`):
+                The identifier of a Model on the Hugging Face Hub, that contains
+                a tokenizer.json file
+            revision (:obj:`str`, defaults to `main`):
+                A branch or commit id
+            auth_token (:obj:`str`, `optional`, defaults to `None`):
+                An optional auth token used to access private repositories on the
+                Hugging Face Hub
+
+        Returns:
+            :class:`~tokenizers.Tokenizer`: The new tokenizer
+        """
+        pass
+
+    @staticmethod
+    def from_str(json):
+        """
+        Instantiate a new :class:`~tokenizers.Tokenizer` from the given JSON string.
+
+        Args:
+            json (:obj:`str`):
+                A valid JSON string representing a previously serialized
+                :class:`~tokenizers.Tokenizer`
+
+        Returns:
+            :class:`~tokenizers.Tokenizer`: The new tokenizer
+        """
+        pass
+
+    def get_added_tokens_decoder(self):
+        """
+        Get the underlying vocabulary
+
+        Returns:
+            :obj:`Dict[int, AddedToken]`: The vocabulary
+        """
+        pass
+
+    def get_vocab(self, with_added_tokens=True):
+        """
+        Get the underlying vocabulary
+
+        Args:
+            with_added_tokens (:obj:`bool`, defaults to :obj:`True`):
+                Whether to include the added tokens
+
+        Returns:
+            :obj:`Dict[str, int]`: The vocabulary
+        """
+        pass
+
+    def get_vocab_size(self, with_added_tokens=True):
+        """
+        Get the size of the underlying vocabulary
+
+        Args:
+            with_added_tokens (:obj:`bool`, defaults to :obj:`True`):
+                Whether to include the added tokens
+
+        Returns:
+            :obj:`int`: The size of the vocabulary
+        """
+        pass
+
+    def id_to_token(self, id):
+        """
+        Convert the given id to its corresponding token if it exists
+
+        Args:
+            id (:obj:`int`):
+                The id to convert
+
+        Returns:
+            :obj:`Optional[str]`: An optional token, :obj:`None` if out of vocabulary
+        """
+        pass
+
+    @property
+    def model(self):
+        """
+        The :class:`~tokenizers.models.Model` in use by the Tokenizer
+        """
+        pass
+
+    def no_padding(self):
+        """
+        Disable padding
+        """
+        pass
+
+    def no_truncation(self):
+        """
+        Disable truncation
+        """
+        pass
+
+    @property
+    def normalizer(self):
+        """
+        The `optional` :class:`~tokenizers.normalizers.Normalizer` in use by the Tokenizer
+        """
+        pass
+
+    def num_special_tokens_to_add(self, is_pair):
+        """
+        Return the number of special tokens that would be added for single/pair sentences.
+        :param is_pair: Boolean indicating if the input would be a single sentence or a pair
+        :return:
+        """
+        pass
+
+    @property
+    def padding(self):
+        """
+        Get the current padding parameters
+
+        `Cannot be set, use` :meth:`~tokenizers.Tokenizer.enable_padding` `instead`
+
+        Returns:
+            (:obj:`dict`, `optional`):
+                A dict with the current padding parameters if padding is enabled
+        """
+        pass
+
+    def post_process(self, encoding, pair=None, add_special_tokens=True):
+        """
+        Apply all the post-processing steps to the given encodings.
+
+        The various steps are:
+
+            1. Truncate according to the set truncation params (provided with
+               :meth:`~tokenizers.Tokenizer.enable_truncation`)
+            2. Apply the :class:`~tokenizers.processors.PostProcessor`
+            3. Pad according to the set padding params (provided with
+               :meth:`~tokenizers.Tokenizer.enable_padding`)
+
+        Args:
+            encoding (:class:`~tokenizers.Encoding`):
+                The :class:`~tokenizers.Encoding` corresponding to the main sequence.
+
+            pair (:class:`~tokenizers.Encoding`, `optional`):
+                An optional :class:`~tokenizers.Encoding` corresponding to the pair sequence.
+
+            add_special_tokens (:obj:`bool`):
+                Whether to add the special tokens
+
+        Returns:
+            :class:`~tokenizers.Encoding`: The final post-processed encoding
+        """
+        pass
+
+    @property
+    def post_processor(self):
+        """
+        The `optional` :class:`~tokenizers.processors.PostProcessor` in use by the Tokenizer
+        """
+        pass
+
+    @property
+    def pre_tokenizer(self):
+        """
+        The `optional` :class:`~tokenizers.pre_tokenizers.PreTokenizer` in use by the Tokenizer
+        """
+        pass
+
+    def save(self, path, pretty=True):
+        """
+        Save the :class:`~tokenizers.Tokenizer` to the file at the given path.
+
+        Args:
+            path (:obj:`str`):
+                A path to a file in which to save the serialized tokenizer.
+
+            pretty (:obj:`bool`, defaults to :obj:`True`):
+                Whether the JSON file should be pretty formatted.
+        """
+        pass
+
+    def to_str(self, pretty=False):
+        """
+        Gets a serialized string representing this :class:`~tokenizers.Tokenizer`.
+
+        Args:
+            pretty (:obj:`bool`, defaults to :obj:`False`):
+                Whether the JSON string should be pretty formatted.
+
+        Returns:
+            :obj:`str`: A string representing the serialized Tokenizer
+        """
+        pass
+
+    def token_to_id(self, token):
+        """
+        Convert the given token to its corresponding id if it exists
+
+        Args:
+            token (:obj:`str`):
+                The token to convert
+
+        Returns:
+            :obj:`Optional[int]`: An optional id, :obj:`None` if out of vocabulary
+        """
+        pass
+
+    def train(self, files, trainer=None):
+        """
+        Train the Tokenizer using the given files.
+
+        Reads the files line by line, while keeping all the whitespace, even new lines.
+        If you want to train from data store in-memory, you can check
+        :meth:`~tokenizers.Tokenizer.train_from_iterator`
+
+        Args:
+            files (:obj:`List[str]`):
+                A list of path to the files that we should use for training
+
+            trainer (:obj:`~tokenizers.trainers.Trainer`, `optional`):
+                An optional trainer that should be used to train our Model
+        """
+        pass
+
+    def train_from_iterator(self, iterator, trainer=None, length=None):
+        """
+        Train the Tokenizer using the provided iterator.
+
+        You can provide anything that is a Python Iterator
+
+            * A list of sequences :obj:`List[str]`
+            * A generator that yields :obj:`str` or :obj:`List[str]`
+            * A Numpy array of strings
+            * ...
+
+        Args:
+            iterator (:obj:`Iterator`):
+                Any iterator over strings or list of strings
+
+            trainer (:obj:`~tokenizers.trainers.Trainer`, `optional`):
+                An optional trainer that should be used to train our Model
+
+            length (:obj:`int`, `optional`):
+                The total number of sequences in the iterator. This is used to
+                provide meaningful progress tracking
+        """
+        pass
+
+    @property
+    def truncation(self):
+        """
+        Get the currently set truncation parameters
+
+        `Cannot set, use` :meth:`~tokenizers.Tokenizer.enable_truncation` `instead`
+
+        Returns:
+            (:obj:`dict`, `optional`):
+                A dict with the current truncation parameters if truncation is enabled
+        """
+        pass