aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/numpy/testing/tests
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/numpy/testing/tests
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are hereHEADmaster
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/testing/tests')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/testing/tests/__init__.py0
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/testing/tests/test_utils.py1626
2 files changed, 1626 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/testing/tests/__init__.py b/.venv/lib/python3.12/site-packages/numpy/testing/tests/__init__.py
new file mode 100644
index 00000000..e69de29b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/testing/tests/__init__.py
diff --git a/.venv/lib/python3.12/site-packages/numpy/testing/tests/test_utils.py b/.venv/lib/python3.12/site-packages/numpy/testing/tests/test_utils.py
new file mode 100644
index 00000000..0aaa508e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/testing/tests/test_utils.py
@@ -0,0 +1,1626 @@
+import warnings
+import sys
+import os
+import itertools
+import pytest
+import weakref
+
+import numpy as np
+from numpy.testing import (
+ assert_equal, assert_array_equal, assert_almost_equal,
+ assert_array_almost_equal, assert_array_less, build_err_msg,
+ assert_raises, assert_warns, assert_no_warnings, assert_allclose,
+ assert_approx_equal, assert_array_almost_equal_nulp, assert_array_max_ulp,
+ clear_and_catch_warnings, suppress_warnings, assert_string_equal, assert_,
+ tempdir, temppath, assert_no_gc_cycles, HAS_REFCOUNT
+ )
+
+
+class _GenericTest:
+
+ def _test_equal(self, a, b):
+ self._assert_func(a, b)
+
+ def _test_not_equal(self, a, b):
+ with assert_raises(AssertionError):
+ self._assert_func(a, b)
+
+ def test_array_rank1_eq(self):
+ """Test two equal array of rank 1 are found equal."""
+ a = np.array([1, 2])
+ b = np.array([1, 2])
+
+ self._test_equal(a, b)
+
+ def test_array_rank1_noteq(self):
+ """Test two different array of rank 1 are found not equal."""
+ a = np.array([1, 2])
+ b = np.array([2, 2])
+
+ self._test_not_equal(a, b)
+
+ def test_array_rank2_eq(self):
+ """Test two equal array of rank 2 are found equal."""
+ a = np.array([[1, 2], [3, 4]])
+ b = np.array([[1, 2], [3, 4]])
+
+ self._test_equal(a, b)
+
+ def test_array_diffshape(self):
+ """Test two arrays with different shapes are found not equal."""
+ a = np.array([1, 2])
+ b = np.array([[1, 2], [1, 2]])
+
+ self._test_not_equal(a, b)
+
+ def test_objarray(self):
+ """Test object arrays."""
+ a = np.array([1, 1], dtype=object)
+ self._test_equal(a, 1)
+
+ def test_array_likes(self):
+ self._test_equal([1, 2, 3], (1, 2, 3))
+
+
+class TestArrayEqual(_GenericTest):
+
+ def setup_method(self):
+ self._assert_func = assert_array_equal
+
+ def test_generic_rank1(self):
+ """Test rank 1 array for all dtypes."""
+ def foo(t):
+ a = np.empty(2, t)
+ a.fill(1)
+ b = a.copy()
+ c = a.copy()
+ c.fill(0)
+ self._test_equal(a, b)
+ self._test_not_equal(c, b)
+
+ # Test numeric types and object
+ for t in '?bhilqpBHILQPfdgFDG':
+ foo(t)
+
+ # Test strings
+ for t in ['S1', 'U1']:
+ foo(t)
+
+ def test_0_ndim_array(self):
+ x = np.array(473963742225900817127911193656584771)
+ y = np.array(18535119325151578301457182298393896)
+ assert_raises(AssertionError, self._assert_func, x, y)
+
+ y = x
+ self._assert_func(x, y)
+
+ x = np.array(43)
+ y = np.array(10)
+ assert_raises(AssertionError, self._assert_func, x, y)
+
+ y = x
+ self._assert_func(x, y)
+
+ def test_generic_rank3(self):
+ """Test rank 3 array for all dtypes."""
+ def foo(t):
+ a = np.empty((4, 2, 3), t)
+ a.fill(1)
+ b = a.copy()
+ c = a.copy()
+ c.fill(0)
+ self._test_equal(a, b)
+ self._test_not_equal(c, b)
+
+ # Test numeric types and object
+ for t in '?bhilqpBHILQPfdgFDG':
+ foo(t)
+
+ # Test strings
+ for t in ['S1', 'U1']:
+ foo(t)
+
+ def test_nan_array(self):
+ """Test arrays with nan values in them."""
+ a = np.array([1, 2, np.nan])
+ b = np.array([1, 2, np.nan])
+
+ self._test_equal(a, b)
+
+ c = np.array([1, 2, 3])
+ self._test_not_equal(c, b)
+
+ def test_string_arrays(self):
+ """Test two arrays with different shapes are found not equal."""
+ a = np.array(['floupi', 'floupa'])
+ b = np.array(['floupi', 'floupa'])
+
+ self._test_equal(a, b)
+
+ c = np.array(['floupipi', 'floupa'])
+
+ self._test_not_equal(c, b)
+
+ def test_recarrays(self):
+ """Test record arrays."""
+ a = np.empty(2, [('floupi', float), ('floupa', float)])
+ a['floupi'] = [1, 2]
+ a['floupa'] = [1, 2]
+ b = a.copy()
+
+ self._test_equal(a, b)
+
+ c = np.empty(2, [('floupipi', float),
+ ('floupi', float), ('floupa', float)])
+ c['floupipi'] = a['floupi'].copy()
+ c['floupa'] = a['floupa'].copy()
+
+ with pytest.raises(TypeError):
+ self._test_not_equal(c, b)
+
+ def test_masked_nan_inf(self):
+ # Regression test for gh-11121
+ a = np.ma.MaskedArray([3., 4., 6.5], mask=[False, True, False])
+ b = np.array([3., np.nan, 6.5])
+ self._test_equal(a, b)
+ self._test_equal(b, a)
+ a = np.ma.MaskedArray([3., 4., 6.5], mask=[True, False, False])
+ b = np.array([np.inf, 4., 6.5])
+ self._test_equal(a, b)
+ self._test_equal(b, a)
+
+ def test_subclass_that_overrides_eq(self):
+ # While we cannot guarantee testing functions will always work for
+ # subclasses, the tests should ideally rely only on subclasses having
+ # comparison operators, not on them being able to store booleans
+ # (which, e.g., astropy Quantity cannot usefully do). See gh-8452.
+ class MyArray(np.ndarray):
+ def __eq__(self, other):
+ return bool(np.equal(self, other).all())
+
+ def __ne__(self, other):
+ return not self == other
+
+ a = np.array([1., 2.]).view(MyArray)
+ b = np.array([2., 3.]).view(MyArray)
+ assert_(type(a == a), bool)
+ assert_(a == a)
+ assert_(a != b)
+ self._test_equal(a, a)
+ self._test_not_equal(a, b)
+ self._test_not_equal(b, a)
+
+ def test_subclass_that_does_not_implement_npall(self):
+ class MyArray(np.ndarray):
+ def __array_function__(self, *args, **kwargs):
+ return NotImplemented
+
+ a = np.array([1., 2.]).view(MyArray)
+ b = np.array([2., 3.]).view(MyArray)
+ with assert_raises(TypeError):
+ np.all(a)
+ self._test_equal(a, a)
+ self._test_not_equal(a, b)
+ self._test_not_equal(b, a)
+
+ def test_suppress_overflow_warnings(self):
+ # Based on issue #18992
+ with pytest.raises(AssertionError):
+ with np.errstate(all="raise"):
+ np.testing.assert_array_equal(
+ np.array([1, 2, 3], np.float32),
+ np.array([1, 1e-40, 3], np.float32))
+
+ def test_array_vs_scalar_is_equal(self):
+ """Test comparing an array with a scalar when all values are equal."""
+ a = np.array([1., 1., 1.])
+ b = 1.
+
+ self._test_equal(a, b)
+
+ def test_array_vs_scalar_not_equal(self):
+ """Test comparing an array with a scalar when not all values equal."""
+ a = np.array([1., 2., 3.])
+ b = 1.
+
+ self._test_not_equal(a, b)
+
+ def test_array_vs_scalar_strict(self):
+ """Test comparing an array with a scalar with strict option."""
+ a = np.array([1., 1., 1.])
+ b = 1.
+
+ with pytest.raises(AssertionError):
+ assert_array_equal(a, b, strict=True)
+
+ def test_array_vs_array_strict(self):
+ """Test comparing two arrays with strict option."""
+ a = np.array([1., 1., 1.])
+ b = np.array([1., 1., 1.])
+
+ assert_array_equal(a, b, strict=True)
+
+ def test_array_vs_float_array_strict(self):
+ """Test comparing two arrays with strict option."""
+ a = np.array([1, 1, 1])
+ b = np.array([1., 1., 1.])
+
+ with pytest.raises(AssertionError):
+ assert_array_equal(a, b, strict=True)
+
+
+class TestBuildErrorMessage:
+
+ def test_build_err_msg_defaults(self):
+ x = np.array([1.00001, 2.00002, 3.00003])
+ y = np.array([1.00002, 2.00003, 3.00004])
+ err_msg = 'There is a mismatch'
+
+ a = build_err_msg([x, y], err_msg)
+ b = ('\nItems are not equal: There is a mismatch\n ACTUAL: array(['
+ '1.00001, 2.00002, 3.00003])\n DESIRED: array([1.00002, '
+ '2.00003, 3.00004])')
+ assert_equal(a, b)
+
+ def test_build_err_msg_no_verbose(self):
+ x = np.array([1.00001, 2.00002, 3.00003])
+ y = np.array([1.00002, 2.00003, 3.00004])
+ err_msg = 'There is a mismatch'
+
+ a = build_err_msg([x, y], err_msg, verbose=False)
+ b = '\nItems are not equal: There is a mismatch'
+ assert_equal(a, b)
+
+ def test_build_err_msg_custom_names(self):
+ x = np.array([1.00001, 2.00002, 3.00003])
+ y = np.array([1.00002, 2.00003, 3.00004])
+ err_msg = 'There is a mismatch'
+
+ a = build_err_msg([x, y], err_msg, names=('FOO', 'BAR'))
+ b = ('\nItems are not equal: There is a mismatch\n FOO: array(['
+ '1.00001, 2.00002, 3.00003])\n BAR: array([1.00002, 2.00003, '
+ '3.00004])')
+ assert_equal(a, b)
+
+ def test_build_err_msg_custom_precision(self):
+ x = np.array([1.000000001, 2.00002, 3.00003])
+ y = np.array([1.000000002, 2.00003, 3.00004])
+ err_msg = 'There is a mismatch'
+
+ a = build_err_msg([x, y], err_msg, precision=10)
+ b = ('\nItems are not equal: There is a mismatch\n ACTUAL: array(['
+ '1.000000001, 2.00002 , 3.00003 ])\n DESIRED: array(['
+ '1.000000002, 2.00003 , 3.00004 ])')
+ assert_equal(a, b)
+
+
+class TestEqual(TestArrayEqual):
+
+ def setup_method(self):
+ self._assert_func = assert_equal
+
+ def test_nan_items(self):
+ self._assert_func(np.nan, np.nan)
+ self._assert_func([np.nan], [np.nan])
+ self._test_not_equal(np.nan, [np.nan])
+ self._test_not_equal(np.nan, 1)
+
+ def test_inf_items(self):
+ self._assert_func(np.inf, np.inf)
+ self._assert_func([np.inf], [np.inf])
+ self._test_not_equal(np.inf, [np.inf])
+
+ def test_datetime(self):
+ self._test_equal(
+ np.datetime64("2017-01-01", "s"),
+ np.datetime64("2017-01-01", "s")
+ )
+ self._test_equal(
+ np.datetime64("2017-01-01", "s"),
+ np.datetime64("2017-01-01", "m")
+ )
+
+ # gh-10081
+ self._test_not_equal(
+ np.datetime64("2017-01-01", "s"),
+ np.datetime64("2017-01-02", "s")
+ )
+ self._test_not_equal(
+ np.datetime64("2017-01-01", "s"),
+ np.datetime64("2017-01-02", "m")
+ )
+
+ def test_nat_items(self):
+ # not a datetime
+ nadt_no_unit = np.datetime64("NaT")
+ nadt_s = np.datetime64("NaT", "s")
+ nadt_d = np.datetime64("NaT", "ns")
+ # not a timedelta
+ natd_no_unit = np.timedelta64("NaT")
+ natd_s = np.timedelta64("NaT", "s")
+ natd_d = np.timedelta64("NaT", "ns")
+
+ dts = [nadt_no_unit, nadt_s, nadt_d]
+ tds = [natd_no_unit, natd_s, natd_d]
+ for a, b in itertools.product(dts, dts):
+ self._assert_func(a, b)
+ self._assert_func([a], [b])
+ self._test_not_equal([a], b)
+
+ for a, b in itertools.product(tds, tds):
+ self._assert_func(a, b)
+ self._assert_func([a], [b])
+ self._test_not_equal([a], b)
+
+ for a, b in itertools.product(tds, dts):
+ self._test_not_equal(a, b)
+ self._test_not_equal(a, [b])
+ self._test_not_equal([a], [b])
+ self._test_not_equal([a], np.datetime64("2017-01-01", "s"))
+ self._test_not_equal([b], np.datetime64("2017-01-01", "s"))
+ self._test_not_equal([a], np.timedelta64(123, "s"))
+ self._test_not_equal([b], np.timedelta64(123, "s"))
+
+ def test_non_numeric(self):
+ self._assert_func('ab', 'ab')
+ self._test_not_equal('ab', 'abb')
+
+ def test_complex_item(self):
+ self._assert_func(complex(1, 2), complex(1, 2))
+ self._assert_func(complex(1, np.nan), complex(1, np.nan))
+ self._test_not_equal(complex(1, np.nan), complex(1, 2))
+ self._test_not_equal(complex(np.nan, 1), complex(1, np.nan))
+ self._test_not_equal(complex(np.nan, np.inf), complex(np.nan, 2))
+
+ def test_negative_zero(self):
+ self._test_not_equal(np.PZERO, np.NZERO)
+
+ def test_complex(self):
+ x = np.array([complex(1, 2), complex(1, np.nan)])
+ y = np.array([complex(1, 2), complex(1, 2)])
+ self._assert_func(x, x)
+ self._test_not_equal(x, y)
+
+ def test_object(self):
+ #gh-12942
+ import datetime
+ a = np.array([datetime.datetime(2000, 1, 1),
+ datetime.datetime(2000, 1, 2)])
+ self._test_not_equal(a, a[::-1])
+
+
+class TestArrayAlmostEqual(_GenericTest):
+
+ def setup_method(self):
+ self._assert_func = assert_array_almost_equal
+
+ def test_closeness(self):
+ # Note that in the course of time we ended up with
+ # `abs(x - y) < 1.5 * 10**(-decimal)`
+ # instead of the previously documented
+ # `abs(x - y) < 0.5 * 10**(-decimal)`
+ # so this check serves to preserve the wrongness.
+
+ # test scalars
+ self._assert_func(1.499999, 0.0, decimal=0)
+ assert_raises(AssertionError,
+ lambda: self._assert_func(1.5, 0.0, decimal=0))
+
+ # test arrays
+ self._assert_func([1.499999], [0.0], decimal=0)
+ assert_raises(AssertionError,
+ lambda: self._assert_func([1.5], [0.0], decimal=0))
+
+ def test_simple(self):
+ x = np.array([1234.2222])
+ y = np.array([1234.2223])
+
+ self._assert_func(x, y, decimal=3)
+ self._assert_func(x, y, decimal=4)
+ assert_raises(AssertionError,
+ lambda: self._assert_func(x, y, decimal=5))
+
+ def test_nan(self):
+ anan = np.array([np.nan])
+ aone = np.array([1])
+ ainf = np.array([np.inf])
+ self._assert_func(anan, anan)
+ assert_raises(AssertionError,
+ lambda: self._assert_func(anan, aone))
+ assert_raises(AssertionError,
+ lambda: self._assert_func(anan, ainf))
+ assert_raises(AssertionError,
+ lambda: self._assert_func(ainf, anan))
+
+ def test_inf(self):
+ a = np.array([[1., 2.], [3., 4.]])
+ b = a.copy()
+ a[0, 0] = np.inf
+ assert_raises(AssertionError,
+ lambda: self._assert_func(a, b))
+ b[0, 0] = -np.inf
+ assert_raises(AssertionError,
+ lambda: self._assert_func(a, b))
+
+ def test_subclass(self):
+ a = np.array([[1., 2.], [3., 4.]])
+ b = np.ma.masked_array([[1., 2.], [0., 4.]],
+ [[False, False], [True, False]])
+ self._assert_func(a, b)
+ self._assert_func(b, a)
+ self._assert_func(b, b)
+
+ # Test fully masked as well (see gh-11123).
+ a = np.ma.MaskedArray(3.5, mask=True)
+ b = np.array([3., 4., 6.5])
+ self._test_equal(a, b)
+ self._test_equal(b, a)
+ a = np.ma.masked
+ b = np.array([3., 4., 6.5])
+ self._test_equal(a, b)
+ self._test_equal(b, a)
+ a = np.ma.MaskedArray([3., 4., 6.5], mask=[True, True, True])
+ b = np.array([1., 2., 3.])
+ self._test_equal(a, b)
+ self._test_equal(b, a)
+ a = np.ma.MaskedArray([3., 4., 6.5], mask=[True, True, True])
+ b = np.array(1.)
+ self._test_equal(a, b)
+ self._test_equal(b, a)
+
+ def test_subclass_that_cannot_be_bool(self):
+ # While we cannot guarantee testing functions will always work for
+ # subclasses, the tests should ideally rely only on subclasses having
+ # comparison operators, not on them being able to store booleans
+ # (which, e.g., astropy Quantity cannot usefully do). See gh-8452.
+ class MyArray(np.ndarray):
+ def __eq__(self, other):
+ return super().__eq__(other).view(np.ndarray)
+
+ def __lt__(self, other):
+ return super().__lt__(other).view(np.ndarray)
+
+ def all(self, *args, **kwargs):
+ raise NotImplementedError
+
+ a = np.array([1., 2.]).view(MyArray)
+ self._assert_func(a, a)
+
+
+class TestAlmostEqual(_GenericTest):
+
+ def setup_method(self):
+ self._assert_func = assert_almost_equal
+
+ def test_closeness(self):
+ # Note that in the course of time we ended up with
+ # `abs(x - y) < 1.5 * 10**(-decimal)`
+ # instead of the previously documented
+ # `abs(x - y) < 0.5 * 10**(-decimal)`
+ # so this check serves to preserve the wrongness.
+
+ # test scalars
+ self._assert_func(1.499999, 0.0, decimal=0)
+ assert_raises(AssertionError,
+ lambda: self._assert_func(1.5, 0.0, decimal=0))
+
+ # test arrays
+ self._assert_func([1.499999], [0.0], decimal=0)
+ assert_raises(AssertionError,
+ lambda: self._assert_func([1.5], [0.0], decimal=0))
+
+ def test_nan_item(self):
+ self._assert_func(np.nan, np.nan)
+ assert_raises(AssertionError,
+ lambda: self._assert_func(np.nan, 1))
+ assert_raises(AssertionError,
+ lambda: self._assert_func(np.nan, np.inf))
+ assert_raises(AssertionError,
+ lambda: self._assert_func(np.inf, np.nan))
+
+ def test_inf_item(self):
+ self._assert_func(np.inf, np.inf)
+ self._assert_func(-np.inf, -np.inf)
+ assert_raises(AssertionError,
+ lambda: self._assert_func(np.inf, 1))
+ assert_raises(AssertionError,
+ lambda: self._assert_func(-np.inf, np.inf))
+
+ def test_simple_item(self):
+ self._test_not_equal(1, 2)
+
+ def test_complex_item(self):
+ self._assert_func(complex(1, 2), complex(1, 2))
+ self._assert_func(complex(1, np.nan), complex(1, np.nan))
+ self._assert_func(complex(np.inf, np.nan), complex(np.inf, np.nan))
+ self._test_not_equal(complex(1, np.nan), complex(1, 2))
+ self._test_not_equal(complex(np.nan, 1), complex(1, np.nan))
+ self._test_not_equal(complex(np.nan, np.inf), complex(np.nan, 2))
+
+ def test_complex(self):
+ x = np.array([complex(1, 2), complex(1, np.nan)])
+ z = np.array([complex(1, 2), complex(np.nan, 1)])
+ y = np.array([complex(1, 2), complex(1, 2)])
+ self._assert_func(x, x)
+ self._test_not_equal(x, y)
+ self._test_not_equal(x, z)
+
+ def test_error_message(self):
+ """Check the message is formatted correctly for the decimal value.
+ Also check the message when input includes inf or nan (gh12200)"""
+ x = np.array([1.00000000001, 2.00000000002, 3.00003])
+ y = np.array([1.00000000002, 2.00000000003, 3.00004])
+
+ # Test with a different amount of decimal digits
+ with pytest.raises(AssertionError) as exc_info:
+ self._assert_func(x, y, decimal=12)
+ msgs = str(exc_info.value).split('\n')
+ assert_equal(msgs[3], 'Mismatched elements: 3 / 3 (100%)')
+ assert_equal(msgs[4], 'Max absolute difference: 1.e-05')
+ assert_equal(msgs[5], 'Max relative difference: 3.33328889e-06')
+ assert_equal(
+ msgs[6],
+ ' x: array([1.00000000001, 2.00000000002, 3.00003 ])')
+ assert_equal(
+ msgs[7],
+ ' y: array([1.00000000002, 2.00000000003, 3.00004 ])')
+
+ # With the default value of decimal digits, only the 3rd element
+ # differs. Note that we only check for the formatting of the arrays
+ # themselves.
+ with pytest.raises(AssertionError) as exc_info:
+ self._assert_func(x, y)
+ msgs = str(exc_info.value).split('\n')
+ assert_equal(msgs[3], 'Mismatched elements: 1 / 3 (33.3%)')
+ assert_equal(msgs[4], 'Max absolute difference: 1.e-05')
+ assert_equal(msgs[5], 'Max relative difference: 3.33328889e-06')
+ assert_equal(msgs[6], ' x: array([1. , 2. , 3.00003])')
+ assert_equal(msgs[7], ' y: array([1. , 2. , 3.00004])')
+
+ # Check the error message when input includes inf
+ x = np.array([np.inf, 0])
+ y = np.array([np.inf, 1])
+ with pytest.raises(AssertionError) as exc_info:
+ self._assert_func(x, y)
+ msgs = str(exc_info.value).split('\n')
+ assert_equal(msgs[3], 'Mismatched elements: 1 / 2 (50%)')
+ assert_equal(msgs[4], 'Max absolute difference: 1.')
+ assert_equal(msgs[5], 'Max relative difference: 1.')
+ assert_equal(msgs[6], ' x: array([inf, 0.])')
+ assert_equal(msgs[7], ' y: array([inf, 1.])')
+
+ # Check the error message when dividing by zero
+ x = np.array([1, 2])
+ y = np.array([0, 0])
+ with pytest.raises(AssertionError) as exc_info:
+ self._assert_func(x, y)
+ msgs = str(exc_info.value).split('\n')
+ assert_equal(msgs[3], 'Mismatched elements: 2 / 2 (100%)')
+ assert_equal(msgs[4], 'Max absolute difference: 2')
+ assert_equal(msgs[5], 'Max relative difference: inf')
+
+ def test_error_message_2(self):
+ """Check the message is formatted correctly when either x or y is a scalar."""
+ x = 2
+ y = np.ones(20)
+ with pytest.raises(AssertionError) as exc_info:
+ self._assert_func(x, y)
+ msgs = str(exc_info.value).split('\n')
+ assert_equal(msgs[3], 'Mismatched elements: 20 / 20 (100%)')
+ assert_equal(msgs[4], 'Max absolute difference: 1.')
+ assert_equal(msgs[5], 'Max relative difference: 1.')
+
+ y = 2
+ x = np.ones(20)
+ with pytest.raises(AssertionError) as exc_info:
+ self._assert_func(x, y)
+ msgs = str(exc_info.value).split('\n')
+ assert_equal(msgs[3], 'Mismatched elements: 20 / 20 (100%)')
+ assert_equal(msgs[4], 'Max absolute difference: 1.')
+ assert_equal(msgs[5], 'Max relative difference: 0.5')
+
+ def test_subclass_that_cannot_be_bool(self):
+ # While we cannot guarantee testing functions will always work for
+ # subclasses, the tests should ideally rely only on subclasses having
+ # comparison operators, not on them being able to store booleans
+ # (which, e.g., astropy Quantity cannot usefully do). See gh-8452.
+ class MyArray(np.ndarray):
+ def __eq__(self, other):
+ return super().__eq__(other).view(np.ndarray)
+
+ def __lt__(self, other):
+ return super().__lt__(other).view(np.ndarray)
+
+ def all(self, *args, **kwargs):
+ raise NotImplementedError
+
+ a = np.array([1., 2.]).view(MyArray)
+ self._assert_func(a, a)
+
+
+class TestApproxEqual:
+
+ def setup_method(self):
+ self._assert_func = assert_approx_equal
+
+ def test_simple_0d_arrays(self):
+ x = np.array(1234.22)
+ y = np.array(1234.23)
+
+ self._assert_func(x, y, significant=5)
+ self._assert_func(x, y, significant=6)
+ assert_raises(AssertionError,
+ lambda: self._assert_func(x, y, significant=7))
+
+ def test_simple_items(self):
+ x = 1234.22
+ y = 1234.23
+
+ self._assert_func(x, y, significant=4)
+ self._assert_func(x, y, significant=5)
+ self._assert_func(x, y, significant=6)
+ assert_raises(AssertionError,
+ lambda: self._assert_func(x, y, significant=7))
+
+ def test_nan_array(self):
+ anan = np.array(np.nan)
+ aone = np.array(1)
+ ainf = np.array(np.inf)
+ self._assert_func(anan, anan)
+ assert_raises(AssertionError, lambda: self._assert_func(anan, aone))
+ assert_raises(AssertionError, lambda: self._assert_func(anan, ainf))
+ assert_raises(AssertionError, lambda: self._assert_func(ainf, anan))
+
+ def test_nan_items(self):
+ anan = np.array(np.nan)
+ aone = np.array(1)
+ ainf = np.array(np.inf)
+ self._assert_func(anan, anan)
+ assert_raises(AssertionError, lambda: self._assert_func(anan, aone))
+ assert_raises(AssertionError, lambda: self._assert_func(anan, ainf))
+ assert_raises(AssertionError, lambda: self._assert_func(ainf, anan))
+
+
+class TestArrayAssertLess:
+
+ def setup_method(self):
+ self._assert_func = assert_array_less
+
+ def test_simple_arrays(self):
+ x = np.array([1.1, 2.2])
+ y = np.array([1.2, 2.3])
+
+ self._assert_func(x, y)
+ assert_raises(AssertionError, lambda: self._assert_func(y, x))
+
+ y = np.array([1.0, 2.3])
+
+ assert_raises(AssertionError, lambda: self._assert_func(x, y))
+ assert_raises(AssertionError, lambda: self._assert_func(y, x))
+
+ def test_rank2(self):
+ x = np.array([[1.1, 2.2], [3.3, 4.4]])
+ y = np.array([[1.2, 2.3], [3.4, 4.5]])
+
+ self._assert_func(x, y)
+ assert_raises(AssertionError, lambda: self._assert_func(y, x))
+
+ y = np.array([[1.0, 2.3], [3.4, 4.5]])
+
+ assert_raises(AssertionError, lambda: self._assert_func(x, y))
+ assert_raises(AssertionError, lambda: self._assert_func(y, x))
+
+ def test_rank3(self):
+ x = np.ones(shape=(2, 2, 2))
+ y = np.ones(shape=(2, 2, 2))+1
+
+ self._assert_func(x, y)
+ assert_raises(AssertionError, lambda: self._assert_func(y, x))
+
+ y[0, 0, 0] = 0
+
+ assert_raises(AssertionError, lambda: self._assert_func(x, y))
+ assert_raises(AssertionError, lambda: self._assert_func(y, x))
+
+ def test_simple_items(self):
+ x = 1.1
+ y = 2.2
+
+ self._assert_func(x, y)
+ assert_raises(AssertionError, lambda: self._assert_func(y, x))
+
+ y = np.array([2.2, 3.3])
+
+ self._assert_func(x, y)
+ assert_raises(AssertionError, lambda: self._assert_func(y, x))
+
+ y = np.array([1.0, 3.3])
+
+ assert_raises(AssertionError, lambda: self._assert_func(x, y))
+
+ def test_nan_noncompare(self):
+ anan = np.array(np.nan)
+ aone = np.array(1)
+ ainf = np.array(np.inf)
+ self._assert_func(anan, anan)
+ assert_raises(AssertionError, lambda: self._assert_func(aone, anan))
+ assert_raises(AssertionError, lambda: self._assert_func(anan, aone))
+ assert_raises(AssertionError, lambda: self._assert_func(anan, ainf))
+ assert_raises(AssertionError, lambda: self._assert_func(ainf, anan))
+
+ def test_nan_noncompare_array(self):
+ x = np.array([1.1, 2.2, 3.3])
+ anan = np.array(np.nan)
+
+ assert_raises(AssertionError, lambda: self._assert_func(x, anan))
+ assert_raises(AssertionError, lambda: self._assert_func(anan, x))
+
+ x = np.array([1.1, 2.2, np.nan])
+
+ assert_raises(AssertionError, lambda: self._assert_func(x, anan))
+ assert_raises(AssertionError, lambda: self._assert_func(anan, x))
+
+ y = np.array([1.0, 2.0, np.nan])
+
+ self._assert_func(y, x)
+ assert_raises(AssertionError, lambda: self._assert_func(x, y))
+
+ def test_inf_compare(self):
+ aone = np.array(1)
+ ainf = np.array(np.inf)
+
+ self._assert_func(aone, ainf)
+ self._assert_func(-ainf, aone)
+ self._assert_func(-ainf, ainf)
+ assert_raises(AssertionError, lambda: self._assert_func(ainf, aone))
+ assert_raises(AssertionError, lambda: self._assert_func(aone, -ainf))
+ assert_raises(AssertionError, lambda: self._assert_func(ainf, ainf))
+ assert_raises(AssertionError, lambda: self._assert_func(ainf, -ainf))
+ assert_raises(AssertionError, lambda: self._assert_func(-ainf, -ainf))
+
+ def test_inf_compare_array(self):
+ x = np.array([1.1, 2.2, np.inf])
+ ainf = np.array(np.inf)
+
+ assert_raises(AssertionError, lambda: self._assert_func(x, ainf))
+ assert_raises(AssertionError, lambda: self._assert_func(ainf, x))
+ assert_raises(AssertionError, lambda: self._assert_func(x, -ainf))
+ assert_raises(AssertionError, lambda: self._assert_func(-x, -ainf))
+ assert_raises(AssertionError, lambda: self._assert_func(-ainf, -x))
+ self._assert_func(-ainf, x)
+
+
+class TestWarns:
+
+ def test_warn(self):
+ def f():
+ warnings.warn("yo")
+ return 3
+
+ before_filters = sys.modules['warnings'].filters[:]
+ assert_equal(assert_warns(UserWarning, f), 3)
+ after_filters = sys.modules['warnings'].filters
+
+ assert_raises(AssertionError, assert_no_warnings, f)
+ assert_equal(assert_no_warnings(lambda x: x, 1), 1)
+
+ # Check that the warnings state is unchanged
+ assert_equal(before_filters, after_filters,
+ "assert_warns does not preserver warnings state")
+
+ def test_context_manager(self):
+
+ before_filters = sys.modules['warnings'].filters[:]
+ with assert_warns(UserWarning):
+ warnings.warn("yo")
+ after_filters = sys.modules['warnings'].filters
+
+ def no_warnings():
+ with assert_no_warnings():
+ warnings.warn("yo")
+
+ assert_raises(AssertionError, no_warnings)
+ assert_equal(before_filters, after_filters,
+ "assert_warns does not preserver warnings state")
+
+ def test_warn_wrong_warning(self):
+ def f():
+ warnings.warn("yo", DeprecationWarning)
+
+ failed = False
+ with warnings.catch_warnings():
+ warnings.simplefilter("error", DeprecationWarning)
+ try:
+ # Should raise a DeprecationWarning
+ assert_warns(UserWarning, f)
+ failed = True
+ except DeprecationWarning:
+ pass
+
+ if failed:
+ raise AssertionError("wrong warning caught by assert_warn")
+
+
+class TestAssertAllclose:
+
+ def test_simple(self):
+ x = 1e-3
+ y = 1e-9
+
+ assert_allclose(x, y, atol=1)
+ assert_raises(AssertionError, assert_allclose, x, y)
+
+ a = np.array([x, y, x, y])
+ b = np.array([x, y, x, x])
+
+ assert_allclose(a, b, atol=1)
+ assert_raises(AssertionError, assert_allclose, a, b)
+
+ b[-1] = y * (1 + 1e-8)
+ assert_allclose(a, b)
+ assert_raises(AssertionError, assert_allclose, a, b, rtol=1e-9)
+
+ assert_allclose(6, 10, rtol=0.5)
+ assert_raises(AssertionError, assert_allclose, 10, 6, rtol=0.5)
+
+ def test_min_int(self):
+ a = np.array([np.iinfo(np.int_).min], dtype=np.int_)
+ # Should not raise:
+ assert_allclose(a, a)
+
+ def test_report_fail_percentage(self):
+ a = np.array([1, 1, 1, 1])
+ b = np.array([1, 1, 1, 2])
+
+ with pytest.raises(AssertionError) as exc_info:
+ assert_allclose(a, b)
+ msg = str(exc_info.value)
+ assert_('Mismatched elements: 1 / 4 (25%)\n'
+ 'Max absolute difference: 1\n'
+ 'Max relative difference: 0.5' in msg)
+
+ def test_equal_nan(self):
+ a = np.array([np.nan])
+ b = np.array([np.nan])
+ # Should not raise:
+ assert_allclose(a, b, equal_nan=True)
+
+ def test_not_equal_nan(self):
+ a = np.array([np.nan])
+ b = np.array([np.nan])
+ assert_raises(AssertionError, assert_allclose, a, b, equal_nan=False)
+
+ def test_equal_nan_default(self):
+ # Make sure equal_nan default behavior remains unchanged. (All
+ # of these functions use assert_array_compare under the hood.)
+ # None of these should raise.
+ a = np.array([np.nan])
+ b = np.array([np.nan])
+ assert_array_equal(a, b)
+ assert_array_almost_equal(a, b)
+ assert_array_less(a, b)
+ assert_allclose(a, b)
+
+ def test_report_max_relative_error(self):
+ a = np.array([0, 1])
+ b = np.array([0, 2])
+
+ with pytest.raises(AssertionError) as exc_info:
+ assert_allclose(a, b)
+ msg = str(exc_info.value)
+ assert_('Max relative difference: 0.5' in msg)
+
+ def test_timedelta(self):
+ # see gh-18286
+ a = np.array([[1, 2, 3, "NaT"]], dtype="m8[ns]")
+ assert_allclose(a, a)
+
+ def test_error_message_unsigned(self):
+ """Check the the message is formatted correctly when overflow can occur
+ (gh21768)"""
+ # Ensure to test for potential overflow in the case of:
+ # x - y
+ # and
+ # y - x
+ x = np.asarray([0, 1, 8], dtype='uint8')
+ y = np.asarray([4, 4, 4], dtype='uint8')
+ with pytest.raises(AssertionError) as exc_info:
+ assert_allclose(x, y, atol=3)
+ msgs = str(exc_info.value).split('\n')
+ assert_equal(msgs[4], 'Max absolute difference: 4')
+
+
+class TestArrayAlmostEqualNulp:
+
+ def test_float64_pass(self):
+ # The number of units of least precision
+ # In this case, use a few places above the lowest level (ie nulp=1)
+ nulp = 5
+ x = np.linspace(-20, 20, 50, dtype=np.float64)
+ x = 10**x
+ x = np.r_[-x, x]
+
+ # Addition
+ eps = np.finfo(x.dtype).eps
+ y = x + x*eps*nulp/2.
+ assert_array_almost_equal_nulp(x, y, nulp)
+
+ # Subtraction
+ epsneg = np.finfo(x.dtype).epsneg
+ y = x - x*epsneg*nulp/2.
+ assert_array_almost_equal_nulp(x, y, nulp)
+
+ def test_float64_fail(self):
+ nulp = 5
+ x = np.linspace(-20, 20, 50, dtype=np.float64)
+ x = 10**x
+ x = np.r_[-x, x]
+
+ eps = np.finfo(x.dtype).eps
+ y = x + x*eps*nulp*2.
+ assert_raises(AssertionError, assert_array_almost_equal_nulp,
+ x, y, nulp)
+
+ epsneg = np.finfo(x.dtype).epsneg
+ y = x - x*epsneg*nulp*2.
+ assert_raises(AssertionError, assert_array_almost_equal_nulp,
+ x, y, nulp)
+
+ def test_float64_ignore_nan(self):
+ # Ignore ULP differences between various NAN's
+ # Note that MIPS may reverse quiet and signaling nans
+ # so we use the builtin version as a base.
+ offset = np.uint64(0xffffffff)
+ nan1_i64 = np.array(np.nan, dtype=np.float64).view(np.uint64)
+ nan2_i64 = nan1_i64 ^ offset # nan payload on MIPS is all ones.
+ nan1_f64 = nan1_i64.view(np.float64)
+ nan2_f64 = nan2_i64.view(np.float64)
+ assert_array_max_ulp(nan1_f64, nan2_f64, 0)
+
+ def test_float32_pass(self):
+ nulp = 5
+ x = np.linspace(-20, 20, 50, dtype=np.float32)
+ x = 10**x
+ x = np.r_[-x, x]
+
+ eps = np.finfo(x.dtype).eps
+ y = x + x*eps*nulp/2.
+ assert_array_almost_equal_nulp(x, y, nulp)
+
+ epsneg = np.finfo(x.dtype).epsneg
+ y = x - x*epsneg*nulp/2.
+ assert_array_almost_equal_nulp(x, y, nulp)
+
+ def test_float32_fail(self):
+ nulp = 5
+ x = np.linspace(-20, 20, 50, dtype=np.float32)
+ x = 10**x
+ x = np.r_[-x, x]
+
+ eps = np.finfo(x.dtype).eps
+ y = x + x*eps*nulp*2.
+ assert_raises(AssertionError, assert_array_almost_equal_nulp,
+ x, y, nulp)
+
+ epsneg = np.finfo(x.dtype).epsneg
+ y = x - x*epsneg*nulp*2.
+ assert_raises(AssertionError, assert_array_almost_equal_nulp,
+ x, y, nulp)
+
+ def test_float32_ignore_nan(self):
+ # Ignore ULP differences between various NAN's
+ # Note that MIPS may reverse quiet and signaling nans
+ # so we use the builtin version as a base.
+ offset = np.uint32(0xffff)
+ nan1_i32 = np.array(np.nan, dtype=np.float32).view(np.uint32)
+ nan2_i32 = nan1_i32 ^ offset # nan payload on MIPS is all ones.
+ nan1_f32 = nan1_i32.view(np.float32)
+ nan2_f32 = nan2_i32.view(np.float32)
+ assert_array_max_ulp(nan1_f32, nan2_f32, 0)
+
+ def test_float16_pass(self):
+ nulp = 5
+ x = np.linspace(-4, 4, 10, dtype=np.float16)
+ x = 10**x
+ x = np.r_[-x, x]
+
+ eps = np.finfo(x.dtype).eps
+ y = x + x*eps*nulp/2.
+ assert_array_almost_equal_nulp(x, y, nulp)
+
+ epsneg = np.finfo(x.dtype).epsneg
+ y = x - x*epsneg*nulp/2.
+ assert_array_almost_equal_nulp(x, y, nulp)
+
+ def test_float16_fail(self):
+ nulp = 5
+ x = np.linspace(-4, 4, 10, dtype=np.float16)
+ x = 10**x
+ x = np.r_[-x, x]
+
+ eps = np.finfo(x.dtype).eps
+ y = x + x*eps*nulp*2.
+ assert_raises(AssertionError, assert_array_almost_equal_nulp,
+ x, y, nulp)
+
+ epsneg = np.finfo(x.dtype).epsneg
+ y = x - x*epsneg*nulp*2.
+ assert_raises(AssertionError, assert_array_almost_equal_nulp,
+ x, y, nulp)
+
+ def test_float16_ignore_nan(self):
+ # Ignore ULP differences between various NAN's
+ # Note that MIPS may reverse quiet and signaling nans
+ # so we use the builtin version as a base.
+ offset = np.uint16(0xff)
+ nan1_i16 = np.array(np.nan, dtype=np.float16).view(np.uint16)
+ nan2_i16 = nan1_i16 ^ offset # nan payload on MIPS is all ones.
+ nan1_f16 = nan1_i16.view(np.float16)
+ nan2_f16 = nan2_i16.view(np.float16)
+ assert_array_max_ulp(nan1_f16, nan2_f16, 0)
+
+ def test_complex128_pass(self):
+ nulp = 5
+ x = np.linspace(-20, 20, 50, dtype=np.float64)
+ x = 10**x
+ x = np.r_[-x, x]
+ xi = x + x*1j
+
+ eps = np.finfo(x.dtype).eps
+ y = x + x*eps*nulp/2.
+ assert_array_almost_equal_nulp(xi, x + y*1j, nulp)
+ assert_array_almost_equal_nulp(xi, y + x*1j, nulp)
+ # The test condition needs to be at least a factor of sqrt(2) smaller
+ # because the real and imaginary parts both change
+ y = x + x*eps*nulp/4.
+ assert_array_almost_equal_nulp(xi, y + y*1j, nulp)
+
+ epsneg = np.finfo(x.dtype).epsneg
+ y = x - x*epsneg*nulp/2.
+ assert_array_almost_equal_nulp(xi, x + y*1j, nulp)
+ assert_array_almost_equal_nulp(xi, y + x*1j, nulp)
+ y = x - x*epsneg*nulp/4.
+ assert_array_almost_equal_nulp(xi, y + y*1j, nulp)
+
+ def test_complex128_fail(self):
+ nulp = 5
+ x = np.linspace(-20, 20, 50, dtype=np.float64)
+ x = 10**x
+ x = np.r_[-x, x]
+ xi = x + x*1j
+
+ eps = np.finfo(x.dtype).eps
+ y = x + x*eps*nulp*2.
+ assert_raises(AssertionError, assert_array_almost_equal_nulp,
+ xi, x + y*1j, nulp)
+ assert_raises(AssertionError, assert_array_almost_equal_nulp,
+ xi, y + x*1j, nulp)
+ # The test condition needs to be at least a factor of sqrt(2) smaller
+ # because the real and imaginary parts both change
+ y = x + x*eps*nulp
+ assert_raises(AssertionError, assert_array_almost_equal_nulp,
+ xi, y + y*1j, nulp)
+
+ epsneg = np.finfo(x.dtype).epsneg
+ y = x - x*epsneg*nulp*2.
+ assert_raises(AssertionError, assert_array_almost_equal_nulp,
+ xi, x + y*1j, nulp)
+ assert_raises(AssertionError, assert_array_almost_equal_nulp,
+ xi, y + x*1j, nulp)
+ y = x - x*epsneg*nulp
+ assert_raises(AssertionError, assert_array_almost_equal_nulp,
+ xi, y + y*1j, nulp)
+
+ def test_complex64_pass(self):
+ nulp = 5
+ x = np.linspace(-20, 20, 50, dtype=np.float32)
+ x = 10**x
+ x = np.r_[-x, x]
+ xi = x + x*1j
+
+ eps = np.finfo(x.dtype).eps
+ y = x + x*eps*nulp/2.
+ assert_array_almost_equal_nulp(xi, x + y*1j, nulp)
+ assert_array_almost_equal_nulp(xi, y + x*1j, nulp)
+ y = x + x*eps*nulp/4.
+ assert_array_almost_equal_nulp(xi, y + y*1j, nulp)
+
+ epsneg = np.finfo(x.dtype).epsneg
+ y = x - x*epsneg*nulp/2.
+ assert_array_almost_equal_nulp(xi, x + y*1j, nulp)
+ assert_array_almost_equal_nulp(xi, y + x*1j, nulp)
+ y = x - x*epsneg*nulp/4.
+ assert_array_almost_equal_nulp(xi, y + y*1j, nulp)
+
+ def test_complex64_fail(self):
+ nulp = 5
+ x = np.linspace(-20, 20, 50, dtype=np.float32)
+ x = 10**x
+ x = np.r_[-x, x]
+ xi = x + x*1j
+
+ eps = np.finfo(x.dtype).eps
+ y = x + x*eps*nulp*2.
+ assert_raises(AssertionError, assert_array_almost_equal_nulp,
+ xi, x + y*1j, nulp)
+ assert_raises(AssertionError, assert_array_almost_equal_nulp,
+ xi, y + x*1j, nulp)
+ y = x + x*eps*nulp
+ assert_raises(AssertionError, assert_array_almost_equal_nulp,
+ xi, y + y*1j, nulp)
+
+ epsneg = np.finfo(x.dtype).epsneg
+ y = x - x*epsneg*nulp*2.
+ assert_raises(AssertionError, assert_array_almost_equal_nulp,
+ xi, x + y*1j, nulp)
+ assert_raises(AssertionError, assert_array_almost_equal_nulp,
+ xi, y + x*1j, nulp)
+ y = x - x*epsneg*nulp
+ assert_raises(AssertionError, assert_array_almost_equal_nulp,
+ xi, y + y*1j, nulp)
+
+
+class TestULP:
+
+ def test_equal(self):
+ x = np.random.randn(10)
+ assert_array_max_ulp(x, x, maxulp=0)
+
+ def test_single(self):
+ # Generate 1 + small deviation, check that adding eps gives a few UNL
+ x = np.ones(10).astype(np.float32)
+ x += 0.01 * np.random.randn(10).astype(np.float32)
+ eps = np.finfo(np.float32).eps
+ assert_array_max_ulp(x, x+eps, maxulp=20)
+
+ def test_double(self):
+ # Generate 1 + small deviation, check that adding eps gives a few UNL
+ x = np.ones(10).astype(np.float64)
+ x += 0.01 * np.random.randn(10).astype(np.float64)
+ eps = np.finfo(np.float64).eps
+ assert_array_max_ulp(x, x+eps, maxulp=200)
+
+ def test_inf(self):
+ for dt in [np.float32, np.float64]:
+ inf = np.array([np.inf]).astype(dt)
+ big = np.array([np.finfo(dt).max])
+ assert_array_max_ulp(inf, big, maxulp=200)
+
+ def test_nan(self):
+ # Test that nan is 'far' from small, tiny, inf, max and min
+ for dt in [np.float32, np.float64]:
+ if dt == np.float32:
+ maxulp = 1e6
+ else:
+ maxulp = 1e12
+ inf = np.array([np.inf]).astype(dt)
+ nan = np.array([np.nan]).astype(dt)
+ big = np.array([np.finfo(dt).max])
+ tiny = np.array([np.finfo(dt).tiny])
+ zero = np.array([np.PZERO]).astype(dt)
+ nzero = np.array([np.NZERO]).astype(dt)
+ assert_raises(AssertionError,
+ lambda: assert_array_max_ulp(nan, inf,
+ maxulp=maxulp))
+ assert_raises(AssertionError,
+ lambda: assert_array_max_ulp(nan, big,
+ maxulp=maxulp))
+ assert_raises(AssertionError,
+ lambda: assert_array_max_ulp(nan, tiny,
+ maxulp=maxulp))
+ assert_raises(AssertionError,
+ lambda: assert_array_max_ulp(nan, zero,
+ maxulp=maxulp))
+ assert_raises(AssertionError,
+ lambda: assert_array_max_ulp(nan, nzero,
+ maxulp=maxulp))
+
+
+class TestStringEqual:
+ def test_simple(self):
+ assert_string_equal("hello", "hello")
+ assert_string_equal("hello\nmultiline", "hello\nmultiline")
+
+ with pytest.raises(AssertionError) as exc_info:
+ assert_string_equal("foo\nbar", "hello\nbar")
+ msg = str(exc_info.value)
+ assert_equal(msg, "Differences in strings:\n- foo\n+ hello")
+
+ assert_raises(AssertionError,
+ lambda: assert_string_equal("foo", "hello"))
+
+ def test_regex(self):
+ assert_string_equal("a+*b", "a+*b")
+
+ assert_raises(AssertionError,
+ lambda: assert_string_equal("aaa", "a+b"))
+
+
+def assert_warn_len_equal(mod, n_in_context):
+ try:
+ mod_warns = mod.__warningregistry__
+ except AttributeError:
+ # the lack of a __warningregistry__
+ # attribute means that no warning has
+ # occurred; this can be triggered in
+ # a parallel test scenario, while in
+ # a serial test scenario an initial
+ # warning (and therefore the attribute)
+ # are always created first
+ mod_warns = {}
+
+ num_warns = len(mod_warns)
+
+ if 'version' in mod_warns:
+ # Python 3 adds a 'version' entry to the registry,
+ # do not count it.
+ num_warns -= 1
+
+ assert_equal(num_warns, n_in_context)
+
+
+def test_warn_len_equal_call_scenarios():
+ # assert_warn_len_equal is called under
+ # varying circumstances depending on serial
+ # vs. parallel test scenarios; this test
+ # simply aims to probe both code paths and
+ # check that no assertion is uncaught
+
+ # parallel scenario -- no warning issued yet
+ class mod:
+ pass
+
+ mod_inst = mod()
+
+ assert_warn_len_equal(mod=mod_inst,
+ n_in_context=0)
+
+ # serial test scenario -- the __warningregistry__
+ # attribute should be present
+ class mod:
+ def __init__(self):
+ self.__warningregistry__ = {'warning1':1,
+ 'warning2':2}
+
+ mod_inst = mod()
+ assert_warn_len_equal(mod=mod_inst,
+ n_in_context=2)
+
+
+def _get_fresh_mod():
+ # Get this module, with warning registry empty
+ my_mod = sys.modules[__name__]
+ try:
+ my_mod.__warningregistry__.clear()
+ except AttributeError:
+ # will not have a __warningregistry__ unless warning has been
+ # raised in the module at some point
+ pass
+ return my_mod
+
+
+def test_clear_and_catch_warnings():
+ # Initial state of module, no warnings
+ my_mod = _get_fresh_mod()
+ assert_equal(getattr(my_mod, '__warningregistry__', {}), {})
+ with clear_and_catch_warnings(modules=[my_mod]):
+ warnings.simplefilter('ignore')
+ warnings.warn('Some warning')
+ assert_equal(my_mod.__warningregistry__, {})
+ # Without specified modules, don't clear warnings during context.
+ # catch_warnings doesn't make an entry for 'ignore'.
+ with clear_and_catch_warnings():
+ warnings.simplefilter('ignore')
+ warnings.warn('Some warning')
+ assert_warn_len_equal(my_mod, 0)
+
+ # Manually adding two warnings to the registry:
+ my_mod.__warningregistry__ = {'warning1': 1,
+ 'warning2': 2}
+
+ # Confirm that specifying module keeps old warning, does not add new
+ with clear_and_catch_warnings(modules=[my_mod]):
+ warnings.simplefilter('ignore')
+ warnings.warn('Another warning')
+ assert_warn_len_equal(my_mod, 2)
+
+ # Another warning, no module spec it clears up registry
+ with clear_and_catch_warnings():
+ warnings.simplefilter('ignore')
+ warnings.warn('Another warning')
+ assert_warn_len_equal(my_mod, 0)
+
+
+def test_suppress_warnings_module():
+ # Initial state of module, no warnings
+ my_mod = _get_fresh_mod()
+ assert_equal(getattr(my_mod, '__warningregistry__', {}), {})
+
+ def warn_other_module():
+ # Apply along axis is implemented in python; stacklevel=2 means
+ # we end up inside its module, not ours.
+ def warn(arr):
+ warnings.warn("Some warning 2", stacklevel=2)
+ return arr
+ np.apply_along_axis(warn, 0, [0])
+
+ # Test module based warning suppression:
+ assert_warn_len_equal(my_mod, 0)
+ with suppress_warnings() as sup:
+ sup.record(UserWarning)
+ # suppress warning from other module (may have .pyc ending),
+ # if apply_along_axis is moved, had to be changed.
+ sup.filter(module=np.lib.shape_base)
+ warnings.warn("Some warning")
+ warn_other_module()
+ # Check that the suppression did test the file correctly (this module
+ # got filtered)
+ assert_equal(len(sup.log), 1)
+ assert_equal(sup.log[0].message.args[0], "Some warning")
+ assert_warn_len_equal(my_mod, 0)
+ sup = suppress_warnings()
+ # Will have to be changed if apply_along_axis is moved:
+ sup.filter(module=my_mod)
+ with sup:
+ warnings.warn('Some warning')
+ assert_warn_len_equal(my_mod, 0)
+ # And test repeat works:
+ sup.filter(module=my_mod)
+ with sup:
+ warnings.warn('Some warning')
+ assert_warn_len_equal(my_mod, 0)
+
+ # Without specified modules
+ with suppress_warnings():
+ warnings.simplefilter('ignore')
+ warnings.warn('Some warning')
+ assert_warn_len_equal(my_mod, 0)
+
+
+def test_suppress_warnings_type():
+ # Initial state of module, no warnings
+ my_mod = _get_fresh_mod()
+ assert_equal(getattr(my_mod, '__warningregistry__', {}), {})
+
+ # Test module based warning suppression:
+ with suppress_warnings() as sup:
+ sup.filter(UserWarning)
+ warnings.warn('Some warning')
+ assert_warn_len_equal(my_mod, 0)
+ sup = suppress_warnings()
+ sup.filter(UserWarning)
+ with sup:
+ warnings.warn('Some warning')
+ assert_warn_len_equal(my_mod, 0)
+ # And test repeat works:
+ sup.filter(module=my_mod)
+ with sup:
+ warnings.warn('Some warning')
+ assert_warn_len_equal(my_mod, 0)
+
+ # Without specified modules
+ with suppress_warnings():
+ warnings.simplefilter('ignore')
+ warnings.warn('Some warning')
+ assert_warn_len_equal(my_mod, 0)
+
+
+def test_suppress_warnings_decorate_no_record():
+ sup = suppress_warnings()
+ sup.filter(UserWarning)
+
+ @sup
+ def warn(category):
+ warnings.warn('Some warning', category)
+
+ with warnings.catch_warnings(record=True) as w:
+ warnings.simplefilter("always")
+ warn(UserWarning) # should be supppressed
+ warn(RuntimeWarning)
+ assert_equal(len(w), 1)
+
+
+def test_suppress_warnings_record():
+ sup = suppress_warnings()
+ log1 = sup.record()
+
+ with sup:
+ log2 = sup.record(message='Some other warning 2')
+ sup.filter(message='Some warning')
+ warnings.warn('Some warning')
+ warnings.warn('Some other warning')
+ warnings.warn('Some other warning 2')
+
+ assert_equal(len(sup.log), 2)
+ assert_equal(len(log1), 1)
+ assert_equal(len(log2),1)
+ assert_equal(log2[0].message.args[0], 'Some other warning 2')
+
+ # Do it again, with the same context to see if some warnings survived:
+ with sup:
+ log2 = sup.record(message='Some other warning 2')
+ sup.filter(message='Some warning')
+ warnings.warn('Some warning')
+ warnings.warn('Some other warning')
+ warnings.warn('Some other warning 2')
+
+ assert_equal(len(sup.log), 2)
+ assert_equal(len(log1), 1)
+ assert_equal(len(log2), 1)
+ assert_equal(log2[0].message.args[0], 'Some other warning 2')
+
+ # Test nested:
+ with suppress_warnings() as sup:
+ sup.record()
+ with suppress_warnings() as sup2:
+ sup2.record(message='Some warning')
+ warnings.warn('Some warning')
+ warnings.warn('Some other warning')
+ assert_equal(len(sup2.log), 1)
+ assert_equal(len(sup.log), 1)
+
+
+def test_suppress_warnings_forwarding():
+ def warn_other_module():
+ # Apply along axis is implemented in python; stacklevel=2 means
+ # we end up inside its module, not ours.
+ def warn(arr):
+ warnings.warn("Some warning", stacklevel=2)
+ return arr
+ np.apply_along_axis(warn, 0, [0])
+
+ with suppress_warnings() as sup:
+ sup.record()
+ with suppress_warnings("always"):
+ for i in range(2):
+ warnings.warn("Some warning")
+
+ assert_equal(len(sup.log), 2)
+
+ with suppress_warnings() as sup:
+ sup.record()
+ with suppress_warnings("location"):
+ for i in range(2):
+ warnings.warn("Some warning")
+ warnings.warn("Some warning")
+
+ assert_equal(len(sup.log), 2)
+
+ with suppress_warnings() as sup:
+ sup.record()
+ with suppress_warnings("module"):
+ for i in range(2):
+ warnings.warn("Some warning")
+ warnings.warn("Some warning")
+ warn_other_module()
+
+ assert_equal(len(sup.log), 2)
+
+ with suppress_warnings() as sup:
+ sup.record()
+ with suppress_warnings("once"):
+ for i in range(2):
+ warnings.warn("Some warning")
+ warnings.warn("Some other warning")
+ warn_other_module()
+
+ assert_equal(len(sup.log), 2)
+
+
+def test_tempdir():
+ with tempdir() as tdir:
+ fpath = os.path.join(tdir, 'tmp')
+ with open(fpath, 'w'):
+ pass
+ assert_(not os.path.isdir(tdir))
+
+ raised = False
+ try:
+ with tempdir() as tdir:
+ raise ValueError()
+ except ValueError:
+ raised = True
+ assert_(raised)
+ assert_(not os.path.isdir(tdir))
+
+
+def test_temppath():
+ with temppath() as fpath:
+ with open(fpath, 'w'):
+ pass
+ assert_(not os.path.isfile(fpath))
+
+ raised = False
+ try:
+ with temppath() as fpath:
+ raise ValueError()
+ except ValueError:
+ raised = True
+ assert_(raised)
+ assert_(not os.path.isfile(fpath))
+
+
+class my_cacw(clear_and_catch_warnings):
+
+ class_modules = (sys.modules[__name__],)
+
+
+def test_clear_and_catch_warnings_inherit():
+ # Test can subclass and add default modules
+ my_mod = _get_fresh_mod()
+ with my_cacw():
+ warnings.simplefilter('ignore')
+ warnings.warn('Some warning')
+ assert_equal(my_mod.__warningregistry__, {})
+
+
+@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
+class TestAssertNoGcCycles:
+ """ Test assert_no_gc_cycles """
+ def test_passes(self):
+ def no_cycle():
+ b = []
+ b.append([])
+ return b
+
+ with assert_no_gc_cycles():
+ no_cycle()
+
+ assert_no_gc_cycles(no_cycle)
+
+ def test_asserts(self):
+ def make_cycle():
+ a = []
+ a.append(a)
+ a.append(a)
+ return a
+
+ with assert_raises(AssertionError):
+ with assert_no_gc_cycles():
+ make_cycle()
+
+ with assert_raises(AssertionError):
+ assert_no_gc_cycles(make_cycle)
+
+ @pytest.mark.slow
+ def test_fails(self):
+ """
+ Test that in cases where the garbage cannot be collected, we raise an
+ error, instead of hanging forever trying to clear it.
+ """
+
+ class ReferenceCycleInDel:
+ """
+ An object that not only contains a reference cycle, but creates new
+ cycles whenever it's garbage-collected and its __del__ runs
+ """
+ make_cycle = True
+
+ def __init__(self):
+ self.cycle = self
+
+ def __del__(self):
+ # break the current cycle so that `self` can be freed
+ self.cycle = None
+
+ if ReferenceCycleInDel.make_cycle:
+ # but create a new one so that the garbage collector has more
+ # work to do.
+ ReferenceCycleInDel()
+
+ try:
+ w = weakref.ref(ReferenceCycleInDel())
+ try:
+ with assert_raises(RuntimeError):
+ # this will be unable to get a baseline empty garbage
+ assert_no_gc_cycles(lambda: None)
+ except AssertionError:
+ # the above test is only necessary if the GC actually tried to free
+ # our object anyway, which python 2.7 does not.
+ if w() is not None:
+ pytest.skip("GC does not call __del__ on cyclic objects")
+ raise
+
+ finally:
+ # make sure that we stop creating reference cycles
+ ReferenceCycleInDel.make_cycle = False