about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/pydantic/_internal/_known_annotated_metadata.py
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/pydantic/_internal/_known_annotated_metadata.py
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are here HEAD master
Diffstat (limited to '.venv/lib/python3.12/site-packages/pydantic/_internal/_known_annotated_metadata.py')
-rw-r--r--.venv/lib/python3.12/site-packages/pydantic/_internal/_known_annotated_metadata.py392
1 files changed, 392 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/pydantic/_internal/_known_annotated_metadata.py b/.venv/lib/python3.12/site-packages/pydantic/_internal/_known_annotated_metadata.py
new file mode 100644
index 00000000..78de89ec
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/pydantic/_internal/_known_annotated_metadata.py
@@ -0,0 +1,392 @@
+from __future__ import annotations
+
+from collections import defaultdict
+from copy import copy
+from functools import lru_cache, partial
+from typing import TYPE_CHECKING, Any, Iterable
+
+from pydantic_core import CoreSchema, PydanticCustomError, ValidationError, to_jsonable_python
+from pydantic_core import core_schema as cs
+
+from ._fields import PydanticMetadata
+from ._import_utils import import_cached_field_info
+
+if TYPE_CHECKING:
+    pass
+
+STRICT = {'strict'}
+FAIL_FAST = {'fail_fast'}
+LENGTH_CONSTRAINTS = {'min_length', 'max_length'}
+INEQUALITY = {'le', 'ge', 'lt', 'gt'}
+NUMERIC_CONSTRAINTS = {'multiple_of', *INEQUALITY}
+ALLOW_INF_NAN = {'allow_inf_nan'}
+
+STR_CONSTRAINTS = {
+    *LENGTH_CONSTRAINTS,
+    *STRICT,
+    'strip_whitespace',
+    'to_lower',
+    'to_upper',
+    'pattern',
+    'coerce_numbers_to_str',
+}
+BYTES_CONSTRAINTS = {*LENGTH_CONSTRAINTS, *STRICT}
+
+LIST_CONSTRAINTS = {*LENGTH_CONSTRAINTS, *STRICT, *FAIL_FAST}
+TUPLE_CONSTRAINTS = {*LENGTH_CONSTRAINTS, *STRICT, *FAIL_FAST}
+SET_CONSTRAINTS = {*LENGTH_CONSTRAINTS, *STRICT, *FAIL_FAST}
+DICT_CONSTRAINTS = {*LENGTH_CONSTRAINTS, *STRICT}
+GENERATOR_CONSTRAINTS = {*LENGTH_CONSTRAINTS, *STRICT}
+SEQUENCE_CONSTRAINTS = {*LENGTH_CONSTRAINTS, *FAIL_FAST}
+
+FLOAT_CONSTRAINTS = {*NUMERIC_CONSTRAINTS, *ALLOW_INF_NAN, *STRICT}
+DECIMAL_CONSTRAINTS = {'max_digits', 'decimal_places', *FLOAT_CONSTRAINTS}
+INT_CONSTRAINTS = {*NUMERIC_CONSTRAINTS, *ALLOW_INF_NAN, *STRICT}
+BOOL_CONSTRAINTS = STRICT
+UUID_CONSTRAINTS = STRICT
+
+DATE_TIME_CONSTRAINTS = {*NUMERIC_CONSTRAINTS, *STRICT}
+TIMEDELTA_CONSTRAINTS = {*NUMERIC_CONSTRAINTS, *STRICT}
+TIME_CONSTRAINTS = {*NUMERIC_CONSTRAINTS, *STRICT}
+LAX_OR_STRICT_CONSTRAINTS = STRICT
+ENUM_CONSTRAINTS = STRICT
+COMPLEX_CONSTRAINTS = STRICT
+
+UNION_CONSTRAINTS = {'union_mode'}
+URL_CONSTRAINTS = {
+    'max_length',
+    'allowed_schemes',
+    'host_required',
+    'default_host',
+    'default_port',
+    'default_path',
+}
+
+TEXT_SCHEMA_TYPES = ('str', 'bytes', 'url', 'multi-host-url')
+SEQUENCE_SCHEMA_TYPES = ('list', 'tuple', 'set', 'frozenset', 'generator', *TEXT_SCHEMA_TYPES)
+NUMERIC_SCHEMA_TYPES = ('float', 'int', 'date', 'time', 'timedelta', 'datetime')
+
+CONSTRAINTS_TO_ALLOWED_SCHEMAS: dict[str, set[str]] = defaultdict(set)
+
+constraint_schema_pairings: list[tuple[set[str], tuple[str, ...]]] = [
+    (STR_CONSTRAINTS, TEXT_SCHEMA_TYPES),
+    (BYTES_CONSTRAINTS, ('bytes',)),
+    (LIST_CONSTRAINTS, ('list',)),
+    (TUPLE_CONSTRAINTS, ('tuple',)),
+    (SET_CONSTRAINTS, ('set', 'frozenset')),
+    (DICT_CONSTRAINTS, ('dict',)),
+    (GENERATOR_CONSTRAINTS, ('generator',)),
+    (FLOAT_CONSTRAINTS, ('float',)),
+    (INT_CONSTRAINTS, ('int',)),
+    (DATE_TIME_CONSTRAINTS, ('date', 'time', 'datetime', 'timedelta')),
+    # TODO: this is a bit redundant, we could probably avoid some of these
+    (STRICT, (*TEXT_SCHEMA_TYPES, *SEQUENCE_SCHEMA_TYPES, *NUMERIC_SCHEMA_TYPES, 'typed-dict', 'model')),
+    (UNION_CONSTRAINTS, ('union',)),
+    (URL_CONSTRAINTS, ('url', 'multi-host-url')),
+    (BOOL_CONSTRAINTS, ('bool',)),
+    (UUID_CONSTRAINTS, ('uuid',)),
+    (LAX_OR_STRICT_CONSTRAINTS, ('lax-or-strict',)),
+    (ENUM_CONSTRAINTS, ('enum',)),
+    (DECIMAL_CONSTRAINTS, ('decimal',)),
+    (COMPLEX_CONSTRAINTS, ('complex',)),
+]
+
+for constraints, schemas in constraint_schema_pairings:
+    for c in constraints:
+        CONSTRAINTS_TO_ALLOWED_SCHEMAS[c].update(schemas)
+
+
+def as_jsonable_value(v: Any) -> Any:
+    if type(v) not in (int, str, float, bytes, bool, type(None)):
+        return to_jsonable_python(v)
+    return v
+
+
+def expand_grouped_metadata(annotations: Iterable[Any]) -> Iterable[Any]:
+    """Expand the annotations.
+
+    Args:
+        annotations: An iterable of annotations.
+
+    Returns:
+        An iterable of expanded annotations.
+
+    Example:
+        ```python
+        from annotated_types import Ge, Len
+
+        from pydantic._internal._known_annotated_metadata import expand_grouped_metadata
+
+        print(list(expand_grouped_metadata([Ge(4), Len(5)])))
+        #> [Ge(ge=4), MinLen(min_length=5)]
+        ```
+    """
+    import annotated_types as at
+
+    FieldInfo = import_cached_field_info()
+
+    for annotation in annotations:
+        if isinstance(annotation, at.GroupedMetadata):
+            yield from annotation
+        elif isinstance(annotation, FieldInfo):
+            yield from annotation.metadata
+            # this is a bit problematic in that it results in duplicate metadata
+            # all of our "consumers" can handle it, but it is not ideal
+            # we probably should split up FieldInfo into:
+            # - annotated types metadata
+            # - individual metadata known only to Pydantic
+            annotation = copy(annotation)
+            annotation.metadata = []
+            yield annotation
+        else:
+            yield annotation
+
+
+@lru_cache
+def _get_at_to_constraint_map() -> dict[type, str]:
+    """Return a mapping of annotated types to constraints.
+
+    Normally, we would define a mapping like this in the module scope, but we can't do that
+    because we don't permit module level imports of `annotated_types`, in an attempt to speed up
+    the import time of `pydantic`. We still only want to have this dictionary defined in one place,
+    so we use this function to cache the result.
+    """
+    import annotated_types as at
+
+    return {
+        at.Gt: 'gt',
+        at.Ge: 'ge',
+        at.Lt: 'lt',
+        at.Le: 'le',
+        at.MultipleOf: 'multiple_of',
+        at.MinLen: 'min_length',
+        at.MaxLen: 'max_length',
+    }
+
+
+def apply_known_metadata(annotation: Any, schema: CoreSchema) -> CoreSchema | None:  # noqa: C901
+    """Apply `annotation` to `schema` if it is an annotation we know about (Gt, Le, etc.).
+    Otherwise return `None`.
+
+    This does not handle all known annotations. If / when it does, it can always
+    return a CoreSchema and return the unmodified schema if the annotation should be ignored.
+
+    Assumes that GroupedMetadata has already been expanded via `expand_grouped_metadata`.
+
+    Args:
+        annotation: The annotation.
+        schema: The schema.
+
+    Returns:
+        An updated schema with annotation if it is an annotation we know about, `None` otherwise.
+
+    Raises:
+        PydanticCustomError: If `Predicate` fails.
+    """
+    import annotated_types as at
+
+    from ._validators import NUMERIC_VALIDATOR_LOOKUP, forbid_inf_nan_check
+
+    schema = schema.copy()
+    schema_update, other_metadata = collect_known_metadata([annotation])
+    schema_type = schema['type']
+
+    chain_schema_constraints: set[str] = {
+        'pattern',
+        'strip_whitespace',
+        'to_lower',
+        'to_upper',
+        'coerce_numbers_to_str',
+    }
+    chain_schema_steps: list[CoreSchema] = []
+
+    for constraint, value in schema_update.items():
+        if constraint not in CONSTRAINTS_TO_ALLOWED_SCHEMAS:
+            raise ValueError(f'Unknown constraint {constraint}')
+        allowed_schemas = CONSTRAINTS_TO_ALLOWED_SCHEMAS[constraint]
+
+        # if it becomes necessary to handle more than one constraint
+        # in this recursive case with function-after or function-wrap, we should refactor
+        # this is a bit challenging because we sometimes want to apply constraints to the inner schema,
+        # whereas other times we want to wrap the existing schema with a new one that enforces a new constraint.
+        if schema_type in {'function-before', 'function-wrap', 'function-after'} and constraint == 'strict':
+            schema['schema'] = apply_known_metadata(annotation, schema['schema'])  # type: ignore  # schema is function schema
+            return schema
+
+        # if we're allowed to apply constraint directly to the schema, like le to int, do that
+        if schema_type in allowed_schemas:
+            if constraint == 'union_mode' and schema_type == 'union':
+                schema['mode'] = value  # type: ignore  # schema is UnionSchema
+            else:
+                schema[constraint] = value
+            continue
+
+        #  else, apply a function after validator to the schema to enforce the corresponding constraint
+        if constraint in chain_schema_constraints:
+
+            def _apply_constraint_with_incompatibility_info(
+                value: Any, handler: cs.ValidatorFunctionWrapHandler
+            ) -> Any:
+                try:
+                    x = handler(value)
+                except ValidationError as ve:
+                    # if the error is about the type, it's likely that the constraint is incompatible the type of the field
+                    # for example, the following invalid schema wouldn't be caught during schema build, but rather at this point
+                    # with a cryptic 'string_type' error coming from the string validator,
+                    # that we'd rather express as a constraint incompatibility error (TypeError)
+                    # Annotated[list[int], Field(pattern='abc')]
+                    if 'type' in ve.errors()[0]['type']:
+                        raise TypeError(
+                            f"Unable to apply constraint '{constraint}' to supplied value {value} for schema of type '{schema_type}'"  # noqa: B023
+                        )
+                    raise ve
+                return x
+
+            chain_schema_steps.append(
+                cs.no_info_wrap_validator_function(
+                    _apply_constraint_with_incompatibility_info, cs.str_schema(**{constraint: value})
+                )
+            )
+        elif constraint in NUMERIC_VALIDATOR_LOOKUP:
+            if constraint in LENGTH_CONSTRAINTS:
+                inner_schema = schema
+                while inner_schema['type'] in {'function-before', 'function-wrap', 'function-after'}:
+                    inner_schema = inner_schema['schema']  # type: ignore
+                inner_schema_type = inner_schema['type']
+                if inner_schema_type == 'list' or (
+                    inner_schema_type == 'json-or-python' and inner_schema['json_schema']['type'] == 'list'  # type: ignore
+                ):
+                    js_constraint_key = 'minItems' if constraint == 'min_length' else 'maxItems'
+                else:
+                    js_constraint_key = 'minLength' if constraint == 'min_length' else 'maxLength'
+            else:
+                js_constraint_key = constraint
+
+            schema = cs.no_info_after_validator_function(
+                partial(NUMERIC_VALIDATOR_LOOKUP[constraint], **{constraint: value}), schema
+            )
+            metadata = schema.get('metadata', {})
+            if (existing_json_schema_updates := metadata.get('pydantic_js_updates')) is not None:
+                metadata['pydantic_js_updates'] = {
+                    **existing_json_schema_updates,
+                    **{js_constraint_key: as_jsonable_value(value)},
+                }
+            else:
+                metadata['pydantic_js_updates'] = {js_constraint_key: as_jsonable_value(value)}
+            schema['metadata'] = metadata
+        elif constraint == 'allow_inf_nan' and value is False:
+            schema = cs.no_info_after_validator_function(
+                forbid_inf_nan_check,
+                schema,
+            )
+        else:
+            # It's rare that we'd get here, but it's possible if we add a new constraint and forget to handle it
+            # Most constraint errors are caught at runtime during attempted application
+            raise RuntimeError(f"Unable to apply constraint '{constraint}' to schema of type '{schema_type}'")
+
+    for annotation in other_metadata:
+        if (annotation_type := type(annotation)) in (at_to_constraint_map := _get_at_to_constraint_map()):
+            constraint = at_to_constraint_map[annotation_type]
+            validator = NUMERIC_VALIDATOR_LOOKUP.get(constraint)
+            if validator is None:
+                raise ValueError(f'Unknown constraint {constraint}')
+            schema = cs.no_info_after_validator_function(
+                partial(validator, {constraint: getattr(annotation, constraint)}), schema
+            )
+            continue
+        elif isinstance(annotation, (at.Predicate, at.Not)):
+            predicate_name = f'{annotation.func.__qualname__}' if hasattr(annotation.func, '__qualname__') else ''
+
+            def val_func(v: Any) -> Any:
+                predicate_satisfied = annotation.func(v)  # noqa: B023
+
+                # annotation.func may also raise an exception, let it pass through
+                if isinstance(annotation, at.Predicate):  # noqa: B023
+                    if not predicate_satisfied:
+                        raise PydanticCustomError(
+                            'predicate_failed',
+                            f'Predicate {predicate_name} failed',  # type: ignore  # noqa: B023
+                        )
+                else:
+                    if predicate_satisfied:
+                        raise PydanticCustomError(
+                            'not_operation_failed',
+                            f'Not of {predicate_name} failed',  # type: ignore  # noqa: B023
+                        )
+
+                return v
+
+            schema = cs.no_info_after_validator_function(val_func, schema)
+        else:
+            # ignore any other unknown metadata
+            return None
+
+    if chain_schema_steps:
+        chain_schema_steps = [schema] + chain_schema_steps
+        return cs.chain_schema(chain_schema_steps)
+
+    return schema
+
+
+def collect_known_metadata(annotations: Iterable[Any]) -> tuple[dict[str, Any], list[Any]]:
+    """Split `annotations` into known metadata and unknown annotations.
+
+    Args:
+        annotations: An iterable of annotations.
+
+    Returns:
+        A tuple contains a dict of known metadata and a list of unknown annotations.
+
+    Example:
+        ```python
+        from annotated_types import Gt, Len
+
+        from pydantic._internal._known_annotated_metadata import collect_known_metadata
+
+        print(collect_known_metadata([Gt(1), Len(42), ...]))
+        #> ({'gt': 1, 'min_length': 42}, [Ellipsis])
+        ```
+    """
+    annotations = expand_grouped_metadata(annotations)
+
+    res: dict[str, Any] = {}
+    remaining: list[Any] = []
+
+    for annotation in annotations:
+        # isinstance(annotation, PydanticMetadata) also covers ._fields:_PydanticGeneralMetadata
+        if isinstance(annotation, PydanticMetadata):
+            res.update(annotation.__dict__)
+        # we don't use dataclasses.asdict because that recursively calls asdict on the field values
+        elif (annotation_type := type(annotation)) in (at_to_constraint_map := _get_at_to_constraint_map()):
+            constraint = at_to_constraint_map[annotation_type]
+            res[constraint] = getattr(annotation, constraint)
+        elif isinstance(annotation, type) and issubclass(annotation, PydanticMetadata):
+            # also support PydanticMetadata classes being used without initialisation,
+            # e.g. `Annotated[int, Strict]` as well as `Annotated[int, Strict()]`
+            res.update({k: v for k, v in vars(annotation).items() if not k.startswith('_')})
+        else:
+            remaining.append(annotation)
+    # Nones can sneak in but pydantic-core will reject them
+    # it'd be nice to clean things up so we don't put in None (we probably don't _need_ to, it was just easier)
+    # but this is simple enough to kick that can down the road
+    res = {k: v for k, v in res.items() if v is not None}
+    return res, remaining
+
+
+def check_metadata(metadata: dict[str, Any], allowed: Iterable[str], source_type: Any) -> None:
+    """A small utility function to validate that the given metadata can be applied to the target.
+    More than saving lines of code, this gives us a consistent error message for all of our internal implementations.
+
+    Args:
+        metadata: A dict of metadata.
+        allowed: An iterable of allowed metadata.
+        source_type: The source type.
+
+    Raises:
+        TypeError: If there is metadatas that can't be applied on source type.
+    """
+    unknown = metadata.keys() - set(allowed)
+    if unknown:
+        raise TypeError(
+            f'The following constraints cannot be applied to {source_type!r}: {", ".join([f"{k!r}" for k in unknown])}'
+        )