about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/numpy/linalg/linalg.pyi
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/numpy/linalg/linalg.pyi
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-4a52a71956a8d46fcb7294ac71734504bb09bcc2.tar.gz
two version of R2R are here HEAD master
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/linalg/linalg.pyi')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/linalg/linalg.pyi297
1 files changed, 297 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/linalg/linalg.pyi b/.venv/lib/python3.12/site-packages/numpy/linalg/linalg.pyi
new file mode 100644
index 00000000..c0b2f29b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/linalg/linalg.pyi
@@ -0,0 +1,297 @@
+from collections.abc import Iterable
+from typing import (
+    Literal as L,
+    overload,
+    TypeVar,
+    Any,
+    SupportsIndex,
+    SupportsInt,
+    NamedTuple,
+    Generic,
+)
+
+from numpy import (
+    generic,
+    floating,
+    complexfloating,
+    int32,
+    float64,
+    complex128,
+)
+
+from numpy.linalg import LinAlgError as LinAlgError
+
+from numpy._typing import (
+    NDArray,
+    ArrayLike,
+    _ArrayLikeInt_co,
+    _ArrayLikeFloat_co,
+    _ArrayLikeComplex_co,
+    _ArrayLikeTD64_co,
+    _ArrayLikeObject_co,
+)
+
+_T = TypeVar("_T")
+_ArrayType = TypeVar("_ArrayType", bound=NDArray[Any])
+_SCT = TypeVar("_SCT", bound=generic, covariant=True)
+_SCT2 = TypeVar("_SCT2", bound=generic, covariant=True)
+
+_2Tuple = tuple[_T, _T]
+_ModeKind = L["reduced", "complete", "r", "raw"]
+
+__all__: list[str]
+
+class EigResult(NamedTuple):
+    eigenvalues: NDArray[Any]
+    eigenvectors: NDArray[Any]
+
+class EighResult(NamedTuple):
+    eigenvalues: NDArray[Any]
+    eigenvectors: NDArray[Any]
+
+class QRResult(NamedTuple):
+    Q: NDArray[Any]
+    R: NDArray[Any]
+
+class SlogdetResult(NamedTuple):
+    # TODO: `sign` and `logabsdet` are scalars for input 2D arrays and
+    # a `(x.ndim - 2)`` dimensionl arrays otherwise
+    sign: Any
+    logabsdet: Any
+
+class SVDResult(NamedTuple):
+    U: NDArray[Any]
+    S: NDArray[Any]
+    Vh: NDArray[Any]
+
+@overload
+def tensorsolve(
+    a: _ArrayLikeInt_co,
+    b: _ArrayLikeInt_co,
+    axes: None | Iterable[int] =...,
+) -> NDArray[float64]: ...
+@overload
+def tensorsolve(
+    a: _ArrayLikeFloat_co,
+    b: _ArrayLikeFloat_co,
+    axes: None | Iterable[int] =...,
+) -> NDArray[floating[Any]]: ...
+@overload
+def tensorsolve(
+    a: _ArrayLikeComplex_co,
+    b: _ArrayLikeComplex_co,
+    axes: None | Iterable[int] =...,
+) -> NDArray[complexfloating[Any, Any]]: ...
+
+@overload
+def solve(
+    a: _ArrayLikeInt_co,
+    b: _ArrayLikeInt_co,
+) -> NDArray[float64]: ...
+@overload
+def solve(
+    a: _ArrayLikeFloat_co,
+    b: _ArrayLikeFloat_co,
+) -> NDArray[floating[Any]]: ...
+@overload
+def solve(
+    a: _ArrayLikeComplex_co,
+    b: _ArrayLikeComplex_co,
+) -> NDArray[complexfloating[Any, Any]]: ...
+
+@overload
+def tensorinv(
+    a: _ArrayLikeInt_co,
+    ind: int = ...,
+) -> NDArray[float64]: ...
+@overload
+def tensorinv(
+    a: _ArrayLikeFloat_co,
+    ind: int = ...,
+) -> NDArray[floating[Any]]: ...
+@overload
+def tensorinv(
+    a: _ArrayLikeComplex_co,
+    ind: int = ...,
+) -> NDArray[complexfloating[Any, Any]]: ...
+
+@overload
+def inv(a: _ArrayLikeInt_co) -> NDArray[float64]: ...
+@overload
+def inv(a: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ...
+@overload
+def inv(a: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
+
+# TODO: The supported input and output dtypes are dependent on the value of `n`.
+# For example: `n < 0` always casts integer types to float64
+def matrix_power(
+    a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+    n: SupportsIndex,
+) -> NDArray[Any]: ...
+
+@overload
+def cholesky(a: _ArrayLikeInt_co) -> NDArray[float64]: ...
+@overload
+def cholesky(a: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ...
+@overload
+def cholesky(a: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
+
+@overload
+def qr(a: _ArrayLikeInt_co, mode: _ModeKind = ...) -> QRResult: ...
+@overload
+def qr(a: _ArrayLikeFloat_co, mode: _ModeKind = ...) -> QRResult: ...
+@overload
+def qr(a: _ArrayLikeComplex_co, mode: _ModeKind = ...) -> QRResult: ...
+
+@overload
+def eigvals(a: _ArrayLikeInt_co) -> NDArray[float64] | NDArray[complex128]: ...
+@overload
+def eigvals(a: _ArrayLikeFloat_co) -> NDArray[floating[Any]] | NDArray[complexfloating[Any, Any]]: ...
+@overload
+def eigvals(a: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
+
+@overload
+def eigvalsh(a: _ArrayLikeInt_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[float64]: ...
+@overload
+def eigvalsh(a: _ArrayLikeComplex_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[floating[Any]]: ...
+
+@overload
+def eig(a: _ArrayLikeInt_co) -> EigResult: ...
+@overload
+def eig(a: _ArrayLikeFloat_co) -> EigResult: ...
+@overload
+def eig(a: _ArrayLikeComplex_co) -> EigResult: ...
+
+@overload
+def eigh(
+    a: _ArrayLikeInt_co,
+    UPLO: L["L", "U", "l", "u"] = ...,
+) -> EighResult: ...
+@overload
+def eigh(
+    a: _ArrayLikeFloat_co,
+    UPLO: L["L", "U", "l", "u"] = ...,
+) -> EighResult: ...
+@overload
+def eigh(
+    a: _ArrayLikeComplex_co,
+    UPLO: L["L", "U", "l", "u"] = ...,
+) -> EighResult: ...
+
+@overload
+def svd(
+    a: _ArrayLikeInt_co,
+    full_matrices: bool = ...,
+    compute_uv: L[True] = ...,
+    hermitian: bool = ...,
+) -> SVDResult: ...
+@overload
+def svd(
+    a: _ArrayLikeFloat_co,
+    full_matrices: bool = ...,
+    compute_uv: L[True] = ...,
+    hermitian: bool = ...,
+) -> SVDResult: ...
+@overload
+def svd(
+    a: _ArrayLikeComplex_co,
+    full_matrices: bool = ...,
+    compute_uv: L[True] = ...,
+    hermitian: bool = ...,
+) -> SVDResult: ...
+@overload
+def svd(
+    a: _ArrayLikeInt_co,
+    full_matrices: bool = ...,
+    compute_uv: L[False] = ...,
+    hermitian: bool = ...,
+) -> NDArray[float64]: ...
+@overload
+def svd(
+    a: _ArrayLikeComplex_co,
+    full_matrices: bool = ...,
+    compute_uv: L[False] = ...,
+    hermitian: bool = ...,
+) -> NDArray[floating[Any]]: ...
+
+# TODO: Returns a scalar for 2D arrays and
+# a `(x.ndim - 2)`` dimensionl array otherwise
+def cond(x: _ArrayLikeComplex_co, p: None | float | L["fro", "nuc"] = ...) -> Any: ...
+
+# TODO: Returns `int` for <2D arrays and `intp` otherwise
+def matrix_rank(
+    A: _ArrayLikeComplex_co,
+    tol: None | _ArrayLikeFloat_co = ...,
+    hermitian: bool = ...,
+) -> Any: ...
+
+@overload
+def pinv(
+    a: _ArrayLikeInt_co,
+    rcond: _ArrayLikeFloat_co = ...,
+    hermitian: bool = ...,
+) -> NDArray[float64]: ...
+@overload
+def pinv(
+    a: _ArrayLikeFloat_co,
+    rcond: _ArrayLikeFloat_co = ...,
+    hermitian: bool = ...,
+) -> NDArray[floating[Any]]: ...
+@overload
+def pinv(
+    a: _ArrayLikeComplex_co,
+    rcond: _ArrayLikeFloat_co = ...,
+    hermitian: bool = ...,
+) -> NDArray[complexfloating[Any, Any]]: ...
+
+# TODO: Returns a 2-tuple of scalars for 2D arrays and
+# a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise
+def slogdet(a: _ArrayLikeComplex_co) -> SlogdetResult: ...
+
+# TODO: Returns a 2-tuple of scalars for 2D arrays and
+# a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise
+def det(a: _ArrayLikeComplex_co) -> Any: ...
+
+@overload
+def lstsq(a: _ArrayLikeInt_co, b: _ArrayLikeInt_co, rcond: None | float = ...) -> tuple[
+    NDArray[float64],
+    NDArray[float64],
+    int32,
+    NDArray[float64],
+]: ...
+@overload
+def lstsq(a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, rcond: None | float = ...) -> tuple[
+    NDArray[floating[Any]],
+    NDArray[floating[Any]],
+    int32,
+    NDArray[floating[Any]],
+]: ...
+@overload
+def lstsq(a: _ArrayLikeComplex_co, b: _ArrayLikeComplex_co, rcond: None | float = ...) -> tuple[
+    NDArray[complexfloating[Any, Any]],
+    NDArray[floating[Any]],
+    int32,
+    NDArray[floating[Any]],
+]: ...
+
+@overload
+def norm(
+    x: ArrayLike,
+    ord: None | float | L["fro", "nuc"] = ...,
+    axis: None = ...,
+    keepdims: bool = ...,
+) -> floating[Any]: ...
+@overload
+def norm(
+    x: ArrayLike,
+    ord: None | float | L["fro", "nuc"] = ...,
+    axis: SupportsInt | SupportsIndex | tuple[int, ...] = ...,
+    keepdims: bool = ...,
+) -> Any: ...
+
+# TODO: Returns a scalar or array
+def multi_dot(
+    arrays: Iterable[_ArrayLikeComplex_co | _ArrayLikeObject_co | _ArrayLikeTD64_co],
+    *,
+    out: None | NDArray[Any] = ...,
+) -> Any: ...