about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/shared/utils
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/shared/utils
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are here HEAD master
Diffstat (limited to '.venv/lib/python3.12/site-packages/shared/utils')
-rw-r--r--.venv/lib/python3.12/site-packages/shared/utils/__init__.py46
-rw-r--r--.venv/lib/python3.12/site-packages/shared/utils/base_utils.py783
-rw-r--r--.venv/lib/python3.12/site-packages/shared/utils/splitter/__init__.py3
-rw-r--r--.venv/lib/python3.12/site-packages/shared/utils/splitter/text.py2000
4 files changed, 2832 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/shared/utils/__init__.py b/.venv/lib/python3.12/site-packages/shared/utils/__init__.py
new file mode 100644
index 00000000..eb037e22
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/shared/utils/__init__.py
@@ -0,0 +1,46 @@
+from .base_utils import (
+    _decorate_vector_type,
+    _get_vector_column_str,
+    decrement_version,
+    deep_update,
+    dump_collector,
+    dump_obj,
+    format_search_results_for_llm,
+    generate_default_prompt_id,
+    generate_default_user_collection_id,
+    generate_document_id,
+    generate_entity_document_id,
+    generate_extraction_id,
+    generate_id,
+    generate_user_id,
+    increment_version,
+    validate_uuid,
+    yield_sse_event,
+)
+from .splitter.text import RecursiveCharacterTextSplitter, TextSplitter
+
+__all__ = [
+    "format_search_results_for_llm",
+    # ID generation
+    "generate_id",
+    "generate_document_id",
+    "generate_extraction_id",
+    "generate_default_user_collection_id",
+    "generate_user_id",
+    "generate_default_prompt_id",
+    "generate_entity_document_id",
+    # Other
+    "increment_version",
+    "decrement_version",
+    "validate_uuid",
+    "deep_update",
+    # Text splitter
+    "RecursiveCharacterTextSplitter",
+    "TextSplitter",
+    # Vector utils
+    "_decorate_vector_type",
+    "_get_vector_column_str",
+    "yield_sse_event",
+    "dump_collector",
+    "dump_obj",
+]
diff --git a/.venv/lib/python3.12/site-packages/shared/utils/base_utils.py b/.venv/lib/python3.12/site-packages/shared/utils/base_utils.py
new file mode 100644
index 00000000..1864d0b4
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/shared/utils/base_utils.py
@@ -0,0 +1,783 @@
+import json
+import logging
+import math
+import uuid
+from abc import ABCMeta
+from copy import deepcopy
+from datetime import datetime
+from typing import TYPE_CHECKING, Any, Optional, Tuple, TypeVar
+from uuid import NAMESPACE_DNS, UUID, uuid4, uuid5
+
+import tiktoken
+
+from ..abstractions import (
+    AggregateSearchResult,
+    AsyncSyncMeta,
+    GraphCommunityResult,
+    GraphEntityResult,
+    GraphRelationshipResult,
+)
+from ..abstractions.vector import VectorQuantizationType
+
+if TYPE_CHECKING:
+    pass
+
+
+logger = logging.getLogger()
+
+
+def id_to_shorthand(id: str | UUID):
+    return str(id)[:7]
+
+
+def format_search_results_for_llm(
+    results: AggregateSearchResult,
+    collector: Any,  # SearchResultsCollector
+) -> str:
+    """
+    Instead of resetting 'source_counter' to 1, we:
+     - For each chunk / graph / web / doc in `results`,
+     - Find the aggregator index from the collector,
+     - Print 'Source [X]:' with that aggregator index.
+    """
+    lines = []
+
+    # We'll build a quick helper to locate aggregator indices for each object:
+    # Or you can rely on the fact that we've added them to the collector
+    # in the same order. But let's do a "lookup aggregator index" approach:
+
+    # 1) Chunk search
+    if results.chunk_search_results:
+        lines.append("Vector Search Results:")
+        for c in results.chunk_search_results:
+            lines.append(f"Source ID [{id_to_shorthand(c.id)}]:")
+            lines.append(c.text or "")  # or c.text[:200] to truncate
+
+    # 2) Graph search
+    if results.graph_search_results:
+        lines.append("Graph Search Results:")
+        for g in results.graph_search_results:
+            lines.append(f"Source ID [{id_to_shorthand(g.id)}]:")
+            if isinstance(g.content, GraphCommunityResult):
+                lines.append(f"Community Name: {g.content.name}")
+                lines.append(f"ID: {g.content.id}")
+                lines.append(f"Summary: {g.content.summary}")
+                # etc. ...
+            elif isinstance(g.content, GraphEntityResult):
+                lines.append(f"Entity Name: {g.content.name}")
+                lines.append(f"Description: {g.content.description}")
+            elif isinstance(g.content, GraphRelationshipResult):
+                lines.append(
+                    f"Relationship: {g.content.subject}-{g.content.predicate}-{g.content.object}"
+                )
+            # Add metadata if needed
+
+    # 3) Web search
+    if results.web_search_results:
+        lines.append("Web Search Results:")
+        for w in results.web_search_results:
+            lines.append(f"Source ID [{id_to_shorthand(w.id)}]:")
+            lines.append(f"Title: {w.title}")
+            lines.append(f"Link: {w.link}")
+            lines.append(f"Snippet: {w.snippet}")
+
+    # 4) Local context docs
+    if results.document_search_results:
+        lines.append("Local Context Documents:")
+        for doc_result in results.document_search_results:
+            doc_title = doc_result.title or "Untitled Document"
+            doc_id = doc_result.id
+            summary = doc_result.summary
+
+            lines.append(f"Full Document ID: {doc_id}")
+            lines.append(f"Shortened Document ID: {id_to_shorthand(doc_id)}")
+            lines.append(f"Document Title: {doc_title}")
+            if summary:
+                lines.append(f"Summary: {summary}")
+
+            if doc_result.chunks:
+                # Then each chunk inside:
+                for chunk in doc_result.chunks:
+                    lines.append(
+                        f"\nChunk ID {id_to_shorthand(chunk['id'])}:\n{chunk['text']}"
+                    )
+
+    result = "\n".join(lines)
+    return result
+
+
+def _generate_id_from_label(label) -> UUID:
+    return uuid5(NAMESPACE_DNS, label)
+
+
+def generate_id(label: Optional[str] = None) -> UUID:
+    """Generates a unique run id."""
+    return _generate_id_from_label(
+        label if label is not None else str(uuid4())
+    )
+
+
+def generate_document_id(filename: str, user_id: UUID) -> UUID:
+    """Generates a unique document id from a given filename and user id."""
+    safe_filename = filename.replace("/", "_")
+    return _generate_id_from_label(f"{safe_filename}-{str(user_id)}")
+
+
+def generate_extraction_id(
+    document_id: UUID, iteration: int = 0, version: str = "0"
+) -> UUID:
+    """Generates a unique extraction id from a given document id and
+    iteration."""
+    return _generate_id_from_label(f"{str(document_id)}-{iteration}-{version}")
+
+
+def generate_default_user_collection_id(user_id: UUID) -> UUID:
+    """Generates a unique collection id from a given user id."""
+    return _generate_id_from_label(str(user_id))
+
+
+def generate_user_id(email: str) -> UUID:
+    """Generates a unique user id from a given email."""
+    return _generate_id_from_label(email)
+
+
+def generate_default_prompt_id(prompt_name: str) -> UUID:
+    """Generates a unique prompt id."""
+    return _generate_id_from_label(prompt_name)
+
+
+def generate_entity_document_id() -> UUID:
+    """Generates a unique document id inserting entities into a graph."""
+    generation_time = datetime.now().isoformat()
+    return _generate_id_from_label(f"entity-{generation_time}")
+
+
+def increment_version(version: str) -> str:
+    prefix = version[:-1]
+    suffix = int(version[-1])
+    return f"{prefix}{suffix + 1}"
+
+
+def decrement_version(version: str) -> str:
+    prefix = version[:-1]
+    suffix = int(version[-1])
+    return f"{prefix}{max(0, suffix - 1)}"
+
+
+def validate_uuid(uuid_str: str) -> UUID:
+    return UUID(uuid_str)
+
+
+def update_settings_from_dict(server_settings, settings_dict: dict):
+    """Updates a settings object with values from a dictionary."""
+    settings = deepcopy(server_settings)
+    for key, value in settings_dict.items():
+        if value is not None:
+            if isinstance(value, dict):
+                for k, v in value.items():
+                    if isinstance(getattr(settings, key), dict):
+                        getattr(settings, key)[k] = v
+                    else:
+                        setattr(getattr(settings, key), k, v)
+            else:
+                setattr(settings, key, value)
+
+    return settings
+
+
+def _decorate_vector_type(
+    input_str: str,
+    quantization_type: VectorQuantizationType = VectorQuantizationType.FP32,
+) -> str:
+    return f"{quantization_type.db_type}{input_str}"
+
+
+def _get_vector_column_str(
+    dimension: int | float, quantization_type: VectorQuantizationType
+) -> str:
+    """Returns a string representation of a vector column type.
+
+    Explicitly handles the case where the dimension is not a valid number meant
+    to support embedding models that do not allow for specifying the dimension.
+    """
+    if math.isnan(dimension) or dimension <= 0:
+        vector_dim = ""  # Allows for Postgres to handle any dimension
+    else:
+        vector_dim = f"({dimension})"
+    return _decorate_vector_type(vector_dim, quantization_type)
+
+
+KeyType = TypeVar("KeyType")
+
+
+def deep_update(
+    mapping: dict[KeyType, Any], *updating_mappings: dict[KeyType, Any]
+) -> dict[KeyType, Any]:
+    """
+    Taken from Pydantic v1:
+    https://github.com/pydantic/pydantic/blob/fd2991fe6a73819b48c906e3c3274e8e47d0f761/pydantic/utils.py#L200
+    """
+    updated_mapping = mapping.copy()
+    for updating_mapping in updating_mappings:
+        for k, v in updating_mapping.items():
+            if (
+                k in updated_mapping
+                and isinstance(updated_mapping[k], dict)
+                and isinstance(v, dict)
+            ):
+                updated_mapping[k] = deep_update(updated_mapping[k], v)
+            else:
+                updated_mapping[k] = v
+    return updated_mapping
+
+
+def tokens_count_for_message(message, encoding):
+    """Return the number of tokens used by a single message."""
+    tokens_per_message = 3
+
+    num_tokens = 0
+    num_tokens += tokens_per_message
+    if message.get("function_call"):
+        num_tokens += len(encoding.encode(message["function_call"]["name"]))
+        num_tokens += len(
+            encoding.encode(message["function_call"]["arguments"])
+        )
+    elif message.get("tool_calls"):
+        for tool_call in message["tool_calls"]:
+            num_tokens += len(encoding.encode(tool_call["function"]["name"]))
+            num_tokens += len(
+                encoding.encode(tool_call["function"]["arguments"])
+            )
+    else:
+        if "content" in message:
+            num_tokens += len(encoding.encode(message["content"]))
+
+    return num_tokens
+
+
+def num_tokens_from_messages(messages, model="gpt-4o"):
+    """Return the number of tokens used by a list of messages for both user and assistant."""
+    try:
+        encoding = tiktoken.encoding_for_model(model)
+    except KeyError:
+        logger.warning("Warning: model not found. Using cl100k_base encoding.")
+        encoding = tiktoken.get_encoding("cl100k_base")
+
+    tokens = 0
+    for message_ in messages:
+        tokens += tokens_count_for_message(message_, encoding)
+
+        tokens += 3  # every reply is primed with assistant
+    return tokens
+
+
+class SearchResultsCollector:
+    """
+    Collects search results in the form (source_type, result_obj).
+    Handles both object-oriented and dictionary-based search results.
+    """
+
+    def __init__(self):
+        # We'll store a list of (source_type, result_obj)
+        self._results_in_order = []
+
+    @property
+    def results(self):
+        """Get the results list"""
+        return self._results_in_order
+
+    @results.setter
+    def results(self, value):
+        """
+        Set the results directly, with automatic type detection for 'unknown' items
+        Handles the format: [('unknown', {...}), ('unknown', {...})]
+        """
+        self._results_in_order = []
+
+        if isinstance(value, list):
+            for item in value:
+                if isinstance(item, tuple) and len(item) == 2:
+                    source_type, result_obj = item
+
+                    # Only auto-detect if the source type is "unknown"
+                    if source_type == "unknown":
+                        detected_type = self._detect_result_type(result_obj)
+                        self._results_in_order.append(
+                            (detected_type, result_obj)
+                        )
+                    else:
+                        self._results_in_order.append(
+                            (source_type, result_obj)
+                        )
+                else:
+                    # If not a tuple, detect and add
+                    detected_type = self._detect_result_type(item)
+                    self._results_in_order.append((detected_type, item))
+        else:
+            raise ValueError("Results must be a list")
+
+    def add_aggregate_result(self, agg):
+        """
+        Flatten the chunk_search_results, graph_search_results, web_search_results,
+        and document_search_results into the collector, including nested chunks.
+        """
+        if hasattr(agg, "chunk_search_results") and agg.chunk_search_results:
+            for c in agg.chunk_search_results:
+                self._results_in_order.append(("chunk", c))
+
+        if hasattr(agg, "graph_search_results") and agg.graph_search_results:
+            for g in agg.graph_search_results:
+                self._results_in_order.append(("graph", g))
+
+        if hasattr(agg, "web_search_results") and agg.web_search_results:
+            for w in agg.web_search_results:
+                self._results_in_order.append(("web", w))
+
+        # Add documents and extract their chunks
+        if (
+            hasattr(agg, "document_search_results")
+            and agg.document_search_results
+        ):
+            for doc in agg.document_search_results:
+                # Add the document itself
+                self._results_in_order.append(("doc", doc))
+
+                # Extract and add chunks from the document
+                chunks = None
+                if isinstance(doc, dict):
+                    chunks = doc.get("chunks", [])
+                elif hasattr(doc, "chunks") and doc.chunks is not None:
+                    chunks = doc.chunks
+
+                if chunks:
+                    for chunk in chunks:
+                        # Ensure each chunk has the minimum required attributes
+                        if isinstance(chunk, dict) and "id" in chunk:
+                            # Add the chunk directly to results for citation lookup
+                            self._results_in_order.append(("chunk", chunk))
+                        elif hasattr(chunk, "id"):
+                            self._results_in_order.append(("chunk", chunk))
+
+    def add_result(self, result_obj, source_type=None):
+        """
+        Add a single result object to the collector.
+        If source_type is not provided, automatically detect the type.
+        """
+        if source_type:
+            self._results_in_order.append((source_type, result_obj))
+            return source_type
+
+        detected_type = self._detect_result_type(result_obj)
+        self._results_in_order.append((detected_type, result_obj))
+        return detected_type
+
+    def _detect_result_type(self, obj):
+        """
+        Detect the type of a result object based on its properties.
+        Works with both object attributes and dictionary keys.
+        """
+        # Handle dictionary types first (common for web search results)
+        if isinstance(obj, dict):
+            # Web search pattern
+            if all(k in obj for k in ["title", "link"]) and any(
+                k in obj for k in ["snippet", "description"]
+            ):
+                return "web"
+
+            # Check for graph dictionary patterns
+            if "content" in obj and isinstance(obj["content"], dict):
+                content = obj["content"]
+                if all(k in content for k in ["name", "description"]):
+                    return "graph"  # Entity
+                if all(
+                    k in content for k in ["subject", "predicate", "object"]
+                ):
+                    return "graph"  # Relationship
+                if all(k in content for k in ["name", "summary"]):
+                    return "graph"  # Community
+
+            # Chunk pattern
+            if all(k in obj for k in ["text", "id"]) and any(
+                k in obj for k in ["score", "metadata"]
+            ):
+                return "chunk"
+
+            # Context document pattern
+            if "document" in obj and "chunks" in obj:
+                return "doc"
+
+            # Check for explicit type indicator
+            if "type" in obj:
+                type_val = str(obj["type"]).lower()
+                if any(t in type_val for t in ["web", "organic"]):
+                    return "web"
+                if "graph" in type_val:
+                    return "graph"
+                if "chunk" in type_val:
+                    return "chunk"
+                if "document" in type_val:
+                    return "doc"
+
+        # Handle object attributes for OOP-style results
+        if hasattr(obj, "result_type"):
+            result_type = str(obj.result_type).lower()
+            if result_type in ["entity", "relationship", "community"]:
+                return "graph"
+
+        # Check class name hints
+        class_name = obj.__class__.__name__
+        if "Graph" in class_name:
+            return "graph"
+        if "Chunk" in class_name:
+            return "chunk"
+        if "Web" in class_name:
+            return "web"
+        if "Document" in class_name:
+            return "doc"
+
+        # Check for object attribute patterns
+        if hasattr(obj, "content"):
+            content = obj.content
+            if hasattr(content, "name") and hasattr(content, "description"):
+                return "graph"  # Entity
+            if hasattr(content, "subject") and hasattr(content, "predicate"):
+                return "graph"  # Relationship
+            if hasattr(content, "name") and hasattr(content, "summary"):
+                return "graph"  # Community
+
+        if (
+            hasattr(obj, "text")
+            and hasattr(obj, "id")
+            and (hasattr(obj, "score") or hasattr(obj, "metadata"))
+        ):
+            return "chunk"
+
+        if (
+            hasattr(obj, "title")
+            and hasattr(obj, "link")
+            and hasattr(obj, "snippet")
+        ):
+            return "web"
+
+        if hasattr(obj, "document") and hasattr(obj, "chunks"):
+            return "doc"
+
+        # Default when type can't be determined
+        return "unknown"
+
+    def find_by_short_id(self, short_id):
+        """Find a result by its short ID prefix with better chunk handling"""
+        if not short_id:
+            return None
+
+        # First try direct lookup using regular iteration
+        for _, result_obj in self._results_in_order:
+            # Check dictionary objects
+            if isinstance(result_obj, dict) and "id" in result_obj:
+                result_id = str(result_obj["id"])
+                if result_id.startswith(short_id):
+                    return result_obj
+
+            # Check object with id attribute
+            elif hasattr(result_obj, "id"):
+                obj_id = getattr(result_obj, "id", None)
+                if obj_id and str(obj_id).startswith(short_id):
+                    # Convert to dict if possible
+                    if hasattr(result_obj, "as_dict"):
+                        return result_obj.as_dict()
+                    elif hasattr(result_obj, "model_dump"):
+                        return result_obj.model_dump()
+                    elif hasattr(result_obj, "dict"):
+                        return result_obj.dict()
+                    else:
+                        return result_obj
+
+        # If not found, look for chunks inside documents that weren't extracted properly
+        for source_type, result_obj in self._results_in_order:
+            if source_type == "doc":
+                # Try various ways to access chunks
+                chunks = None
+                if isinstance(result_obj, dict) and "chunks" in result_obj:
+                    chunks = result_obj["chunks"]
+                elif (
+                    hasattr(result_obj, "chunks")
+                    and result_obj.chunks is not None
+                ):
+                    chunks = result_obj.chunks
+
+                if chunks:
+                    for chunk in chunks:
+                        # Try each chunk
+                        chunk_id = None
+                        if isinstance(chunk, dict) and "id" in chunk:
+                            chunk_id = chunk["id"]
+                        elif hasattr(chunk, "id"):
+                            chunk_id = chunk.id
+
+                        if chunk_id and str(chunk_id).startswith(short_id):
+                            return chunk
+
+        return None
+
+    def get_results_by_type(self, type_name):
+        """Get all results of a specific type"""
+        return [
+            result_obj
+            for source_type, result_obj in self._results_in_order
+            if source_type == type_name
+        ]
+
+    def __repr__(self):
+        """String representation showing counts by type"""
+        type_counts = {}
+        for source_type, _ in self._results_in_order:
+            type_counts[source_type] = type_counts.get(source_type, 0) + 1
+
+        return f"SearchResultsCollector with {len(self._results_in_order)} results: {type_counts}"
+
+    def get_all_results(self) -> list[Tuple[str, Any]]:
+        """
+        Return list of (source_type, result_obj, aggregator_index),
+        in the order appended.
+        """
+        return self._results_in_order
+
+
+def convert_nonserializable_objects(obj):
+    if hasattr(obj, "model_dump"):
+        obj = obj.model_dump()
+    if hasattr(obj, "as_dict"):
+        obj = obj.as_dict()
+    if hasattr(obj, "to_dict"):
+        obj = obj.to_dict()
+
+    if isinstance(obj, dict):
+        new_obj = {}
+        for key, value in obj.items():
+            # Convert key to string if it is a UUID or not already a string.
+            new_key = str(key) if not isinstance(key, str) else key
+            new_obj[new_key] = convert_nonserializable_objects(value)
+        return new_obj
+    elif isinstance(obj, list):
+        return [convert_nonserializable_objects(item) for item in obj]
+    elif isinstance(obj, tuple):
+        return tuple(convert_nonserializable_objects(item) for item in obj)
+    elif isinstance(obj, set):
+        return {convert_nonserializable_objects(item) for item in obj}
+    elif isinstance(obj, uuid.UUID):
+        return str(obj)
+    elif isinstance(obj, datetime):
+        return obj.isoformat()  # Convert datetime to ISO formatted string
+    else:
+        return obj
+
+
+def dump_obj(obj) -> list[dict[str, Any]]:
+    if hasattr(obj, "model_dump"):
+        obj = obj.model_dump()
+    elif hasattr(obj, "dict"):
+        obj = obj.dict()
+    elif hasattr(obj, "as_dict"):
+        obj = obj.as_dict()
+    elif hasattr(obj, "to_dict"):
+        obj = obj.to_dict()
+    obj = convert_nonserializable_objects(obj)
+
+    return obj
+
+
+def dump_collector(collector: SearchResultsCollector) -> list[dict[str, Any]]:
+    dumped = []
+    for source_type, result_obj in collector.get_all_results():
+        # Get the dictionary from the result object
+        if hasattr(result_obj, "model_dump"):
+            result_dict = result_obj.model_dump()
+        elif hasattr(result_obj, "dict"):
+            result_dict = result_obj.dict()
+        elif hasattr(result_obj, "as_dict"):
+            result_dict = result_obj.as_dict()
+        elif hasattr(result_obj, "to_dict"):
+            result_dict = result_obj.to_dict()
+        else:
+            result_dict = (
+                result_obj  # Fallback if no conversion method is available
+            )
+
+        # Use the recursive conversion on the entire dictionary
+        result_dict = convert_nonserializable_objects(result_dict)
+
+        dumped.append(
+            {
+                "source_type": source_type,
+                "result": result_dict,
+            }
+        )
+    return dumped
+
+
+def num_tokens(text, model="gpt-4o"):
+    try:
+        encoding = tiktoken.encoding_for_model(model)
+    except KeyError:
+        encoding = tiktoken.get_encoding("cl100k_base")
+
+    """Return the number of tokens used by a list of messages for both user and assistant."""
+    return len(encoding.encode(text, disallowed_special=()))
+
+
+class CombinedMeta(AsyncSyncMeta, ABCMeta):
+    pass
+
+
+async def yield_sse_event(event_name: str, payload: dict, chunk_size=1024):
+    """
+    Helper that yields a single SSE event in properly chunked lines.
+
+    e.g. event: event_name
+         data: (partial JSON 1)
+         data: (partial JSON 2)
+         ...
+         [blank line to end event]
+    """
+
+    # SSE: first the "event: ..."
+    yield f"event: {event_name}\n"
+
+    # Convert payload to JSON
+    content_str = json.dumps(payload, default=str)
+
+    # data
+    yield f"data: {content_str}\n"
+
+    # blank line signals end of SSE event
+    yield "\n"
+
+
+class SSEFormatter:
+    """
+    Enhanced formatter for Server-Sent Events (SSE) with citation tracking.
+    Extends the existing SSEFormatter with improved citation handling.
+    """
+
+    @staticmethod
+    async def yield_citation_event(
+        citation_data: dict,
+    ):
+        """
+        Emits a citation event with optimized payload.
+
+        Args:
+            citation_id: The short ID of the citation (e.g., 'abc1234')
+            span: (start, end) position tuple for this occurrence
+            payload: Source object (included only for first occurrence)
+            is_new: Whether this is the first time we've seen this citation
+            citation_id_counter: Optional counter for citation occurrences
+
+        Yields:
+            Formatted SSE event lines
+        """
+
+        # Include the full payload only for new citations
+        if not citation_data.get("is_new") or "payload" not in citation_data:
+            citation_data["payload"] = None
+
+        # Yield the event
+        async for line in yield_sse_event("citation", citation_data):
+            yield line
+
+    @staticmethod
+    async def yield_final_answer_event(
+        final_data: dict,
+    ):
+        # Yield the event
+        async for line in yield_sse_event("final_answer", final_data):
+            yield line
+
+    # Include other existing SSEFormatter methods for compatibility
+    @staticmethod
+    async def yield_message_event(text_segment, msg_id=None):
+        msg_id = msg_id or f"msg_{uuid.uuid4().hex[:8]}"
+        msg_payload = {
+            "id": msg_id,
+            "object": "agent.message.delta",
+            "delta": {
+                "content": [
+                    {
+                        "type": "text",
+                        "payload": {
+                            "value": text_segment,
+                            "annotations": [],
+                        },
+                    }
+                ]
+            },
+        }
+        async for line in yield_sse_event("message", msg_payload):
+            yield line
+
+    @staticmethod
+    async def yield_thinking_event(text_segment, thinking_id=None):
+        thinking_id = thinking_id or f"think_{uuid.uuid4().hex[:8]}"
+        thinking_data = {
+            "id": thinking_id,
+            "object": "agent.thinking.delta",
+            "delta": {
+                "content": [
+                    {
+                        "type": "text",
+                        "payload": {
+                            "value": text_segment,
+                            "annotations": [],
+                        },
+                    }
+                ]
+            },
+        }
+        async for line in yield_sse_event("thinking", thinking_data):
+            yield line
+
+    @staticmethod
+    def yield_done_event():
+        return "event: done\ndata: [DONE]\n\n"
+
+    @staticmethod
+    async def yield_error_event(error_message, error_id=None):
+        error_id = error_id or f"err_{uuid.uuid4().hex[:8]}"
+        error_payload = {
+            "id": error_id,
+            "object": "agent.error",
+            "error": {"message": error_message, "type": "agent_error"},
+        }
+        async for line in yield_sse_event("error", error_payload):
+            yield line
+
+    @staticmethod
+    async def yield_tool_call_event(tool_call_data):
+        from ..api.models.retrieval.responses import ToolCallEvent
+
+        tc_event = ToolCallEvent(event="tool_call", data=tool_call_data)
+        async for line in yield_sse_event(
+            "tool_call", tc_event.dict()["data"]
+        ):
+            yield line
+
+    # New helper for emitting search results:
+    @staticmethod
+    async def yield_search_results_event(aggregated_results):
+        payload = {
+            "id": "search_1",
+            "object": "rag.search_results",
+            "data": aggregated_results.as_dict(),
+        }
+        async for line in yield_sse_event("search_results", payload):
+            yield line
+
+    @staticmethod
+    async def yield_tool_result_event(tool_result_data):
+        from ..api.models.retrieval.responses import ToolResultEvent
+
+        tr_event = ToolResultEvent(event="tool_result", data=tool_result_data)
+        async for line in yield_sse_event(
+            "tool_result", tr_event.dict()["data"]
+        ):
+            yield line
diff --git a/.venv/lib/python3.12/site-packages/shared/utils/splitter/__init__.py b/.venv/lib/python3.12/site-packages/shared/utils/splitter/__init__.py
new file mode 100644
index 00000000..07a9f554
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/shared/utils/splitter/__init__.py
@@ -0,0 +1,3 @@
+from .text import RecursiveCharacterTextSplitter
+
+__all__ = ["RecursiveCharacterTextSplitter"]
diff --git a/.venv/lib/python3.12/site-packages/shared/utils/splitter/text.py b/.venv/lib/python3.12/site-packages/shared/utils/splitter/text.py
new file mode 100644
index 00000000..92a7c81b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/shared/utils/splitter/text.py
@@ -0,0 +1,2000 @@
+# Source - LangChain
+# URL: https://github.com/langchain-ai/langchain/blob/6a5b084704afa22ca02f78d0464f35aed75d1ff2/libs/langchain/langchain/text_splitter.py#L851
+"""**Text Splitters** are classes for splitting text.
+
+**Class hierarchy:**
+
+.. code-block::
+
+    BaseDocumentTransformer --> TextSplitter --> <name>TextSplitter  # Example: CharacterTextSplitter
+                                                 RecursiveCharacterTextSplitter -->  <name>TextSplitter
+
+Note: **MarkdownHeaderTextSplitter** and **HTMLHeaderTextSplitter do not derive from TextSplitter.
+
+
+**Main helpers:**
+
+.. code-block::
+
+    Document, Tokenizer, Language, LineType, HeaderType
+"""  # noqa: E501
+
+from __future__ import annotations
+
+import copy
+import json
+import logging
+import pathlib
+import re
+from abc import ABC, abstractmethod
+from dataclasses import dataclass
+from enum import Enum
+from io import BytesIO, StringIO
+from typing import (
+    AbstractSet,
+    Any,
+    Callable,
+    Collection,
+    Iterable,
+    Literal,
+    Optional,
+    Sequence,
+    Tuple,
+    Type,
+    TypedDict,
+    TypeVar,
+    cast,
+)
+
+import requests
+from pydantic import BaseModel, Field, PrivateAttr
+from typing_extensions import NotRequired
+
+logger = logging.getLogger()
+
+TS = TypeVar("TS", bound="TextSplitter")
+
+
+class BaseSerialized(TypedDict):
+    """Base class for serialized objects."""
+
+    lc: int
+    id: list[str]
+    name: NotRequired[str]
+    graph: NotRequired[dict[str, Any]]
+
+
+class SerializedConstructor(BaseSerialized):
+    """Serialized constructor."""
+
+    type: Literal["constructor"]
+    kwargs: dict[str, Any]
+
+
+class SerializedSecret(BaseSerialized):
+    """Serialized secret."""
+
+    type: Literal["secret"]
+
+
+class SerializedNotImplemented(BaseSerialized):
+    """Serialized not implemented."""
+
+    type: Literal["not_implemented"]
+    repr: Optional[str]
+
+
+def try_neq_default(value: Any, key: str, model: BaseModel) -> bool:
+    """Try to determine if a value is different from the default.
+
+    Args:
+        value: The value.
+        key: The key.
+        model: The model.
+
+    Returns:
+        Whether the value is different from the default.
+    """
+    try:
+        return model.__fields__[key].get_default() != value
+    except Exception:
+        return True
+
+
+class Serializable(BaseModel, ABC):
+    """Serializable base class."""
+
+    @classmethod
+    def is_lc_serializable(cls) -> bool:
+        """Is this class serializable?"""
+        return False
+
+    @classmethod
+    def get_lc_namespace(cls) -> list[str]:
+        """Get the namespace of the langchain object.
+
+        For example, if the class is `langchain.llms.openai.OpenAI`, then the
+        namespace is ["langchain", "llms", "openai"]
+        """
+        return cls.__module__.split(".")
+
+    @property
+    def lc_secrets(self) -> dict[str, str]:
+        """A map of constructor argument names to secret ids.
+
+        For example,     {"openai_api_key": "OPENAI_API_KEY"}
+        """
+        return {}
+
+    @property
+    def lc_attributes(self) -> dict:
+        """List of attribute names that should be included in the serialized
+        kwargs.
+
+        These attributes must be accepted by the constructor.
+        """
+        return {}
+
+    @classmethod
+    def lc_id(cls) -> list[str]:
+        """A unique identifier for this class for serialization purposes.
+
+        The unique identifier is a list of strings that describes the path to
+        the object.
+        """
+        return [*cls.get_lc_namespace(), cls.__name__]
+
+    class Config:
+        extra = "ignore"
+
+    def __repr_args__(self) -> Any:
+        return [
+            (k, v)
+            for k, v in super().__repr_args__()
+            if (k not in self.__fields__ or try_neq_default(v, k, self))
+        ]
+
+    _lc_kwargs: dict[str, Any] = PrivateAttr(default_factory=dict)
+
+    def __init__(self, **kwargs: Any) -> None:
+        super().__init__(**kwargs)
+        self._lc_kwargs = kwargs
+
+    def to_json(
+        self,
+    ) -> SerializedConstructor | SerializedNotImplemented:
+        if not self.is_lc_serializable():
+            return self.to_json_not_implemented()
+
+        secrets = dict()
+        # Get latest values for kwargs if there is an attribute with same name
+        lc_kwargs = {
+            k: getattr(self, k, v)
+            for k, v in self._lc_kwargs.items()
+            if not (self.__exclude_fields__ or {}).get(k, False)  # type: ignore
+        }
+
+        # Merge the lc_secrets and lc_attributes from every class in the MRO
+        for cls in [None, *self.__class__.mro()]:
+            # Once we get to Serializable, we're done
+            if cls is Serializable:
+                break
+
+            if cls:
+                deprecated_attributes = [
+                    "lc_namespace",
+                    "lc_serializable",
+                ]
+
+                for attr in deprecated_attributes:
+                    if hasattr(cls, attr):
+                        raise ValueError(
+                            f"Class {self.__class__} has a deprecated "
+                            f"attribute {attr}. Please use the corresponding "
+                            f"classmethod instead."
+                        )
+
+            # Get a reference to self bound to each class in the MRO
+            this = cast(
+                Serializable, self if cls is None else super(cls, self)
+            )
+
+            secrets.update(this.lc_secrets)
+            # Now also add the aliases for the secrets
+            # This ensures known secret aliases are hidden.
+            # Note: this does NOT hide any other extra kwargs
+            # that are not present in the fields.
+            for key in list(secrets):
+                value = secrets[key]
+                if key in this.__fields__:
+                    secrets[this.__fields__[key].alias] = value  # type: ignore
+            lc_kwargs.update(this.lc_attributes)
+
+        # include all secrets, even if not specified in kwargs
+        # as these secrets may be passed as an environment variable instead
+        for key in secrets.keys():
+            secret_value = getattr(self, key, None) or lc_kwargs.get(key)
+            if secret_value is not None:
+                lc_kwargs.update({key: secret_value})
+
+        return {
+            "lc": 1,
+            "type": "constructor",
+            "id": self.lc_id(),
+            "kwargs": (
+                lc_kwargs
+                if not secrets
+                else _replace_secrets(lc_kwargs, secrets)
+            ),
+        }
+
+    def to_json_not_implemented(self) -> SerializedNotImplemented:
+        return to_json_not_implemented(self)
+
+
+def _replace_secrets(
+    root: dict[Any, Any], secrets_map: dict[str, str]
+) -> dict[Any, Any]:
+    result = root.copy()
+    for path, secret_id in secrets_map.items():
+        [*parts, last] = path.split(".")
+        current = result
+        for part in parts:
+            if part not in current:
+                break
+            current[part] = current[part].copy()
+            current = current[part]
+        if last in current:
+            current[last] = {
+                "lc": 1,
+                "type": "secret",
+                "id": [secret_id],
+            }
+    return result
+
+
+def to_json_not_implemented(obj: object) -> SerializedNotImplemented:
+    """Serialize a "not implemented" object.
+
+    Args:
+        obj: object to serialize
+
+    Returns:
+        SerializedNotImplemented
+    """
+    _id: list[str] = []
+    try:
+        if hasattr(obj, "__name__"):
+            _id = [*obj.__module__.split("."), obj.__name__]
+        elif hasattr(obj, "__class__"):
+            _id = [
+                *obj.__class__.__module__.split("."),
+                obj.__class__.__name__,
+            ]
+    except Exception:
+        pass
+
+    result: SerializedNotImplemented = {
+        "lc": 1,
+        "type": "not_implemented",
+        "id": _id,
+        "repr": None,
+    }
+    try:
+        result["repr"] = repr(obj)
+    except Exception:
+        pass
+    return result
+
+
+class SplitterDocument(Serializable):
+    """Class for storing a piece of text and associated metadata."""
+
+    page_content: str
+    """String text."""
+    metadata: dict = Field(default_factory=dict)
+    """Arbitrary metadata about the page content (e.g., source, relationships
+    to other documents, etc.)."""
+    type: Literal["Document"] = "Document"
+
+    def __init__(self, page_content: str, **kwargs: Any) -> None:
+        """Pass page_content in as positional or named arg."""
+        super().__init__(page_content=page_content, **kwargs)
+
+    @classmethod
+    def is_lc_serializable(cls) -> bool:
+        """Return whether this class is serializable."""
+        return True
+
+    @classmethod
+    def get_lc_namespace(cls) -> list[str]:
+        """Get the namespace of the langchain object."""
+        return ["langchain", "schema", "document"]
+
+
+class BaseDocumentTransformer(ABC):
+    """Abstract base class for document transformation systems.
+
+    A document transformation system takes a sequence of Documents and returns a
+    sequence of transformed Documents.
+
+    Example:
+        .. code-block:: python
+
+            class EmbeddingsRedundantFilter(BaseDocumentTransformer, BaseModel):
+                embeddings: Embeddings
+                similarity_fn: Callable = cosine_similarity
+                similarity_threshold: float = 0.95
+
+                class Config:
+                    arbitrary_types_allowed = True
+
+                def transform_documents(
+                    self, documents: Sequence[Document], **kwargs: Any
+                ) -> Sequence[Document]:
+                    stateful_documents = get_stateful_documents(documents)
+                    embedded_documents = _get_embeddings_from_stateful_docs(
+                        self.embeddings, stateful_documents
+                    )
+                    included_idxs = _filter_similar_embeddings(
+                        embedded_documents, self.similarity_fn, self.similarity_threshold
+                    )
+                    return [stateful_documents[i] for i in sorted(included_idxs)]
+
+                async def atransform_documents(
+                    self, documents: Sequence[Document], **kwargs: Any
+                ) -> Sequence[Document]:
+                    raise NotImplementedError
+    """  # noqa: E501
+
+    @abstractmethod
+    def transform_documents(
+        self, documents: Sequence[SplitterDocument], **kwargs: Any
+    ) -> Sequence[SplitterDocument]:
+        """Transform a list of documents.
+
+        Args:
+            documents: A sequence of Documents to be transformed.
+
+        Returns:
+            A list of transformed Documents.
+        """
+
+    async def atransform_documents(
+        self, documents: Sequence[SplitterDocument], **kwargs: Any
+    ) -> Sequence[SplitterDocument]:
+        """Asynchronously transform a list of documents.
+
+        Args:
+            documents: A sequence of Documents to be transformed.
+
+        Returns:
+            A list of transformed Documents.
+        """
+        raise NotImplementedError("This method is not implemented.")
+        # return await langchain_core.runnables.config.run_in_executor(
+        #     None, self.transform_documents, documents, **kwargs
+        # )
+
+
+def _make_spacy_pipe_for_splitting(
+    pipe: str, *, max_length: int = 1_000_000
+) -> Any:  # avoid importing spacy
+    try:
+        import spacy
+    except ImportError:
+        raise ImportError(
+            "Spacy is not installed, run `pip install spacy`."
+        ) from None
+    if pipe == "sentencizer":
+        from spacy.lang.en import English
+
+        sentencizer = English()
+        sentencizer.add_pipe("sentencizer")
+    else:
+        sentencizer = spacy.load(pipe, exclude=["ner", "tagger"])
+        sentencizer.max_length = max_length
+    return sentencizer
+
+
+def _split_text_with_regex(
+    text: str, separator: str, keep_separator: bool
+) -> list[str]:
+    # Now that we have the separator, split the text
+    if separator:
+        if keep_separator:
+            # The parentheses in the pattern keep the delimiters in the result.
+            _splits = re.split(f"({separator})", text)
+            splits = [
+                _splits[i] + _splits[i + 1] for i in range(1, len(_splits), 2)
+            ]
+            if len(_splits) % 2 == 0:
+                splits += _splits[-1:]
+            splits = [_splits[0]] + splits
+        else:
+            splits = re.split(separator, text)
+    else:
+        splits = list(text)
+    return [s for s in splits if s != ""]
+
+
+class TextSplitter(BaseDocumentTransformer, ABC):
+    """Interface for splitting text into chunks."""
+
+    def __init__(
+        self,
+        chunk_size: int = 4000,
+        chunk_overlap: int = 200,
+        length_function: Callable[[str], int] = len,
+        keep_separator: bool = False,
+        add_start_index: bool = False,
+        strip_whitespace: bool = True,
+    ) -> None:
+        """Create a new TextSplitter.
+
+        Args:
+            chunk_size: Maximum size of chunks to return
+            chunk_overlap: Overlap in characters between chunks
+            length_function: Function that measures the length of given chunks
+            keep_separator: Whether to keep the separator in the chunks
+            add_start_index: If `True`, includes chunk's start index in
+                metadata
+            strip_whitespace: If `True`, strips whitespace from the start and
+                end of every document
+        """
+        if chunk_overlap > chunk_size:
+            raise ValueError(
+                f"Got a larger chunk overlap ({chunk_overlap}) than chunk size "
+                f"({chunk_size}), should be smaller."
+            )
+        self._chunk_size = chunk_size
+        self._chunk_overlap = chunk_overlap
+        self._length_function = length_function
+        self._keep_separator = keep_separator
+        self._add_start_index = add_start_index
+        self._strip_whitespace = strip_whitespace
+
+    @abstractmethod
+    def split_text(self, text: str) -> list[str]:
+        """Split text into multiple components."""
+
+    def create_documents(
+        self, texts: list[str], metadatas: Optional[list[dict]] = None
+    ) -> list[SplitterDocument]:
+        """Create documents from a list of texts."""
+        _metadatas = metadatas or [{}] * len(texts)
+        documents = []
+        for i, text in enumerate(texts):
+            index = 0
+            previous_chunk_len = 0
+            for chunk in self.split_text(text):
+                metadata = copy.deepcopy(_metadatas[i])
+                if self._add_start_index:
+                    offset = index + previous_chunk_len - self._chunk_overlap
+                    index = text.find(chunk, max(0, offset))
+                    metadata["start_index"] = index
+                    previous_chunk_len = len(chunk)
+                new_doc = SplitterDocument(
+                    page_content=chunk, metadata=metadata
+                )
+                documents.append(new_doc)
+        return documents
+
+    def split_documents(
+        self, documents: Iterable[SplitterDocument]
+    ) -> list[SplitterDocument]:
+        """Split documents."""
+        texts, metadatas = [], []
+        for doc in documents:
+            texts.append(doc.page_content)
+            metadatas.append(doc.metadata)
+        return self.create_documents(texts, metadatas=metadatas)
+
+    def _join_docs(self, docs: list[str], separator: str) -> Optional[str]:
+        text = separator.join(docs)
+        if self._strip_whitespace:
+            text = text.strip()
+        if text == "":
+            return None
+        else:
+            return text
+
+    def _merge_splits(
+        self, splits: Iterable[str], separator: str
+    ) -> list[str]:
+        # We now want to combine these smaller pieces into medium size
+        # chunks to send to the LLM.
+        separator_len = self._length_function(separator)
+
+        docs = []
+        current_doc: list[str] = []
+        total = 0
+        for d in splits:
+            _len = self._length_function(d)
+            if (
+                total + _len + (separator_len if len(current_doc) > 0 else 0)
+                > self._chunk_size
+            ):
+                if total > self._chunk_size:
+                    logger.warning(
+                        f"Created a chunk of size {total}, "
+                        f"which is longer than the specified {self._chunk_size}"
+                    )
+                if len(current_doc) > 0:
+                    doc = self._join_docs(current_doc, separator)
+                    if doc is not None:
+                        docs.append(doc)
+                    # Keep on popping if:
+                    # - we have a larger chunk than in the chunk overlap
+                    # - or if we still have any chunks and the length is long
+                    while total > self._chunk_overlap or (
+                        total
+                        + _len
+                        + (separator_len if len(current_doc) > 0 else 0)
+                        > self._chunk_size
+                        and total > 0
+                    ):
+                        total -= self._length_function(current_doc[0]) + (
+                            separator_len if len(current_doc) > 1 else 0
+                        )
+                        current_doc = current_doc[1:]
+            current_doc.append(d)
+            total += _len + (separator_len if len(current_doc) > 1 else 0)
+        doc = self._join_docs(current_doc, separator)
+        if doc is not None:
+            docs.append(doc)
+        return docs
+
+    @classmethod
+    def from_huggingface_tokenizer(
+        cls, tokenizer: Any, **kwargs: Any
+    ) -> TextSplitter:
+        """Text splitter that uses HuggingFace tokenizer to count length."""
+        try:
+            from transformers import PreTrainedTokenizerBase
+
+            if not isinstance(tokenizer, PreTrainedTokenizerBase):
+                raise ValueError(
+                    "Tokenizer received was not an instance of PreTrainedTokenizerBase"
+                )
+
+            def _huggingface_tokenizer_length(text: str) -> int:
+                return len(tokenizer.encode(text))
+
+        except ImportError:
+            raise ValueError(
+                "Could not import transformers python package. "
+                "Please install it with `pip install transformers`."
+            ) from None
+        return cls(length_function=_huggingface_tokenizer_length, **kwargs)
+
+    @classmethod
+    def from_tiktoken_encoder(
+        cls: Type[TS],
+        encoding_name: str = "gpt2",
+        model: Optional[str] = None,
+        allowed_special: Literal["all"] | AbstractSet[str] = set(),
+        disallowed_special: Literal["all"] | Collection[str] = "all",
+        **kwargs: Any,
+    ) -> TS:
+        """Text splitter that uses tiktoken encoder to count length."""
+        try:
+            import tiktoken
+        except ImportError:
+            raise ImportError("""Could not import tiktoken python package.
+                This is needed in order to calculate max_tokens_for_prompt.
+                Please install it with `pip install tiktoken`.""") from None
+
+        if model is not None:
+            enc = tiktoken.encoding_for_model(model)
+        else:
+            enc = tiktoken.get_encoding(encoding_name)
+
+        def _tiktoken_encoder(text: str) -> int:
+            return len(
+                enc.encode(
+                    text,
+                    allowed_special=allowed_special,
+                    disallowed_special=disallowed_special,
+                )
+            )
+
+        if issubclass(cls, TokenTextSplitter):
+            extra_kwargs = {
+                "encoding_name": encoding_name,
+                "model": model,
+                "allowed_special": allowed_special,
+                "disallowed_special": disallowed_special,
+            }
+            kwargs = {**kwargs, **extra_kwargs}
+
+        return cls(length_function=_tiktoken_encoder, **kwargs)
+
+    def transform_documents(
+        self, documents: Sequence[SplitterDocument], **kwargs: Any
+    ) -> Sequence[SplitterDocument]:
+        """Transform sequence of documents by splitting them."""
+        return self.split_documents(list(documents))
+
+
+class CharacterTextSplitter(TextSplitter):
+    """Splitting text that looks at characters."""
+
+    DEFAULT_SEPARATOR: str = "\n\n"
+
+    def __init__(
+        self,
+        separator: str = DEFAULT_SEPARATOR,
+        is_separator_regex: bool = False,
+        **kwargs: Any,
+    ) -> None:
+        """Create a new TextSplitter."""
+        super().__init__(**kwargs)
+        self._separator = separator
+        self._is_separator_regex = is_separator_regex
+
+    def split_text(self, text: str) -> list[str]:
+        """Split incoming text and return chunks."""
+        # First we naively split the large input into a bunch of smaller ones.
+        separator = (
+            self._separator
+            if self._is_separator_regex
+            else re.escape(self._separator)
+        )
+        splits = _split_text_with_regex(text, separator, self._keep_separator)
+        _separator = "" if self._keep_separator else self._separator
+        return self._merge_splits(splits, _separator)
+
+
+class LineType(TypedDict):
+    """Line type as typed dict."""
+
+    metadata: dict[str, str]
+    content: str
+
+
+class HeaderType(TypedDict):
+    """Header type as typed dict."""
+
+    level: int
+    name: str
+    data: str
+
+
+class MarkdownHeaderTextSplitter:
+    """Splitting markdown files based on specified headers."""
+
+    def __init__(
+        self,
+        headers_to_split_on: list[Tuple[str, str]],
+        return_each_line: bool = False,
+        strip_headers: bool = True,
+    ):
+        """Create a new MarkdownHeaderTextSplitter.
+
+        Args:
+            headers_to_split_on: Headers we want to track
+            return_each_line: Return each line w/ associated headers
+            strip_headers: Strip split headers from the content of the chunk
+        """
+        # Output line-by-line or aggregated into chunks w/ common headers
+        self.return_each_line = return_each_line
+        # Given the headers we want to split on,
+        # (e.g., "#, ##, etc") order by length
+        self.headers_to_split_on = sorted(
+            headers_to_split_on, key=lambda split: len(split[0]), reverse=True
+        )
+        # Strip headers split headers from the content of the chunk
+        self.strip_headers = strip_headers
+
+    def aggregate_lines_to_chunks(
+        self, lines: list[LineType]
+    ) -> list[SplitterDocument]:
+        """Combine lines with common metadata into chunks
+        Args:
+            lines: Line of text / associated header metadata
+        """
+        aggregated_chunks: list[LineType] = []
+
+        for line in lines:
+            if (
+                aggregated_chunks
+                and aggregated_chunks[-1]["metadata"] == line["metadata"]
+            ):
+                # If the last line in the aggregated list
+                # has the same metadata as the current line,
+                # append the current content to the last lines's content
+                aggregated_chunks[-1]["content"] += "  \n" + line["content"]
+            elif (
+                aggregated_chunks
+                and aggregated_chunks[-1]["metadata"] != line["metadata"]
+                # may be issues if other metadata is present
+                and len(aggregated_chunks[-1]["metadata"])
+                < len(line["metadata"])
+                and aggregated_chunks[-1]["content"].split("\n")[-1][0] == "#"
+                and not self.strip_headers
+            ):
+                # If the last line in the aggregated list
+                # has different metadata as the current line,
+                # and has shallower header level than the current line,
+                # and the last line is a header,
+                # and we are not stripping headers,
+                # append the current content to the last line's content
+                aggregated_chunks[-1]["content"] += "  \n" + line["content"]
+                # and update the last line's metadata
+                aggregated_chunks[-1]["metadata"] = line["metadata"]
+            else:
+                # Otherwise, append the current line to the aggregated list
+                aggregated_chunks.append(line)
+
+        return [
+            SplitterDocument(
+                page_content=chunk["content"], metadata=chunk["metadata"]
+            )
+            for chunk in aggregated_chunks
+        ]
+
+    def split_text(self, text: str) -> list[SplitterDocument]:
+        """Split markdown file
+        Args:
+            text: Markdown file"""
+
+        # Split the input text by newline character ("\n").
+        lines = text.split("\n")
+        # Final output
+        lines_with_metadata: list[LineType] = []
+        # Content and metadata of the chunk currently being processed
+        current_content: list[str] = []
+        current_metadata: dict[str, str] = {}
+        # Keep track of the nested header structure
+        # header_stack: list[dict[str, int | str]] = []
+        header_stack: list[HeaderType] = []
+        initial_metadata: dict[str, str] = {}
+
+        in_code_block = False
+        opening_fence = ""
+
+        for line in lines:
+            stripped_line = line.strip()
+
+            if not in_code_block:
+                # Exclude inline code spans
+                if (
+                    stripped_line.startswith("```")
+                    and stripped_line.count("```") == 1
+                ):
+                    in_code_block = True
+                    opening_fence = "```"
+                elif stripped_line.startswith("~~~"):
+                    in_code_block = True
+                    opening_fence = "~~~"
+            else:
+                if stripped_line.startswith(opening_fence):
+                    in_code_block = False
+                    opening_fence = ""
+
+            if in_code_block:
+                current_content.append(stripped_line)
+                continue
+
+            # Check each line against each of the header types (e.g., #, ##)
+            for sep, name in self.headers_to_split_on:
+                # Check if line starts with a header that we intend to split on
+                if stripped_line.startswith(sep) and (
+                    # Header with no text OR header is followed by space
+                    # Both are valid conditions that sep is being used a header
+                    len(stripped_line) == len(sep)
+                    or stripped_line[len(sep)] == " "
+                ):
+                    # Ensure we are tracking the header as metadata
+                    if name is not None:
+                        # Get the current header level
+                        current_header_level = sep.count("#")
+
+                        # Pop out headers of lower or same level from the stack
+                        while (
+                            header_stack
+                            and header_stack[-1]["level"]
+                            >= current_header_level
+                        ):
+                            # We have encountered a new header
+                            # at the same or higher level
+                            popped_header = header_stack.pop()
+                            # Clear the metadata for the
+                            # popped header in initial_metadata
+                            if popped_header["name"] in initial_metadata:
+                                initial_metadata.pop(popped_header["name"])
+
+                        # Push the current header to the stack
+                        header: HeaderType = {
+                            "level": current_header_level,
+                            "name": name,
+                            "data": stripped_line[len(sep) :].strip(),
+                        }
+                        header_stack.append(header)
+                        # Update initial_metadata with the current header
+                        initial_metadata[name] = header["data"]
+
+                    # Add the previous line to the lines_with_metadata
+                    # only if current_content is not empty
+                    if current_content:
+                        lines_with_metadata.append(
+                            {
+                                "content": "\n".join(current_content),
+                                "metadata": current_metadata.copy(),
+                            }
+                        )
+                        current_content.clear()
+
+                    if not self.strip_headers:
+                        current_content.append(stripped_line)
+
+                    break
+            else:
+                if stripped_line:
+                    current_content.append(stripped_line)
+                elif current_content:
+                    lines_with_metadata.append(
+                        {
+                            "content": "\n".join(current_content),
+                            "metadata": current_metadata.copy(),
+                        }
+                    )
+                    current_content.clear()
+
+            current_metadata = initial_metadata.copy()
+
+        if current_content:
+            lines_with_metadata.append(
+                {
+                    "content": "\n".join(current_content),
+                    "metadata": current_metadata,
+                }
+            )
+
+        # lines_with_metadata has each line with associated header metadata
+        # aggregate these into chunks based on common metadata
+        if not self.return_each_line:
+            return self.aggregate_lines_to_chunks(lines_with_metadata)
+        else:
+            return [
+                SplitterDocument(
+                    page_content=chunk["content"], metadata=chunk["metadata"]
+                )
+                for chunk in lines_with_metadata
+            ]
+
+
+class ElementType(TypedDict):
+    """Element type as typed dict."""
+
+    url: str
+    xpath: str
+    content: str
+    metadata: dict[str, str]
+
+
+class HTMLHeaderTextSplitter:
+    """Splitting HTML files based on specified headers.
+
+    Requires lxml package.
+    """
+
+    def __init__(
+        self,
+        headers_to_split_on: list[Tuple[str, str]],
+        return_each_element: bool = False,
+    ):
+        """Create a new HTMLHeaderTextSplitter.
+
+        Args:
+            headers_to_split_on: list of tuples of headers we want to track
+            mapped to (arbitrary) keys for metadata. Allowed header values:
+            h1, h2, h3, h4, h5, h6
+            e.g. [("h1", "Header 1"), ("h2", "Header 2)].
+            return_each_element: Return each element w/ associated headers.
+        """
+        # Output element-by-element or aggregated into chunks w/ common headers
+        self.return_each_element = return_each_element
+        self.headers_to_split_on = sorted(headers_to_split_on)
+
+    def aggregate_elements_to_chunks(
+        self, elements: list[ElementType]
+    ) -> list[SplitterDocument]:
+        """Combine elements with common metadata into chunks.
+
+        Args:
+            elements: HTML element content with associated identifying
+            info and metadata
+        """
+        aggregated_chunks: list[ElementType] = []
+
+        for element in elements:
+            if (
+                aggregated_chunks
+                and aggregated_chunks[-1]["metadata"] == element["metadata"]
+            ):
+                # If the last element in the aggregated list
+                # has the same metadata as the current element,
+                # append the current content to the last element's content
+                aggregated_chunks[-1]["content"] += "  \n" + element["content"]
+            else:
+                # Otherwise, append the current element to the aggregated list
+                aggregated_chunks.append(element)
+
+        return [
+            SplitterDocument(
+                page_content=chunk["content"], metadata=chunk["metadata"]
+            )
+            for chunk in aggregated_chunks
+        ]
+
+    def split_text_from_url(self, url: str) -> list[SplitterDocument]:
+        """Split HTML from web URL.
+
+        Args:
+            url: web URL
+        """
+        r = requests.get(url)
+        return self.split_text_from_file(BytesIO(r.content))
+
+    def split_text(self, text: str) -> list[SplitterDocument]:
+        """Split HTML text string.
+
+        Args:
+            text: HTML text
+        """
+        return self.split_text_from_file(StringIO(text))
+
+    def split_text_from_file(self, file: Any) -> list[SplitterDocument]:
+        """Split HTML file.
+
+        Args:
+            file: HTML file
+        """
+        try:
+            from lxml import etree
+        except ImportError:
+            raise ImportError(
+                "Unable to import lxml, run `pip install lxml`."
+            ) from None
+        # use lxml library to parse html document and return xml ElementTree
+        # Explicitly encoding in utf-8 allows non-English
+        # html files to be processed without garbled characters
+        parser = etree.HTMLParser(encoding="utf-8")
+        tree = etree.parse(file, parser)
+
+        # document transformation for "structure-aware" chunking is handled
+        # with xsl. See comments in html_chunks_with_headers.xslt for more
+        # detailed information.
+        xslt_path = (
+            pathlib.Path(__file__).parent
+            / "document_transformers/xsl/html_chunks_with_headers.xslt"
+        )
+        xslt_tree = etree.parse(xslt_path)
+        transform = etree.XSLT(xslt_tree)
+        result = transform(tree)
+        result_dom = etree.fromstring(str(result))
+
+        # create filter and mapping for header metadata
+        header_filter = [header[0] for header in self.headers_to_split_on]
+        header_mapping = dict(self.headers_to_split_on)
+
+        # map xhtml namespace prefix
+        ns_map = {"h": "http://www.w3.org/1999/xhtml"}
+
+        # build list of elements from DOM
+        elements = []
+        for element in result_dom.findall("*//*", ns_map):
+            if element.findall("*[@class='headers']") or element.findall(
+                "*[@class='chunk']"
+            ):
+                elements.append(
+                    ElementType(
+                        url=file,
+                        xpath="".join(
+                            [
+                                node.text
+                                for node in element.findall(
+                                    "*[@class='xpath']", ns_map
+                                )
+                            ]
+                        ),
+                        content="".join(
+                            [
+                                node.text
+                                for node in element.findall(
+                                    "*[@class='chunk']", ns_map
+                                )
+                            ]
+                        ),
+                        metadata={
+                            # Add text of specified headers to
+                            # metadata using header mapping.
+                            header_mapping[node.tag]: node.text
+                            for node in filter(
+                                lambda x: x.tag in header_filter,
+                                element.findall(
+                                    "*[@class='headers']/*", ns_map
+                                ),
+                            )
+                        },
+                    )
+                )
+
+        if not self.return_each_element:
+            return self.aggregate_elements_to_chunks(elements)
+        else:
+            return [
+                SplitterDocument(
+                    page_content=chunk["content"], metadata=chunk["metadata"]
+                )
+                for chunk in elements
+            ]
+
+
+# should be in newer Python versions (3.11+)
+# @dataclass(frozen=True, kw_only=True, slots=True)
+@dataclass(frozen=True)
+class Tokenizer:
+    """Tokenizer data class."""
+
+    chunk_overlap: int
+    """Overlap in tokens between chunks."""
+    tokens_per_chunk: int
+    """Maximum number of tokens per chunk."""
+    decode: Callable[[list[int]], str]
+    """Function to decode a list of token ids to a string."""
+    encode: Callable[[str], list[int]]
+    """Function to encode a string to a list of token ids."""
+
+
+def split_text_on_tokens(*, text: str, tokenizer: Tokenizer) -> list[str]:
+    """Split incoming text and return chunks using tokenizer."""
+    splits: list[str] = []
+    input_ids = tokenizer.encode(text)
+    start_idx = 0
+    cur_idx = min(start_idx + tokenizer.tokens_per_chunk, len(input_ids))
+    chunk_ids = input_ids[start_idx:cur_idx]
+    while start_idx < len(input_ids):
+        splits.append(tokenizer.decode(chunk_ids))
+        if cur_idx == len(input_ids):
+            break
+        start_idx += tokenizer.tokens_per_chunk - tokenizer.chunk_overlap
+        cur_idx = min(start_idx + tokenizer.tokens_per_chunk, len(input_ids))
+        chunk_ids = input_ids[start_idx:cur_idx]
+    return splits
+
+
+class TokenTextSplitter(TextSplitter):
+    """Splitting text to tokens using model tokenizer."""
+
+    def __init__(
+        self,
+        encoding_name: str = "gpt2",
+        model: Optional[str] = None,
+        allowed_special: Literal["all"] | AbstractSet[str] = set(),
+        disallowed_special: Literal["all"] | Collection[str] = "all",
+        **kwargs: Any,
+    ) -> None:
+        """Create a new TextSplitter."""
+        super().__init__(**kwargs)
+        try:
+            import tiktoken
+        except ImportError:
+            raise ImportError(
+                "Could not import tiktoken python package. "
+                "This is needed in order to for TokenTextSplitter. "
+                "Please install it with `pip install tiktoken`."
+            ) from None
+
+        if model is not None:
+            enc = tiktoken.encoding_for_model(model)
+        else:
+            enc = tiktoken.get_encoding(encoding_name)
+        self._tokenizer = enc
+        self._allowed_special = allowed_special
+        self._disallowed_special = disallowed_special
+
+    def split_text(self, text: str) -> list[str]:
+        def _encode(_text: str) -> list[int]:
+            return self._tokenizer.encode(
+                _text,
+                allowed_special=self._allowed_special,
+                disallowed_special=self._disallowed_special,
+            )
+
+        tokenizer = Tokenizer(
+            chunk_overlap=self._chunk_overlap,
+            tokens_per_chunk=self._chunk_size,
+            decode=self._tokenizer.decode,
+            encode=_encode,
+        )
+
+        return split_text_on_tokens(text=text, tokenizer=tokenizer)
+
+
+class SentenceTransformersTokenTextSplitter(TextSplitter):
+    """Splitting text to tokens using sentence model tokenizer."""
+
+    def __init__(
+        self,
+        chunk_overlap: int = 50,
+        model: str = "sentence-transformers/all-mpnet-base-v2",
+        tokens_per_chunk: Optional[int] = None,
+        **kwargs: Any,
+    ) -> None:
+        """Create a new TextSplitter."""
+        super().__init__(**kwargs, chunk_overlap=chunk_overlap)
+
+        try:
+            from sentence_transformers import SentenceTransformer
+        except ImportError:
+            raise ImportError(
+                """Could not import sentence_transformer python package.
+                This is needed in order to for
+                SentenceTransformersTokenTextSplitter.
+                Please install it with `pip install sentence-transformers`.
+                """
+            ) from None
+
+        self.model = model
+        self._model = SentenceTransformer(self.model, trust_remote_code=True)
+        self.tokenizer = self._model.tokenizer
+        self._initialize_chunk_configuration(tokens_per_chunk=tokens_per_chunk)
+
+    def _initialize_chunk_configuration(
+        self, *, tokens_per_chunk: Optional[int]
+    ) -> None:
+        self.maximum_tokens_per_chunk = cast(int, self._model.max_seq_length)
+
+        if tokens_per_chunk is None:
+            self.tokens_per_chunk = self.maximum_tokens_per_chunk
+        else:
+            self.tokens_per_chunk = tokens_per_chunk
+
+        if self.tokens_per_chunk > self.maximum_tokens_per_chunk:
+            raise ValueError(
+                f"The token limit of the models '{self.model}'"
+                f" is: {self.maximum_tokens_per_chunk}."
+                f" Argument tokens_per_chunk={self.tokens_per_chunk}"
+                f" > maximum token limit."
+            )
+
+    def split_text(self, text: str) -> list[str]:
+        def encode_strip_start_and_stop_token_ids(text: str) -> list[int]:
+            return self._encode(text)[1:-1]
+
+        tokenizer = Tokenizer(
+            chunk_overlap=self._chunk_overlap,
+            tokens_per_chunk=self.tokens_per_chunk,
+            decode=self.tokenizer.decode,
+            encode=encode_strip_start_and_stop_token_ids,
+        )
+
+        return split_text_on_tokens(text=text, tokenizer=tokenizer)
+
+    def count_tokens(self, *, text: str) -> int:
+        return len(self._encode(text))
+
+    _max_length_equal_32_bit_integer: int = 2**32
+
+    def _encode(self, text: str) -> list[int]:
+        token_ids_with_start_and_end_token_ids = self.tokenizer.encode(
+            text,
+            max_length=self._max_length_equal_32_bit_integer,
+            truncation="do_not_truncate",
+        )
+        return token_ids_with_start_and_end_token_ids
+
+
+class Language(str, Enum):
+    """Enum of the programming languages."""
+
+    CPP = "cpp"
+    GO = "go"
+    JAVA = "java"
+    KOTLIN = "kotlin"
+    JS = "js"
+    TS = "ts"
+    PHP = "php"
+    PROTO = "proto"
+    PYTHON = "python"
+    RST = "rst"
+    RUBY = "ruby"
+    RUST = "rust"
+    SCALA = "scala"
+    SWIFT = "swift"
+    MARKDOWN = "markdown"
+    LATEX = "latex"
+    HTML = "html"
+    SOL = "sol"
+    CSHARP = "csharp"
+    COBOL = "cobol"
+    C = "c"
+    LUA = "lua"
+    PERL = "perl"
+
+
+class RecursiveCharacterTextSplitter(TextSplitter):
+    """Splitting text by recursively look at characters.
+
+    Recursively tries to split by different characters to find one that works.
+    """
+
+    def __init__(
+        self,
+        separators: Optional[list[str]] = None,
+        keep_separator: bool = True,
+        is_separator_regex: bool = False,
+        chunk_size: int = 4000,
+        chunk_overlap: int = 200,
+        **kwargs: Any,
+    ) -> None:
+        """Create a new TextSplitter."""
+        super().__init__(
+            chunk_size=chunk_size,
+            chunk_overlap=chunk_overlap,
+            keep_separator=keep_separator,
+            **kwargs,
+        )
+        self._separators = separators or ["\n\n", "\n", " ", ""]
+        self._is_separator_regex = is_separator_regex
+        self.chunk_size = chunk_size
+        self.chunk_overlap = chunk_overlap
+
+    def _split_text(self, text: str, separators: list[str]) -> list[str]:
+        """Split incoming text and return chunks."""
+        final_chunks = []
+        # Get appropriate separator to use
+        separator = separators[-1]
+        new_separators = []
+        for i, _s in enumerate(separators):
+            _separator = _s if self._is_separator_regex else re.escape(_s)
+            if _s == "":
+                separator = _s
+                break
+            if re.search(_separator, text):
+                separator = _s
+                new_separators = separators[i + 1 :]
+                break
+
+        _separator = (
+            separator if self._is_separator_regex else re.escape(separator)
+        )
+        splits = _split_text_with_regex(text, _separator, self._keep_separator)
+
+        # Now go merging things, recursively splitting longer texts.
+        _good_splits = []
+        _separator = "" if self._keep_separator else separator
+        for s in splits:
+            if self._length_function(s) < self._chunk_size:
+                _good_splits.append(s)
+            else:
+                if _good_splits:
+                    merged_text = self._merge_splits(_good_splits, _separator)
+                    final_chunks.extend(merged_text)
+                    _good_splits = []
+                if not new_separators:
+                    final_chunks.append(s)
+                else:
+                    other_info = self._split_text(s, new_separators)
+                    final_chunks.extend(other_info)
+        if _good_splits:
+            merged_text = self._merge_splits(_good_splits, _separator)
+            final_chunks.extend(merged_text)
+        return final_chunks
+
+    def split_text(self, text: str) -> list[str]:
+        return self._split_text(text, self._separators)
+
+    @classmethod
+    def from_language(
+        cls, language: Language, **kwargs: Any
+    ) -> RecursiveCharacterTextSplitter:
+        separators = cls.get_separators_for_language(language)
+        return cls(separators=separators, is_separator_regex=True, **kwargs)
+
+    @staticmethod
+    def get_separators_for_language(language: Language) -> list[str]:
+        if language == Language.CPP:
+            return [
+                # Split along class definitions
+                "\nclass ",
+                # Split along function definitions
+                "\nvoid ",
+                "\nint ",
+                "\nfloat ",
+                "\ndouble ",
+                # Split along control flow statements
+                "\nif ",
+                "\nfor ",
+                "\nwhile ",
+                "\nswitch ",
+                "\ncase ",
+                # Split by the normal type of lines
+                "\n\n",
+                "\n",
+                " ",
+                "",
+            ]
+        elif language == Language.GO:
+            return [
+                # Split along function definitions
+                "\nfunc ",
+                "\nvar ",
+                "\nconst ",
+                "\ntype ",
+                # Split along control flow statements
+                "\nif ",
+                "\nfor ",
+                "\nswitch ",
+                "\ncase ",
+                # Split by the normal type of lines
+                "\n\n",
+                "\n",
+                " ",
+                "",
+            ]
+        elif language == Language.JAVA:
+            return [
+                # Split along class definitions
+                "\nclass ",
+                # Split along method definitions
+                "\npublic ",
+                "\nprotected ",
+                "\nprivate ",
+                "\nstatic ",
+                # Split along control flow statements
+                "\nif ",
+                "\nfor ",
+                "\nwhile ",
+                "\nswitch ",
+                "\ncase ",
+                # Split by the normal type of lines
+                "\n\n",
+                "\n",
+                " ",
+                "",
+            ]
+        elif language == Language.KOTLIN:
+            return [
+                # Split along class definitions
+                "\nclass ",
+                # Split along method definitions
+                "\npublic ",
+                "\nprotected ",
+                "\nprivate ",
+                "\ninternal ",
+                "\ncompanion ",
+                "\nfun ",
+                "\nval ",
+                "\nvar ",
+                # Split along control flow statements
+                "\nif ",
+                "\nfor ",
+                "\nwhile ",
+                "\nwhen ",
+                "\ncase ",
+                "\nelse ",
+                # Split by the normal type of lines
+                "\n\n",
+                "\n",
+                " ",
+                "",
+            ]
+        elif language == Language.JS:
+            return [
+                # Split along function definitions
+                "\nfunction ",
+                "\nconst ",
+                "\nlet ",
+                "\nvar ",
+                "\nclass ",
+                # Split along control flow statements
+                "\nif ",
+                "\nfor ",
+                "\nwhile ",
+                "\nswitch ",
+                "\ncase ",
+                "\ndefault ",
+                # Split by the normal type of lines
+                "\n\n",
+                "\n",
+                " ",
+                "",
+            ]
+        elif language == Language.TS:
+            return [
+                "\nenum ",
+                "\ninterface ",
+                "\nnamespace ",
+                "\ntype ",
+                # Split along class definitions
+                "\nclass ",
+                # Split along function definitions
+                "\nfunction ",
+                "\nconst ",
+                "\nlet ",
+                "\nvar ",
+                # Split along control flow statements
+                "\nif ",
+                "\nfor ",
+                "\nwhile ",
+                "\nswitch ",
+                "\ncase ",
+                "\ndefault ",
+                # Split by the normal type of lines
+                "\n\n",
+                "\n",
+                " ",
+                "",
+            ]
+        elif language == Language.PHP:
+            return [
+                # Split along function definitions
+                "\nfunction ",
+                # Split along class definitions
+                "\nclass ",
+                # Split along control flow statements
+                "\nif ",
+                "\nforeach ",
+                "\nwhile ",
+                "\ndo ",
+                "\nswitch ",
+                "\ncase ",
+                # Split by the normal type of lines
+                "\n\n",
+                "\n",
+                " ",
+                "",
+            ]
+        elif language == Language.PROTO:
+            return [
+                # Split along message definitions
+                "\nmessage ",
+                # Split along service definitions
+                "\nservice ",
+                # Split along enum definitions
+                "\nenum ",
+                # Split along option definitions
+                "\noption ",
+                # Split along import statements
+                "\nimport ",
+                # Split along syntax declarations
+                "\nsyntax ",
+                # Split by the normal type of lines
+                "\n\n",
+                "\n",
+                " ",
+                "",
+            ]
+        elif language == Language.PYTHON:
+            return [
+                # First, try to split along class definitions
+                "\nclass ",
+                "\ndef ",
+                "\n\tdef ",
+                # Now split by the normal type of lines
+                "\n\n",
+                "\n",
+                " ",
+                "",
+            ]
+        elif language == Language.RST:
+            return [
+                # Split along section titles
+                "\n=+\n",
+                "\n-+\n",
+                "\n\\*+\n",
+                # Split along directive markers
+                "\n\n.. *\n\n",
+                # Split by the normal type of lines
+                "\n\n",
+                "\n",
+                " ",
+                "",
+            ]
+        elif language == Language.RUBY:
+            return [
+                # Split along method definitions
+                "\ndef ",
+                "\nclass ",
+                # Split along control flow statements
+                "\nif ",
+                "\nunless ",
+                "\nwhile ",
+                "\nfor ",
+                "\ndo ",
+                "\nbegin ",
+                "\nrescue ",
+                # Split by the normal type of lines
+                "\n\n",
+                "\n",
+                " ",
+                "",
+            ]
+        elif language == Language.RUST:
+            return [
+                # Split along function definitions
+                "\nfn ",
+                "\nconst ",
+                "\nlet ",
+                # Split along control flow statements
+                "\nif ",
+                "\nwhile ",
+                "\nfor ",
+                "\nloop ",
+                "\nmatch ",
+                "\nconst ",
+                # Split by the normal type of lines
+                "\n\n",
+                "\n",
+                " ",
+                "",
+            ]
+        elif language == Language.SCALA:
+            return [
+                # Split along class definitions
+                "\nclass ",
+                "\nobject ",
+                # Split along method definitions
+                "\ndef ",
+                "\nval ",
+                "\nvar ",
+                # Split along control flow statements
+                "\nif ",
+                "\nfor ",
+                "\nwhile ",
+                "\nmatch ",
+                "\ncase ",
+                # Split by the normal type of lines
+                "\n\n",
+                "\n",
+                " ",
+                "",
+            ]
+        elif language == Language.SWIFT:
+            return [
+                # Split along function definitions
+                "\nfunc ",
+                # Split along class definitions
+                "\nclass ",
+                "\nstruct ",
+                "\nenum ",
+                # Split along control flow statements
+                "\nif ",
+                "\nfor ",
+                "\nwhile ",
+                "\ndo ",
+                "\nswitch ",
+                "\ncase ",
+                # Split by the normal type of lines
+                "\n\n",
+                "\n",
+                " ",
+                "",
+            ]
+        elif language == Language.MARKDOWN:
+            return [
+                # First, try to split along Markdown headings
+                # (starting with level 2)
+                "\n#{1,6} ",
+                # Note the alternative syntax for headings (below)
+                # is not handled here
+                # Heading level 2
+                # ---------------
+                # End of code block
+                "```\n",
+                # Horizontal lines
+                "\n\\*\\*\\*+\n",
+                "\n---+\n",
+                "\n___+\n",
+                # Note that this splitter doesn't handle
+                # horizontal lines defined
+                # by *three or more* of ***, ---, or ___,
+                # but this is not handled
+                "\n\n",
+                "\n",
+                " ",
+                "",
+            ]
+        elif language == Language.LATEX:
+            return [
+                # First, try to split along Latex sections
+                "\n\\\\chapter{",
+                "\n\\\\section{",
+                "\n\\\\subsection{",
+                "\n\\\\subsubsection{",
+                # Now split by environments
+                "\n\\\\begin{enumerate}",
+                "\n\\\\begin{itemize}",
+                "\n\\\\begin{description}",
+                "\n\\\\begin{list}",
+                "\n\\\\begin{quote}",
+                "\n\\\\begin{quotation}",
+                "\n\\\\begin{verse}",
+                "\n\\\\begin{verbatim}",
+                # Now split by math environments
+                "\n\\\begin{align}",
+                "$$",
+                "$",
+                # Now split by the normal type of lines
+                " ",
+                "",
+            ]
+        elif language == Language.HTML:
+            return [
+                # First, try to split along HTML tags
+                "<body",
+                "<div",
+                "<p",
+                "<br",
+                "<li",
+                "<h1",
+                "<h2",
+                "<h3",
+                "<h4",
+                "<h5",
+                "<h6",
+                "<span",
+                "<table",
+                "<tr",
+                "<td",
+                "<th",
+                "<ul",
+                "<ol",
+                "<header",
+                "<footer",
+                "<nav",
+                # Head
+                "<head",
+                "<style",
+                "<script",
+                "<meta",
+                "<title",
+                "",
+            ]
+        elif language == Language.CSHARP:
+            return [
+                "\ninterface ",
+                "\nenum ",
+                "\nimplements ",
+                "\ndelegate ",
+                "\nevent ",
+                # Split along class definitions
+                "\nclass ",
+                "\nabstract ",
+                # Split along method definitions
+                "\npublic ",
+                "\nprotected ",
+                "\nprivate ",
+                "\nstatic ",
+                "\nreturn ",
+                # Split along control flow statements
+                "\nif ",
+                "\ncontinue ",
+                "\nfor ",
+                "\nforeach ",
+                "\nwhile ",
+                "\nswitch ",
+                "\nbreak ",
+                "\ncase ",
+                "\nelse ",
+                # Split by exceptions
+                "\ntry ",
+                "\nthrow ",
+                "\nfinally ",
+                "\ncatch ",
+                # Split by the normal type of lines
+                "\n\n",
+                "\n",
+                " ",
+                "",
+            ]
+        elif language == Language.SOL:
+            return [
+                # Split along compiler information definitions
+                "\npragma ",
+                "\nusing ",
+                # Split along contract definitions
+                "\ncontract ",
+                "\ninterface ",
+                "\nlibrary ",
+                # Split along method definitions
+                "\nconstructor ",
+                "\ntype ",
+                "\nfunction ",
+                "\nevent ",
+                "\nmodifier ",
+                "\nerror ",
+                "\nstruct ",
+                "\nenum ",
+                # Split along control flow statements
+                "\nif ",
+                "\nfor ",
+                "\nwhile ",
+                "\ndo while ",
+                "\nassembly ",
+                # Split by the normal type of lines
+                "\n\n",
+                "\n",
+                " ",
+                "",
+            ]
+        elif language == Language.COBOL:
+            return [
+                # Split along divisions
+                "\nIDENTIFICATION DIVISION.",
+                "\nENVIRONMENT DIVISION.",
+                "\nDATA DIVISION.",
+                "\nPROCEDURE DIVISION.",
+                # Split along sections within DATA DIVISION
+                "\nWORKING-STORAGE SECTION.",
+                "\nLINKAGE SECTION.",
+                "\nFILE SECTION.",
+                # Split along sections within PROCEDURE DIVISION
+                "\nINPUT-OUTPUT SECTION.",
+                # Split along paragraphs and common statements
+                "\nOPEN ",
+                "\nCLOSE ",
+                "\nREAD ",
+                "\nWRITE ",
+                "\nIF ",
+                "\nELSE ",
+                "\nMOVE ",
+                "\nPERFORM ",
+                "\nUNTIL ",
+                "\nVARYING ",
+                "\nACCEPT ",
+                "\nDISPLAY ",
+                "\nSTOP RUN.",
+                # Split by the normal type of lines
+                "\n",
+                " ",
+                "",
+            ]
+
+        else:
+            raise ValueError(
+                f"Language {language} is not supported! "
+                f"Please choose from {list(Language)}"
+            )
+
+
+class NLTKTextSplitter(TextSplitter):
+    """Splitting text using NLTK package."""
+
+    def __init__(
+        self, separator: str = "\n\n", language: str = "english", **kwargs: Any
+    ) -> None:
+        """Initialize the NLTK splitter."""
+        super().__init__(**kwargs)
+        try:
+            from nltk.tokenize import sent_tokenize
+
+            self._tokenizer = sent_tokenize
+        except ImportError:
+            raise ImportError("""NLTK is not installed, please install it with
+                `pip install nltk`.""") from None
+        self._separator = separator
+        self._language = language
+
+    def split_text(self, text: str) -> list[str]:
+        """Split incoming text and return chunks."""
+        # First we naively split the large input into a bunch of smaller ones.
+        splits = self._tokenizer(text, language=self._language)
+        return self._merge_splits(splits, self._separator)
+
+
+class SpacyTextSplitter(TextSplitter):
+    """Splitting text using Spacy package.
+
+    Per default, Spacy's `en_core_web_sm` model is used and
+    its default max_length is 1000000 (it is the length of maximum character
+    this model takes which can be increased for large files). For a faster,
+    but potentially less accurate splitting, you can use `pipe='sentencizer'`.
+    """
+
+    def __init__(
+        self,
+        separator: str = "\n\n",
+        pipe: str = "en_core_web_sm",
+        max_length: int = 1_000_000,
+        **kwargs: Any,
+    ) -> None:
+        """Initialize the spacy text splitter."""
+        super().__init__(**kwargs)
+        self._tokenizer = _make_spacy_pipe_for_splitting(
+            pipe, max_length=max_length
+        )
+        self._separator = separator
+
+    def split_text(self, text: str) -> list[str]:
+        """Split incoming text and return chunks."""
+        splits = (s.text for s in self._tokenizer(text).sents)
+        return self._merge_splits(splits, self._separator)
+
+
+class KonlpyTextSplitter(TextSplitter):
+    """Splitting text using Konlpy package.
+
+    It is good for splitting Korean text.
+    """
+
+    def __init__(
+        self,
+        separator: str = "\n\n",
+        **kwargs: Any,
+    ) -> None:
+        """Initialize the Konlpy text splitter."""
+        super().__init__(**kwargs)
+        self._separator = separator
+        try:
+            from konlpy.tag import Kkma
+        except ImportError:
+            raise ImportError("""
+                Konlpy is not installed, please install it with
+                `pip install konlpy`
+                """) from None
+        self.kkma = Kkma()
+
+    def split_text(self, text: str) -> list[str]:
+        """Split incoming text and return chunks."""
+        splits = self.kkma.sentences(text)
+        return self._merge_splits(splits, self._separator)
+
+
+# For backwards compatibility
+class PythonCodeTextSplitter(RecursiveCharacterTextSplitter):
+    """Attempts to split the text along Python syntax."""
+
+    def __init__(self, **kwargs: Any) -> None:
+        """Initialize a PythonCodeTextSplitter."""
+        separators = self.get_separators_for_language(Language.PYTHON)
+        super().__init__(separators=separators, **kwargs)
+
+
+class MarkdownTextSplitter(RecursiveCharacterTextSplitter):
+    """Attempts to split the text along Markdown-formatted headings."""
+
+    def __init__(self, **kwargs: Any) -> None:
+        """Initialize a MarkdownTextSplitter."""
+        separators = self.get_separators_for_language(Language.MARKDOWN)
+        super().__init__(separators=separators, **kwargs)
+
+
+class LatexTextSplitter(RecursiveCharacterTextSplitter):
+    """Attempts to split the text along Latex-formatted layout elements."""
+
+    def __init__(self, **kwargs: Any) -> None:
+        """Initialize a LatexTextSplitter."""
+        separators = self.get_separators_for_language(Language.LATEX)
+        super().__init__(separators=separators, **kwargs)
+
+
+class RecursiveJsonSplitter:
+    def __init__(
+        self, max_chunk_size: int = 2000, min_chunk_size: Optional[int] = None
+    ):
+        super().__init__()
+        self.max_chunk_size = max_chunk_size
+        self.min_chunk_size = (
+            min_chunk_size
+            if min_chunk_size is not None
+            else max(max_chunk_size - 200, 50)
+        )
+
+    @staticmethod
+    def _json_size(data: dict) -> int:
+        """Calculate the size of the serialized JSON object."""
+        return len(json.dumps(data))
+
+    @staticmethod
+    def _set_nested_dict(d: dict, path: list[str], value: Any) -> None:
+        """Set a value in a nested dictionary based on the given path."""
+        for key in path[:-1]:
+            d = d.setdefault(key, {})
+        d[path[-1]] = value
+
+    def _list_to_dict_preprocessing(self, data: Any) -> Any:
+        if isinstance(data, dict):
+            # Process each key-value pair in the dictionary
+            return {
+                k: self._list_to_dict_preprocessing(v) for k, v in data.items()
+            }
+        elif isinstance(data, list):
+            # Convert the list to a dictionary with index-based keys
+            return {
+                str(i): self._list_to_dict_preprocessing(item)
+                for i, item in enumerate(data)
+            }
+        else:
+            # The item is neither a dict nor a list, return unchanged
+            return data
+
+    def _json_split(
+        self,
+        data: dict[str, Any],
+        current_path: list[str] | None = None,
+        chunks: list[dict] | None = None,
+    ) -> list[dict]:
+        """Split json into maximum size dictionaries while preserving
+        structure."""
+        if current_path is None:
+            current_path = []
+        if chunks is None:
+            chunks = [{}]
+
+        if isinstance(data, dict):
+            for key, value in data.items():
+                new_path = current_path + [key]
+                chunk_size = self._json_size(chunks[-1])
+                size = self._json_size({key: value})
+                remaining = self.max_chunk_size - chunk_size
+
+                if size < remaining:
+                    # Add item to current chunk
+                    self._set_nested_dict(chunks[-1], new_path, value)
+                else:
+                    if chunk_size >= self.min_chunk_size:
+                        # Chunk is big enough, start a new chunk
+                        chunks.append({})
+
+                    # Iterate
+                    self._json_split(value, new_path, chunks)
+        else:
+            # handle single item
+            self._set_nested_dict(chunks[-1], current_path, data)
+        return chunks
+
+    def split_json(
+        self,
+        json_data: dict[str, Any],
+        convert_lists: bool = False,
+    ) -> list[dict]:
+        """Splits JSON into a list of JSON chunks."""
+
+        if convert_lists:
+            chunks = self._json_split(
+                self._list_to_dict_preprocessing(json_data)
+            )
+        else:
+            chunks = self._json_split(json_data)
+
+        # Remove the last chunk if it's empty
+        if not chunks[-1]:
+            chunks.pop()
+        return chunks
+
+    def split_text(
+        self, json_data: dict[str, Any], convert_lists: bool = False
+    ) -> list[str]:
+        """Splits JSON into a list of JSON formatted strings."""
+
+        chunks = self.split_json(
+            json_data=json_data, convert_lists=convert_lists
+        )
+
+        # Convert to string
+        return [json.dumps(chunk) for chunk in chunks]
+
+    def create_documents(
+        self,
+        texts: list[dict],
+        convert_lists: bool = False,
+        metadatas: Optional[list[dict]] = None,
+    ) -> list[SplitterDocument]:
+        """Create documents from a list of json objects (dict)."""
+        _metadatas = metadatas or [{}] * len(texts)
+        documents = []
+        for i, text in enumerate(texts):
+            for chunk in self.split_text(
+                json_data=text, convert_lists=convert_lists
+            ):
+                metadata = copy.deepcopy(_metadatas[i])
+                new_doc = SplitterDocument(
+                    page_content=chunk, metadata=metadata
+                )
+                documents.append(new_doc)
+        return documents