about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_hermite_e.py
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_hermite_e.py
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-4a52a71956a8d46fcb7294ac71734504bb09bcc2.tar.gz
two version of R2R are here HEAD master
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_hermite_e.py')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_hermite_e.py556
1 files changed, 556 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_hermite_e.py b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_hermite_e.py
new file mode 100644
index 00000000..2d262a33
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_hermite_e.py
@@ -0,0 +1,556 @@
+"""Tests for hermite_e module.
+
+"""
+from functools import reduce
+
+import numpy as np
+import numpy.polynomial.hermite_e as herme
+from numpy.polynomial.polynomial import polyval
+from numpy.testing import (
+    assert_almost_equal, assert_raises, assert_equal, assert_,
+    )
+
+He0 = np.array([1])
+He1 = np.array([0, 1])
+He2 = np.array([-1, 0, 1])
+He3 = np.array([0, -3, 0, 1])
+He4 = np.array([3, 0, -6, 0, 1])
+He5 = np.array([0, 15, 0, -10, 0, 1])
+He6 = np.array([-15, 0, 45, 0, -15, 0, 1])
+He7 = np.array([0, -105, 0, 105, 0, -21, 0, 1])
+He8 = np.array([105, 0, -420, 0, 210, 0, -28, 0, 1])
+He9 = np.array([0, 945, 0, -1260, 0, 378, 0, -36, 0, 1])
+
+Helist = [He0, He1, He2, He3, He4, He5, He6, He7, He8, He9]
+
+
+def trim(x):
+    return herme.hermetrim(x, tol=1e-6)
+
+
+class TestConstants:
+
+    def test_hermedomain(self):
+        assert_equal(herme.hermedomain, [-1, 1])
+
+    def test_hermezero(self):
+        assert_equal(herme.hermezero, [0])
+
+    def test_hermeone(self):
+        assert_equal(herme.hermeone, [1])
+
+    def test_hermex(self):
+        assert_equal(herme.hermex, [0, 1])
+
+
+class TestArithmetic:
+    x = np.linspace(-3, 3, 100)
+
+    def test_hermeadd(self):
+        for i in range(5):
+            for j in range(5):
+                msg = f"At i={i}, j={j}"
+                tgt = np.zeros(max(i, j) + 1)
+                tgt[i] += 1
+                tgt[j] += 1
+                res = herme.hermeadd([0]*i + [1], [0]*j + [1])
+                assert_equal(trim(res), trim(tgt), err_msg=msg)
+
+    def test_hermesub(self):
+        for i in range(5):
+            for j in range(5):
+                msg = f"At i={i}, j={j}"
+                tgt = np.zeros(max(i, j) + 1)
+                tgt[i] += 1
+                tgt[j] -= 1
+                res = herme.hermesub([0]*i + [1], [0]*j + [1])
+                assert_equal(trim(res), trim(tgt), err_msg=msg)
+
+    def test_hermemulx(self):
+        assert_equal(herme.hermemulx([0]), [0])
+        assert_equal(herme.hermemulx([1]), [0, 1])
+        for i in range(1, 5):
+            ser = [0]*i + [1]
+            tgt = [0]*(i - 1) + [i, 0, 1]
+            assert_equal(herme.hermemulx(ser), tgt)
+
+    def test_hermemul(self):
+        # check values of result
+        for i in range(5):
+            pol1 = [0]*i + [1]
+            val1 = herme.hermeval(self.x, pol1)
+            for j in range(5):
+                msg = f"At i={i}, j={j}"
+                pol2 = [0]*j + [1]
+                val2 = herme.hermeval(self.x, pol2)
+                pol3 = herme.hermemul(pol1, pol2)
+                val3 = herme.hermeval(self.x, pol3)
+                assert_(len(pol3) == i + j + 1, msg)
+                assert_almost_equal(val3, val1*val2, err_msg=msg)
+
+    def test_hermediv(self):
+        for i in range(5):
+            for j in range(5):
+                msg = f"At i={i}, j={j}"
+                ci = [0]*i + [1]
+                cj = [0]*j + [1]
+                tgt = herme.hermeadd(ci, cj)
+                quo, rem = herme.hermediv(tgt, ci)
+                res = herme.hermeadd(herme.hermemul(quo, ci), rem)
+                assert_equal(trim(res), trim(tgt), err_msg=msg)
+
+    def test_hermepow(self):
+        for i in range(5):
+            for j in range(5):
+                msg = f"At i={i}, j={j}"
+                c = np.arange(i + 1)
+                tgt = reduce(herme.hermemul, [c]*j, np.array([1]))
+                res = herme.hermepow(c, j)
+                assert_equal(trim(res), trim(tgt), err_msg=msg)
+
+
+class TestEvaluation:
+    # coefficients of 1 + 2*x + 3*x**2
+    c1d = np.array([4., 2., 3.])
+    c2d = np.einsum('i,j->ij', c1d, c1d)
+    c3d = np.einsum('i,j,k->ijk', c1d, c1d, c1d)
+
+    # some random values in [-1, 1)
+    x = np.random.random((3, 5))*2 - 1
+    y = polyval(x, [1., 2., 3.])
+
+    def test_hermeval(self):
+        #check empty input
+        assert_equal(herme.hermeval([], [1]).size, 0)
+
+        #check normal input)
+        x = np.linspace(-1, 1)
+        y = [polyval(x, c) for c in Helist]
+        for i in range(10):
+            msg = f"At i={i}"
+            tgt = y[i]
+            res = herme.hermeval(x, [0]*i + [1])
+            assert_almost_equal(res, tgt, err_msg=msg)
+
+        #check that shape is preserved
+        for i in range(3):
+            dims = [2]*i
+            x = np.zeros(dims)
+            assert_equal(herme.hermeval(x, [1]).shape, dims)
+            assert_equal(herme.hermeval(x, [1, 0]).shape, dims)
+            assert_equal(herme.hermeval(x, [1, 0, 0]).shape, dims)
+
+    def test_hermeval2d(self):
+        x1, x2, x3 = self.x
+        y1, y2, y3 = self.y
+
+        #test exceptions
+        assert_raises(ValueError, herme.hermeval2d, x1, x2[:2], self.c2d)
+
+        #test values
+        tgt = y1*y2
+        res = herme.hermeval2d(x1, x2, self.c2d)
+        assert_almost_equal(res, tgt)
+
+        #test shape
+        z = np.ones((2, 3))
+        res = herme.hermeval2d(z, z, self.c2d)
+        assert_(res.shape == (2, 3))
+
+    def test_hermeval3d(self):
+        x1, x2, x3 = self.x
+        y1, y2, y3 = self.y
+
+        #test exceptions
+        assert_raises(ValueError, herme.hermeval3d, x1, x2, x3[:2], self.c3d)
+
+        #test values
+        tgt = y1*y2*y3
+        res = herme.hermeval3d(x1, x2, x3, self.c3d)
+        assert_almost_equal(res, tgt)
+
+        #test shape
+        z = np.ones((2, 3))
+        res = herme.hermeval3d(z, z, z, self.c3d)
+        assert_(res.shape == (2, 3))
+
+    def test_hermegrid2d(self):
+        x1, x2, x3 = self.x
+        y1, y2, y3 = self.y
+
+        #test values
+        tgt = np.einsum('i,j->ij', y1, y2)
+        res = herme.hermegrid2d(x1, x2, self.c2d)
+        assert_almost_equal(res, tgt)
+
+        #test shape
+        z = np.ones((2, 3))
+        res = herme.hermegrid2d(z, z, self.c2d)
+        assert_(res.shape == (2, 3)*2)
+
+    def test_hermegrid3d(self):
+        x1, x2, x3 = self.x
+        y1, y2, y3 = self.y
+
+        #test values
+        tgt = np.einsum('i,j,k->ijk', y1, y2, y3)
+        res = herme.hermegrid3d(x1, x2, x3, self.c3d)
+        assert_almost_equal(res, tgt)
+
+        #test shape
+        z = np.ones((2, 3))
+        res = herme.hermegrid3d(z, z, z, self.c3d)
+        assert_(res.shape == (2, 3)*3)
+
+
+class TestIntegral:
+
+    def test_hermeint(self):
+        # check exceptions
+        assert_raises(TypeError, herme.hermeint, [0], .5)
+        assert_raises(ValueError, herme.hermeint, [0], -1)
+        assert_raises(ValueError, herme.hermeint, [0], 1, [0, 0])
+        assert_raises(ValueError, herme.hermeint, [0], lbnd=[0])
+        assert_raises(ValueError, herme.hermeint, [0], scl=[0])
+        assert_raises(TypeError, herme.hermeint, [0], axis=.5)
+
+        # test integration of zero polynomial
+        for i in range(2, 5):
+            k = [0]*(i - 2) + [1]
+            res = herme.hermeint([0], m=i, k=k)
+            assert_almost_equal(res, [0, 1])
+
+        # check single integration with integration constant
+        for i in range(5):
+            scl = i + 1
+            pol = [0]*i + [1]
+            tgt = [i] + [0]*i + [1/scl]
+            hermepol = herme.poly2herme(pol)
+            hermeint = herme.hermeint(hermepol, m=1, k=[i])
+            res = herme.herme2poly(hermeint)
+            assert_almost_equal(trim(res), trim(tgt))
+
+        # check single integration with integration constant and lbnd
+        for i in range(5):
+            scl = i + 1
+            pol = [0]*i + [1]
+            hermepol = herme.poly2herme(pol)
+            hermeint = herme.hermeint(hermepol, m=1, k=[i], lbnd=-1)
+            assert_almost_equal(herme.hermeval(-1, hermeint), i)
+
+        # check single integration with integration constant and scaling
+        for i in range(5):
+            scl = i + 1
+            pol = [0]*i + [1]
+            tgt = [i] + [0]*i + [2/scl]
+            hermepol = herme.poly2herme(pol)
+            hermeint = herme.hermeint(hermepol, m=1, k=[i], scl=2)
+            res = herme.herme2poly(hermeint)
+            assert_almost_equal(trim(res), trim(tgt))
+
+        # check multiple integrations with default k
+        for i in range(5):
+            for j in range(2, 5):
+                pol = [0]*i + [1]
+                tgt = pol[:]
+                for k in range(j):
+                    tgt = herme.hermeint(tgt, m=1)
+                res = herme.hermeint(pol, m=j)
+                assert_almost_equal(trim(res), trim(tgt))
+
+        # check multiple integrations with defined k
+        for i in range(5):
+            for j in range(2, 5):
+                pol = [0]*i + [1]
+                tgt = pol[:]
+                for k in range(j):
+                    tgt = herme.hermeint(tgt, m=1, k=[k])
+                res = herme.hermeint(pol, m=j, k=list(range(j)))
+                assert_almost_equal(trim(res), trim(tgt))
+
+        # check multiple integrations with lbnd
+        for i in range(5):
+            for j in range(2, 5):
+                pol = [0]*i + [1]
+                tgt = pol[:]
+                for k in range(j):
+                    tgt = herme.hermeint(tgt, m=1, k=[k], lbnd=-1)
+                res = herme.hermeint(pol, m=j, k=list(range(j)), lbnd=-1)
+                assert_almost_equal(trim(res), trim(tgt))
+
+        # check multiple integrations with scaling
+        for i in range(5):
+            for j in range(2, 5):
+                pol = [0]*i + [1]
+                tgt = pol[:]
+                for k in range(j):
+                    tgt = herme.hermeint(tgt, m=1, k=[k], scl=2)
+                res = herme.hermeint(pol, m=j, k=list(range(j)), scl=2)
+                assert_almost_equal(trim(res), trim(tgt))
+
+    def test_hermeint_axis(self):
+        # check that axis keyword works
+        c2d = np.random.random((3, 4))
+
+        tgt = np.vstack([herme.hermeint(c) for c in c2d.T]).T
+        res = herme.hermeint(c2d, axis=0)
+        assert_almost_equal(res, tgt)
+
+        tgt = np.vstack([herme.hermeint(c) for c in c2d])
+        res = herme.hermeint(c2d, axis=1)
+        assert_almost_equal(res, tgt)
+
+        tgt = np.vstack([herme.hermeint(c, k=3) for c in c2d])
+        res = herme.hermeint(c2d, k=3, axis=1)
+        assert_almost_equal(res, tgt)
+
+
+class TestDerivative:
+
+    def test_hermeder(self):
+        # check exceptions
+        assert_raises(TypeError, herme.hermeder, [0], .5)
+        assert_raises(ValueError, herme.hermeder, [0], -1)
+
+        # check that zeroth derivative does nothing
+        for i in range(5):
+            tgt = [0]*i + [1]
+            res = herme.hermeder(tgt, m=0)
+            assert_equal(trim(res), trim(tgt))
+
+        # check that derivation is the inverse of integration
+        for i in range(5):
+            for j in range(2, 5):
+                tgt = [0]*i + [1]
+                res = herme.hermeder(herme.hermeint(tgt, m=j), m=j)
+                assert_almost_equal(trim(res), trim(tgt))
+
+        # check derivation with scaling
+        for i in range(5):
+            for j in range(2, 5):
+                tgt = [0]*i + [1]
+                res = herme.hermeder(
+                    herme.hermeint(tgt, m=j, scl=2), m=j, scl=.5)
+                assert_almost_equal(trim(res), trim(tgt))
+
+    def test_hermeder_axis(self):
+        # check that axis keyword works
+        c2d = np.random.random((3, 4))
+
+        tgt = np.vstack([herme.hermeder(c) for c in c2d.T]).T
+        res = herme.hermeder(c2d, axis=0)
+        assert_almost_equal(res, tgt)
+
+        tgt = np.vstack([herme.hermeder(c) for c in c2d])
+        res = herme.hermeder(c2d, axis=1)
+        assert_almost_equal(res, tgt)
+
+
+class TestVander:
+    # some random values in [-1, 1)
+    x = np.random.random((3, 5))*2 - 1
+
+    def test_hermevander(self):
+        # check for 1d x
+        x = np.arange(3)
+        v = herme.hermevander(x, 3)
+        assert_(v.shape == (3, 4))
+        for i in range(4):
+            coef = [0]*i + [1]
+            assert_almost_equal(v[..., i], herme.hermeval(x, coef))
+
+        # check for 2d x
+        x = np.array([[1, 2], [3, 4], [5, 6]])
+        v = herme.hermevander(x, 3)
+        assert_(v.shape == (3, 2, 4))
+        for i in range(4):
+            coef = [0]*i + [1]
+            assert_almost_equal(v[..., i], herme.hermeval(x, coef))
+
+    def test_hermevander2d(self):
+        # also tests hermeval2d for non-square coefficient array
+        x1, x2, x3 = self.x
+        c = np.random.random((2, 3))
+        van = herme.hermevander2d(x1, x2, [1, 2])
+        tgt = herme.hermeval2d(x1, x2, c)
+        res = np.dot(van, c.flat)
+        assert_almost_equal(res, tgt)
+
+        # check shape
+        van = herme.hermevander2d([x1], [x2], [1, 2])
+        assert_(van.shape == (1, 5, 6))
+
+    def test_hermevander3d(self):
+        # also tests hermeval3d for non-square coefficient array
+        x1, x2, x3 = self.x
+        c = np.random.random((2, 3, 4))
+        van = herme.hermevander3d(x1, x2, x3, [1, 2, 3])
+        tgt = herme.hermeval3d(x1, x2, x3, c)
+        res = np.dot(van, c.flat)
+        assert_almost_equal(res, tgt)
+
+        # check shape
+        van = herme.hermevander3d([x1], [x2], [x3], [1, 2, 3])
+        assert_(van.shape == (1, 5, 24))
+
+
+class TestFitting:
+
+    def test_hermefit(self):
+        def f(x):
+            return x*(x - 1)*(x - 2)
+
+        def f2(x):
+            return x**4 + x**2 + 1
+
+        # Test exceptions
+        assert_raises(ValueError, herme.hermefit, [1], [1], -1)
+        assert_raises(TypeError, herme.hermefit, [[1]], [1], 0)
+        assert_raises(TypeError, herme.hermefit, [], [1], 0)
+        assert_raises(TypeError, herme.hermefit, [1], [[[1]]], 0)
+        assert_raises(TypeError, herme.hermefit, [1, 2], [1], 0)
+        assert_raises(TypeError, herme.hermefit, [1], [1, 2], 0)
+        assert_raises(TypeError, herme.hermefit, [1], [1], 0, w=[[1]])
+        assert_raises(TypeError, herme.hermefit, [1], [1], 0, w=[1, 1])
+        assert_raises(ValueError, herme.hermefit, [1], [1], [-1,])
+        assert_raises(ValueError, herme.hermefit, [1], [1], [2, -1, 6])
+        assert_raises(TypeError, herme.hermefit, [1], [1], [])
+
+        # Test fit
+        x = np.linspace(0, 2)
+        y = f(x)
+        #
+        coef3 = herme.hermefit(x, y, 3)
+        assert_equal(len(coef3), 4)
+        assert_almost_equal(herme.hermeval(x, coef3), y)
+        coef3 = herme.hermefit(x, y, [0, 1, 2, 3])
+        assert_equal(len(coef3), 4)
+        assert_almost_equal(herme.hermeval(x, coef3), y)
+        #
+        coef4 = herme.hermefit(x, y, 4)
+        assert_equal(len(coef4), 5)
+        assert_almost_equal(herme.hermeval(x, coef4), y)
+        coef4 = herme.hermefit(x, y, [0, 1, 2, 3, 4])
+        assert_equal(len(coef4), 5)
+        assert_almost_equal(herme.hermeval(x, coef4), y)
+        # check things still work if deg is not in strict increasing
+        coef4 = herme.hermefit(x, y, [2, 3, 4, 1, 0])
+        assert_equal(len(coef4), 5)
+        assert_almost_equal(herme.hermeval(x, coef4), y)
+        #
+        coef2d = herme.hermefit(x, np.array([y, y]).T, 3)
+        assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
+        coef2d = herme.hermefit(x, np.array([y, y]).T, [0, 1, 2, 3])
+        assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
+        # test weighting
+        w = np.zeros_like(x)
+        yw = y.copy()
+        w[1::2] = 1
+        y[0::2] = 0
+        wcoef3 = herme.hermefit(x, yw, 3, w=w)
+        assert_almost_equal(wcoef3, coef3)
+        wcoef3 = herme.hermefit(x, yw, [0, 1, 2, 3], w=w)
+        assert_almost_equal(wcoef3, coef3)
+        #
+        wcoef2d = herme.hermefit(x, np.array([yw, yw]).T, 3, w=w)
+        assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
+        wcoef2d = herme.hermefit(x, np.array([yw, yw]).T, [0, 1, 2, 3], w=w)
+        assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
+        # test scaling with complex values x points whose square
+        # is zero when summed.
+        x = [1, 1j, -1, -1j]
+        assert_almost_equal(herme.hermefit(x, x, 1), [0, 1])
+        assert_almost_equal(herme.hermefit(x, x, [0, 1]), [0, 1])
+        # test fitting only even Legendre polynomials
+        x = np.linspace(-1, 1)
+        y = f2(x)
+        coef1 = herme.hermefit(x, y, 4)
+        assert_almost_equal(herme.hermeval(x, coef1), y)
+        coef2 = herme.hermefit(x, y, [0, 2, 4])
+        assert_almost_equal(herme.hermeval(x, coef2), y)
+        assert_almost_equal(coef1, coef2)
+
+
+class TestCompanion:
+
+    def test_raises(self):
+        assert_raises(ValueError, herme.hermecompanion, [])
+        assert_raises(ValueError, herme.hermecompanion, [1])
+
+    def test_dimensions(self):
+        for i in range(1, 5):
+            coef = [0]*i + [1]
+            assert_(herme.hermecompanion(coef).shape == (i, i))
+
+    def test_linear_root(self):
+        assert_(herme.hermecompanion([1, 2])[0, 0] == -.5)
+
+
+class TestGauss:
+
+    def test_100(self):
+        x, w = herme.hermegauss(100)
+
+        # test orthogonality. Note that the results need to be normalized,
+        # otherwise the huge values that can arise from fast growing
+        # functions like Laguerre can be very confusing.
+        v = herme.hermevander(x, 99)
+        vv = np.dot(v.T * w, v)
+        vd = 1/np.sqrt(vv.diagonal())
+        vv = vd[:, None] * vv * vd
+        assert_almost_equal(vv, np.eye(100))
+
+        # check that the integral of 1 is correct
+        tgt = np.sqrt(2*np.pi)
+        assert_almost_equal(w.sum(), tgt)
+
+
+class TestMisc:
+
+    def test_hermefromroots(self):
+        res = herme.hermefromroots([])
+        assert_almost_equal(trim(res), [1])
+        for i in range(1, 5):
+            roots = np.cos(np.linspace(-np.pi, 0, 2*i + 1)[1::2])
+            pol = herme.hermefromroots(roots)
+            res = herme.hermeval(roots, pol)
+            tgt = 0
+            assert_(len(pol) == i + 1)
+            assert_almost_equal(herme.herme2poly(pol)[-1], 1)
+            assert_almost_equal(res, tgt)
+
+    def test_hermeroots(self):
+        assert_almost_equal(herme.hermeroots([1]), [])
+        assert_almost_equal(herme.hermeroots([1, 1]), [-1])
+        for i in range(2, 5):
+            tgt = np.linspace(-1, 1, i)
+            res = herme.hermeroots(herme.hermefromroots(tgt))
+            assert_almost_equal(trim(res), trim(tgt))
+
+    def test_hermetrim(self):
+        coef = [2, -1, 1, 0]
+
+        # Test exceptions
+        assert_raises(ValueError, herme.hermetrim, coef, -1)
+
+        # Test results
+        assert_equal(herme.hermetrim(coef), coef[:-1])
+        assert_equal(herme.hermetrim(coef, 1), coef[:-3])
+        assert_equal(herme.hermetrim(coef, 2), [0])
+
+    def test_hermeline(self):
+        assert_equal(herme.hermeline(3, 4), [3, 4])
+
+    def test_herme2poly(self):
+        for i in range(10):
+            assert_almost_equal(herme.herme2poly([0]*i + [1]), Helist[i])
+
+    def test_poly2herme(self):
+        for i in range(10):
+            assert_almost_equal(herme.poly2herme(Helist[i]), [0]*i + [1])
+
+    def test_weight(self):
+        x = np.linspace(-5, 5, 11)
+        tgt = np.exp(-.5*x**2)
+        res = herme.hermeweight(x)
+        assert_almost_equal(res, tgt)