aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/pydash/collections.py
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/pydash/collections.py
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are hereHEADmaster
Diffstat (limited to '.venv/lib/python3.12/site-packages/pydash/collections.py')
-rw-r--r--.venv/lib/python3.12/site-packages/pydash/collections.py2181
1 files changed, 2181 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/pydash/collections.py b/.venv/lib/python3.12/site-packages/pydash/collections.py
new file mode 100644
index 00000000..22c498d8
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/pydash/collections.py
@@ -0,0 +1,2181 @@
+"""
+Functions that operate on lists and dicts.
+
+.. versionadded:: 1.0.0
+"""
+
+from __future__ import annotations
+
+from functools import cmp_to_key
+import random
+import typing as t
+
+import pydash as pyd
+
+from .helpers import callit, cmp, getargcount, iterator, iteriteratee
+from .types import IterateeObjT, PathT
+
+
+__all__ = (
+ "at",
+ "count_by",
+ "every",
+ "filter_",
+ "find",
+ "find_last",
+ "flat_map",
+ "flat_map_deep",
+ "flat_map_depth",
+ "for_each",
+ "for_each_right",
+ "group_by",
+ "includes",
+ "invoke_map",
+ "key_by",
+ "map_",
+ "nest",
+ "order_by",
+ "partition",
+ "pluck",
+ "reduce_",
+ "reduce_right",
+ "reductions",
+ "reductions_right",
+ "reject",
+ "sample",
+ "sample_size",
+ "shuffle",
+ "size",
+ "some",
+ "sort_by",
+)
+
+T = t.TypeVar("T")
+T2 = t.TypeVar("T2")
+T3 = t.TypeVar("T3")
+T4 = t.TypeVar("T4")
+
+
+@t.overload
+def at(collection: t.Mapping[T, T2], *paths: T) -> t.List[t.Union[T2, None]]: ...
+
+
+@t.overload
+def at(collection: t.Mapping[T, t.Any], *paths: t.Union[T, t.Iterable[T]]) -> t.List[t.Any]: ...
+
+
+@t.overload
+def at(collection: t.Iterable[T], *paths: int) -> t.List[t.Union[T, None]]: ...
+
+
+@t.overload
+def at(collection: t.Iterable[t.Any], *paths: t.Union[int, t.Iterable[int]]) -> t.List[t.Any]: ...
+
+
+def at(collection, *paths):
+ """
+ Creates a list of elements from the specified indexes, or keys, of the collection. Indexes may
+ be specified as individual arguments or as arrays of indexes.
+
+ Args:
+ collection: Collection to iterate over.
+ *paths: The indexes of `collection` to retrieve, specified as individual indexes or
+ arrays of indexes.
+
+ Returns:
+ filtered list
+
+ Example:
+
+ >>> at([1, 2, 3, 4], 0, 2)
+ [1, 3]
+ >>> at({"a": 1, "b": 2, "c": 3, "d": 4}, "a", "c")
+ [1, 3]
+ >>> at({"a": 1, "b": 2, "c": {"d": {"e": 3}}}, "a", ["c", "d", "e"])
+ [1, 3]
+
+ .. versionadded:: 1.0.0
+
+ .. versionchanged:: 4.1.0
+ Support deep path access.
+ """
+ return pyd.properties(*paths)(collection)
+
+
+@t.overload
+def count_by(collection: t.Mapping[t.Any, T2], iteratee: None = None) -> t.Dict[T2, int]: ...
+
+
+@t.overload
+def count_by(
+ collection: t.Mapping[T, T2], iteratee: t.Callable[[T2, T, t.Dict[T, T2]], T3]
+) -> t.Dict[T3, int]: ...
+
+
+@t.overload
+def count_by(
+ collection: t.Mapping[T, T2], iteratee: t.Callable[[T2, T], T3]
+) -> t.Dict[T3, int]: ...
+
+
+@t.overload
+def count_by(
+ collection: t.Mapping[t.Any, T2], iteratee: t.Callable[[T2], T3]
+) -> t.Dict[T3, int]: ...
+
+
+@t.overload
+def count_by(collection: t.Iterable[T], iteratee: None = None) -> t.Dict[T, int]: ...
+
+
+@t.overload
+def count_by(
+ collection: t.Iterable[T], iteratee: t.Callable[[T, int, t.List[T]], T2]
+) -> t.Dict[T2, int]: ...
+
+
+@t.overload
+def count_by(collection: t.Iterable[T], iteratee: t.Callable[[T, int], T2]) -> t.Dict[T2, int]: ...
+
+
+@t.overload
+def count_by(collection: t.Iterable[T], iteratee: t.Callable[[T], T2]) -> t.Dict[T2, int]: ...
+
+
+def count_by(collection, iteratee=None):
+ """
+ Creates an object composed of keys generated from the results of running each element of
+ `collection` through the iteratee.
+
+ Args:
+ collection: Collection to iterate over.
+ iteratee: Iteratee applied per iteration.
+
+ Returns:
+ Dict containing counts by key.
+
+ Example:
+
+ >>> results = count_by([1, 2, 1, 2, 3, 4])
+ >>> assert results == {1: 2, 2: 2, 3: 1, 4: 1}
+ >>> results = count_by(["a", "A", "B", "b"], lambda x: x.lower())
+ >>> assert results == {"a": 2, "b": 2}
+ >>> results = count_by({"a": 1, "b": 1, "c": 3, "d": 3})
+ >>> assert results == {1: 2, 3: 2}
+
+ .. versionadded:: 1.0.0
+ """
+ ret = {}
+
+ for result in iteriteratee(collection, iteratee):
+ ret.setdefault(result[0], 0)
+ ret[result[0]] += 1
+
+ return ret
+
+
+def every(
+ collection: t.Iterable[T], predicate: t.Union[t.Callable[[T], t.Any], IterateeObjT, None] = None
+) -> bool:
+ """
+ Checks if the predicate returns a truthy value for all elements of a collection. The predicate
+ is invoked with three arguments: ``(value, index|key, collection)``. If a property name is
+ passed for predicate, the created :func:`pluck` style predicate will return the property value
+ of the given element. If an object is passed for predicate, the created :func:`.matches` style
+ predicate will return ``True`` for elements that have the properties of the given object, else
+ ``False``.
+
+ Args:
+ collection: Collection to iterate over.
+ predicate: Predicate applied per iteration.
+
+ Returns:
+ Whether all elements are truthy.
+
+ Example:
+
+ >>> every([1, True, "hello"])
+ True
+ >>> every([1, False, "hello"])
+ False
+ >>> every([{"a": 1}, {"a": True}, {"a": "hello"}], "a")
+ True
+ >>> every([{"a": 1}, {"a": False}, {"a": "hello"}], "a")
+ False
+ >>> every([{"a": 1}, {"a": 1}], {"a": 1})
+ True
+ >>> every([{"a": 1}, {"a": 2}], {"a": 1})
+ False
+
+ .. versionadded:: 1.0.0
+
+ .. versionchanged: 4.0.0
+ Removed alias ``all_``.
+ """
+ if predicate:
+ cbk = pyd.iteratee(predicate)
+ collection = (cbk(item) for item in collection)
+
+ return all(collection)
+
+
+@t.overload
+def filter_(
+ collection: t.Mapping[T, T2],
+ predicate: t.Union[t.Callable[[T2, T, t.Dict[T, T2]], t.Any], IterateeObjT, None] = None,
+) -> t.List[T2]: ...
+
+
+@t.overload
+def filter_(
+ collection: t.Mapping[T, T2],
+ predicate: t.Union[t.Callable[[T2, T], t.Any], IterateeObjT, None] = None,
+) -> t.List[T2]: ...
+
+
+@t.overload
+def filter_(
+ collection: t.Mapping[t.Any, T2],
+ predicate: t.Union[t.Callable[[T2], t.Any], IterateeObjT, None] = None,
+) -> t.List[T2]: ...
+
+
+@t.overload
+def filter_(
+ collection: t.Iterable[T],
+ predicate: t.Union[t.Callable[[T, int, t.List[T]], t.Any], IterateeObjT, None] = None,
+) -> t.List[T]: ...
+
+
+@t.overload
+def filter_(
+ collection: t.Iterable[T],
+ predicate: t.Union[t.Callable[[T, int], t.Any], IterateeObjT, None] = None,
+) -> t.List[T]: ...
+
+
+@t.overload
+def filter_(
+ collection: t.Iterable[T],
+ predicate: t.Union[t.Callable[[T], t.Any], IterateeObjT, None] = None,
+) -> t.List[T]: ...
+
+
+def filter_(collection, predicate=None):
+ """
+ Iterates over elements of a collection, returning a list of all elements the predicate returns
+ truthy for.
+
+ Args:
+ collection: Collection to iterate over.
+ predicate: Predicate applied per iteration.
+
+ Returns:
+ Filtered list.
+
+ Example:
+
+ >>> results = filter_([{"a": 1}, {"b": 2}, {"a": 1, "b": 3}], {"a": 1})
+ >>> assert results == [{"a": 1}, {"a": 1, "b": 3}]
+ >>> filter_([1, 2, 3, 4], lambda x: x >= 3)
+ [3, 4]
+
+ .. versionadded:: 1.0.0
+
+ .. versionchanged:: 4.0.0
+ Removed alias ``select``.
+ """
+ return [value for is_true, value, _, _ in iteriteratee(collection, predicate) if is_true]
+
+
+@t.overload
+def find(
+ collection: t.Dict[T, T2],
+ predicate: t.Union[t.Callable[[T2, T, t.Dict[T, T2]], t.Any], IterateeObjT, None] = None,
+) -> t.Union[T2, None]: ...
+
+
+@t.overload
+def find(
+ collection: t.Dict[T, T2],
+ predicate: t.Union[t.Callable[[T2, T], t.Any], IterateeObjT, None] = None,
+) -> t.Union[T2, None]: ...
+
+
+@t.overload
+def find(
+ collection: t.Dict[T, T2],
+ predicate: t.Union[t.Callable[[T2], t.Any], IterateeObjT, None] = None,
+) -> t.Union[T2, None]: ...
+
+
+@t.overload
+def find(
+ collection: t.List[T],
+ predicate: t.Union[t.Callable[[T, int, t.List[T]], t.Any], IterateeObjT, None] = None,
+) -> t.Union[T, None]: ...
+
+
+@t.overload
+def find(
+ collection: t.List[T],
+ predicate: t.Union[t.Callable[[T, int], t.Any], IterateeObjT, None] = None,
+) -> t.Union[T, None]: ...
+
+
+@t.overload
+def find(
+ collection: t.List[T],
+ predicate: t.Union[t.Callable[[T], t.Any], IterateeObjT, None] = None,
+) -> t.Union[T, None]: ...
+
+
+def find(collection, predicate=None):
+ """
+ Iterates over elements of a collection, returning the first element that the predicate returns
+ truthy for.
+
+ Args:
+ collection: Collection to iterate over.
+ predicate: Predicate applied per iteration.
+
+ Returns:
+ First element found or ``None``.
+
+ Example:
+
+ >>> find([1, 2, 3, 4], lambda x: x >= 3)
+ 3
+ >>> find([{"a": 1}, {"b": 2}, {"a": 1, "b": 2}], {"a": 1})
+ {'a': 1}
+
+ .. versionadded:: 1.0.0
+
+ .. versionchanged:: 4.0.0
+ Removed aliases ``detect`` and ``find_where``.
+ """
+ search = (value for is_true, value, _, _ in iteriteratee(collection, predicate) if is_true)
+ return next(search, None)
+
+
+@t.overload
+def find_last(
+ collection: t.Dict[T, T2],
+ predicate: t.Union[t.Callable[[T2, T, t.Dict[T, T2]], t.Any], IterateeObjT, None] = None,
+) -> t.Union[T2, None]: ...
+
+
+@t.overload
+def find_last(
+ collection: t.Dict[T, T2],
+ predicate: t.Union[t.Callable[[T2, T], t.Any], IterateeObjT, None] = None,
+) -> t.Union[T2, None]: ...
+
+
+@t.overload
+def find_last(
+ collection: t.Dict[t.Any, T2],
+ predicate: t.Union[t.Callable[[T2], t.Any], IterateeObjT, None] = None,
+) -> t.Union[T2, None]: ...
+
+
+@t.overload
+def find_last(
+ collection: t.List[T],
+ predicate: t.Union[t.Callable[[T, int, t.List[T]], t.Any], IterateeObjT, None] = None,
+) -> t.Union[T, None]: ...
+
+
+@t.overload
+def find_last(
+ collection: t.List[T],
+ predicate: t.Union[t.Callable[[T, int], t.Any], IterateeObjT, None] = None,
+) -> t.Union[T, None]: ...
+
+
+@t.overload
+def find_last(
+ collection: t.List[T],
+ predicate: t.Union[t.Callable[[T], t.Any], IterateeObjT, None] = None,
+) -> t.Union[T, None]: ...
+
+
+def find_last(collection, predicate=None):
+ """
+ This method is like :func:`find` except that it iterates over elements of a `collection` from
+ right to left.
+
+ Args:
+ collection: Collection to iterate over.
+ predicate: Predicate applied per iteration.
+
+ Returns:
+ Last element found or ``None``.
+
+ Example:
+
+ >>> find_last([1, 2, 3, 4], lambda x: x >= 3)
+ 4
+ >>> results = find_last([{'a': 1}, {'b': 2}, {'a': 1, 'b': 2}],\
+ {'a': 1})
+ >>> assert results == {'a': 1, 'b': 2}
+
+ .. versionadded:: 1.0.0
+ """
+ search = (
+ value
+ for is_true, value, _, _ in iteriteratee(collection, predicate, reverse=True)
+ if is_true
+ )
+ return next(search, None)
+
+
+@t.overload
+def flat_map(
+ collection: t.Mapping[T, T2], iteratee: t.Callable[[T2, T, t.Dict[T, T2]], t.Iterable[T3]]
+) -> t.List[T3]: ...
+
+
+@t.overload
+def flat_map(
+ collection: t.Mapping[T, T2], iteratee: t.Callable[[T2, T], t.Iterable[T3]]
+) -> t.List[T3]: ...
+
+
+@t.overload
+def flat_map(
+ collection: t.Mapping[t.Any, T2], iteratee: t.Callable[[T2], t.Iterable[T3]]
+) -> t.List[T3]: ...
+
+
+@t.overload
+def flat_map(
+ collection: t.Mapping[T, T2], iteratee: t.Callable[[T2, T, t.Dict[T, T2]], T3]
+) -> t.List[T3]: ...
+
+
+@t.overload
+def flat_map(collection: t.Mapping[T, T2], iteratee: t.Callable[[T2, T], T3]) -> t.List[T3]: ...
+
+
+@t.overload
+def flat_map(collection: t.Mapping[t.Any, T2], iteratee: t.Callable[[T2], T3]) -> t.List[T3]: ...
+
+
+@t.overload
+def flat_map(collection: t.Mapping[t.Any, t.Iterable[T2]], iteratee: None = None) -> t.List[T2]: ...
+
+
+@t.overload
+def flat_map(collection: t.Mapping[t.Any, T2], iteratee: None = None) -> t.List[T2]: ...
+
+
+@t.overload
+def flat_map(
+ collection: t.Iterable[T], iteratee: t.Callable[[T, int, t.List[T]], t.Iterable[T2]]
+) -> t.List[T2]: ...
+
+
+@t.overload
+def flat_map(
+ collection: t.Iterable[T], iteratee: t.Callable[[T, int], t.Iterable[T2]]
+) -> t.List[T2]: ...
+
+
+@t.overload
+def flat_map(
+ collection: t.Iterable[T], iteratee: t.Callable[[T], t.Iterable[T2]]
+) -> t.List[T2]: ...
+
+
+@t.overload
+def flat_map(
+ collection: t.Iterable[T], iteratee: t.Callable[[T, int, t.List[T]], T2]
+) -> t.List[T2]: ...
+
+
+@t.overload
+def flat_map(collection: t.Iterable[T], iteratee: t.Callable[[T, int], T2]) -> t.List[T2]: ...
+
+
+@t.overload
+def flat_map(collection: t.Iterable[T], iteratee: t.Callable[[T], T2]) -> t.List[T2]: ...
+
+
+@t.overload
+def flat_map(collection: t.Iterable[t.Iterable[T]], iteratee: None = None) -> t.List[T]: ...
+
+
+@t.overload
+def flat_map(collection: t.Iterable[T], iteratee: None = None) -> t.List[T]: ...
+
+
+def flat_map(collection, iteratee=None):
+ """
+ Creates a flattened list of values by running each element in collection through `iteratee` and
+ flattening the mapped results. The `iteratee` is invoked with three arguments: ``(value,
+ index|key, collection)``.
+
+ Args:
+ collection: Collection to iterate over.
+ iteratee: Iteratee applied per iteration.
+
+ Returns:
+ Flattened mapped list.
+
+ Example:
+
+ >>> duplicate = lambda n: [[n, n]]
+ >>> flat_map([1, 2], duplicate)
+ [[1, 1], [2, 2]]
+
+ .. versionadded:: 4.0.0
+ """
+ return pyd.flatten(itermap(collection, iteratee=iteratee))
+
+
+@t.overload
+def flat_map_deep(
+ collection: t.Mapping[T, T2],
+ iteratee: t.Union[t.Callable[[T2, T, t.Dict[T, T2]], t.Any], None] = None,
+) -> t.List[t.Any]: ...
+
+
+@t.overload
+def flat_map_deep(
+ collection: t.Mapping[T, T2], iteratee: t.Union[t.Callable[[T2, T], t.Any], None] = None
+) -> t.List[t.Any]: ...
+
+
+@t.overload
+def flat_map_deep(
+ collection: t.Mapping[t.Any, T2], iteratee: t.Union[t.Callable[[T2], t.Any], None] = None
+) -> t.List[t.Any]: ...
+
+
+@t.overload
+def flat_map_deep(
+ collection: t.Iterable[T],
+ iteratee: t.Union[t.Callable[[T, int, t.List[T]], t.Any], None] = None,
+) -> t.List[t.Any]: ...
+
+
+@t.overload
+def flat_map_deep(
+ collection: t.Iterable[T], iteratee: t.Union[t.Callable[[T, int], t.Any], None] = None
+) -> t.List[t.Any]: ...
+
+
+@t.overload
+def flat_map_deep(
+ collection: t.Iterable[T], iteratee: t.Union[t.Callable[[T], t.Any], None] = None
+) -> t.List[t.Any]: ...
+
+
+def flat_map_deep(collection, iteratee=None):
+ """
+ This method is like :func:`flat_map` except that it recursively flattens the mapped results.
+
+ Args:
+ collection: Collection to iterate over.
+ iteratee: Iteratee applied per iteration.
+
+ Returns:
+ Flattened mapped list.
+
+ Example:
+
+ >>> duplicate = lambda n: [[n, n]]
+ >>> flat_map_deep([1, 2], duplicate)
+ [1, 1, 2, 2]
+
+ .. versionadded:: 4.0.0
+ """
+ return pyd.flatten_deep(itermap(collection, iteratee=iteratee))
+
+
+@t.overload
+def flat_map_depth(
+ collection: t.Mapping[T, T2],
+ iteratee: t.Union[t.Callable[[T2, T, t.Dict[T, T2]], t.Any], None] = None,
+ depth: int = 1,
+) -> t.List[t.Any]: ...
+
+
+@t.overload
+def flat_map_depth(
+ collection: t.Mapping[T, T2],
+ iteratee: t.Union[t.Callable[[T2, T], t.Any], None] = None,
+ depth: int = 1,
+) -> t.List[t.Any]: ...
+
+
+@t.overload
+def flat_map_depth(
+ collection: t.Mapping[t.Any, T2],
+ iteratee: t.Union[t.Callable[[T2], t.Any], None] = None,
+ depth: int = 1,
+) -> t.List[t.Any]: ...
+
+
+@t.overload
+def flat_map_depth(
+ collection: t.Iterable[T],
+ iteratee: t.Union[t.Callable[[T, int, t.List[T]], t.Any], None] = None,
+ depth: int = 1,
+) -> t.List[t.Any]: ...
+
+
+@t.overload
+def flat_map_depth(
+ collection: t.Iterable[T],
+ iteratee: t.Union[t.Callable[[T, int], t.Any], None] = None,
+ depth: int = 1,
+) -> t.List[t.Any]: ...
+
+
+@t.overload
+def flat_map_depth(
+ collection: t.Iterable[T],
+ iteratee: t.Union[t.Callable[[T], t.Any], None] = None,
+ depth: int = 1,
+) -> t.List[t.Any]: ...
+
+
+def flat_map_depth(collection, iteratee=None, depth=1):
+ """
+ This method is like :func:`flat_map` except that it recursively flattens the mapped results up
+ to `depth` times.
+
+ Args:
+ collection: Collection to iterate over.
+ iteratee: Iteratee applied per iteration.
+
+ Returns:
+ Flattened mapped list.
+
+ Example:
+
+ >>> duplicate = lambda n: [[n, n]]
+ >>> flat_map_depth([1, 2], duplicate, 1)
+ [[1, 1], [2, 2]]
+ >>> flat_map_depth([1, 2], duplicate, 2)
+ [1, 1, 2, 2]
+
+ .. versionadded:: 4.0.0
+ """
+ return pyd.flatten_depth(itermap(collection, iteratee=iteratee), depth=depth)
+
+
+@t.overload
+def for_each(
+ collection: t.Dict[T, T2],
+ iteratee: t.Union[t.Callable[[T2, T, t.Dict[T, T2]], t.Any], IterateeObjT, None] = None,
+) -> t.Dict[T, T2]: ...
+
+
+@t.overload
+def for_each(
+ collection: t.Dict[T, T2],
+ iteratee: t.Union[t.Callable[[T2, T], t.Any], IterateeObjT, None] = None,
+) -> t.Dict[T, T2]: ...
+
+
+@t.overload
+def for_each(
+ collection: t.Dict[T, T2],
+ iteratee: t.Union[t.Callable[[T2], t.Any], IterateeObjT, None] = None,
+) -> t.Dict[T, T2]: ...
+
+
+@t.overload
+def for_each(
+ collection: t.List[T],
+ iteratee: t.Union[t.Callable[[T, int, t.List[T]], t.Any], IterateeObjT, None] = None,
+) -> t.List[T]: ...
+
+
+@t.overload
+def for_each(
+ collection: t.List[T],
+ iteratee: t.Union[t.Callable[[T, int], t.Any], IterateeObjT, None] = None,
+) -> t.List[T]: ...
+
+
+@t.overload
+def for_each(
+ collection: t.List[T],
+ iteratee: t.Union[t.Callable[[T], t.Any], IterateeObjT, None] = None,
+) -> t.List[T]: ...
+
+
+def for_each(collection, iteratee=None):
+ """
+ Iterates over elements of a collection, executing the iteratee for each element.
+
+ Args:
+ collection: Collection to iterate over.
+ iteratee: Iteratee applied per iteration.
+
+ Returns:
+ `collection`
+
+ Example:
+
+ >>> results = {}
+ >>> def cb(x):
+ ... results[x] = x**2
+ >>> for_each([1, 2, 3, 4], cb)
+ [1, 2, 3, 4]
+ >>> assert results == {1: 1, 2: 4, 3: 9, 4: 16}
+
+ .. versionadded:: 1.0.0
+
+ .. versionchanged:: 4.0.0
+ Removed alias ``each``.
+ """
+ next((None for ret, _, _, _ in iteriteratee(collection, iteratee) if ret is False), None)
+ return collection
+
+
+@t.overload
+def for_each_right(
+ collection: t.Dict[T, T2],
+ iteratee: t.Union[t.Callable[[T2, T, t.Dict[T, T2]], t.Any], IterateeObjT],
+) -> t.Dict[T, T2]: ...
+
+
+@t.overload
+def for_each_right(
+ collection: t.Dict[T, T2],
+ iteratee: t.Union[t.Callable[[T2, T], t.Any], IterateeObjT],
+) -> t.Dict[T, T2]: ...
+
+
+@t.overload
+def for_each_right(
+ collection: t.Dict[T, T2],
+ iteratee: t.Union[t.Callable[[T2], t.Any], IterateeObjT],
+) -> t.Dict[T, T2]: ...
+
+
+@t.overload
+def for_each_right(
+ collection: t.List[T],
+ iteratee: t.Union[t.Callable[[T, int, t.List[T]], t.Any], IterateeObjT],
+) -> t.List[T]: ...
+
+
+@t.overload
+def for_each_right(
+ collection: t.List[T],
+ iteratee: t.Union[t.Callable[[T, int], t.Any], IterateeObjT],
+) -> t.List[T]: ...
+
+
+@t.overload
+def for_each_right(
+ collection: t.List[T],
+ iteratee: t.Union[t.Callable[[T], t.Any], IterateeObjT],
+) -> t.List[T]: ...
+
+
+def for_each_right(collection, iteratee):
+ """
+ This method is like :func:`for_each` except that it iterates over elements of a `collection`
+ from right to left.
+
+ Args:
+ collection: Collection to iterate over.
+ iteratee: Iteratee applied per iteration.
+
+ Returns:
+ `collection`
+
+ Example:
+
+ >>> results = {"total": 1}
+ >>> def cb(x):
+ ... results["total"] = x * results["total"]
+ >>> for_each_right([1, 2, 3, 4], cb)
+ [1, 2, 3, 4]
+ >>> assert results == {"total": 24}
+
+ .. versionadded:: 1.0.0
+
+ .. versionchanged:: 4.0.0
+ Removed alias ``each_right``.
+ """
+ next(
+ (None for ret, _, _, _ in iteriteratee(collection, iteratee, reverse=True) if ret is False),
+ None,
+ )
+ return collection
+
+
+@t.overload
+def group_by(collection: t.Iterable[T], iteratee: t.Callable[[T], T2]) -> t.Dict[T2, t.List[T]]: ...
+
+
+@t.overload
+def group_by(
+ collection: t.Iterable[T], iteratee: t.Union[IterateeObjT, None] = None
+) -> t.Dict[t.Any, t.List[T]]: ...
+
+
+def group_by(collection, iteratee=None):
+ """
+ Creates an object composed of keys generated from the results of running each element of a
+ `collection` through the iteratee.
+
+ Args:
+ collection: Collection to iterate over.
+ iteratee: Iteratee applied per iteration.
+
+ Returns:
+ Results of grouping by `iteratee`.
+
+ Example:
+
+ >>> results = group_by([{'a': 1, 'b': 2}, {'a': 3, 'b': 4}], 'a')
+ >>> assert results == {1: [{'a': 1, 'b': 2}], 3: [{'a': 3, 'b': 4}]}
+ >>> results = group_by([{'a': 1, 'b': 2}, {'a': 3, 'b': 4}], {'a': 1})
+ >>> assert results == {False: [{'a': 3, 'b': 4}],\
+ True: [{'a': 1, 'b': 2}]}
+
+ .. versionadded:: 1.0.0
+ """
+ ret = {}
+ cbk = pyd.iteratee(iteratee)
+
+ for value in collection:
+ key = cbk(value)
+ ret.setdefault(key, [])
+ ret[key].append(value)
+
+ return ret
+
+
+def includes(
+ collection: t.Union[t.Sequence[t.Any], t.Dict[t.Any, t.Any]], target: t.Any, from_index: int = 0
+) -> bool:
+ """
+ Checks if a given value is present in a collection. If `from_index` is negative, it is used as
+ the offset from the end of the collection.
+
+ Args:
+ collection: Collection to iterate over.
+ target: Target value to compare to.
+ from_index: Offset to start search from.
+
+ Returns:
+ Whether `target` is in `collection`.
+
+ Example:
+
+ >>> includes([1, 2, 3, 4], 2)
+ True
+ >>> includes([1, 2, 3, 4], 2, from_index=2)
+ False
+ >>> includes({"a": 1, "b": 2, "c": 3, "d": 4}, 2)
+ True
+
+ .. versionadded:: 1.0.0
+
+ .. versionchanged:: 4.0.0
+ Renamed from ``contains`` to ``includes`` and removed alias
+ ``include``.
+ """
+ collection_values: t.Container[t.Any]
+ if isinstance(collection, dict):
+ collection_values = collection.values()
+ else:
+ # only makes sense to do this if `collection` is not a dict
+ collection_values = collection[from_index:]
+
+ return target in collection_values
+
+
+def invoke_map(
+ collection: t.Iterable[t.Any], path: PathT, *args: t.Any, **kwargs: t.Any
+) -> t.List[t.Any]:
+ """
+ Invokes the method at `path` of each element in `collection`, returning a list of the results of
+ each invoked method. Any additional arguments are provided to each invoked method. If `path` is
+ a function, it's invoked for each element in `collection`.
+
+ Args:
+ collection: Collection to iterate over.
+ path: String path to method to invoke or callable to invoke for each element in
+ `collection`.
+ args: Arguments to pass to method call.
+ kwargs: Keyword arguments to pass to method call.
+
+ Returns:
+ List of results of invoking method of each item.
+
+ Example:
+
+ >>> items = [{"a": [{"b": 1}]}, {"a": [{"c": 2}]}]
+ >>> expected = [{"b": 1}.items(), {"c": 2}.items()]
+ >>> invoke_map(items, "a[0].items") == expected
+ True
+
+ .. versionadded:: 4.0.0
+ """
+ return map_(collection, lambda item: pyd.invoke(item, path, *args, **kwargs))
+
+
+@t.overload
+def key_by(collection: t.Iterable[T], iteratee: t.Callable[[T], T2]) -> t.Dict[T2, T]: ...
+
+
+@t.overload
+def key_by(
+ collection: t.Iterable[t.Any], iteratee: t.Union[IterateeObjT, None] = None
+) -> t.Dict[t.Any, t.Any]: ...
+
+
+def key_by(collection, iteratee=None):
+ """
+ Creates an object composed of keys generated from the results of running each element of the
+ collection through the given iteratee.
+
+ Args:
+ collection: Collection to iterate over.
+ iteratee: Iteratee applied per iteration.
+
+ Returns:
+ Results of indexing by `iteratee`.
+
+ Example:
+
+ >>> results = key_by([{"a": 1, "b": 2}, {"a": 3, "b": 4}], "a")
+ >>> assert results == {1: {"a": 1, "b": 2}, 3: {"a": 3, "b": 4}}
+
+
+ .. versionadded:: 1.0.0
+
+ .. versionchanged:: 4.0.0
+ Renamed from ``index_by`` to ``key_by``.
+ """
+ ret = {}
+ cbk = pyd.iteratee(iteratee)
+
+ for value in collection:
+ ret[cbk(value)] = value
+
+ return ret
+
+
+@t.overload
+def map_(collection: t.Mapping[t.Any, T2], iteratee: t.Callable[[T2], T3]) -> t.List[T3]: ...
+
+
+@t.overload
+def map_(collection: t.Mapping[T, T2], iteratee: t.Callable[[T2, T], T3]) -> t.List[T3]: ...
+
+
+@t.overload
+def map_(
+ collection: t.Mapping[T, T2], iteratee: t.Callable[[T2, T, t.Dict[T, T2]], T3]
+) -> t.List[T3]: ...
+
+
+@t.overload
+def map_(collection: t.Iterable[T], iteratee: t.Callable[[T], T2]) -> t.List[T2]: ...
+
+
+@t.overload
+def map_(collection: t.Iterable[T], iteratee: t.Callable[[T, int], T2]) -> t.List[T2]: ...
+
+
+@t.overload
+def map_(
+ collection: t.Iterable[T], iteratee: t.Callable[[T, int, t.List[T]], T2]
+) -> t.List[T2]: ...
+
+
+@t.overload
+def map_(
+ collection: t.Iterable[t.Any], iteratee: t.Union[IterateeObjT, None] = None
+) -> t.List[t.Any]: ...
+
+
+def map_(collection, iteratee=None):
+ """
+ Creates an array of values by running each element in the collection through the iteratee. The
+ iteratee is invoked with three arguments: ``(value, index|key, collection)``. If a property name
+ is passed for iteratee, the created :func:`pluck` style iteratee will return the property value
+ of the given element. If an object is passed for iteratee, the created :func:`.matches` style
+ iteratee will return ``True`` for elements that have the properties of the given object, else
+ ``False``.
+
+ Args:
+ collection: Collection to iterate over.
+ iteratee: Iteratee applied per iteration.
+
+ Returns:
+ Mapped list.
+
+ Example:
+
+ >>> map_([1, 2, 3, 4], str)
+ ['1', '2', '3', '4']
+ >>> map_([{"a": 1, "b": 2}, {"a": 3, "b": 4}, {"a": 5, "b": 6}], "a")
+ [1, 3, 5]
+ >>> map_([[[0, 1]], [[2, 3]], [[4, 5]]], "0.1")
+ [1, 3, 5]
+ >>> map_([{"a": {"b": 1}}, {"a": {"b": 2}}], "a.b")
+ [1, 2]
+ >>> map_([{"a": {"b": [0, 1]}}, {"a": {"b": [2, 3]}}], "a.b[1]")
+ [1, 3]
+
+ .. versionadded:: 1.0.0
+
+ .. versionchanged:: 4.0.0
+ Removed alias ``collect``.
+ """
+ return list(itermap(collection, iteratee))
+
+
+def nest(collection: t.Iterable[t.Any], *properties: t.Any) -> t.Any:
+ """
+ This method is like :func:`group_by` except that it supports nested grouping by multiple string
+ `properties`. If only a single key is given, it is like calling ``group_by(collection, prop)``.
+
+ Args:
+ collection: Collection to iterate over.
+ *properties: Properties to nest by.
+
+ Returns:
+ Results of nested grouping by `properties`.
+
+ Example:
+
+ >>> results = nest([{'shape': 'square', 'color': 'red', 'qty': 5},\
+ {'shape': 'square', 'color': 'blue', 'qty': 10},\
+ {'shape': 'square', 'color': 'orange', 'qty': 5},\
+ {'shape': 'circle', 'color': 'yellow', 'qty': 5},\
+ {'shape': 'circle', 'color': 'pink', 'qty': 10},\
+ {'shape': 'oval', 'color': 'purple', 'qty': 5}],\
+ 'shape', 'qty')
+ >>> expected = {\
+ 'square': {5: [{'shape': 'square', 'color': 'red', 'qty': 5},\
+ {'shape': 'square', 'color': 'orange', 'qty': 5}],\
+ 10: [{'shape': 'square', 'color': 'blue', 'qty': 10}]},\
+ 'circle': {5: [{'shape': 'circle', 'color': 'yellow', 'qty': 5}],\
+ 10: [{'shape': 'circle', 'color': 'pink', 'qty': 10}]},\
+ 'oval': {5: [{'shape': 'oval', 'color': 'purple', 'qty': 5}]}}
+ >>> results == expected
+ True
+
+ .. versionadded:: 4.3.0
+ """
+ if not properties:
+ return collection
+
+ flat_properties = pyd.flatten(properties)
+ first, rest = flat_properties[0], flat_properties[1:]
+
+ return pyd.map_values(group_by(collection, first), lambda value: nest(value, *rest))
+
+
+@t.overload
+def order_by(
+ collection: t.Mapping[t.Any, T2],
+ keys: t.Iterable[t.Union[str, int]],
+ orders: t.Union[t.Iterable[bool], bool],
+ reverse: bool = False,
+) -> t.List[T2]: ...
+
+
+@t.overload
+def order_by(
+ collection: t.Mapping[t.Any, T2],
+ keys: t.Iterable[str],
+ orders: None = None,
+ reverse: bool = False,
+) -> t.List[T2]: ...
+
+
+@t.overload
+def order_by(
+ collection: t.Iterable[T],
+ keys: t.Iterable[t.Union[str, int]],
+ orders: t.Union[t.Iterable[bool], bool],
+ reverse: bool = False,
+) -> t.List[T]: ...
+
+
+@t.overload
+def order_by(
+ collection: t.Iterable[T],
+ keys: t.Iterable[str],
+ orders: None = None,
+ reverse: bool = False,
+) -> t.List[T]: ...
+
+
+def order_by(collection, keys, orders=None, reverse=False):
+ """
+ This method is like :func:`sort_by` except that it sorts by key names instead of an iteratee
+ function. Keys can be sorted in descending order by prepending a ``"-"`` to the key name (e.g.
+ ``"name"`` would become ``"-name"``) or by passing a list of boolean sort options via `orders`
+ where ``True`` is ascending and ``False`` is descending.
+
+ Args:
+ collection: Collection to iterate over.
+ keys: List of keys to sort by. By default, keys will be sorted in ascending order. To
+ sort a key in descending order, prepend a ``"-"`` to the key name. For example, to sort
+ the key value for ``"name"`` in descending order, use ``"-name"``.
+ orders: List of boolean sort orders to apply for each key. ``True``
+ corresponds to ascending order while ``False`` is descending. Defaults to ``None``.
+ reverse (bool, optional): Whether to reverse the sort. Defaults to ``False``.
+
+ Returns:
+ Sorted list.
+
+ Example:
+
+ >>> items = [{'a': 2, 'b': 1}, {'a': 3, 'b': 2}, {'a': 1, 'b': 3}]
+ >>> results = order_by(items, ['b', 'a'])
+ >>> assert results == [{'a': 2, 'b': 1},\
+ {'a': 3, 'b': 2},\
+ {'a': 1, 'b': 3}]
+ >>> results = order_by(items, ['a', 'b'])
+ >>> assert results == [{'a': 1, 'b': 3},\
+ {'a': 2, 'b': 1},\
+ {'a': 3, 'b': 2}]
+ >>> results = order_by(items, ['-a', 'b'])
+ >>> assert results == [{'a': 3, 'b': 2},\
+ {'a': 2, 'b': 1},\
+ {'a': 1, 'b': 3}]
+ >>> results = order_by(items, ['a', 'b'], [False, True])
+ >>> assert results == [{'a': 3, 'b': 2},\
+ {'a': 2, 'b': 1},\
+ {'a': 1, 'b': 3}]
+
+ .. versionadded:: 3.0.0
+
+ .. versionchanged:: 3.2.0
+ Added `orders` argument.
+
+ .. versionchanged:: 3.2.0
+ Added :func:`sort_by_order` as alias.
+
+ .. versionchanged:: 4.0.0
+ Renamed from ``order_by`` to ``order_by`` and removed alias
+ ``sort_by_order``.
+ """
+ if isinstance(collection, dict):
+ collection = collection.values()
+
+ # Maintain backwards compatibility.
+ if pyd.is_boolean(orders):
+ reverse = orders
+ orders = None
+
+ comparers = []
+
+ if orders:
+ for i, key in enumerate(keys):
+ if pyd.has(orders, i):
+ order = 1 if orders[i] else -1
+ else:
+ order = 1
+
+ comparers.append((pyd.property_(key), order))
+ else:
+ for key in keys:
+ if key.startswith("-"):
+ order = -1
+ key = key[1:]
+ else:
+ order = 1
+
+ comparers.append((pyd.property_(key), order))
+
+ def comparison(left, right):
+ # pylint: disable=useless-else-on-loop,missing-docstring
+ for func, mult in comparers:
+ result = cmp(func(left), func(right))
+ if result:
+ return mult * result
+ return 0
+
+ return sorted(collection, key=cmp_to_key(comparison), reverse=reverse)
+
+
+@t.overload
+def partition(
+ collection: t.Mapping[T, T2], predicate: t.Callable[[T2, T, t.Dict[T, T2]], t.Any]
+) -> t.List[t.List[T2]]: ...
+
+
+@t.overload
+def partition(
+ collection: t.Mapping[T, T2], predicate: t.Callable[[T2, T], t.Any]
+) -> t.List[t.List[T2]]: ...
+
+
+@t.overload
+def partition(
+ collection: t.Mapping[t.Any, T2], predicate: t.Callable[[T2], t.Any]
+) -> t.List[t.List[T2]]: ...
+
+
+@t.overload
+def partition(
+ collection: t.Mapping[t.Any, T2], predicate: t.Union[IterateeObjT, None] = None
+) -> t.List[t.List[T2]]: ...
+
+
+@t.overload
+def partition(
+ collection: t.Iterable[T], predicate: t.Callable[[T, int, t.List[T]], t.Any]
+) -> t.List[t.List[T]]: ...
+
+
+@t.overload
+def partition(
+ collection: t.Iterable[T], predicate: t.Callable[[T, int], t.Any]
+) -> t.List[t.List[T]]: ...
+
+
+@t.overload
+def partition(
+ collection: t.Iterable[T], predicate: t.Callable[[T], t.Any]
+) -> t.List[t.List[T]]: ...
+
+
+@t.overload
+def partition(
+ collection: t.Iterable[T], predicate: t.Union[IterateeObjT, None] = None
+) -> t.List[t.List[T]]: ...
+
+
+def partition(collection, predicate=None):
+ """
+ Creates an array of elements split into two groups, the first of which contains elements the
+ `predicate` returns truthy for, while the second of which contains elements the `predicate`
+ returns falsey for. The `predicate` is invoked with three arguments: ``(value, index|key,
+ collection)``.
+
+ If a property name is provided for `predicate` the created :func:`pluck` style predicate returns
+ the property value of the given element.
+
+ If an object is provided for `predicate` the created :func:`.matches` style predicate returns
+ ``True`` for elements that have the properties of the given object, else ``False``.
+
+ Args:
+ collection: Collection to iterate over.
+ predicate: Predicate applied per iteration.
+
+ Returns:
+ List of grouped elements.
+
+ Example:
+
+ >>> partition([1, 2, 3, 4], lambda x: x >= 3)
+ [[3, 4], [1, 2]]
+
+ .. versionadded:: 1.1.0
+ """
+ trues = []
+ falses = []
+
+ for is_true, value, _, _ in iteriteratee(collection, predicate):
+ if is_true:
+ trues.append(value)
+ else:
+ falses.append(value)
+
+ return [trues, falses]
+
+
+def pluck(collection: t.Iterable[t.Any], path: PathT) -> t.List[t.Any]:
+ """
+ Retrieves the value of a specified property from all elements in the collection.
+
+ Args:
+ collection: List of dicts.
+ path: Collection's path to pluck
+
+ Returns:
+ Plucked list.
+
+ Example:
+
+ >>> pluck([{"a": 1, "b": 2}, {"a": 3, "b": 4}, {"a": 5, "b": 6}], "a")
+ [1, 3, 5]
+ >>> pluck([[[0, 1]], [[2, 3]], [[4, 5]]], "0.1")
+ [1, 3, 5]
+ >>> pluck([{"a": {"b": 1}}, {"a": {"b": 2}}], "a.b")
+ [1, 2]
+ >>> pluck([{"a": {"b": [0, 1]}}, {"a": {"b": [2, 3]}}], "a.b.1")
+ [1, 3]
+ >>> pluck([{"a": {"b": [0, 1]}}, {"a": {"b": [2, 3]}}], ["a", "b", 1])
+ [1, 3]
+
+ .. versionadded:: 1.0.0
+
+ .. versionchanged:: 4.0.0
+ Function removed.
+
+ .. versionchanged:: 4.0.1
+ Made property access deep.
+ """
+ return map_(collection, pyd.property_(path))
+
+
+@t.overload
+def reduce_(
+ collection: t.Mapping[T, T2],
+ iteratee: t.Callable[[T3, T2, T], T3],
+ accumulator: T3,
+) -> T3: ...
+
+
+@t.overload
+def reduce_(
+ collection: t.Mapping[t.Any, T2],
+ iteratee: t.Callable[[T3, T2], T3],
+ accumulator: T3,
+) -> T3: ...
+
+
+@t.overload
+def reduce_(
+ collection: t.Mapping[t.Any, t.Any],
+ iteratee: t.Callable[[T3], T3],
+ accumulator: T3,
+) -> T3: ...
+
+
+@t.overload
+def reduce_(
+ collection: t.Mapping[T, T2],
+ iteratee: t.Callable[[T2, T2, T], T2],
+ accumulator: None = None,
+) -> T2: ...
+
+
+@t.overload
+def reduce_(
+ collection: t.Mapping[t.Any, T2],
+ iteratee: t.Callable[[T2, T2], T2],
+ accumulator: None = None,
+) -> T2: ...
+
+
+@t.overload
+def reduce_(
+ collection: t.Mapping[t.Any, t.Any],
+ iteratee: t.Callable[[T], T],
+ accumulator: None = None,
+) -> T: ...
+
+
+@t.overload
+def reduce_(
+ collection: t.Iterable[T],
+ iteratee: t.Callable[[T2, T, int], T2],
+ accumulator: T2,
+) -> T2: ...
+
+
+@t.overload
+def reduce_(
+ collection: t.Iterable[T],
+ iteratee: t.Callable[[T2, T], T2],
+ accumulator: T2,
+) -> T2: ...
+
+
+@t.overload
+def reduce_(
+ collection: t.Iterable[t.Any],
+ iteratee: t.Callable[[T2], T2],
+ accumulator: T2,
+) -> T2: ...
+
+
+@t.overload
+def reduce_(
+ collection: t.Iterable[T],
+ iteratee: t.Callable[[T, T, int], T],
+ accumulator: None = None,
+) -> T: ...
+
+
+@t.overload
+def reduce_(
+ collection: t.Iterable[T],
+ iteratee: t.Callable[[T, T], T],
+ accumulator: None = None,
+) -> T: ...
+
+
+@t.overload
+def reduce_(
+ collection: t.Iterable[t.Any],
+ iteratee: t.Callable[[T], T],
+ accumulator: None = None,
+) -> T: ...
+
+
+@t.overload
+def reduce_(
+ collection: t.Iterable[T], iteratee: None = None, accumulator: t.Union[T, None] = None
+) -> T: ...
+
+
+def reduce_(collection, iteratee=None, accumulator=None):
+ """
+ Reduces a collection to a value which is the accumulated result of running each element in the
+ collection through the iteratee, where each successive iteratee execution consumes the return
+ value of the previous execution.
+
+ Args:
+ collection: Collection to iterate over.
+ iteratee: Iteratee applied per iteration.
+ accumulator: Initial value of aggregator. Default is to use the result of
+ the first iteration.
+
+ Returns:
+ Accumulator object containing results of reduction.
+
+ Example:
+
+ >>> reduce_([1, 2, 3, 4], lambda total, x: total * x)
+ 24
+
+ .. versionadded:: 1.0.0
+
+ .. versionchanged:: 4.0.0
+ Removed aliases ``foldl`` and ``inject``.
+ """
+ iterable = iterator(collection)
+
+ if accumulator is None:
+ try:
+ _, accumulator = next(iterable)
+ except StopIteration as exc:
+ raise TypeError("reduce_() of empty sequence with no initial value") from exc
+
+ result = accumulator
+
+ if iteratee is None:
+ iteratee = pyd.identity
+ argcount = 1
+ else:
+ argcount = getargcount(iteratee, maxargs=3)
+
+ for index, item in iterable:
+ result = callit(iteratee, result, item, index, argcount=argcount)
+
+ return result
+
+
+@t.overload
+def reduce_right(
+ collection: t.Mapping[T, T2],
+ iteratee: t.Callable[[T3, T2, T], T3],
+ accumulator: T3,
+) -> T3: ...
+
+
+@t.overload
+def reduce_right(
+ collection: t.Mapping[t.Any, T2],
+ iteratee: t.Callable[[T3, T2], T3],
+ accumulator: T3,
+) -> T3: ...
+
+
+@t.overload
+def reduce_right(
+ collection: t.Mapping[t.Any, t.Any],
+ iteratee: t.Callable[[T3], T3],
+ accumulator: T3,
+) -> T3: ...
+
+
+@t.overload
+def reduce_right(
+ collection: t.Mapping[T, T2],
+ iteratee: t.Callable[[T2, T2, T], T2],
+ accumulator: None = None,
+) -> T2: ...
+
+
+@t.overload
+def reduce_right(
+ collection: t.Mapping[t.Any, T2],
+ iteratee: t.Callable[[T2, T2], T2],
+ accumulator: None = None,
+) -> T2: ...
+
+
+@t.overload
+def reduce_right(
+ collection: t.Mapping[t.Any, t.Any],
+ iteratee: t.Callable[[T], T],
+ accumulator: None = None,
+) -> T: ...
+
+
+@t.overload
+def reduce_right(
+ collection: t.Iterable[T],
+ iteratee: t.Callable[[T2, T, int], T2],
+ accumulator: T2,
+) -> T2: ...
+
+
+@t.overload
+def reduce_right(
+ collection: t.Iterable[T],
+ iteratee: t.Callable[[T2, T], T2],
+ accumulator: T2,
+) -> T2: ...
+
+
+@t.overload
+def reduce_right(
+ collection: t.Iterable[t.Any],
+ iteratee: t.Callable[[T2], T2],
+ accumulator: T2,
+) -> T2: ...
+
+
+@t.overload
+def reduce_right(
+ collection: t.Iterable[T],
+ iteratee: t.Callable[[T, T, int], T],
+ accumulator: None = None,
+) -> T: ...
+
+
+@t.overload
+def reduce_right(
+ collection: t.Iterable[T],
+ iteratee: t.Callable[[T, T], T],
+ accumulator: None = None,
+) -> T: ...
+
+
+@t.overload
+def reduce_right(
+ collection: t.Iterable[t.Any],
+ iteratee: t.Callable[[T], T],
+ accumulator: None = None,
+) -> T: ...
+
+
+@t.overload
+def reduce_right(
+ collection: t.Iterable[T], iteratee: None = None, accumulator: t.Union[T, None] = None
+) -> T: ...
+
+
+def reduce_right(collection, iteratee=None, accumulator=None):
+ """
+ This method is like :func:`reduce_` except that it iterates over elements of a `collection` from
+ right to left.
+
+ Args:
+ collection: Collection to iterate over.
+ iteratee: Iteratee applied per iteration.
+ accumulator: Initial value of aggregator. Default is to use the result of
+ the first iteration.
+
+ Returns:
+ Accumulator object containing results of reduction.
+
+ Example:
+
+ >>> reduce_right([1, 2, 3, 4], lambda total, x: total**x)
+ 4096
+
+ .. versionadded:: 1.0.0
+
+ .. versionchanged:: 3.2.1
+ Fix bug where collection was not reversed correctly.
+
+ .. versionchanged:: 4.0.0
+ Removed alias ``foldr``.
+ """
+ if not isinstance(collection, dict):
+ collection = list(collection)[::-1]
+
+ return reduce_(collection, iteratee, accumulator)
+
+
+@t.overload
+def reductions(
+ collection: t.Mapping[T, T2],
+ iteratee: t.Callable[[T3, T2, T], T3],
+ accumulator: T3,
+ from_right: bool = False,
+) -> t.List[T3]: ...
+
+
+@t.overload
+def reductions(
+ collection: t.Mapping[t.Any, T2],
+ iteratee: t.Callable[[T3, T2], T3],
+ accumulator: T3,
+ from_right: bool = False,
+) -> t.List[T3]: ...
+
+
+@t.overload
+def reductions(
+ collection: t.Mapping[t.Any, t.Any],
+ iteratee: t.Callable[[T3], T3],
+ accumulator: T3,
+ from_right: bool = False,
+) -> t.List[T3]: ...
+
+
+@t.overload
+def reductions(
+ collection: t.Mapping[T, T2],
+ iteratee: t.Callable[[T2, T2, T], T2],
+ accumulator: None = None,
+ from_right: bool = False,
+) -> t.List[T2]: ...
+
+
+@t.overload
+def reductions(
+ collection: t.Mapping[t.Any, T2],
+ iteratee: t.Callable[[T2, T2], T2],
+ accumulator: None = None,
+ from_right: bool = False,
+) -> t.List[T2]: ...
+
+
+@t.overload
+def reductions(
+ collection: t.Mapping[t.Any, t.Any],
+ iteratee: t.Callable[[T], T],
+ accumulator: None = None,
+ from_right: bool = False,
+) -> t.List[T]: ...
+
+
+@t.overload
+def reductions(
+ collection: t.Iterable[T],
+ iteratee: t.Callable[[T2, T, int], T2],
+ accumulator: T2,
+ from_right: bool = False,
+) -> t.List[T2]: ...
+
+
+@t.overload
+def reductions(
+ collection: t.Iterable[T],
+ iteratee: t.Callable[[T2, T], T2],
+ accumulator: T2,
+ from_right: bool = False,
+) -> t.List[T2]: ...
+
+
+@t.overload
+def reductions(
+ collection: t.Iterable[t.Any],
+ iteratee: t.Callable[[T2], T2],
+ accumulator: T2,
+ from_right: bool = False,
+) -> t.List[T2]: ...
+
+
+@t.overload
+def reductions(
+ collection: t.Iterable[T],
+ iteratee: t.Callable[[T, T, int], T],
+ accumulator: None = None,
+ from_right: bool = False,
+) -> t.List[T]: ...
+
+
+@t.overload
+def reductions(
+ collection: t.Iterable[T],
+ iteratee: t.Callable[[T, T], T],
+ accumulator: None = None,
+ from_right: bool = False,
+) -> t.List[T]: ...
+
+
+@t.overload
+def reductions(
+ collection: t.Iterable[t.Any],
+ iteratee: t.Callable[[T], T],
+ accumulator: None = None,
+ from_right: bool = False,
+) -> t.List[T]: ...
+
+
+@t.overload
+def reductions(
+ collection: t.Iterable[T],
+ iteratee: None = None,
+ accumulator: t.Union[T, None] = None,
+ from_right: bool = False,
+) -> t.List[T]: ...
+
+
+def reductions(collection, iteratee=None, accumulator=None, from_right=False):
+ """
+ This function is like :func:`reduce_` except that it returns a list of every intermediate value
+ in the reduction operation.
+
+ Args:
+ collection: Collection to iterate over.
+ iteratee: Iteratee applied per iteration.
+ accumulator: Initial value of aggregator. Default is to use the result of
+ the first iteration.
+
+ Returns:
+ Results of each reduction operation.
+
+ Example:
+
+ >>> reductions([1, 2, 3, 4], lambda total, x: total * x)
+ [2, 6, 24]
+
+ Note:
+ The last element of the returned list would be the result of using
+ :func:`reduce_`.
+
+ .. versionadded:: 2.0.0
+ """
+ if iteratee is None:
+ iteratee = pyd.identity
+ argcount = 1
+ else:
+ argcount = getargcount(iteratee, maxargs=3)
+
+ results = []
+
+ def interceptor(result, item, index):
+ result = callit(iteratee, result, item, index, argcount=argcount)
+ results.append(result)
+ return result
+
+ reducer = reduce_right if from_right else reduce_
+ reducer(collection, interceptor, accumulator)
+
+ return results
+
+
+@t.overload
+def reductions_right(
+ collection: t.Mapping[T, T2],
+ iteratee: t.Callable[[T3, T2, T], T3],
+ accumulator: T3,
+) -> t.List[T3]: ...
+
+
+@t.overload
+def reductions_right(
+ collection: t.Mapping[t.Any, T2],
+ iteratee: t.Callable[[T3, T2], T3],
+ accumulator: T3,
+) -> t.List[T3]: ...
+
+
+@t.overload
+def reductions_right(
+ collection: t.Mapping[t.Any, t.Any],
+ iteratee: t.Callable[[T3], T3],
+ accumulator: T3,
+) -> t.List[T3]: ...
+
+
+@t.overload
+def reductions_right(
+ collection: t.Mapping[T, T2],
+ iteratee: t.Callable[[T2, T2, T], T2],
+ accumulator: None = None,
+) -> t.List[T2]: ...
+
+
+@t.overload
+def reductions_right(
+ collection: t.Mapping[t.Any, T2],
+ iteratee: t.Callable[[T2, T2], T2],
+ accumulator: None = None,
+) -> t.List[T2]: ...
+
+
+@t.overload
+def reductions_right(
+ collection: t.Mapping[t.Any, t.Any],
+ iteratee: t.Callable[[T], T],
+ accumulator: None = None,
+) -> t.List[T]: ...
+
+
+@t.overload
+def reductions_right(
+ collection: t.Iterable[T],
+ iteratee: t.Callable[[T2, T, int], T2],
+ accumulator: T2,
+) -> t.List[T2]: ...
+
+
+@t.overload
+def reductions_right(
+ collection: t.Iterable[T],
+ iteratee: t.Callable[[T2, T], T2],
+ accumulator: T2,
+) -> t.List[T2]: ...
+
+
+@t.overload
+def reductions_right(
+ collection: t.Iterable[t.Any],
+ iteratee: t.Callable[[T2], T2],
+ accumulator: T2,
+) -> t.List[T2]: ...
+
+
+@t.overload
+def reductions_right(
+ collection: t.Iterable[T],
+ iteratee: t.Callable[[T, T, int], T],
+ accumulator: None = None,
+) -> t.List[T]: ...
+
+
+@t.overload
+def reductions_right(
+ collection: t.Iterable[T],
+ iteratee: t.Callable[[T, T], T],
+ accumulator: None = None,
+) -> t.List[T]: ...
+
+
+@t.overload
+def reductions_right(
+ collection: t.Iterable[t.Any],
+ iteratee: t.Callable[[T], T],
+ accumulator: None = None,
+) -> t.List[T]: ...
+
+
+@t.overload
+def reductions_right(
+ collection: t.Iterable[T], iteratee: None = None, accumulator: t.Union[T, None] = None
+) -> t.List[T]: ...
+
+
+def reductions_right(collection, iteratee=None, accumulator=None):
+ """
+ This method is like :func:`reductions` except that it iterates over elements of a `collection`
+ from right to left.
+
+ Args:
+ collection: Collection to iterate over.
+ iteratee: Iteratee applied per iteration.
+ accumulator: Initial value of aggregator. Default is to use the result of
+ the first iteration.
+
+ Returns:
+ Results of each reduction operation.
+
+ Example:
+
+ >>> reductions_right([1, 2, 3, 4], lambda total, x: total**x)
+ [64, 4096, 4096]
+
+ Note:
+ The last element of the returned list would be the result of using
+ :func:`reduce_`.
+
+ .. versionadded:: 2.0.0
+ """
+ return reductions(collection, iteratee, accumulator, from_right=True)
+
+
+@t.overload
+def reject(
+ collection: t.Mapping[T, T2],
+ predicate: t.Union[t.Callable[[T2, T, t.Dict[T, T2]], t.Any], IterateeObjT, None] = None,
+) -> t.List[T2]: ...
+
+
+@t.overload
+def reject(
+ collection: t.Mapping[T, T2],
+ predicate: t.Union[t.Callable[[T2, T], t.Any], IterateeObjT, None] = None,
+) -> t.List[T2]: ...
+
+
+@t.overload
+def reject(
+ collection: t.Mapping[t.Any, T2],
+ predicate: t.Union[t.Callable[[T2], t.Any], IterateeObjT, None] = None,
+) -> t.List[T2]: ...
+
+
+@t.overload
+def reject(
+ collection: t.Iterable[T],
+ predicate: t.Union[t.Callable[[T, int, t.List[T]], t.Any], IterateeObjT, None] = None,
+) -> t.List[T]: ...
+
+
+@t.overload
+def reject(
+ collection: t.Iterable[T],
+ predicate: t.Union[t.Callable[[T, int], t.Any], IterateeObjT, None] = None,
+) -> t.List[T]: ...
+
+
+@t.overload
+def reject(
+ collection: t.Iterable[T],
+ predicate: t.Union[t.Callable[[T], t.Any], IterateeObjT, None] = None,
+) -> t.List[T]: ...
+
+
+def reject(collection, predicate=None):
+ """
+ The opposite of :func:`filter_` this method returns the elements of a collection that the
+ predicate does **not** return truthy for.
+
+ Args:
+ collection: Collection to iterate over.
+ predicate: Predicate applied per iteration.
+
+ Returns:
+ Rejected elements of `collection`.
+
+ Example:
+
+ >>> reject([1, 2, 3, 4], lambda x: x >= 3)
+ [1, 2]
+ >>> reject([{"a": 0}, {"a": 1}, {"a": 2}], "a")
+ [{'a': 0}]
+ >>> reject([{"a": 0}, {"a": 1}, {"a": 2}], {"a": 1})
+ [{'a': 0}, {'a': 2}]
+
+ .. versionadded:: 1.0.0
+ """
+ return [value for is_true, value, _, _ in iteriteratee(collection, predicate) if not is_true]
+
+
+def sample(collection: t.Sequence[T]) -> T:
+ """
+ Retrieves a random element from a given `collection`.
+
+ Args:
+ collection: Collection to iterate over.
+
+ Returns:
+ Random element from the given collection.
+
+ Example:
+
+ >>> items = [1, 2, 3, 4, 5]
+ >>> results = sample(items)
+ >>> assert results in items
+
+ .. versionadded:: 1.0.0
+
+ .. versionchanged:: 4.0.0
+ Moved multiple samples functionality to :func:`sample_size`. This
+ function now only returns a single random sample.
+ """
+ return random.choice(collection)
+
+
+def sample_size(collection: t.Sequence[T], n: t.Union[int, None] = None) -> t.List[T]:
+ """
+ Retrieves list of `n` random elements from a collection.
+
+ Args:
+ collection: Collection to iterate over.
+ n: Number of random samples to return.
+
+ Returns:
+ List of `n` sampled collection values.
+
+ Examples:
+
+ >>> items = [1, 2, 3, 4, 5]
+ >>> results = sample_size(items, 2)
+ >>> assert len(results) == 2
+ >>> assert set(items).intersection(results) == set(results)
+
+ .. versionadded:: 4.0.0
+ """
+ num = min(n or 1, len(collection))
+ return random.sample(collection, num)
+
+
+@t.overload
+def shuffle(collection: t.Mapping[t.Any, T]) -> t.List[T]: ...
+
+
+@t.overload
+def shuffle(collection: t.Iterable[T]) -> t.List[T]: ...
+
+
+def shuffle(collection):
+ """
+ Creates a list of shuffled values, using a version of the Fisher-Yates shuffle.
+
+ Args:
+ collection: Collection to iterate over.
+
+ Returns:
+ Shuffled list of values.
+
+ Example:
+
+ >>> items = [1, 2, 3, 4]
+ >>> results = shuffle(items)
+ >>> assert len(results) == len(items)
+ >>> assert set(results) == set(items)
+
+ .. versionadded:: 1.0.0
+ """
+ if isinstance(collection, dict):
+ collection = collection.values()
+
+ # Make copy of collection since random.shuffle works on list in-place.
+ collection = list(collection)
+
+ # NOTE: random.shuffle uses Fisher-Yates.
+ random.shuffle(collection)
+
+ return collection
+
+
+def size(collection: t.Sized) -> int:
+ """
+ Gets the size of the `collection` by returning `len(collection)` for iterable objects.
+
+ Args:
+ collection: Collection to iterate over.
+
+ Returns:
+ Collection length.
+
+ Example:
+
+ >>> size([1, 2, 3, 4])
+ 4
+
+ .. versionadded:: 1.0.0
+ """
+ return len(collection)
+
+
+def some(
+ collection: t.Iterable[T], predicate: t.Union[t.Callable[[T], t.Any], None] = None
+) -> bool:
+ """
+ Checks if the predicate returns a truthy value for any element of a collection. The predicate is
+ invoked with three arguments: ``(value, index|key, collection)``. If a property name is passed
+ for predicate, the created :func:`map_` style predicate will return the property value of the
+ given element. If an object is passed for predicate, the created :func:`.matches` style
+ predicate will return ``True`` for elements that have the properties of the given object, else
+ ``False``.
+
+ Args:
+ collection: Collection to iterate over.
+ predicate: Predicate applied per iteration.
+
+ Returns:
+ Whether any of the elements are truthy.
+
+ Example:
+
+ >>> some([False, True, 0])
+ True
+ >>> some([False, 0, None])
+ False
+ >>> some([1, 2, 3, 4], lambda x: x >= 3)
+ True
+ >>> some([1, 2, 3, 4], lambda x: x == 0)
+ False
+
+ .. versionadded:: 1.0.0
+
+ .. versionchanged:: 4.0.0
+ Removed alias ``any_``.
+ """
+ if predicate:
+ cbk = pyd.iteratee(predicate)
+ collection = (cbk(item) for item in collection)
+
+ return any(collection)
+
+
+@t.overload
+def sort_by(
+ collection: t.Mapping[t.Any, T2],
+ iteratee: t.Union[t.Callable[[T2], t.Any], IterateeObjT, None] = None,
+ reverse: bool = False,
+) -> t.List[T2]: ...
+
+
+@t.overload
+def sort_by(
+ collection: t.Iterable[T],
+ iteratee: t.Union[t.Callable[[T], t.Any], IterateeObjT, None] = None,
+ reverse: bool = False,
+) -> t.List[T]: ...
+
+
+def sort_by(collection, iteratee=None, reverse=False):
+ """
+ Creates a list of elements, sorted in ascending order by the results of running each element in
+ a `collection` through the iteratee.
+
+ Args:
+ collection: Collection to iterate over.
+ iteratee: Iteratee applied per iteration.
+ reverse: Whether to reverse the sort. Defaults to ``False``.
+
+ Returns:
+ Sorted list.
+
+ Example:
+
+ >>> sort_by({"a": 2, "b": 3, "c": 1})
+ [1, 2, 3]
+ >>> sort_by({"a": 2, "b": 3, "c": 1}, reverse=True)
+ [3, 2, 1]
+ >>> sort_by([{"a": 2}, {"a": 3}, {"a": 1}], "a")
+ [{'a': 1}, {'a': 2}, {'a': 3}]
+
+ .. versionadded:: 1.0.0
+ """
+ if isinstance(collection, dict):
+ collection = collection.values()
+
+ return sorted(collection, key=pyd.iteratee(iteratee), reverse=reverse)
+
+
+#
+# Utility methods not a part of the main API
+#
+
+
+def itermap(
+ collection: t.Iterable[t.Any],
+ iteratee: t.Union[t.Callable[..., t.Any], IterateeObjT, None] = None,
+) -> t.Generator[t.Any, None, None]:
+ """Generative mapper."""
+ for result in iteriteratee(collection, iteratee):
+ yield result[0]