about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_interaction.py
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_interaction.py
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-4a52a71956a8d46fcb7294ac71734504bb09bcc2.tar.gz
two version of R2R are here HEAD master
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_interaction.py')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_interaction.py354
1 files changed, 354 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_interaction.py b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_interaction.py
new file mode 100644
index 00000000..5154bd62
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_interaction.py
@@ -0,0 +1,354 @@
+"""Tests of interaction of matrix with other parts of numpy.
+
+Note that tests with MaskedArray and linalg are done in separate files.
+"""
+import pytest
+
+import textwrap
+import warnings
+
+import numpy as np
+from numpy.testing import (assert_, assert_equal, assert_raises,
+                           assert_raises_regex, assert_array_equal,
+                           assert_almost_equal, assert_array_almost_equal)
+
+
+def test_fancy_indexing():
+    # The matrix class messes with the shape. While this is always
+    # weird (getitem is not used, it does not have setitem nor knows
+    # about fancy indexing), this tests gh-3110
+    # 2018-04-29: moved here from core.tests.test_index.
+    m = np.matrix([[1, 2], [3, 4]])
+
+    assert_(isinstance(m[[0, 1, 0], :], np.matrix))
+
+    # gh-3110. Note the transpose currently because matrices do *not*
+    # support dimension fixing for fancy indexing correctly.
+    x = np.asmatrix(np.arange(50).reshape(5, 10))
+    assert_equal(x[:2, np.array(-1)], x[:2, -1].T)
+
+
+def test_polynomial_mapdomain():
+    # test that polynomial preserved matrix subtype.
+    # 2018-04-29: moved here from polynomial.tests.polyutils.
+    dom1 = [0, 4]
+    dom2 = [1, 3]
+    x = np.matrix([dom1, dom1])
+    res = np.polynomial.polyutils.mapdomain(x, dom1, dom2)
+    assert_(isinstance(res, np.matrix))
+
+
+def test_sort_matrix_none():
+    # 2018-04-29: moved here from core.tests.test_multiarray
+    a = np.matrix([[2, 1, 0]])
+    actual = np.sort(a, axis=None)
+    expected = np.matrix([[0, 1, 2]])
+    assert_equal(actual, expected)
+    assert_(type(expected) is np.matrix)
+
+
+def test_partition_matrix_none():
+    # gh-4301
+    # 2018-04-29: moved here from core.tests.test_multiarray
+    a = np.matrix([[2, 1, 0]])
+    actual = np.partition(a, 1, axis=None)
+    expected = np.matrix([[0, 1, 2]])
+    assert_equal(actual, expected)
+    assert_(type(expected) is np.matrix)
+
+
+def test_dot_scalar_and_matrix_of_objects():
+    # Ticket #2469
+    # 2018-04-29: moved here from core.tests.test_multiarray
+    arr = np.matrix([1, 2], dtype=object)
+    desired = np.matrix([[3, 6]], dtype=object)
+    assert_equal(np.dot(arr, 3), desired)
+    assert_equal(np.dot(3, arr), desired)
+
+
+def test_inner_scalar_and_matrix():
+    # 2018-04-29: moved here from core.tests.test_multiarray
+    for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?':
+        sca = np.array(3, dtype=dt)[()]
+        arr = np.matrix([[1, 2], [3, 4]], dtype=dt)
+        desired = np.matrix([[3, 6], [9, 12]], dtype=dt)
+        assert_equal(np.inner(arr, sca), desired)
+        assert_equal(np.inner(sca, arr), desired)
+
+
+def test_inner_scalar_and_matrix_of_objects():
+    # Ticket #4482
+    # 2018-04-29: moved here from core.tests.test_multiarray
+    arr = np.matrix([1, 2], dtype=object)
+    desired = np.matrix([[3, 6]], dtype=object)
+    assert_equal(np.inner(arr, 3), desired)
+    assert_equal(np.inner(3, arr), desired)
+
+
+def test_iter_allocate_output_subtype():
+    # Make sure that the subtype with priority wins
+    # 2018-04-29: moved here from core.tests.test_nditer, given the
+    # matrix specific shape test.
+
+    # matrix vs ndarray
+    a = np.matrix([[1, 2], [3, 4]])
+    b = np.arange(4).reshape(2, 2).T
+    i = np.nditer([a, b, None], [],
+                  [['readonly'], ['readonly'], ['writeonly', 'allocate']])
+    assert_(type(i.operands[2]) is np.matrix)
+    assert_(type(i.operands[2]) is not np.ndarray)
+    assert_equal(i.operands[2].shape, (2, 2))
+
+    # matrix always wants things to be 2D
+    b = np.arange(4).reshape(1, 2, 2)
+    assert_raises(RuntimeError, np.nditer, [a, b, None], [],
+                  [['readonly'], ['readonly'], ['writeonly', 'allocate']])
+    # but if subtypes are disabled, the result can still work
+    i = np.nditer([a, b, None], [],
+                  [['readonly'], ['readonly'],
+                   ['writeonly', 'allocate', 'no_subtype']])
+    assert_(type(i.operands[2]) is np.ndarray)
+    assert_(type(i.operands[2]) is not np.matrix)
+    assert_equal(i.operands[2].shape, (1, 2, 2))
+
+
+def like_function():
+    # 2018-04-29: moved here from core.tests.test_numeric
+    a = np.matrix([[1, 2], [3, 4]])
+    for like_function in np.zeros_like, np.ones_like, np.empty_like:
+        b = like_function(a)
+        assert_(type(b) is np.matrix)
+
+        c = like_function(a, subok=False)
+        assert_(type(c) is not np.matrix)
+
+
+def test_array_astype():
+    # 2018-04-29: copied here from core.tests.test_api
+    # subok=True passes through a matrix
+    a = np.matrix([[0, 1, 2], [3, 4, 5]], dtype='f4')
+    b = a.astype('f4', subok=True, copy=False)
+    assert_(a is b)
+
+    # subok=True is default, and creates a subtype on a cast
+    b = a.astype('i4', copy=False)
+    assert_equal(a, b)
+    assert_equal(type(b), np.matrix)
+
+    # subok=False never returns a matrix
+    b = a.astype('f4', subok=False, copy=False)
+    assert_equal(a, b)
+    assert_(not (a is b))
+    assert_(type(b) is not np.matrix)
+
+
+def test_stack():
+    # 2018-04-29: copied here from core.tests.test_shape_base
+    # check np.matrix cannot be stacked
+    m = np.matrix([[1, 2], [3, 4]])
+    assert_raises_regex(ValueError, 'shape too large to be a matrix',
+                        np.stack, [m, m])
+
+
+def test_object_scalar_multiply():
+    # Tickets #2469 and #4482
+    # 2018-04-29: moved here from core.tests.test_ufunc
+    arr = np.matrix([1, 2], dtype=object)
+    desired = np.matrix([[3, 6]], dtype=object)
+    assert_equal(np.multiply(arr, 3), desired)
+    assert_equal(np.multiply(3, arr), desired)
+
+
+def test_nanfunctions_matrices():
+    # Check that it works and that type and
+    # shape are preserved
+    # 2018-04-29: moved here from core.tests.test_nanfunctions
+    mat = np.matrix(np.eye(3))
+    for f in [np.nanmin, np.nanmax]:
+        res = f(mat, axis=0)
+        assert_(isinstance(res, np.matrix))
+        assert_(res.shape == (1, 3))
+        res = f(mat, axis=1)
+        assert_(isinstance(res, np.matrix))
+        assert_(res.shape == (3, 1))
+        res = f(mat)
+        assert_(np.isscalar(res))
+    # check that rows of nan are dealt with for subclasses (#4628)
+    mat[1] = np.nan
+    for f in [np.nanmin, np.nanmax]:
+        with warnings.catch_warnings(record=True) as w:
+            warnings.simplefilter('always')
+            res = f(mat, axis=0)
+            assert_(isinstance(res, np.matrix))
+            assert_(not np.any(np.isnan(res)))
+            assert_(len(w) == 0)
+
+        with warnings.catch_warnings(record=True) as w:
+            warnings.simplefilter('always')
+            res = f(mat, axis=1)
+            assert_(isinstance(res, np.matrix))
+            assert_(np.isnan(res[1, 0]) and not np.isnan(res[0, 0])
+                    and not np.isnan(res[2, 0]))
+            assert_(len(w) == 1, 'no warning raised')
+            assert_(issubclass(w[0].category, RuntimeWarning))
+
+        with warnings.catch_warnings(record=True) as w:
+            warnings.simplefilter('always')
+            res = f(mat)
+            assert_(np.isscalar(res))
+            assert_(res != np.nan)
+            assert_(len(w) == 0)
+
+
+def test_nanfunctions_matrices_general():
+    # Check that it works and that type and
+    # shape are preserved
+    # 2018-04-29: moved here from core.tests.test_nanfunctions
+    mat = np.matrix(np.eye(3))
+    for f in (np.nanargmin, np.nanargmax, np.nansum, np.nanprod,
+              np.nanmean, np.nanvar, np.nanstd):
+        res = f(mat, axis=0)
+        assert_(isinstance(res, np.matrix))
+        assert_(res.shape == (1, 3))
+        res = f(mat, axis=1)
+        assert_(isinstance(res, np.matrix))
+        assert_(res.shape == (3, 1))
+        res = f(mat)
+        assert_(np.isscalar(res))
+
+    for f in np.nancumsum, np.nancumprod:
+        res = f(mat, axis=0)
+        assert_(isinstance(res, np.matrix))
+        assert_(res.shape == (3, 3))
+        res = f(mat, axis=1)
+        assert_(isinstance(res, np.matrix))
+        assert_(res.shape == (3, 3))
+        res = f(mat)
+        assert_(isinstance(res, np.matrix))
+        assert_(res.shape == (1, 3*3))
+
+
+def test_average_matrix():
+    # 2018-04-29: moved here from core.tests.test_function_base.
+    y = np.matrix(np.random.rand(5, 5))
+    assert_array_equal(y.mean(0), np.average(y, 0))
+
+    a = np.matrix([[1, 2], [3, 4]])
+    w = np.matrix([[1, 2], [3, 4]])
+
+    r = np.average(a, axis=0, weights=w)
+    assert_equal(type(r), np.matrix)
+    assert_equal(r, [[2.5, 10.0/3]])
+
+
+def test_trapz_matrix():
+    # Test to make sure matrices give the same answer as ndarrays
+    # 2018-04-29: moved here from core.tests.test_function_base.
+    x = np.linspace(0, 5)
+    y = x * x
+    r = np.trapz(y, x)
+    mx = np.matrix(x)
+    my = np.matrix(y)
+    mr = np.trapz(my, mx)
+    assert_almost_equal(mr, r)
+
+
+def test_ediff1d_matrix():
+    # 2018-04-29: moved here from core.tests.test_arraysetops.
+    assert(isinstance(np.ediff1d(np.matrix(1)), np.matrix))
+    assert(isinstance(np.ediff1d(np.matrix(1), to_begin=1), np.matrix))
+
+
+def test_apply_along_axis_matrix():
+    # this test is particularly malicious because matrix
+    # refuses to become 1d
+    # 2018-04-29: moved here from core.tests.test_shape_base.
+    def double(row):
+        return row * 2
+
+    m = np.matrix([[0, 1], [2, 3]])
+    expected = np.matrix([[0, 2], [4, 6]])
+
+    result = np.apply_along_axis(double, 0, m)
+    assert_(isinstance(result, np.matrix))
+    assert_array_equal(result, expected)
+
+    result = np.apply_along_axis(double, 1, m)
+    assert_(isinstance(result, np.matrix))
+    assert_array_equal(result, expected)
+
+
+def test_kron_matrix():
+    # 2018-04-29: moved here from core.tests.test_shape_base.
+    a = np.ones([2, 2])
+    m = np.asmatrix(a)
+    assert_equal(type(np.kron(a, a)), np.ndarray)
+    assert_equal(type(np.kron(m, m)), np.matrix)
+    assert_equal(type(np.kron(a, m)), np.matrix)
+    assert_equal(type(np.kron(m, a)), np.matrix)
+
+
+class TestConcatenatorMatrix:
+    # 2018-04-29: moved here from core.tests.test_index_tricks.
+    def test_matrix(self):
+        a = [1, 2]
+        b = [3, 4]
+
+        ab_r = np.r_['r', a, b]
+        ab_c = np.r_['c', a, b]
+
+        assert_equal(type(ab_r), np.matrix)
+        assert_equal(type(ab_c), np.matrix)
+
+        assert_equal(np.array(ab_r), [[1, 2, 3, 4]])
+        assert_equal(np.array(ab_c), [[1], [2], [3], [4]])
+
+        assert_raises(ValueError, lambda: np.r_['rc', a, b])
+
+    def test_matrix_scalar(self):
+        r = np.r_['r', [1, 2], 3]
+        assert_equal(type(r), np.matrix)
+        assert_equal(np.array(r), [[1, 2, 3]])
+
+    def test_matrix_builder(self):
+        a = np.array([1])
+        b = np.array([2])
+        c = np.array([3])
+        d = np.array([4])
+        actual = np.r_['a, b; c, d']
+        expected = np.bmat([[a, b], [c, d]])
+
+        assert_equal(actual, expected)
+        assert_equal(type(actual), type(expected))
+
+
+def test_array_equal_error_message_matrix():
+    # 2018-04-29: moved here from testing.tests.test_utils.
+    with pytest.raises(AssertionError) as exc_info:
+        assert_equal(np.array([1, 2]), np.matrix([1, 2]))
+    msg = str(exc_info.value)
+    msg_reference = textwrap.dedent("""\
+
+    Arrays are not equal
+
+    (shapes (2,), (1, 2) mismatch)
+     x: array([1, 2])
+     y: matrix([[1, 2]])""")
+    assert_equal(msg, msg_reference)
+
+
+def test_array_almost_equal_matrix():
+    # Matrix slicing keeps things 2-D, while array does not necessarily.
+    # See gh-8452.
+    # 2018-04-29: moved here from testing.tests.test_utils.
+    m1 = np.matrix([[1., 2.]])
+    m2 = np.matrix([[1., np.nan]])
+    m3 = np.matrix([[1., -np.inf]])
+    m4 = np.matrix([[np.nan, np.inf]])
+    m5 = np.matrix([[1., 2.], [np.nan, np.inf]])
+    for assert_func in assert_array_almost_equal, assert_almost_equal:
+        for m in m1, m2, m3, m4, m5:
+            assert_func(m, m)
+            a = np.array(m)
+            assert_func(a, m)
+            assert_func(m, a)