about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/numpy/fft/tests
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/numpy/fft/tests
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are here HEAD master
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/fft/tests')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/fft/tests/__init__.py0
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/fft/tests/test_helper.py167
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/fft/tests/test_pocketfft.py308
3 files changed, 475 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/fft/tests/__init__.py b/.venv/lib/python3.12/site-packages/numpy/fft/tests/__init__.py
new file mode 100644
index 00000000..e69de29b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/fft/tests/__init__.py
diff --git a/.venv/lib/python3.12/site-packages/numpy/fft/tests/test_helper.py b/.venv/lib/python3.12/site-packages/numpy/fft/tests/test_helper.py
new file mode 100644
index 00000000..3fb700bb
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/fft/tests/test_helper.py
@@ -0,0 +1,167 @@
+"""Test functions for fftpack.helper module
+
+Copied from fftpack.helper by Pearu Peterson, October 2005
+
+"""
+import numpy as np
+from numpy.testing import assert_array_almost_equal
+from numpy import fft, pi
+
+
+class TestFFTShift:
+
+    def test_definition(self):
+        x = [0, 1, 2, 3, 4, -4, -3, -2, -1]
+        y = [-4, -3, -2, -1, 0, 1, 2, 3, 4]
+        assert_array_almost_equal(fft.fftshift(x), y)
+        assert_array_almost_equal(fft.ifftshift(y), x)
+        x = [0, 1, 2, 3, 4, -5, -4, -3, -2, -1]
+        y = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4]
+        assert_array_almost_equal(fft.fftshift(x), y)
+        assert_array_almost_equal(fft.ifftshift(y), x)
+
+    def test_inverse(self):
+        for n in [1, 4, 9, 100, 211]:
+            x = np.random.random((n,))
+            assert_array_almost_equal(fft.ifftshift(fft.fftshift(x)), x)
+
+    def test_axes_keyword(self):
+        freqs = [[0, 1, 2], [3, 4, -4], [-3, -2, -1]]
+        shifted = [[-1, -3, -2], [2, 0, 1], [-4, 3, 4]]
+        assert_array_almost_equal(fft.fftshift(freqs, axes=(0, 1)), shifted)
+        assert_array_almost_equal(fft.fftshift(freqs, axes=0),
+                                  fft.fftshift(freqs, axes=(0,)))
+        assert_array_almost_equal(fft.ifftshift(shifted, axes=(0, 1)), freqs)
+        assert_array_almost_equal(fft.ifftshift(shifted, axes=0),
+                                  fft.ifftshift(shifted, axes=(0,)))
+
+        assert_array_almost_equal(fft.fftshift(freqs), shifted)
+        assert_array_almost_equal(fft.ifftshift(shifted), freqs)
+
+    def test_uneven_dims(self):
+        """ Test 2D input, which has uneven dimension sizes """
+        freqs = [
+            [0, 1],
+            [2, 3],
+            [4, 5]
+        ]
+
+        # shift in dimension 0
+        shift_dim0 = [
+            [4, 5],
+            [0, 1],
+            [2, 3]
+        ]
+        assert_array_almost_equal(fft.fftshift(freqs, axes=0), shift_dim0)
+        assert_array_almost_equal(fft.ifftshift(shift_dim0, axes=0), freqs)
+        assert_array_almost_equal(fft.fftshift(freqs, axes=(0,)), shift_dim0)
+        assert_array_almost_equal(fft.ifftshift(shift_dim0, axes=[0]), freqs)
+
+        # shift in dimension 1
+        shift_dim1 = [
+            [1, 0],
+            [3, 2],
+            [5, 4]
+        ]
+        assert_array_almost_equal(fft.fftshift(freqs, axes=1), shift_dim1)
+        assert_array_almost_equal(fft.ifftshift(shift_dim1, axes=1), freqs)
+
+        # shift in both dimensions
+        shift_dim_both = [
+            [5, 4],
+            [1, 0],
+            [3, 2]
+        ]
+        assert_array_almost_equal(fft.fftshift(freqs, axes=(0, 1)), shift_dim_both)
+        assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=(0, 1)), freqs)
+        assert_array_almost_equal(fft.fftshift(freqs, axes=[0, 1]), shift_dim_both)
+        assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=[0, 1]), freqs)
+
+        # axes=None (default) shift in all dimensions
+        assert_array_almost_equal(fft.fftshift(freqs, axes=None), shift_dim_both)
+        assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=None), freqs)
+        assert_array_almost_equal(fft.fftshift(freqs), shift_dim_both)
+        assert_array_almost_equal(fft.ifftshift(shift_dim_both), freqs)
+
+    def test_equal_to_original(self):
+        """ Test that the new (>=v1.15) implementation (see #10073) is equal to the original (<=v1.14) """
+        from numpy.core import asarray, concatenate, arange, take
+
+        def original_fftshift(x, axes=None):
+            """ How fftshift was implemented in v1.14"""
+            tmp = asarray(x)
+            ndim = tmp.ndim
+            if axes is None:
+                axes = list(range(ndim))
+            elif isinstance(axes, int):
+                axes = (axes,)
+            y = tmp
+            for k in axes:
+                n = tmp.shape[k]
+                p2 = (n + 1) // 2
+                mylist = concatenate((arange(p2, n), arange(p2)))
+                y = take(y, mylist, k)
+            return y
+
+        def original_ifftshift(x, axes=None):
+            """ How ifftshift was implemented in v1.14 """
+            tmp = asarray(x)
+            ndim = tmp.ndim
+            if axes is None:
+                axes = list(range(ndim))
+            elif isinstance(axes, int):
+                axes = (axes,)
+            y = tmp
+            for k in axes:
+                n = tmp.shape[k]
+                p2 = n - (n + 1) // 2
+                mylist = concatenate((arange(p2, n), arange(p2)))
+                y = take(y, mylist, k)
+            return y
+
+        # create possible 2d array combinations and try all possible keywords
+        # compare output to original functions
+        for i in range(16):
+            for j in range(16):
+                for axes_keyword in [0, 1, None, (0,), (0, 1)]:
+                    inp = np.random.rand(i, j)
+
+                    assert_array_almost_equal(fft.fftshift(inp, axes_keyword),
+                                              original_fftshift(inp, axes_keyword))
+
+                    assert_array_almost_equal(fft.ifftshift(inp, axes_keyword),
+                                              original_ifftshift(inp, axes_keyword))
+
+
+class TestFFTFreq:
+
+    def test_definition(self):
+        x = [0, 1, 2, 3, 4, -4, -3, -2, -1]
+        assert_array_almost_equal(9*fft.fftfreq(9), x)
+        assert_array_almost_equal(9*pi*fft.fftfreq(9, pi), x)
+        x = [0, 1, 2, 3, 4, -5, -4, -3, -2, -1]
+        assert_array_almost_equal(10*fft.fftfreq(10), x)
+        assert_array_almost_equal(10*pi*fft.fftfreq(10, pi), x)
+
+
+class TestRFFTFreq:
+
+    def test_definition(self):
+        x = [0, 1, 2, 3, 4]
+        assert_array_almost_equal(9*fft.rfftfreq(9), x)
+        assert_array_almost_equal(9*pi*fft.rfftfreq(9, pi), x)
+        x = [0, 1, 2, 3, 4, 5]
+        assert_array_almost_equal(10*fft.rfftfreq(10), x)
+        assert_array_almost_equal(10*pi*fft.rfftfreq(10, pi), x)
+
+
+class TestIRFFTN:
+
+    def test_not_last_axis_success(self):
+        ar, ai = np.random.random((2, 16, 8, 32))
+        a = ar + 1j*ai
+
+        axes = (-2,)
+
+        # Should not raise error
+        fft.irfftn(a, axes=axes)
diff --git a/.venv/lib/python3.12/site-packages/numpy/fft/tests/test_pocketfft.py b/.venv/lib/python3.12/site-packages/numpy/fft/tests/test_pocketfft.py
new file mode 100644
index 00000000..122a9fac
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/fft/tests/test_pocketfft.py
@@ -0,0 +1,308 @@
+import numpy as np
+import pytest
+from numpy.random import random
+from numpy.testing import (
+        assert_array_equal, assert_raises, assert_allclose, IS_WASM
+        )
+import threading
+import queue
+
+
+def fft1(x):
+    L = len(x)
+    phase = -2j * np.pi * (np.arange(L) / L)
+    phase = np.arange(L).reshape(-1, 1) * phase
+    return np.sum(x*np.exp(phase), axis=1)
+
+
+class TestFFTShift:
+
+    def test_fft_n(self):
+        assert_raises(ValueError, np.fft.fft, [1, 2, 3], 0)
+
+
+class TestFFT1D:
+
+    def test_identity(self):
+        maxlen = 512
+        x = random(maxlen) + 1j*random(maxlen)
+        xr = random(maxlen)
+        for i in range(1, maxlen):
+            assert_allclose(np.fft.ifft(np.fft.fft(x[0:i])), x[0:i],
+                            atol=1e-12)
+            assert_allclose(np.fft.irfft(np.fft.rfft(xr[0:i]), i),
+                            xr[0:i], atol=1e-12)
+
+    def test_fft(self):
+        x = random(30) + 1j*random(30)
+        assert_allclose(fft1(x), np.fft.fft(x), atol=1e-6)
+        assert_allclose(fft1(x), np.fft.fft(x, norm="backward"), atol=1e-6)
+        assert_allclose(fft1(x) / np.sqrt(30),
+                        np.fft.fft(x, norm="ortho"), atol=1e-6)
+        assert_allclose(fft1(x) / 30.,
+                        np.fft.fft(x, norm="forward"), atol=1e-6)
+
+    @pytest.mark.parametrize('norm', (None, 'backward', 'ortho', 'forward'))
+    def test_ifft(self, norm):
+        x = random(30) + 1j*random(30)
+        assert_allclose(
+            x, np.fft.ifft(np.fft.fft(x, norm=norm), norm=norm),
+            atol=1e-6)
+        # Ensure we get the correct error message
+        with pytest.raises(ValueError,
+                           match='Invalid number of FFT data points'):
+            np.fft.ifft([], norm=norm)
+
+    def test_fft2(self):
+        x = random((30, 20)) + 1j*random((30, 20))
+        assert_allclose(np.fft.fft(np.fft.fft(x, axis=1), axis=0),
+                        np.fft.fft2(x), atol=1e-6)
+        assert_allclose(np.fft.fft2(x),
+                        np.fft.fft2(x, norm="backward"), atol=1e-6)
+        assert_allclose(np.fft.fft2(x) / np.sqrt(30 * 20),
+                        np.fft.fft2(x, norm="ortho"), atol=1e-6)
+        assert_allclose(np.fft.fft2(x) / (30. * 20.),
+                        np.fft.fft2(x, norm="forward"), atol=1e-6)
+
+    def test_ifft2(self):
+        x = random((30, 20)) + 1j*random((30, 20))
+        assert_allclose(np.fft.ifft(np.fft.ifft(x, axis=1), axis=0),
+                        np.fft.ifft2(x), atol=1e-6)
+        assert_allclose(np.fft.ifft2(x),
+                        np.fft.ifft2(x, norm="backward"), atol=1e-6)
+        assert_allclose(np.fft.ifft2(x) * np.sqrt(30 * 20),
+                        np.fft.ifft2(x, norm="ortho"), atol=1e-6)
+        assert_allclose(np.fft.ifft2(x) * (30. * 20.),
+                        np.fft.ifft2(x, norm="forward"), atol=1e-6)
+
+    def test_fftn(self):
+        x = random((30, 20, 10)) + 1j*random((30, 20, 10))
+        assert_allclose(
+            np.fft.fft(np.fft.fft(np.fft.fft(x, axis=2), axis=1), axis=0),
+            np.fft.fftn(x), atol=1e-6)
+        assert_allclose(np.fft.fftn(x),
+                        np.fft.fftn(x, norm="backward"), atol=1e-6)
+        assert_allclose(np.fft.fftn(x) / np.sqrt(30 * 20 * 10),
+                        np.fft.fftn(x, norm="ortho"), atol=1e-6)
+        assert_allclose(np.fft.fftn(x) / (30. * 20. * 10.),
+                        np.fft.fftn(x, norm="forward"), atol=1e-6)
+
+    def test_ifftn(self):
+        x = random((30, 20, 10)) + 1j*random((30, 20, 10))
+        assert_allclose(
+            np.fft.ifft(np.fft.ifft(np.fft.ifft(x, axis=2), axis=1), axis=0),
+            np.fft.ifftn(x), atol=1e-6)
+        assert_allclose(np.fft.ifftn(x),
+                        np.fft.ifftn(x, norm="backward"), atol=1e-6)
+        assert_allclose(np.fft.ifftn(x) * np.sqrt(30 * 20 * 10),
+                        np.fft.ifftn(x, norm="ortho"), atol=1e-6)
+        assert_allclose(np.fft.ifftn(x) * (30. * 20. * 10.),
+                        np.fft.ifftn(x, norm="forward"), atol=1e-6)
+
+    def test_rfft(self):
+        x = random(30)
+        for n in [x.size, 2*x.size]:
+            for norm in [None, 'backward', 'ortho', 'forward']:
+                assert_allclose(
+                    np.fft.fft(x, n=n, norm=norm)[:(n//2 + 1)],
+                    np.fft.rfft(x, n=n, norm=norm), atol=1e-6)
+            assert_allclose(
+                np.fft.rfft(x, n=n),
+                np.fft.rfft(x, n=n, norm="backward"), atol=1e-6)
+            assert_allclose(
+                np.fft.rfft(x, n=n) / np.sqrt(n),
+                np.fft.rfft(x, n=n, norm="ortho"), atol=1e-6)
+            assert_allclose(
+                np.fft.rfft(x, n=n) / n,
+                np.fft.rfft(x, n=n, norm="forward"), atol=1e-6)
+
+    def test_irfft(self):
+        x = random(30)
+        assert_allclose(x, np.fft.irfft(np.fft.rfft(x)), atol=1e-6)
+        assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="backward"),
+                        norm="backward"), atol=1e-6)
+        assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="ortho"),
+                        norm="ortho"), atol=1e-6)
+        assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="forward"),
+                        norm="forward"), atol=1e-6)
+
+    def test_rfft2(self):
+        x = random((30, 20))
+        assert_allclose(np.fft.fft2(x)[:, :11], np.fft.rfft2(x), atol=1e-6)
+        assert_allclose(np.fft.rfft2(x),
+                        np.fft.rfft2(x, norm="backward"), atol=1e-6)
+        assert_allclose(np.fft.rfft2(x) / np.sqrt(30 * 20),
+                        np.fft.rfft2(x, norm="ortho"), atol=1e-6)
+        assert_allclose(np.fft.rfft2(x) / (30. * 20.),
+                        np.fft.rfft2(x, norm="forward"), atol=1e-6)
+
+    def test_irfft2(self):
+        x = random((30, 20))
+        assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x)), atol=1e-6)
+        assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="backward"),
+                        norm="backward"), atol=1e-6)
+        assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="ortho"),
+                        norm="ortho"), atol=1e-6)
+        assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="forward"),
+                        norm="forward"), atol=1e-6)
+
+    def test_rfftn(self):
+        x = random((30, 20, 10))
+        assert_allclose(np.fft.fftn(x)[:, :, :6], np.fft.rfftn(x), atol=1e-6)
+        assert_allclose(np.fft.rfftn(x),
+                        np.fft.rfftn(x, norm="backward"), atol=1e-6)
+        assert_allclose(np.fft.rfftn(x) / np.sqrt(30 * 20 * 10),
+                        np.fft.rfftn(x, norm="ortho"), atol=1e-6)
+        assert_allclose(np.fft.rfftn(x) / (30. * 20. * 10.),
+                        np.fft.rfftn(x, norm="forward"), atol=1e-6)
+
+    def test_irfftn(self):
+        x = random((30, 20, 10))
+        assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x)), atol=1e-6)
+        assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="backward"),
+                        norm="backward"), atol=1e-6)
+        assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="ortho"),
+                        norm="ortho"), atol=1e-6)
+        assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="forward"),
+                        norm="forward"), atol=1e-6)
+
+    def test_hfft(self):
+        x = random(14) + 1j*random(14)
+        x_herm = np.concatenate((random(1), x, random(1)))
+        x = np.concatenate((x_herm, x[::-1].conj()))
+        assert_allclose(np.fft.fft(x), np.fft.hfft(x_herm), atol=1e-6)
+        assert_allclose(np.fft.hfft(x_herm),
+                        np.fft.hfft(x_herm, norm="backward"), atol=1e-6)
+        assert_allclose(np.fft.hfft(x_herm) / np.sqrt(30),
+                        np.fft.hfft(x_herm, norm="ortho"), atol=1e-6)
+        assert_allclose(np.fft.hfft(x_herm) / 30.,
+                        np.fft.hfft(x_herm, norm="forward"), atol=1e-6)
+
+    def test_ihfft(self):
+        x = random(14) + 1j*random(14)
+        x_herm = np.concatenate((random(1), x, random(1)))
+        x = np.concatenate((x_herm, x[::-1].conj()))
+        assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm)), atol=1e-6)
+        assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm,
+                        norm="backward"), norm="backward"), atol=1e-6)
+        assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm,
+                        norm="ortho"), norm="ortho"), atol=1e-6)
+        assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm,
+                        norm="forward"), norm="forward"), atol=1e-6)
+
+    @pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn,
+                                    np.fft.rfftn, np.fft.irfftn])
+    def test_axes(self, op):
+        x = random((30, 20, 10))
+        axes = [(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)]
+        for a in axes:
+            op_tr = op(np.transpose(x, a))
+            tr_op = np.transpose(op(x, axes=a), a)
+            assert_allclose(op_tr, tr_op, atol=1e-6)
+
+    def test_all_1d_norm_preserving(self):
+        # verify that round-trip transforms are norm-preserving
+        x = random(30)
+        x_norm = np.linalg.norm(x)
+        n = x.size * 2
+        func_pairs = [(np.fft.fft, np.fft.ifft),
+                      (np.fft.rfft, np.fft.irfft),
+                      # hfft: order so the first function takes x.size samples
+                      #       (necessary for comparison to x_norm above)
+                      (np.fft.ihfft, np.fft.hfft),
+                      ]
+        for forw, back in func_pairs:
+            for n in [x.size, 2*x.size]:
+                for norm in [None, 'backward', 'ortho', 'forward']:
+                    tmp = forw(x, n=n, norm=norm)
+                    tmp = back(tmp, n=n, norm=norm)
+                    assert_allclose(x_norm,
+                                    np.linalg.norm(tmp), atol=1e-6)
+
+    @pytest.mark.parametrize("dtype", [np.half, np.single, np.double,
+                                       np.longdouble])
+    def test_dtypes(self, dtype):
+        # make sure that all input precisions are accepted and internally
+        # converted to 64bit
+        x = random(30).astype(dtype)
+        assert_allclose(np.fft.ifft(np.fft.fft(x)), x, atol=1e-6)
+        assert_allclose(np.fft.irfft(np.fft.rfft(x)), x, atol=1e-6)
+
+
+@pytest.mark.parametrize(
+        "dtype",
+        [np.float32, np.float64, np.complex64, np.complex128])
+@pytest.mark.parametrize("order", ["F", 'non-contiguous'])
+@pytest.mark.parametrize(
+        "fft",
+        [np.fft.fft, np.fft.fft2, np.fft.fftn,
+         np.fft.ifft, np.fft.ifft2, np.fft.ifftn])
+def test_fft_with_order(dtype, order, fft):
+    # Check that FFT/IFFT produces identical results for C, Fortran and
+    # non contiguous arrays
+    rng = np.random.RandomState(42)
+    X = rng.rand(8, 7, 13).astype(dtype, copy=False)
+    # See discussion in pull/14178
+    _tol = 8.0 * np.sqrt(np.log2(X.size)) * np.finfo(X.dtype).eps
+    if order == 'F':
+        Y = np.asfortranarray(X)
+    else:
+        # Make a non contiguous array
+        Y = X[::-1]
+        X = np.ascontiguousarray(X[::-1])
+
+    if fft.__name__.endswith('fft'):
+        for axis in range(3):
+            X_res = fft(X, axis=axis)
+            Y_res = fft(Y, axis=axis)
+            assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol)
+    elif fft.__name__.endswith(('fft2', 'fftn')):
+        axes = [(0, 1), (1, 2), (0, 2)]
+        if fft.__name__.endswith('fftn'):
+            axes.extend([(0,), (1,), (2,), None])
+        for ax in axes:
+            X_res = fft(X, axes=ax)
+            Y_res = fft(Y, axes=ax)
+            assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol)
+    else:
+        raise ValueError()
+
+
+@pytest.mark.skipif(IS_WASM, reason="Cannot start thread")
+class TestFFTThreadSafe:
+    threads = 16
+    input_shape = (800, 200)
+
+    def _test_mtsame(self, func, *args):
+        def worker(args, q):
+            q.put(func(*args))
+
+        q = queue.Queue()
+        expected = func(*args)
+
+        # Spin off a bunch of threads to call the same function simultaneously
+        t = [threading.Thread(target=worker, args=(args, q))
+             for i in range(self.threads)]
+        [x.start() for x in t]
+
+        [x.join() for x in t]
+        # Make sure all threads returned the correct value
+        for i in range(self.threads):
+            assert_array_equal(q.get(timeout=5), expected,
+                'Function returned wrong value in multithreaded context')
+
+    def test_fft(self):
+        a = np.ones(self.input_shape) * 1+0j
+        self._test_mtsame(np.fft.fft, a)
+
+    def test_ifft(self):
+        a = np.ones(self.input_shape) * 1+0j
+        self._test_mtsame(np.fft.ifft, a)
+
+    def test_rfft(self):
+        a = np.ones(self.input_shape)
+        self._test_mtsame(np.fft.rfft, a)
+
+    def test_irfft(self):
+        a = np.ones(self.input_shape) * 1+0j
+        self._test_mtsame(np.fft.irfft, a)