about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/tiktoken/_educational.py
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/tiktoken/_educational.py
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are here HEAD master
Diffstat (limited to '.venv/lib/python3.12/site-packages/tiktoken/_educational.py')
-rw-r--r--.venv/lib/python3.12/site-packages/tiktoken/_educational.py223
1 files changed, 223 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/tiktoken/_educational.py b/.venv/lib/python3.12/site-packages/tiktoken/_educational.py
new file mode 100644
index 00000000..317e7756
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/tiktoken/_educational.py
@@ -0,0 +1,223 @@
+"""This is an educational implementation of the byte pair encoding algorithm."""
+
+from __future__ import annotations
+
+import collections
+
+import regex
+
+import tiktoken
+
+
+class SimpleBytePairEncoding:
+    def __init__(self, *, pat_str: str, mergeable_ranks: dict[bytes, int]) -> None:
+        """Creates an Encoding object."""
+        # A regex pattern string that is used to split the input text
+        self.pat_str = pat_str
+        # A dictionary mapping token bytes to their ranks. The ranks correspond to merge priority
+        self.mergeable_ranks = mergeable_ranks
+
+        self._decoder = {token: token_bytes for token_bytes, token in mergeable_ranks.items()}
+        self._pat = regex.compile(pat_str)
+
+    def encode(self, text: str, visualise: str | None = "colour") -> list[int]:
+        """Encodes a string into tokens.
+
+        >>> enc.encode("hello world")
+        [388, 372]
+        """
+        # Use the regex to split the text into (approximately) words
+        words = self._pat.findall(text)
+        tokens = []
+        for word in words:
+            # Turn each word into tokens, using the byte pair encoding algorithm
+            word_bytes = word.encode("utf-8")
+            word_tokens = bpe_encode(self.mergeable_ranks, word_bytes, visualise=visualise)
+            tokens.extend(word_tokens)
+        return tokens
+
+    def decode_bytes(self, tokens: list[int]) -> bytes:
+        """Decodes a list of tokens into bytes.
+
+        >>> enc.decode_bytes([388, 372])
+        b'hello world'
+        """
+        return b"".join(self._decoder[token] for token in tokens)
+
+    def decode(self, tokens: list[int]) -> str:
+        """Decodes a list of tokens into a string.
+
+        Decoded bytes are not guaranteed to be valid UTF-8. In that case, we replace
+        the invalid bytes with the replacement character "�".
+
+        >>> enc.decode([388, 372])
+        'hello world'
+        """
+        return self.decode_bytes(tokens).decode("utf-8", errors="replace")
+
+    def decode_tokens_bytes(self, tokens: list[int]) -> list[bytes]:
+        """Decodes a list of tokens into a list of bytes.
+
+        Useful for visualising how a string is tokenised.
+
+        >>> enc.decode_tokens_bytes([388, 372])
+        [b'hello', b' world']
+        """
+        return [self._decoder[token] for token in tokens]
+
+    @staticmethod
+    def train(training_data: str, vocab_size: int, pat_str: str):
+        """Train a BPE tokeniser on some data!"""
+        mergeable_ranks = bpe_train(data=training_data, vocab_size=vocab_size, pat_str=pat_str)
+        return SimpleBytePairEncoding(pat_str=pat_str, mergeable_ranks=mergeable_ranks)
+
+    @staticmethod
+    def from_tiktoken(encoding):
+        if isinstance(encoding, str):
+            encoding = tiktoken.get_encoding(encoding)
+        return SimpleBytePairEncoding(
+            pat_str=encoding._pat_str, mergeable_ranks=encoding._mergeable_ranks
+        )
+
+
+def bpe_encode(
+    mergeable_ranks: dict[bytes, int], input: bytes, visualise: str | None = "colour"
+) -> list[int]:
+    parts = [bytes([b]) for b in input]
+    while True:
+        # See the intermediate merges play out!
+        if visualise:
+            if visualise in ["colour", "color"]:
+                visualise_tokens(parts)
+            elif visualise == "simple":
+                print(parts)
+
+        # Iterate over all pairs and find the pair we want to merge the most
+        min_idx = None
+        min_rank = None
+        for i, pair in enumerate(zip(parts[:-1], parts[1:])):
+            rank = mergeable_ranks.get(pair[0] + pair[1])
+            if rank is not None and (min_rank is None or rank < min_rank):
+                min_idx = i
+                min_rank = rank
+
+        # If there were no pairs we could merge, we're done!
+        if min_rank is None:
+            break
+        assert min_idx is not None
+
+        # Otherwise, merge that pair and leave the rest unchanged. Then repeat.
+        parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2 :]
+
+    if visualise:
+        print()
+
+    tokens = [mergeable_ranks[part] for part in parts]
+    return tokens
+
+
+def bpe_train(
+    data: str, vocab_size: int, pat_str: str, visualise: str | None = "colour"
+) -> dict[bytes, int]:
+    # First, add tokens for each individual byte value
+    if vocab_size < 2**8:
+        raise ValueError("vocab_size must be at least 256, so we can encode all bytes")
+    ranks = {}
+    for i in range(2**8):
+        ranks[bytes([i])] = i
+
+    # Splinter up our data into lists of bytes
+    # data = "Hello world"
+    # words = [
+    #     [b'H', b'e', b'l', b'l', b'o'],
+    #     [b' ', b'w', b'o', b'r', b'l', b'd']
+    # ]
+    words: list[list[bytes]] = [
+        [bytes([b]) for b in word.encode("utf-8")] for word in regex.findall(pat_str, data)
+    ]
+
+    # Now, use our data to figure out which merges we should make
+    while len(ranks) < vocab_size:
+        # Find the most common pair. This will become our next token
+        stats = collections.Counter()
+        for piece in words:
+            for pair in zip(piece[:-1], piece[1:]):
+                stats[pair] += 1
+
+        most_common_pair = max(stats, key=lambda x: stats[x])
+        token_bytes = most_common_pair[0] + most_common_pair[1]
+        token = len(ranks)
+        # Add the new token!
+        ranks[token_bytes] = token
+
+        # Now merge that most common pair in all the words. That is, update our training data
+        # to reflect our decision to make that pair into a new token.
+        new_words = []
+        for word in words:
+            new_word = []
+            i = 0
+            while i < len(word) - 1:
+                if (word[i], word[i + 1]) == most_common_pair:
+                    # We found our pair! Merge it
+                    new_word.append(token_bytes)
+                    i += 2
+                else:
+                    new_word.append(word[i])
+                    i += 1
+            if i == len(word) - 1:
+                new_word.append(word[i])
+            new_words.append(new_word)
+        words = new_words
+
+        # See the intermediate merges play out!
+        if visualise:
+            print(f"The current most common pair is {most_common_pair[0]} + {most_common_pair[1]}")
+            print(f"So we made {token_bytes} our {len(ranks)}th token")
+            if visualise in ["colour", "color"]:
+                print("Now the first fifty words in our training data look like:")
+                visualise_tokens([token for word in words[:50] for token in word])
+            elif visualise == "simple":
+                print("Now the first twenty words in our training data look like:")
+                for word in words[:20]:
+                    print(word)
+            print("\n")
+
+    return ranks
+
+
+def visualise_tokens(token_values: list[bytes]) -> None:
+    background = [f"\u001b[48;5;{i}m" for i in [167, 179, 185, 77, 80, 68, 134]]
+    # If token boundaries do not occur at unicode character boundaries, it's unclear how best to
+    # visualise the token. Here, we'll just use the unicode replacement character to represent some
+    # fraction of a character.
+    unicode_token_values = [x.decode("utf-8", errors="replace") for x in token_values]
+
+    running_length = 0
+    last_color = None
+    for token in unicode_token_values:
+        color = background[running_length % len(background)]
+        if color == last_color:
+            color = background[(running_length + 1) % len(background)]
+            assert color != last_color
+        last_color = color
+        running_length += len(token)
+        print(color + token, end="")
+    print("\u001b[0m")
+
+
+def train_simple_encoding():
+    gpt2_pattern = (
+        r"""'s|'t|'re|'ve|'m|'ll|'d| ?[\p{L}]+| ?[\p{N}]+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
+    )
+    with open(__file__) as f:
+        data = f.read()
+
+    enc = SimpleBytePairEncoding.train(data, vocab_size=600, pat_str=gpt2_pattern)
+
+    print("This is the sequence of merges performed in order to encode 'hello world':")
+    tokens = enc.encode("hello world")
+    assert enc.decode(tokens) == "hello world"
+    assert enc.decode_bytes(tokens) == b"hello world"
+    assert enc.decode_tokens_bytes(tokens) == [b"hello", b" world"]
+
+    return enc