diff options
author | S. Solomon Darnell | 2025-03-28 21:52:21 -0500 |
---|---|---|
committer | S. Solomon Darnell | 2025-03-28 21:52:21 -0500 |
commit | 4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch) | |
tree | ee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/pydantic/_internal/_model_construction.py | |
parent | cc961e04ba734dd72309fb548a2f97d67d578813 (diff) | |
download | gn-ai-master.tar.gz |
Diffstat (limited to '.venv/lib/python3.12/site-packages/pydantic/_internal/_model_construction.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/pydantic/_internal/_model_construction.py | 792 |
1 files changed, 792 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/pydantic/_internal/_model_construction.py b/.venv/lib/python3.12/site-packages/pydantic/_internal/_model_construction.py new file mode 100644 index 00000000..7670ff80 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/pydantic/_internal/_model_construction.py @@ -0,0 +1,792 @@ +"""Private logic for creating models.""" + +from __future__ import annotations as _annotations + +import builtins +import operator +import sys +import typing +import warnings +import weakref +from abc import ABCMeta +from functools import lru_cache, partial +from types import FunctionType +from typing import Any, Callable, Generic, Literal, NoReturn, cast + +from pydantic_core import PydanticUndefined, SchemaSerializer +from typing_extensions import TypeAliasType, dataclass_transform, deprecated, get_args + +from ..errors import PydanticUndefinedAnnotation, PydanticUserError +from ..plugin._schema_validator import create_schema_validator +from ..warnings import GenericBeforeBaseModelWarning, PydanticDeprecatedSince20 +from ._config import ConfigWrapper +from ._decorators import DecoratorInfos, PydanticDescriptorProxy, get_attribute_from_bases, unwrap_wrapped_function +from ._fields import collect_model_fields, is_valid_field_name, is_valid_privateattr_name +from ._generate_schema import GenerateSchema +from ._generics import PydanticGenericMetadata, get_model_typevars_map +from ._import_utils import import_cached_base_model, import_cached_field_info +from ._mock_val_ser import set_model_mocks +from ._namespace_utils import NsResolver +from ._schema_generation_shared import CallbackGetCoreSchemaHandler +from ._signature import generate_pydantic_signature +from ._typing_extra import ( + _make_forward_ref, + eval_type_backport, + is_annotated, + is_classvar_annotation, + parent_frame_namespace, +) +from ._utils import LazyClassAttribute, SafeGetItemProxy + +if typing.TYPE_CHECKING: + from ..fields import ComputedFieldInfo, FieldInfo, ModelPrivateAttr + from ..fields import Field as PydanticModelField + from ..fields import PrivateAttr as PydanticModelPrivateAttr + from ..main import BaseModel +else: + # See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915 + # and https://youtrack.jetbrains.com/issue/PY-51428 + DeprecationWarning = PydanticDeprecatedSince20 + PydanticModelField = object() + PydanticModelPrivateAttr = object() + +object_setattr = object.__setattr__ + + +class _ModelNamespaceDict(dict): + """A dictionary subclass that intercepts attribute setting on model classes and + warns about overriding of decorators. + """ + + def __setitem__(self, k: str, v: object) -> None: + existing: Any = self.get(k, None) + if existing and v is not existing and isinstance(existing, PydanticDescriptorProxy): + warnings.warn(f'`{k}` overrides an existing Pydantic `{existing.decorator_info.decorator_repr}` decorator') + + return super().__setitem__(k, v) + + +def NoInitField( + *, + init: Literal[False] = False, +) -> Any: + """Only for typing purposes. Used as default value of `__pydantic_fields_set__`, + `__pydantic_extra__`, `__pydantic_private__`, so they could be ignored when + synthesizing the `__init__` signature. + """ + + +@dataclass_transform(kw_only_default=True, field_specifiers=(PydanticModelField, PydanticModelPrivateAttr, NoInitField)) +class ModelMetaclass(ABCMeta): + def __new__( + mcs, + cls_name: str, + bases: tuple[type[Any], ...], + namespace: dict[str, Any], + __pydantic_generic_metadata__: PydanticGenericMetadata | None = None, + __pydantic_reset_parent_namespace__: bool = True, + _create_model_module: str | None = None, + **kwargs: Any, + ) -> type: + """Metaclass for creating Pydantic models. + + Args: + cls_name: The name of the class to be created. + bases: The base classes of the class to be created. + namespace: The attribute dictionary of the class to be created. + __pydantic_generic_metadata__: Metadata for generic models. + __pydantic_reset_parent_namespace__: Reset parent namespace. + _create_model_module: The module of the class to be created, if created by `create_model`. + **kwargs: Catch-all for any other keyword arguments. + + Returns: + The new class created by the metaclass. + """ + # Note `ModelMetaclass` refers to `BaseModel`, but is also used to *create* `BaseModel`, so we rely on the fact + # that `BaseModel` itself won't have any bases, but any subclass of it will, to determine whether the `__new__` + # call we're in the middle of is for the `BaseModel` class. + if bases: + base_field_names, class_vars, base_private_attributes = mcs._collect_bases_data(bases) + + config_wrapper = ConfigWrapper.for_model(bases, namespace, kwargs) + namespace['model_config'] = config_wrapper.config_dict + private_attributes = inspect_namespace( + namespace, config_wrapper.ignored_types, class_vars, base_field_names + ) + if private_attributes or base_private_attributes: + original_model_post_init = get_model_post_init(namespace, bases) + if original_model_post_init is not None: + # if there are private_attributes and a model_post_init function, we handle both + + def wrapped_model_post_init(self: BaseModel, context: Any, /) -> None: + """We need to both initialize private attributes and call the user-defined model_post_init + method. + """ + init_private_attributes(self, context) + original_model_post_init(self, context) + + namespace['model_post_init'] = wrapped_model_post_init + else: + namespace['model_post_init'] = init_private_attributes + + namespace['__class_vars__'] = class_vars + namespace['__private_attributes__'] = {**base_private_attributes, **private_attributes} + + cls = cast('type[BaseModel]', super().__new__(mcs, cls_name, bases, namespace, **kwargs)) + BaseModel_ = import_cached_base_model() + + mro = cls.__mro__ + if Generic in mro and mro.index(Generic) < mro.index(BaseModel_): + warnings.warn( + GenericBeforeBaseModelWarning( + 'Classes should inherit from `BaseModel` before generic classes (e.g. `typing.Generic[T]`) ' + 'for pydantic generics to work properly.' + ), + stacklevel=2, + ) + + cls.__pydantic_custom_init__ = not getattr(cls.__init__, '__pydantic_base_init__', False) + cls.__pydantic_post_init__ = ( + None if cls.model_post_init is BaseModel_.model_post_init else 'model_post_init' + ) + + cls.__pydantic_decorators__ = DecoratorInfos.build(cls) + + # Use the getattr below to grab the __parameters__ from the `typing.Generic` parent class + if __pydantic_generic_metadata__: + cls.__pydantic_generic_metadata__ = __pydantic_generic_metadata__ + else: + parent_parameters = getattr(cls, '__pydantic_generic_metadata__', {}).get('parameters', ()) + parameters = getattr(cls, '__parameters__', None) or parent_parameters + if parameters and parent_parameters and not all(x in parameters for x in parent_parameters): + from ..root_model import RootModelRootType + + missing_parameters = tuple(x for x in parameters if x not in parent_parameters) + if RootModelRootType in parent_parameters and RootModelRootType not in parameters: + # This is a special case where the user has subclassed `RootModel`, but has not parametrized + # RootModel with the generic type identifiers being used. Ex: + # class MyModel(RootModel, Generic[T]): + # root: T + # Should instead just be: + # class MyModel(RootModel[T]): + # root: T + parameters_str = ', '.join([x.__name__ for x in missing_parameters]) + error_message = ( + f'{cls.__name__} is a subclass of `RootModel`, but does not include the generic type identifier(s) ' + f'{parameters_str} in its parameters. ' + f'You should parametrize RootModel directly, e.g., `class {cls.__name__}(RootModel[{parameters_str}]): ...`.' + ) + else: + combined_parameters = parent_parameters + missing_parameters + parameters_str = ', '.join([str(x) for x in combined_parameters]) + generic_type_label = f'typing.Generic[{parameters_str}]' + error_message = ( + f'All parameters must be present on typing.Generic;' + f' you should inherit from {generic_type_label}.' + ) + if Generic not in bases: # pragma: no cover + # We raise an error here not because it is desirable, but because some cases are mishandled. + # It would be nice to remove this error and still have things behave as expected, it's just + # challenging because we are using a custom `__class_getitem__` to parametrize generic models, + # and not returning a typing._GenericAlias from it. + bases_str = ', '.join([x.__name__ for x in bases] + [generic_type_label]) + error_message += ( + f' Note: `typing.Generic` must go last: `class {cls.__name__}({bases_str}): ...`)' + ) + raise TypeError(error_message) + + cls.__pydantic_generic_metadata__ = { + 'origin': None, + 'args': (), + 'parameters': parameters, + } + + cls.__pydantic_complete__ = False # Ensure this specific class gets completed + + # preserve `__set_name__` protocol defined in https://peps.python.org/pep-0487 + # for attributes not in `new_namespace` (e.g. private attributes) + for name, obj in private_attributes.items(): + obj.__set_name__(cls, name) + + if __pydantic_reset_parent_namespace__: + cls.__pydantic_parent_namespace__ = build_lenient_weakvaluedict(parent_frame_namespace()) + parent_namespace: dict[str, Any] | None = getattr(cls, '__pydantic_parent_namespace__', None) + if isinstance(parent_namespace, dict): + parent_namespace = unpack_lenient_weakvaluedict(parent_namespace) + + ns_resolver = NsResolver(parent_namespace=parent_namespace) + + set_model_fields(cls, bases, config_wrapper, ns_resolver) + + if config_wrapper.frozen and '__hash__' not in namespace: + set_default_hash_func(cls, bases) + + complete_model_class( + cls, + cls_name, + config_wrapper, + raise_errors=False, + ns_resolver=ns_resolver, + create_model_module=_create_model_module, + ) + + # If this is placed before the complete_model_class call above, + # the generic computed fields return type is set to PydanticUndefined + cls.__pydantic_computed_fields__ = { + k: v.info for k, v in cls.__pydantic_decorators__.computed_fields.items() + } + + set_deprecated_descriptors(cls) + + # using super(cls, cls) on the next line ensures we only call the parent class's __pydantic_init_subclass__ + # I believe the `type: ignore` is only necessary because mypy doesn't realize that this code branch is + # only hit for _proper_ subclasses of BaseModel + super(cls, cls).__pydantic_init_subclass__(**kwargs) # type: ignore[misc] + return cls + else: + # These are instance variables, but have been assigned to `NoInitField` to trick the type checker. + for instance_slot in '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__': + namespace.pop( + instance_slot, + None, # In case the metaclass is used with a class other than `BaseModel`. + ) + namespace.get('__annotations__', {}).clear() + return super().__new__(mcs, cls_name, bases, namespace, **kwargs) + + if not typing.TYPE_CHECKING: # pragma: no branch + # We put `__getattr__` in a non-TYPE_CHECKING block because otherwise, mypy allows arbitrary attribute access + + def __getattr__(self, item: str) -> Any: + """This is necessary to keep attribute access working for class attribute access.""" + private_attributes = self.__dict__.get('__private_attributes__') + if private_attributes and item in private_attributes: + return private_attributes[item] + raise AttributeError(item) + + @classmethod + def __prepare__(cls, *args: Any, **kwargs: Any) -> dict[str, object]: + return _ModelNamespaceDict() + + def __instancecheck__(self, instance: Any) -> bool: + """Avoid calling ABC _abc_subclasscheck unless we're pretty sure. + + See #3829 and python/cpython#92810 + """ + return hasattr(instance, '__pydantic_validator__') and super().__instancecheck__(instance) + + @staticmethod + def _collect_bases_data(bases: tuple[type[Any], ...]) -> tuple[set[str], set[str], dict[str, ModelPrivateAttr]]: + BaseModel = import_cached_base_model() + + field_names: set[str] = set() + class_vars: set[str] = set() + private_attributes: dict[str, ModelPrivateAttr] = {} + for base in bases: + if issubclass(base, BaseModel) and base is not BaseModel: + # model_fields might not be defined yet in the case of generics, so we use getattr here: + field_names.update(getattr(base, '__pydantic_fields__', {}).keys()) + class_vars.update(base.__class_vars__) + private_attributes.update(base.__private_attributes__) + return field_names, class_vars, private_attributes + + @property + @deprecated('The `__fields__` attribute is deprecated, use `model_fields` instead.', category=None) + def __fields__(self) -> dict[str, FieldInfo]: + warnings.warn( + 'The `__fields__` attribute is deprecated, use `model_fields` instead.', + PydanticDeprecatedSince20, + stacklevel=2, + ) + return self.model_fields + + @property + def model_fields(self) -> dict[str, FieldInfo]: + """Get metadata about the fields defined on the model. + + Returns: + A mapping of field names to [`FieldInfo`][pydantic.fields.FieldInfo] objects. + """ + return getattr(self, '__pydantic_fields__', {}) + + @property + def model_computed_fields(self) -> dict[str, ComputedFieldInfo]: + """Get metadata about the computed fields defined on the model. + + Returns: + A mapping of computed field names to [`ComputedFieldInfo`][pydantic.fields.ComputedFieldInfo] objects. + """ + return getattr(self, '__pydantic_computed_fields__', {}) + + def __dir__(self) -> list[str]: + attributes = list(super().__dir__()) + if '__fields__' in attributes: + attributes.remove('__fields__') + return attributes + + +def init_private_attributes(self: BaseModel, context: Any, /) -> None: + """This function is meant to behave like a BaseModel method to initialise private attributes. + + It takes context as an argument since that's what pydantic-core passes when calling it. + + Args: + self: The BaseModel instance. + context: The context. + """ + if getattr(self, '__pydantic_private__', None) is None: + pydantic_private = {} + for name, private_attr in self.__private_attributes__.items(): + default = private_attr.get_default() + if default is not PydanticUndefined: + pydantic_private[name] = default + object_setattr(self, '__pydantic_private__', pydantic_private) + + +def get_model_post_init(namespace: dict[str, Any], bases: tuple[type[Any], ...]) -> Callable[..., Any] | None: + """Get the `model_post_init` method from the namespace or the class bases, or `None` if not defined.""" + if 'model_post_init' in namespace: + return namespace['model_post_init'] + + BaseModel = import_cached_base_model() + + model_post_init = get_attribute_from_bases(bases, 'model_post_init') + if model_post_init is not BaseModel.model_post_init: + return model_post_init + + +def inspect_namespace( # noqa C901 + namespace: dict[str, Any], + ignored_types: tuple[type[Any], ...], + base_class_vars: set[str], + base_class_fields: set[str], +) -> dict[str, ModelPrivateAttr]: + """Iterate over the namespace and: + * gather private attributes + * check for items which look like fields but are not (e.g. have no annotation) and warn. + + Args: + namespace: The attribute dictionary of the class to be created. + ignored_types: A tuple of ignore types. + base_class_vars: A set of base class class variables. + base_class_fields: A set of base class fields. + + Returns: + A dict contains private attributes info. + + Raises: + TypeError: If there is a `__root__` field in model. + NameError: If private attribute name is invalid. + PydanticUserError: + - If a field does not have a type annotation. + - If a field on base class was overridden by a non-annotated attribute. + """ + from ..fields import ModelPrivateAttr, PrivateAttr + + FieldInfo = import_cached_field_info() + + all_ignored_types = ignored_types + default_ignored_types() + + private_attributes: dict[str, ModelPrivateAttr] = {} + raw_annotations = namespace.get('__annotations__', {}) + + if '__root__' in raw_annotations or '__root__' in namespace: + raise TypeError("To define root models, use `pydantic.RootModel` rather than a field called '__root__'") + + ignored_names: set[str] = set() + for var_name, value in list(namespace.items()): + if var_name == 'model_config' or var_name == '__pydantic_extra__': + continue + elif ( + isinstance(value, type) + and value.__module__ == namespace['__module__'] + and '__qualname__' in namespace + and value.__qualname__.startswith(namespace['__qualname__']) + ): + # `value` is a nested type defined in this namespace; don't error + continue + elif isinstance(value, all_ignored_types) or value.__class__.__module__ == 'functools': + ignored_names.add(var_name) + continue + elif isinstance(value, ModelPrivateAttr): + if var_name.startswith('__'): + raise NameError( + 'Private attributes must not use dunder names;' + f' use a single underscore prefix instead of {var_name!r}.' + ) + elif is_valid_field_name(var_name): + raise NameError( + 'Private attributes must not use valid field names;' + f' use sunder names, e.g. {"_" + var_name!r} instead of {var_name!r}.' + ) + private_attributes[var_name] = value + del namespace[var_name] + elif isinstance(value, FieldInfo) and not is_valid_field_name(var_name): + suggested_name = var_name.lstrip('_') or 'my_field' # don't suggest '' for all-underscore name + raise NameError( + f'Fields must not use names with leading underscores;' + f' e.g., use {suggested_name!r} instead of {var_name!r}.' + ) + + elif var_name.startswith('__'): + continue + elif is_valid_privateattr_name(var_name): + if var_name not in raw_annotations or not is_classvar_annotation(raw_annotations[var_name]): + private_attributes[var_name] = cast(ModelPrivateAttr, PrivateAttr(default=value)) + del namespace[var_name] + elif var_name in base_class_vars: + continue + elif var_name not in raw_annotations: + if var_name in base_class_fields: + raise PydanticUserError( + f'Field {var_name!r} defined on a base class was overridden by a non-annotated attribute. ' + f'All field definitions, including overrides, require a type annotation.', + code='model-field-overridden', + ) + elif isinstance(value, FieldInfo): + raise PydanticUserError( + f'Field {var_name!r} requires a type annotation', code='model-field-missing-annotation' + ) + else: + raise PydanticUserError( + f'A non-annotated attribute was detected: `{var_name} = {value!r}`. All model fields require a ' + f'type annotation; if `{var_name}` is not meant to be a field, you may be able to resolve this ' + f"error by annotating it as a `ClassVar` or updating `model_config['ignored_types']`.", + code='model-field-missing-annotation', + ) + + for ann_name, ann_type in raw_annotations.items(): + if ( + is_valid_privateattr_name(ann_name) + and ann_name not in private_attributes + and ann_name not in ignored_names + # This condition can be a false negative when `ann_type` is stringified, + # but it is handled in most cases in `set_model_fields`: + and not is_classvar_annotation(ann_type) + and ann_type not in all_ignored_types + and getattr(ann_type, '__module__', None) != 'functools' + ): + if isinstance(ann_type, str): + # Walking up the frames to get the module namespace where the model is defined + # (as the model class wasn't created yet, we unfortunately can't use `cls.__module__`): + frame = sys._getframe(2) + if frame is not None: + try: + ann_type = eval_type_backport( + _make_forward_ref(ann_type, is_argument=False, is_class=True), + globalns=frame.f_globals, + localns=frame.f_locals, + ) + except (NameError, TypeError): + pass + + if is_annotated(ann_type): + _, *metadata = get_args(ann_type) + private_attr = next((v for v in metadata if isinstance(v, ModelPrivateAttr)), None) + if private_attr is not None: + private_attributes[ann_name] = private_attr + continue + private_attributes[ann_name] = PrivateAttr() + + return private_attributes + + +def set_default_hash_func(cls: type[BaseModel], bases: tuple[type[Any], ...]) -> None: + base_hash_func = get_attribute_from_bases(bases, '__hash__') + new_hash_func = make_hash_func(cls) + if base_hash_func in {None, object.__hash__} or getattr(base_hash_func, '__code__', None) == new_hash_func.__code__: + # If `__hash__` is some default, we generate a hash function. + # It will be `None` if not overridden from BaseModel. + # It may be `object.__hash__` if there is another + # parent class earlier in the bases which doesn't override `__hash__` (e.g. `typing.Generic`). + # It may be a value set by `set_default_hash_func` if `cls` is a subclass of another frozen model. + # In the last case we still need a new hash function to account for new `model_fields`. + cls.__hash__ = new_hash_func + + +def make_hash_func(cls: type[BaseModel]) -> Any: + getter = operator.itemgetter(*cls.__pydantic_fields__.keys()) if cls.__pydantic_fields__ else lambda _: 0 + + def hash_func(self: Any) -> int: + try: + return hash(getter(self.__dict__)) + except KeyError: + # In rare cases (such as when using the deprecated copy method), the __dict__ may not contain + # all model fields, which is how we can get here. + # getter(self.__dict__) is much faster than any 'safe' method that accounts for missing keys, + # and wrapping it in a `try` doesn't slow things down much in the common case. + return hash(getter(SafeGetItemProxy(self.__dict__))) + + return hash_func + + +def set_model_fields( + cls: type[BaseModel], + bases: tuple[type[Any], ...], + config_wrapper: ConfigWrapper, + ns_resolver: NsResolver | None, +) -> None: + """Collect and set `cls.__pydantic_fields__` and `cls.__class_vars__`. + + Args: + cls: BaseModel or dataclass. + bases: Parents of the class, generally `cls.__bases__`. + config_wrapper: The config wrapper instance. + ns_resolver: Namespace resolver to use when getting model annotations. + """ + typevars_map = get_model_typevars_map(cls) + fields, class_vars = collect_model_fields(cls, bases, config_wrapper, ns_resolver, typevars_map=typevars_map) + + cls.__pydantic_fields__ = fields + cls.__class_vars__.update(class_vars) + + for k in class_vars: + # Class vars should not be private attributes + # We remove them _here_ and not earlier because we rely on inspecting the class to determine its classvars, + # but private attributes are determined by inspecting the namespace _prior_ to class creation. + # In the case that a classvar with a leading-'_' is defined via a ForwardRef (e.g., when using + # `__future__.annotations`), we want to remove the private attribute which was detected _before_ we knew it + # evaluated to a classvar + + value = cls.__private_attributes__.pop(k, None) + if value is not None and value.default is not PydanticUndefined: + setattr(cls, k, value.default) + + +def complete_model_class( + cls: type[BaseModel], + cls_name: str, + config_wrapper: ConfigWrapper, + *, + raise_errors: bool = True, + ns_resolver: NsResolver | None = None, + create_model_module: str | None = None, +) -> bool: + """Finish building a model class. + + This logic must be called after class has been created since validation functions must be bound + and `get_type_hints` requires a class object. + + Args: + cls: BaseModel or dataclass. + cls_name: The model or dataclass name. + config_wrapper: The config wrapper instance. + raise_errors: Whether to raise errors. + ns_resolver: The namespace resolver instance to use during schema building. + create_model_module: The module of the class to be created, if created by `create_model`. + + Returns: + `True` if the model is successfully completed, else `False`. + + Raises: + PydanticUndefinedAnnotation: If `PydanticUndefinedAnnotation` occurs in`__get_pydantic_core_schema__` + and `raise_errors=True`. + """ + if config_wrapper.defer_build: + set_model_mocks(cls, cls_name) + return False + + typevars_map = get_model_typevars_map(cls) + gen_schema = GenerateSchema( + config_wrapper, + ns_resolver, + typevars_map, + ) + + handler = CallbackGetCoreSchemaHandler( + partial(gen_schema.generate_schema, from_dunder_get_core_schema=False), + gen_schema, + ref_mode='unpack', + ) + + try: + schema = cls.__get_pydantic_core_schema__(cls, handler) + except PydanticUndefinedAnnotation as e: + if raise_errors: + raise + set_model_mocks(cls, cls_name, f'`{e.name}`') + return False + + core_config = config_wrapper.core_config(title=cls.__name__) + + try: + schema = gen_schema.clean_schema(schema) + except gen_schema.CollectedInvalid: + set_model_mocks(cls, cls_name) + return False + + # debug(schema) + cls.__pydantic_core_schema__ = schema + + cls.__pydantic_validator__ = create_schema_validator( + schema, + cls, + create_model_module or cls.__module__, + cls.__qualname__, + 'create_model' if create_model_module else 'BaseModel', + core_config, + config_wrapper.plugin_settings, + ) + cls.__pydantic_serializer__ = SchemaSerializer(schema, core_config) + cls.__pydantic_complete__ = True + + # set __signature__ attr only for model class, but not for its instances + # (because instances can define `__call__`, and `inspect.signature` shouldn't + # use the `__signature__` attribute and instead generate from `__call__`). + cls.__signature__ = LazyClassAttribute( + '__signature__', + partial( + generate_pydantic_signature, + init=cls.__init__, + fields=cls.__pydantic_fields__, + populate_by_name=config_wrapper.populate_by_name, + extra=config_wrapper.extra, + ), + ) + return True + + +def set_deprecated_descriptors(cls: type[BaseModel]) -> None: + """Set data descriptors on the class for deprecated fields.""" + for field, field_info in cls.__pydantic_fields__.items(): + if (msg := field_info.deprecation_message) is not None: + desc = _DeprecatedFieldDescriptor(msg) + desc.__set_name__(cls, field) + setattr(cls, field, desc) + + for field, computed_field_info in cls.__pydantic_computed_fields__.items(): + if ( + (msg := computed_field_info.deprecation_message) is not None + # Avoid having two warnings emitted: + and not hasattr(unwrap_wrapped_function(computed_field_info.wrapped_property), '__deprecated__') + ): + desc = _DeprecatedFieldDescriptor(msg, computed_field_info.wrapped_property) + desc.__set_name__(cls, field) + setattr(cls, field, desc) + + +class _DeprecatedFieldDescriptor: + """Read-only data descriptor used to emit a runtime deprecation warning before accessing a deprecated field. + + Attributes: + msg: The deprecation message to be emitted. + wrapped_property: The property instance if the deprecated field is a computed field, or `None`. + field_name: The name of the field being deprecated. + """ + + field_name: str + + def __init__(self, msg: str, wrapped_property: property | None = None) -> None: + self.msg = msg + self.wrapped_property = wrapped_property + + def __set_name__(self, cls: type[BaseModel], name: str) -> None: + self.field_name = name + + def __get__(self, obj: BaseModel | None, obj_type: type[BaseModel] | None = None) -> Any: + if obj is None: + if self.wrapped_property is not None: + return self.wrapped_property.__get__(None, obj_type) + raise AttributeError(self.field_name) + + warnings.warn(self.msg, builtins.DeprecationWarning, stacklevel=2) + + if self.wrapped_property is not None: + return self.wrapped_property.__get__(obj, obj_type) + return obj.__dict__[self.field_name] + + # Defined to make it a data descriptor and take precedence over the instance's dictionary. + # Note that it will not be called when setting a value on a model instance + # as `BaseModel.__setattr__` is defined and takes priority. + def __set__(self, obj: Any, value: Any) -> NoReturn: + raise AttributeError(self.field_name) + + +class _PydanticWeakRef: + """Wrapper for `weakref.ref` that enables `pickle` serialization. + + Cloudpickle fails to serialize `weakref.ref` objects due to an arcane error related + to abstract base classes (`abc.ABC`). This class works around the issue by wrapping + `weakref.ref` instead of subclassing it. + + See https://github.com/pydantic/pydantic/issues/6763 for context. + + Semantics: + - If not pickled, behaves the same as a `weakref.ref`. + - If pickled along with the referenced object, the same `weakref.ref` behavior + will be maintained between them after unpickling. + - If pickled without the referenced object, after unpickling the underlying + reference will be cleared (`__call__` will always return `None`). + """ + + def __init__(self, obj: Any): + if obj is None: + # The object will be `None` upon deserialization if the serialized weakref + # had lost its underlying object. + self._wr = None + else: + self._wr = weakref.ref(obj) + + def __call__(self) -> Any: + if self._wr is None: + return None + else: + return self._wr() + + def __reduce__(self) -> tuple[Callable, tuple[weakref.ReferenceType | None]]: + return _PydanticWeakRef, (self(),) + + +def build_lenient_weakvaluedict(d: dict[str, Any] | None) -> dict[str, Any] | None: + """Takes an input dictionary, and produces a new value that (invertibly) replaces the values with weakrefs. + + We can't just use a WeakValueDictionary because many types (including int, str, etc.) can't be stored as values + in a WeakValueDictionary. + + The `unpack_lenient_weakvaluedict` function can be used to reverse this operation. + """ + if d is None: + return None + result = {} + for k, v in d.items(): + try: + proxy = _PydanticWeakRef(v) + except TypeError: + proxy = v + result[k] = proxy + return result + + +def unpack_lenient_weakvaluedict(d: dict[str, Any] | None) -> dict[str, Any] | None: + """Inverts the transform performed by `build_lenient_weakvaluedict`.""" + if d is None: + return None + + result = {} + for k, v in d.items(): + if isinstance(v, _PydanticWeakRef): + v = v() + if v is not None: + result[k] = v + else: + result[k] = v + return result + + +@lru_cache(maxsize=None) +def default_ignored_types() -> tuple[type[Any], ...]: + from ..fields import ComputedFieldInfo + + ignored_types = [ + FunctionType, + property, + classmethod, + staticmethod, + PydanticDescriptorProxy, + ComputedFieldInfo, + TypeAliasType, # from `typing_extensions` + ] + + if sys.version_info >= (3, 12): + ignored_types.append(typing.TypeAliasType) + + return tuple(ignored_types) |