about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/numpy/random/tests/test_regression.py
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/numpy/random/tests/test_regression.py
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-4a52a71956a8d46fcb7294ac71734504bb09bcc2.tar.gz
two version of R2R are here HEAD master
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/random/tests/test_regression.py')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/random/tests/test_regression.py149
1 files changed, 149 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/test_regression.py b/.venv/lib/python3.12/site-packages/numpy/random/tests/test_regression.py
new file mode 100644
index 00000000..8bf41987
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/random/tests/test_regression.py
@@ -0,0 +1,149 @@
+import sys
+from numpy.testing import (
+    assert_, assert_array_equal, assert_raises,
+    )
+from numpy import random
+import numpy as np
+
+
+class TestRegression:
+
+    def test_VonMises_range(self):
+        # Make sure generated random variables are in [-pi, pi].
+        # Regression test for ticket #986.
+        for mu in np.linspace(-7., 7., 5):
+            r = random.mtrand.vonmises(mu, 1, 50)
+            assert_(np.all(r > -np.pi) and np.all(r <= np.pi))
+
+    def test_hypergeometric_range(self):
+        # Test for ticket #921
+        assert_(np.all(np.random.hypergeometric(3, 18, 11, size=10) < 4))
+        assert_(np.all(np.random.hypergeometric(18, 3, 11, size=10) > 0))
+
+        # Test for ticket #5623
+        args = [
+            (2**20 - 2, 2**20 - 2, 2**20 - 2),  # Check for 32-bit systems
+        ]
+        is_64bits = sys.maxsize > 2**32
+        if is_64bits and sys.platform != 'win32':
+            # Check for 64-bit systems
+            args.append((2**40 - 2, 2**40 - 2, 2**40 - 2))
+        for arg in args:
+            assert_(np.random.hypergeometric(*arg) > 0)
+
+    def test_logseries_convergence(self):
+        # Test for ticket #923
+        N = 1000
+        np.random.seed(0)
+        rvsn = np.random.logseries(0.8, size=N)
+        # these two frequency counts should be close to theoretical
+        # numbers with this large sample
+        # theoretical large N result is 0.49706795
+        freq = np.sum(rvsn == 1) / N
+        msg = f'Frequency was {freq:f}, should be > 0.45'
+        assert_(freq > 0.45, msg)
+        # theoretical large N result is 0.19882718
+        freq = np.sum(rvsn == 2) / N
+        msg = f'Frequency was {freq:f}, should be < 0.23'
+        assert_(freq < 0.23, msg)
+
+    def test_shuffle_mixed_dimension(self):
+        # Test for trac ticket #2074
+        for t in [[1, 2, 3, None],
+                  [(1, 1), (2, 2), (3, 3), None],
+                  [1, (2, 2), (3, 3), None],
+                  [(1, 1), 2, 3, None]]:
+            np.random.seed(12345)
+            shuffled = list(t)
+            random.shuffle(shuffled)
+            expected = np.array([t[0], t[3], t[1], t[2]], dtype=object)
+            assert_array_equal(np.array(shuffled, dtype=object), expected)
+
+    def test_call_within_randomstate(self):
+        # Check that custom RandomState does not call into global state
+        m = np.random.RandomState()
+        res = np.array([0, 8, 7, 2, 1, 9, 4, 7, 0, 3])
+        for i in range(3):
+            np.random.seed(i)
+            m.seed(4321)
+            # If m.state is not honored, the result will change
+            assert_array_equal(m.choice(10, size=10, p=np.ones(10)/10.), res)
+
+    def test_multivariate_normal_size_types(self):
+        # Test for multivariate_normal issue with 'size' argument.
+        # Check that the multivariate_normal size argument can be a
+        # numpy integer.
+        np.random.multivariate_normal([0], [[0]], size=1)
+        np.random.multivariate_normal([0], [[0]], size=np.int_(1))
+        np.random.multivariate_normal([0], [[0]], size=np.int64(1))
+
+    def test_beta_small_parameters(self):
+        # Test that beta with small a and b parameters does not produce
+        # NaNs due to roundoff errors causing 0 / 0, gh-5851
+        np.random.seed(1234567890)
+        x = np.random.beta(0.0001, 0.0001, size=100)
+        assert_(not np.any(np.isnan(x)), 'Nans in np.random.beta')
+
+    def test_choice_sum_of_probs_tolerance(self):
+        # The sum of probs should be 1.0 with some tolerance.
+        # For low precision dtypes the tolerance was too tight.
+        # See numpy github issue 6123.
+        np.random.seed(1234)
+        a = [1, 2, 3]
+        counts = [4, 4, 2]
+        for dt in np.float16, np.float32, np.float64:
+            probs = np.array(counts, dtype=dt) / sum(counts)
+            c = np.random.choice(a, p=probs)
+            assert_(c in a)
+            assert_raises(ValueError, np.random.choice, a, p=probs*0.9)
+
+    def test_shuffle_of_array_of_different_length_strings(self):
+        # Test that permuting an array of different length strings
+        # will not cause a segfault on garbage collection
+        # Tests gh-7710
+        np.random.seed(1234)
+
+        a = np.array(['a', 'a' * 1000])
+
+        for _ in range(100):
+            np.random.shuffle(a)
+
+        # Force Garbage Collection - should not segfault.
+        import gc
+        gc.collect()
+
+    def test_shuffle_of_array_of_objects(self):
+        # Test that permuting an array of objects will not cause
+        # a segfault on garbage collection.
+        # See gh-7719
+        np.random.seed(1234)
+        a = np.array([np.arange(1), np.arange(4)], dtype=object)
+
+        for _ in range(1000):
+            np.random.shuffle(a)
+
+        # Force Garbage Collection - should not segfault.
+        import gc
+        gc.collect()
+
+    def test_permutation_subclass(self):
+        class N(np.ndarray):
+            pass
+
+        np.random.seed(1)
+        orig = np.arange(3).view(N)
+        perm = np.random.permutation(orig)
+        assert_array_equal(perm, np.array([0, 2, 1]))
+        assert_array_equal(orig, np.arange(3).view(N))
+
+        class M:
+            a = np.arange(5)
+
+            def __array__(self):
+                return self.a
+
+        np.random.seed(1)
+        m = M()
+        perm = np.random.permutation(m)
+        assert_array_equal(perm, np.array([2, 1, 4, 0, 3]))
+        assert_array_equal(m.__array__(), np.arange(5))