aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/pydantic/_internal/_validators.py
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/pydantic/_internal/_validators.py
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are hereHEADmaster
Diffstat (limited to '.venv/lib/python3.12/site-packages/pydantic/_internal/_validators.py')
-rw-r--r--.venv/lib/python3.12/site-packages/pydantic/_internal/_validators.py424
1 files changed, 424 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/pydantic/_internal/_validators.py b/.venv/lib/python3.12/site-packages/pydantic/_internal/_validators.py
new file mode 100644
index 00000000..5d165c04
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/pydantic/_internal/_validators.py
@@ -0,0 +1,424 @@
+"""Validator functions for standard library types.
+
+Import of this module is deferred since it contains imports of many standard library modules.
+"""
+
+from __future__ import annotations as _annotations
+
+import math
+import re
+import typing
+from decimal import Decimal
+from fractions import Fraction
+from ipaddress import IPv4Address, IPv4Interface, IPv4Network, IPv6Address, IPv6Interface, IPv6Network
+from typing import Any, Callable, Union
+
+from pydantic_core import PydanticCustomError, core_schema
+from pydantic_core._pydantic_core import PydanticKnownError
+
+
+def sequence_validator(
+ input_value: typing.Sequence[Any],
+ /,
+ validator: core_schema.ValidatorFunctionWrapHandler,
+) -> typing.Sequence[Any]:
+ """Validator for `Sequence` types, isinstance(v, Sequence) has already been called."""
+ value_type = type(input_value)
+
+ # We don't accept any plain string as a sequence
+ # Relevant issue: https://github.com/pydantic/pydantic/issues/5595
+ if issubclass(value_type, (str, bytes)):
+ raise PydanticCustomError(
+ 'sequence_str',
+ "'{type_name}' instances are not allowed as a Sequence value",
+ {'type_name': value_type.__name__},
+ )
+
+ # TODO: refactor sequence validation to validate with either a list or a tuple
+ # schema, depending on the type of the value.
+ # Additionally, we should be able to remove one of either this validator or the
+ # SequenceValidator in _std_types_schema.py (preferably this one, while porting over some logic).
+ # Effectively, a refactor for sequence validation is needed.
+ if value_type is tuple:
+ input_value = list(input_value)
+
+ v_list = validator(input_value)
+
+ # the rest of the logic is just re-creating the original type from `v_list`
+ if value_type is list:
+ return v_list
+ elif issubclass(value_type, range):
+ # return the list as we probably can't re-create the range
+ return v_list
+ elif value_type is tuple:
+ return tuple(v_list)
+ else:
+ # best guess at how to re-create the original type, more custom construction logic might be required
+ return value_type(v_list) # type: ignore[call-arg]
+
+
+def import_string(value: Any) -> Any:
+ if isinstance(value, str):
+ try:
+ return _import_string_logic(value)
+ except ImportError as e:
+ raise PydanticCustomError('import_error', 'Invalid python path: {error}', {'error': str(e)}) from e
+ else:
+ # otherwise we just return the value and let the next validator do the rest of the work
+ return value
+
+
+def _import_string_logic(dotted_path: str) -> Any:
+ """Inspired by uvicorn — dotted paths should include a colon before the final item if that item is not a module.
+ (This is necessary to distinguish between a submodule and an attribute when there is a conflict.).
+
+ If the dotted path does not include a colon and the final item is not a valid module, importing as an attribute
+ rather than a submodule will be attempted automatically.
+
+ So, for example, the following values of `dotted_path` result in the following returned values:
+ * 'collections': <module 'collections'>
+ * 'collections.abc': <module 'collections.abc'>
+ * 'collections.abc:Mapping': <class 'collections.abc.Mapping'>
+ * `collections.abc.Mapping`: <class 'collections.abc.Mapping'> (though this is a bit slower than the previous line)
+
+ An error will be raised under any of the following scenarios:
+ * `dotted_path` contains more than one colon (e.g., 'collections:abc:Mapping')
+ * the substring of `dotted_path` before the colon is not a valid module in the environment (e.g., '123:Mapping')
+ * the substring of `dotted_path` after the colon is not an attribute of the module (e.g., 'collections:abc123')
+ """
+ from importlib import import_module
+
+ components = dotted_path.strip().split(':')
+ if len(components) > 2:
+ raise ImportError(f"Import strings should have at most one ':'; received {dotted_path!r}")
+
+ module_path = components[0]
+ if not module_path:
+ raise ImportError(f'Import strings should have a nonempty module name; received {dotted_path!r}')
+
+ try:
+ module = import_module(module_path)
+ except ModuleNotFoundError as e:
+ if '.' in module_path:
+ # Check if it would be valid if the final item was separated from its module with a `:`
+ maybe_module_path, maybe_attribute = dotted_path.strip().rsplit('.', 1)
+ try:
+ return _import_string_logic(f'{maybe_module_path}:{maybe_attribute}')
+ except ImportError:
+ pass
+ raise ImportError(f'No module named {module_path!r}') from e
+ raise e
+
+ if len(components) > 1:
+ attribute = components[1]
+ try:
+ return getattr(module, attribute)
+ except AttributeError as e:
+ raise ImportError(f'cannot import name {attribute!r} from {module_path!r}') from e
+ else:
+ return module
+
+
+def pattern_either_validator(input_value: Any, /) -> typing.Pattern[Any]:
+ if isinstance(input_value, typing.Pattern):
+ return input_value
+ elif isinstance(input_value, (str, bytes)):
+ # todo strict mode
+ return compile_pattern(input_value) # type: ignore
+ else:
+ raise PydanticCustomError('pattern_type', 'Input should be a valid pattern')
+
+
+def pattern_str_validator(input_value: Any, /) -> typing.Pattern[str]:
+ if isinstance(input_value, typing.Pattern):
+ if isinstance(input_value.pattern, str):
+ return input_value
+ else:
+ raise PydanticCustomError('pattern_str_type', 'Input should be a string pattern')
+ elif isinstance(input_value, str):
+ return compile_pattern(input_value)
+ elif isinstance(input_value, bytes):
+ raise PydanticCustomError('pattern_str_type', 'Input should be a string pattern')
+ else:
+ raise PydanticCustomError('pattern_type', 'Input should be a valid pattern')
+
+
+def pattern_bytes_validator(input_value: Any, /) -> typing.Pattern[bytes]:
+ if isinstance(input_value, typing.Pattern):
+ if isinstance(input_value.pattern, bytes):
+ return input_value
+ else:
+ raise PydanticCustomError('pattern_bytes_type', 'Input should be a bytes pattern')
+ elif isinstance(input_value, bytes):
+ return compile_pattern(input_value)
+ elif isinstance(input_value, str):
+ raise PydanticCustomError('pattern_bytes_type', 'Input should be a bytes pattern')
+ else:
+ raise PydanticCustomError('pattern_type', 'Input should be a valid pattern')
+
+
+PatternType = typing.TypeVar('PatternType', str, bytes)
+
+
+def compile_pattern(pattern: PatternType) -> typing.Pattern[PatternType]:
+ try:
+ return re.compile(pattern)
+ except re.error:
+ raise PydanticCustomError('pattern_regex', 'Input should be a valid regular expression')
+
+
+def ip_v4_address_validator(input_value: Any, /) -> IPv4Address:
+ if isinstance(input_value, IPv4Address):
+ return input_value
+
+ try:
+ return IPv4Address(input_value)
+ except ValueError:
+ raise PydanticCustomError('ip_v4_address', 'Input is not a valid IPv4 address')
+
+
+def ip_v6_address_validator(input_value: Any, /) -> IPv6Address:
+ if isinstance(input_value, IPv6Address):
+ return input_value
+
+ try:
+ return IPv6Address(input_value)
+ except ValueError:
+ raise PydanticCustomError('ip_v6_address', 'Input is not a valid IPv6 address')
+
+
+def ip_v4_network_validator(input_value: Any, /) -> IPv4Network:
+ """Assume IPv4Network initialised with a default `strict` argument.
+
+ See more:
+ https://docs.python.org/library/ipaddress.html#ipaddress.IPv4Network
+ """
+ if isinstance(input_value, IPv4Network):
+ return input_value
+
+ try:
+ return IPv4Network(input_value)
+ except ValueError:
+ raise PydanticCustomError('ip_v4_network', 'Input is not a valid IPv4 network')
+
+
+def ip_v6_network_validator(input_value: Any, /) -> IPv6Network:
+ """Assume IPv6Network initialised with a default `strict` argument.
+
+ See more:
+ https://docs.python.org/library/ipaddress.html#ipaddress.IPv6Network
+ """
+ if isinstance(input_value, IPv6Network):
+ return input_value
+
+ try:
+ return IPv6Network(input_value)
+ except ValueError:
+ raise PydanticCustomError('ip_v6_network', 'Input is not a valid IPv6 network')
+
+
+def ip_v4_interface_validator(input_value: Any, /) -> IPv4Interface:
+ if isinstance(input_value, IPv4Interface):
+ return input_value
+
+ try:
+ return IPv4Interface(input_value)
+ except ValueError:
+ raise PydanticCustomError('ip_v4_interface', 'Input is not a valid IPv4 interface')
+
+
+def ip_v6_interface_validator(input_value: Any, /) -> IPv6Interface:
+ if isinstance(input_value, IPv6Interface):
+ return input_value
+
+ try:
+ return IPv6Interface(input_value)
+ except ValueError:
+ raise PydanticCustomError('ip_v6_interface', 'Input is not a valid IPv6 interface')
+
+
+def fraction_validator(input_value: Any, /) -> Fraction:
+ if isinstance(input_value, Fraction):
+ return input_value
+
+ try:
+ return Fraction(input_value)
+ except ValueError:
+ raise PydanticCustomError('fraction_parsing', 'Input is not a valid fraction')
+
+
+def forbid_inf_nan_check(x: Any) -> Any:
+ if not math.isfinite(x):
+ raise PydanticKnownError('finite_number')
+ return x
+
+
+def _safe_repr(v: Any) -> int | float | str:
+ """The context argument for `PydanticKnownError` requires a number or str type, so we do a simple repr() coercion for types like timedelta.
+
+ See tests/test_types.py::test_annotated_metadata_any_order for some context.
+ """
+ if isinstance(v, (int, float, str)):
+ return v
+ return repr(v)
+
+
+def greater_than_validator(x: Any, gt: Any) -> Any:
+ try:
+ if not (x > gt):
+ raise PydanticKnownError('greater_than', {'gt': _safe_repr(gt)})
+ return x
+ except TypeError:
+ raise TypeError(f"Unable to apply constraint 'gt' to supplied value {x}")
+
+
+def greater_than_or_equal_validator(x: Any, ge: Any) -> Any:
+ try:
+ if not (x >= ge):
+ raise PydanticKnownError('greater_than_equal', {'ge': _safe_repr(ge)})
+ return x
+ except TypeError:
+ raise TypeError(f"Unable to apply constraint 'ge' to supplied value {x}")
+
+
+def less_than_validator(x: Any, lt: Any) -> Any:
+ try:
+ if not (x < lt):
+ raise PydanticKnownError('less_than', {'lt': _safe_repr(lt)})
+ return x
+ except TypeError:
+ raise TypeError(f"Unable to apply constraint 'lt' to supplied value {x}")
+
+
+def less_than_or_equal_validator(x: Any, le: Any) -> Any:
+ try:
+ if not (x <= le):
+ raise PydanticKnownError('less_than_equal', {'le': _safe_repr(le)})
+ return x
+ except TypeError:
+ raise TypeError(f"Unable to apply constraint 'le' to supplied value {x}")
+
+
+def multiple_of_validator(x: Any, multiple_of: Any) -> Any:
+ try:
+ if x % multiple_of:
+ raise PydanticKnownError('multiple_of', {'multiple_of': _safe_repr(multiple_of)})
+ return x
+ except TypeError:
+ raise TypeError(f"Unable to apply constraint 'multiple_of' to supplied value {x}")
+
+
+def min_length_validator(x: Any, min_length: Any) -> Any:
+ try:
+ if not (len(x) >= min_length):
+ raise PydanticKnownError(
+ 'too_short', {'field_type': 'Value', 'min_length': min_length, 'actual_length': len(x)}
+ )
+ return x
+ except TypeError:
+ raise TypeError(f"Unable to apply constraint 'min_length' to supplied value {x}")
+
+
+def max_length_validator(x: Any, max_length: Any) -> Any:
+ try:
+ if len(x) > max_length:
+ raise PydanticKnownError(
+ 'too_long',
+ {'field_type': 'Value', 'max_length': max_length, 'actual_length': len(x)},
+ )
+ return x
+ except TypeError:
+ raise TypeError(f"Unable to apply constraint 'max_length' to supplied value {x}")
+
+
+def _extract_decimal_digits_info(decimal: Decimal) -> tuple[int, int]:
+ """Compute the total number of digits and decimal places for a given [`Decimal`][decimal.Decimal] instance.
+
+ This function handles both normalized and non-normalized Decimal instances.
+ Example: Decimal('1.230') -> 4 digits, 3 decimal places
+
+ Args:
+ decimal (Decimal): The decimal number to analyze.
+
+ Returns:
+ tuple[int, int]: A tuple containing the number of decimal places and total digits.
+
+ Though this could be divided into two separate functions, the logic is easier to follow if we couple the computation
+ of the number of decimals and digits together.
+ """
+ decimal_tuple = decimal.as_tuple()
+ if not isinstance(decimal_tuple.exponent, int):
+ raise TypeError(f'Unable to extract decimal digits info from supplied value {decimal}')
+ exponent = decimal_tuple.exponent
+ num_digits = len(decimal_tuple.digits)
+
+ if exponent >= 0:
+ # A positive exponent adds that many trailing zeros
+ # Ex: digit_tuple=(1, 2, 3), exponent=2 -> 12300 -> 0 decimal places, 5 digits
+ num_digits += exponent
+ decimal_places = 0
+ else:
+ # If the absolute value of the negative exponent is larger than the
+ # number of digits, then it's the same as the number of digits,
+ # because it'll consume all the digits in digit_tuple and then
+ # add abs(exponent) - len(digit_tuple) leading zeros after the decimal point.
+ # Ex: digit_tuple=(1, 2, 3), exponent=-2 -> 1.23 -> 2 decimal places, 3 digits
+ # Ex: digit_tuple=(1, 2, 3), exponent=-4 -> 0.0123 -> 4 decimal places, 4 digits
+ decimal_places = abs(exponent)
+ num_digits = max(num_digits, decimal_places)
+
+ return decimal_places, num_digits
+
+
+def max_digits_validator(x: Any, max_digits: Any) -> Any:
+ _, num_digits = _extract_decimal_digits_info(x)
+ _, normalized_num_digits = _extract_decimal_digits_info(x.normalize())
+
+ try:
+ if (num_digits > max_digits) and (normalized_num_digits > max_digits):
+ raise PydanticKnownError(
+ 'decimal_max_digits',
+ {'max_digits': max_digits},
+ )
+ return x
+ except TypeError:
+ raise TypeError(f"Unable to apply constraint 'max_digits' to supplied value {x}")
+
+
+def decimal_places_validator(x: Any, decimal_places: Any) -> Any:
+ decimal_places_, _ = _extract_decimal_digits_info(x)
+ normalized_decimal_places, _ = _extract_decimal_digits_info(x.normalize())
+
+ try:
+ if (decimal_places_ > decimal_places) and (normalized_decimal_places > decimal_places):
+ raise PydanticKnownError(
+ 'decimal_max_places',
+ {'decimal_places': decimal_places},
+ )
+ return x
+ except TypeError:
+ raise TypeError(f"Unable to apply constraint 'decimal_places' to supplied value {x}")
+
+
+NUMERIC_VALIDATOR_LOOKUP: dict[str, Callable] = {
+ 'gt': greater_than_validator,
+ 'ge': greater_than_or_equal_validator,
+ 'lt': less_than_validator,
+ 'le': less_than_or_equal_validator,
+ 'multiple_of': multiple_of_validator,
+ 'min_length': min_length_validator,
+ 'max_length': max_length_validator,
+ 'max_digits': max_digits_validator,
+ 'decimal_places': decimal_places_validator,
+}
+
+IpType = Union[IPv4Address, IPv6Address, IPv4Network, IPv6Network, IPv4Interface, IPv6Interface]
+
+IP_VALIDATOR_LOOKUP: dict[type[IpType], Callable] = {
+ IPv4Address: ip_v4_address_validator,
+ IPv6Address: ip_v6_address_validator,
+ IPv4Network: ip_v4_network_validator,
+ IPv6Network: ip_v6_network_validator,
+ IPv4Interface: ip_v4_interface_validator,
+ IPv6Interface: ip_v6_interface_validator,
+}