aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/numpy/core/multiarray.py
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/numpy/core/multiarray.py
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are hereHEADmaster
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/core/multiarray.py')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/core/multiarray.py1715
1 files changed, 1715 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/multiarray.py b/.venv/lib/python3.12/site-packages/numpy/core/multiarray.py
new file mode 100644
index 00000000..d1128334
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/core/multiarray.py
@@ -0,0 +1,1715 @@
+"""
+Create the numpy.core.multiarray namespace for backward compatibility. In v1.16
+the multiarray and umath c-extension modules were merged into a single
+_multiarray_umath extension module. So we replicate the old namespace
+by importing from the extension module.
+
+"""
+
+import functools
+from . import overrides
+from . import _multiarray_umath
+from ._multiarray_umath import * # noqa: F403
+# These imports are needed for backward compatibility,
+# do not change them. issue gh-15518
+# _get_ndarray_c_version is semi-public, on purpose not added to __all__
+from ._multiarray_umath import (
+ fastCopyAndTranspose, _flagdict, from_dlpack, _place, _reconstruct,
+ _vec_string, _ARRAY_API, _monotonicity, _get_ndarray_c_version,
+ _get_madvise_hugepage, _set_madvise_hugepage,
+ _get_promotion_state, _set_promotion_state, _using_numpy2_behavior
+ )
+
+__all__ = [
+ '_ARRAY_API', 'ALLOW_THREADS', 'BUFSIZE', 'CLIP', 'DATETIMEUNITS',
+ 'ITEM_HASOBJECT', 'ITEM_IS_POINTER', 'LIST_PICKLE', 'MAXDIMS',
+ 'MAY_SHARE_BOUNDS', 'MAY_SHARE_EXACT', 'NEEDS_INIT', 'NEEDS_PYAPI',
+ 'RAISE', 'USE_GETITEM', 'USE_SETITEM', 'WRAP',
+ '_flagdict', 'from_dlpack', '_place', '_reconstruct', '_vec_string',
+ '_monotonicity', 'add_docstring', 'arange', 'array', 'asarray',
+ 'asanyarray', 'ascontiguousarray', 'asfortranarray', 'bincount',
+ 'broadcast', 'busday_count', 'busday_offset', 'busdaycalendar', 'can_cast',
+ 'compare_chararrays', 'concatenate', 'copyto', 'correlate', 'correlate2',
+ 'count_nonzero', 'c_einsum', 'datetime_as_string', 'datetime_data',
+ 'dot', 'dragon4_positional', 'dragon4_scientific', 'dtype',
+ 'empty', 'empty_like', 'error', 'flagsobj', 'flatiter', 'format_longfloat',
+ 'frombuffer', 'fromfile', 'fromiter', 'fromstring',
+ 'get_handler_name', 'get_handler_version', 'inner', 'interp',
+ 'interp_complex', 'is_busday', 'lexsort', 'matmul', 'may_share_memory',
+ 'min_scalar_type', 'ndarray', 'nditer', 'nested_iters',
+ 'normalize_axis_index', 'packbits', 'promote_types', 'putmask',
+ 'ravel_multi_index', 'result_type', 'scalar', 'set_datetimeparse_function',
+ 'set_legacy_print_mode', 'set_numeric_ops', 'set_string_function',
+ 'set_typeDict', 'shares_memory', 'tracemalloc_domain', 'typeinfo',
+ 'unpackbits', 'unravel_index', 'vdot', 'where', 'zeros',
+ '_get_promotion_state', '_set_promotion_state', '_using_numpy2_behavior']
+
+# For backward compatibility, make sure pickle imports these functions from here
+_reconstruct.__module__ = 'numpy.core.multiarray'
+scalar.__module__ = 'numpy.core.multiarray'
+
+
+from_dlpack.__module__ = 'numpy'
+arange.__module__ = 'numpy'
+array.__module__ = 'numpy'
+asarray.__module__ = 'numpy'
+asanyarray.__module__ = 'numpy'
+ascontiguousarray.__module__ = 'numpy'
+asfortranarray.__module__ = 'numpy'
+datetime_data.__module__ = 'numpy'
+empty.__module__ = 'numpy'
+frombuffer.__module__ = 'numpy'
+fromfile.__module__ = 'numpy'
+fromiter.__module__ = 'numpy'
+frompyfunc.__module__ = 'numpy'
+fromstring.__module__ = 'numpy'
+geterrobj.__module__ = 'numpy'
+may_share_memory.__module__ = 'numpy'
+nested_iters.__module__ = 'numpy'
+promote_types.__module__ = 'numpy'
+set_numeric_ops.__module__ = 'numpy'
+seterrobj.__module__ = 'numpy'
+zeros.__module__ = 'numpy'
+_get_promotion_state.__module__ = 'numpy'
+_set_promotion_state.__module__ = 'numpy'
+_using_numpy2_behavior.__module__ = 'numpy'
+
+
+# We can't verify dispatcher signatures because NumPy's C functions don't
+# support introspection.
+array_function_from_c_func_and_dispatcher = functools.partial(
+ overrides.array_function_from_dispatcher,
+ module='numpy', docs_from_dispatcher=True, verify=False)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.empty_like)
+def empty_like(prototype, dtype=None, order=None, subok=None, shape=None):
+ """
+ empty_like(prototype, dtype=None, order='K', subok=True, shape=None)
+
+ Return a new array with the same shape and type as a given array.
+
+ Parameters
+ ----------
+ prototype : array_like
+ The shape and data-type of `prototype` define these same attributes
+ of the returned array.
+ dtype : data-type, optional
+ Overrides the data type of the result.
+
+ .. versionadded:: 1.6.0
+ order : {'C', 'F', 'A', or 'K'}, optional
+ Overrides the memory layout of the result. 'C' means C-order,
+ 'F' means F-order, 'A' means 'F' if `prototype` is Fortran
+ contiguous, 'C' otherwise. 'K' means match the layout of `prototype`
+ as closely as possible.
+
+ .. versionadded:: 1.6.0
+ subok : bool, optional.
+ If True, then the newly created array will use the sub-class
+ type of `prototype`, otherwise it will be a base-class array. Defaults
+ to True.
+ shape : int or sequence of ints, optional.
+ Overrides the shape of the result. If order='K' and the number of
+ dimensions is unchanged, will try to keep order, otherwise,
+ order='C' is implied.
+
+ .. versionadded:: 1.17.0
+
+ Returns
+ -------
+ out : ndarray
+ Array of uninitialized (arbitrary) data with the same
+ shape and type as `prototype`.
+
+ See Also
+ --------
+ ones_like : Return an array of ones with shape and type of input.
+ zeros_like : Return an array of zeros with shape and type of input.
+ full_like : Return a new array with shape of input filled with value.
+ empty : Return a new uninitialized array.
+
+ Notes
+ -----
+ This function does *not* initialize the returned array; to do that use
+ `zeros_like` or `ones_like` instead. It may be marginally faster than
+ the functions that do set the array values.
+
+ Examples
+ --------
+ >>> a = ([1,2,3], [4,5,6]) # a is array-like
+ >>> np.empty_like(a)
+ array([[-1073741821, -1073741821, 3], # uninitialized
+ [ 0, 0, -1073741821]])
+ >>> a = np.array([[1., 2., 3.],[4.,5.,6.]])
+ >>> np.empty_like(a)
+ array([[ -2.00000715e+000, 1.48219694e-323, -2.00000572e+000], # uninitialized
+ [ 4.38791518e-305, -2.00000715e+000, 4.17269252e-309]])
+
+ """
+ return (prototype,)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.concatenate)
+def concatenate(arrays, axis=None, out=None, *, dtype=None, casting=None):
+ """
+ concatenate((a1, a2, ...), axis=0, out=None, dtype=None, casting="same_kind")
+
+ Join a sequence of arrays along an existing axis.
+
+ Parameters
+ ----------
+ a1, a2, ... : sequence of array_like
+ The arrays must have the same shape, except in the dimension
+ corresponding to `axis` (the first, by default).
+ axis : int, optional
+ The axis along which the arrays will be joined. If axis is None,
+ arrays are flattened before use. Default is 0.
+ out : ndarray, optional
+ If provided, the destination to place the result. The shape must be
+ correct, matching that of what concatenate would have returned if no
+ out argument were specified.
+ dtype : str or dtype
+ If provided, the destination array will have this dtype. Cannot be
+ provided together with `out`.
+
+ .. versionadded:: 1.20.0
+
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
+ Controls what kind of data casting may occur. Defaults to 'same_kind'.
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ res : ndarray
+ The concatenated array.
+
+ See Also
+ --------
+ ma.concatenate : Concatenate function that preserves input masks.
+ array_split : Split an array into multiple sub-arrays of equal or
+ near-equal size.
+ split : Split array into a list of multiple sub-arrays of equal size.
+ hsplit : Split array into multiple sub-arrays horizontally (column wise).
+ vsplit : Split array into multiple sub-arrays vertically (row wise).
+ dsplit : Split array into multiple sub-arrays along the 3rd axis (depth).
+ stack : Stack a sequence of arrays along a new axis.
+ block : Assemble arrays from blocks.
+ hstack : Stack arrays in sequence horizontally (column wise).
+ vstack : Stack arrays in sequence vertically (row wise).
+ dstack : Stack arrays in sequence depth wise (along third dimension).
+ column_stack : Stack 1-D arrays as columns into a 2-D array.
+
+ Notes
+ -----
+ When one or more of the arrays to be concatenated is a MaskedArray,
+ this function will return a MaskedArray object instead of an ndarray,
+ but the input masks are *not* preserved. In cases where a MaskedArray
+ is expected as input, use the ma.concatenate function from the masked
+ array module instead.
+
+ Examples
+ --------
+ >>> a = np.array([[1, 2], [3, 4]])
+ >>> b = np.array([[5, 6]])
+ >>> np.concatenate((a, b), axis=0)
+ array([[1, 2],
+ [3, 4],
+ [5, 6]])
+ >>> np.concatenate((a, b.T), axis=1)
+ array([[1, 2, 5],
+ [3, 4, 6]])
+ >>> np.concatenate((a, b), axis=None)
+ array([1, 2, 3, 4, 5, 6])
+
+ This function will not preserve masking of MaskedArray inputs.
+
+ >>> a = np.ma.arange(3)
+ >>> a[1] = np.ma.masked
+ >>> b = np.arange(2, 5)
+ >>> a
+ masked_array(data=[0, --, 2],
+ mask=[False, True, False],
+ fill_value=999999)
+ >>> b
+ array([2, 3, 4])
+ >>> np.concatenate([a, b])
+ masked_array(data=[0, 1, 2, 2, 3, 4],
+ mask=False,
+ fill_value=999999)
+ >>> np.ma.concatenate([a, b])
+ masked_array(data=[0, --, 2, 2, 3, 4],
+ mask=[False, True, False, False, False, False],
+ fill_value=999999)
+
+ """
+ if out is not None:
+ # optimize for the typical case where only arrays is provided
+ arrays = list(arrays)
+ arrays.append(out)
+ return arrays
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.inner)
+def inner(a, b):
+ """
+ inner(a, b, /)
+
+ Inner product of two arrays.
+
+ Ordinary inner product of vectors for 1-D arrays (without complex
+ conjugation), in higher dimensions a sum product over the last axes.
+
+ Parameters
+ ----------
+ a, b : array_like
+ If `a` and `b` are nonscalar, their last dimensions must match.
+
+ Returns
+ -------
+ out : ndarray
+ If `a` and `b` are both
+ scalars or both 1-D arrays then a scalar is returned; otherwise
+ an array is returned.
+ ``out.shape = (*a.shape[:-1], *b.shape[:-1])``
+
+ Raises
+ ------
+ ValueError
+ If both `a` and `b` are nonscalar and their last dimensions have
+ different sizes.
+
+ See Also
+ --------
+ tensordot : Sum products over arbitrary axes.
+ dot : Generalised matrix product, using second last dimension of `b`.
+ einsum : Einstein summation convention.
+
+ Notes
+ -----
+ For vectors (1-D arrays) it computes the ordinary inner-product::
+
+ np.inner(a, b) = sum(a[:]*b[:])
+
+ More generally, if ``ndim(a) = r > 0`` and ``ndim(b) = s > 0``::
+
+ np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1))
+
+ or explicitly::
+
+ np.inner(a, b)[i0,...,ir-2,j0,...,js-2]
+ = sum(a[i0,...,ir-2,:]*b[j0,...,js-2,:])
+
+ In addition `a` or `b` may be scalars, in which case::
+
+ np.inner(a,b) = a*b
+
+ Examples
+ --------
+ Ordinary inner product for vectors:
+
+ >>> a = np.array([1,2,3])
+ >>> b = np.array([0,1,0])
+ >>> np.inner(a, b)
+ 2
+
+ Some multidimensional examples:
+
+ >>> a = np.arange(24).reshape((2,3,4))
+ >>> b = np.arange(4)
+ >>> c = np.inner(a, b)
+ >>> c.shape
+ (2, 3)
+ >>> c
+ array([[ 14, 38, 62],
+ [ 86, 110, 134]])
+
+ >>> a = np.arange(2).reshape((1,1,2))
+ >>> b = np.arange(6).reshape((3,2))
+ >>> c = np.inner(a, b)
+ >>> c.shape
+ (1, 1, 3)
+ >>> c
+ array([[[1, 3, 5]]])
+
+ An example where `b` is a scalar:
+
+ >>> np.inner(np.eye(2), 7)
+ array([[7., 0.],
+ [0., 7.]])
+
+ """
+ return (a, b)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.where)
+def where(condition, x=None, y=None):
+ """
+ where(condition, [x, y], /)
+
+ Return elements chosen from `x` or `y` depending on `condition`.
+
+ .. note::
+ When only `condition` is provided, this function is a shorthand for
+ ``np.asarray(condition).nonzero()``. Using `nonzero` directly should be
+ preferred, as it behaves correctly for subclasses. The rest of this
+ documentation covers only the case where all three arguments are
+ provided.
+
+ Parameters
+ ----------
+ condition : array_like, bool
+ Where True, yield `x`, otherwise yield `y`.
+ x, y : array_like
+ Values from which to choose. `x`, `y` and `condition` need to be
+ broadcastable to some shape.
+
+ Returns
+ -------
+ out : ndarray
+ An array with elements from `x` where `condition` is True, and elements
+ from `y` elsewhere.
+
+ See Also
+ --------
+ choose
+ nonzero : The function that is called when x and y are omitted
+
+ Notes
+ -----
+ If all the arrays are 1-D, `where` is equivalent to::
+
+ [xv if c else yv
+ for c, xv, yv in zip(condition, x, y)]
+
+ Examples
+ --------
+ >>> a = np.arange(10)
+ >>> a
+ array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
+ >>> np.where(a < 5, a, 10*a)
+ array([ 0, 1, 2, 3, 4, 50, 60, 70, 80, 90])
+
+ This can be used on multidimensional arrays too:
+
+ >>> np.where([[True, False], [True, True]],
+ ... [[1, 2], [3, 4]],
+ ... [[9, 8], [7, 6]])
+ array([[1, 8],
+ [3, 4]])
+
+ The shapes of x, y, and the condition are broadcast together:
+
+ >>> x, y = np.ogrid[:3, :4]
+ >>> np.where(x < y, x, 10 + y) # both x and 10+y are broadcast
+ array([[10, 0, 0, 0],
+ [10, 11, 1, 1],
+ [10, 11, 12, 2]])
+
+ >>> a = np.array([[0, 1, 2],
+ ... [0, 2, 4],
+ ... [0, 3, 6]])
+ >>> np.where(a < 4, a, -1) # -1 is broadcast
+ array([[ 0, 1, 2],
+ [ 0, 2, -1],
+ [ 0, 3, -1]])
+ """
+ return (condition, x, y)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.lexsort)
+def lexsort(keys, axis=None):
+ """
+ lexsort(keys, axis=-1)
+
+ Perform an indirect stable sort using a sequence of keys.
+
+ Given multiple sorting keys, which can be interpreted as columns in a
+ spreadsheet, lexsort returns an array of integer indices that describes
+ the sort order by multiple columns. The last key in the sequence is used
+ for the primary sort order, the second-to-last key for the secondary sort
+ order, and so on. The keys argument must be a sequence of objects that
+ can be converted to arrays of the same shape. If a 2D array is provided
+ for the keys argument, its rows are interpreted as the sorting keys and
+ sorting is according to the last row, second last row etc.
+
+ Parameters
+ ----------
+ keys : (k, N) array or tuple containing k (N,)-shaped sequences
+ The `k` different "columns" to be sorted. The last column (or row if
+ `keys` is a 2D array) is the primary sort key.
+ axis : int, optional
+ Axis to be indirectly sorted. By default, sort over the last axis.
+
+ Returns
+ -------
+ indices : (N,) ndarray of ints
+ Array of indices that sort the keys along the specified axis.
+
+ See Also
+ --------
+ argsort : Indirect sort.
+ ndarray.sort : In-place sort.
+ sort : Return a sorted copy of an array.
+
+ Examples
+ --------
+ Sort names: first by surname, then by name.
+
+ >>> surnames = ('Hertz', 'Galilei', 'Hertz')
+ >>> first_names = ('Heinrich', 'Galileo', 'Gustav')
+ >>> ind = np.lexsort((first_names, surnames))
+ >>> ind
+ array([1, 2, 0])
+
+ >>> [surnames[i] + ", " + first_names[i] for i in ind]
+ ['Galilei, Galileo', 'Hertz, Gustav', 'Hertz, Heinrich']
+
+ Sort two columns of numbers:
+
+ >>> a = [1,5,1,4,3,4,4] # First column
+ >>> b = [9,4,0,4,0,2,1] # Second column
+ >>> ind = np.lexsort((b,a)) # Sort by a, then by b
+ >>> ind
+ array([2, 0, 4, 6, 5, 3, 1])
+
+ >>> [(a[i],b[i]) for i in ind]
+ [(1, 0), (1, 9), (3, 0), (4, 1), (4, 2), (4, 4), (5, 4)]
+
+ Note that sorting is first according to the elements of ``a``.
+ Secondary sorting is according to the elements of ``b``.
+
+ A normal ``argsort`` would have yielded:
+
+ >>> [(a[i],b[i]) for i in np.argsort(a)]
+ [(1, 9), (1, 0), (3, 0), (4, 4), (4, 2), (4, 1), (5, 4)]
+
+ Structured arrays are sorted lexically by ``argsort``:
+
+ >>> x = np.array([(1,9), (5,4), (1,0), (4,4), (3,0), (4,2), (4,1)],
+ ... dtype=np.dtype([('x', int), ('y', int)]))
+
+ >>> np.argsort(x) # or np.argsort(x, order=('x', 'y'))
+ array([2, 0, 4, 6, 5, 3, 1])
+
+ """
+ if isinstance(keys, tuple):
+ return keys
+ else:
+ return (keys,)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.can_cast)
+def can_cast(from_, to, casting=None):
+ """
+ can_cast(from_, to, casting='safe')
+
+ Returns True if cast between data types can occur according to the
+ casting rule. If from is a scalar or array scalar, also returns
+ True if the scalar value can be cast without overflow or truncation
+ to an integer.
+
+ Parameters
+ ----------
+ from_ : dtype, dtype specifier, scalar, or array
+ Data type, scalar, or array to cast from.
+ to : dtype or dtype specifier
+ Data type to cast to.
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
+ Controls what kind of data casting may occur.
+
+ * 'no' means the data types should not be cast at all.
+ * 'equiv' means only byte-order changes are allowed.
+ * 'safe' means only casts which can preserve values are allowed.
+ * 'same_kind' means only safe casts or casts within a kind,
+ like float64 to float32, are allowed.
+ * 'unsafe' means any data conversions may be done.
+
+ Returns
+ -------
+ out : bool
+ True if cast can occur according to the casting rule.
+
+ Notes
+ -----
+ .. versionchanged:: 1.17.0
+ Casting between a simple data type and a structured one is possible only
+ for "unsafe" casting. Casting to multiple fields is allowed, but
+ casting from multiple fields is not.
+
+ .. versionchanged:: 1.9.0
+ Casting from numeric to string types in 'safe' casting mode requires
+ that the string dtype length is long enough to store the maximum
+ integer/float value converted.
+
+ See also
+ --------
+ dtype, result_type
+
+ Examples
+ --------
+ Basic examples
+
+ >>> np.can_cast(np.int32, np.int64)
+ True
+ >>> np.can_cast(np.float64, complex)
+ True
+ >>> np.can_cast(complex, float)
+ False
+
+ >>> np.can_cast('i8', 'f8')
+ True
+ >>> np.can_cast('i8', 'f4')
+ False
+ >>> np.can_cast('i4', 'S4')
+ False
+
+ Casting scalars
+
+ >>> np.can_cast(100, 'i1')
+ True
+ >>> np.can_cast(150, 'i1')
+ False
+ >>> np.can_cast(150, 'u1')
+ True
+
+ >>> np.can_cast(3.5e100, np.float32)
+ False
+ >>> np.can_cast(1000.0, np.float32)
+ True
+
+ Array scalar checks the value, array does not
+
+ >>> np.can_cast(np.array(1000.0), np.float32)
+ True
+ >>> np.can_cast(np.array([1000.0]), np.float32)
+ False
+
+ Using the casting rules
+
+ >>> np.can_cast('i8', 'i8', 'no')
+ True
+ >>> np.can_cast('<i8', '>i8', 'no')
+ False
+
+ >>> np.can_cast('<i8', '>i8', 'equiv')
+ True
+ >>> np.can_cast('<i4', '>i8', 'equiv')
+ False
+
+ >>> np.can_cast('<i4', '>i8', 'safe')
+ True
+ >>> np.can_cast('<i8', '>i4', 'safe')
+ False
+
+ >>> np.can_cast('<i8', '>i4', 'same_kind')
+ True
+ >>> np.can_cast('<i8', '>u4', 'same_kind')
+ False
+
+ >>> np.can_cast('<i8', '>u4', 'unsafe')
+ True
+
+ """
+ return (from_,)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.min_scalar_type)
+def min_scalar_type(a):
+ """
+ min_scalar_type(a, /)
+
+ For scalar ``a``, returns the data type with the smallest size
+ and smallest scalar kind which can hold its value. For non-scalar
+ array ``a``, returns the vector's dtype unmodified.
+
+ Floating point values are not demoted to integers,
+ and complex values are not demoted to floats.
+
+ Parameters
+ ----------
+ a : scalar or array_like
+ The value whose minimal data type is to be found.
+
+ Returns
+ -------
+ out : dtype
+ The minimal data type.
+
+ Notes
+ -----
+ .. versionadded:: 1.6.0
+
+ See Also
+ --------
+ result_type, promote_types, dtype, can_cast
+
+ Examples
+ --------
+ >>> np.min_scalar_type(10)
+ dtype('uint8')
+
+ >>> np.min_scalar_type(-260)
+ dtype('int16')
+
+ >>> np.min_scalar_type(3.1)
+ dtype('float16')
+
+ >>> np.min_scalar_type(1e50)
+ dtype('float64')
+
+ >>> np.min_scalar_type(np.arange(4,dtype='f8'))
+ dtype('float64')
+
+ """
+ return (a,)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.result_type)
+def result_type(*arrays_and_dtypes):
+ """
+ result_type(*arrays_and_dtypes)
+
+ Returns the type that results from applying the NumPy
+ type promotion rules to the arguments.
+
+ Type promotion in NumPy works similarly to the rules in languages
+ like C++, with some slight differences. When both scalars and
+ arrays are used, the array's type takes precedence and the actual value
+ of the scalar is taken into account.
+
+ For example, calculating 3*a, where a is an array of 32-bit floats,
+ intuitively should result in a 32-bit float output. If the 3 is a
+ 32-bit integer, the NumPy rules indicate it can't convert losslessly
+ into a 32-bit float, so a 64-bit float should be the result type.
+ By examining the value of the constant, '3', we see that it fits in
+ an 8-bit integer, which can be cast losslessly into the 32-bit float.
+
+ Parameters
+ ----------
+ arrays_and_dtypes : list of arrays and dtypes
+ The operands of some operation whose result type is needed.
+
+ Returns
+ -------
+ out : dtype
+ The result type.
+
+ See also
+ --------
+ dtype, promote_types, min_scalar_type, can_cast
+
+ Notes
+ -----
+ .. versionadded:: 1.6.0
+
+ The specific algorithm used is as follows.
+
+ Categories are determined by first checking which of boolean,
+ integer (int/uint), or floating point (float/complex) the maximum
+ kind of all the arrays and the scalars are.
+
+ If there are only scalars or the maximum category of the scalars
+ is higher than the maximum category of the arrays,
+ the data types are combined with :func:`promote_types`
+ to produce the return value.
+
+ Otherwise, `min_scalar_type` is called on each scalar, and
+ the resulting data types are all combined with :func:`promote_types`
+ to produce the return value.
+
+ The set of int values is not a subset of the uint values for types
+ with the same number of bits, something not reflected in
+ :func:`min_scalar_type`, but handled as a special case in `result_type`.
+
+ Examples
+ --------
+ >>> np.result_type(3, np.arange(7, dtype='i1'))
+ dtype('int8')
+
+ >>> np.result_type('i4', 'c8')
+ dtype('complex128')
+
+ >>> np.result_type(3.0, -2)
+ dtype('float64')
+
+ """
+ return arrays_and_dtypes
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.dot)
+def dot(a, b, out=None):
+ """
+ dot(a, b, out=None)
+
+ Dot product of two arrays. Specifically,
+
+ - If both `a` and `b` are 1-D arrays, it is inner product of vectors
+ (without complex conjugation).
+
+ - If both `a` and `b` are 2-D arrays, it is matrix multiplication,
+ but using :func:`matmul` or ``a @ b`` is preferred.
+
+ - If either `a` or `b` is 0-D (scalar), it is equivalent to
+ :func:`multiply` and using ``numpy.multiply(a, b)`` or ``a * b`` is
+ preferred.
+
+ - If `a` is an N-D array and `b` is a 1-D array, it is a sum product over
+ the last axis of `a` and `b`.
+
+ - If `a` is an N-D array and `b` is an M-D array (where ``M>=2``), it is a
+ sum product over the last axis of `a` and the second-to-last axis of
+ `b`::
+
+ dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])
+
+ It uses an optimized BLAS library when possible (see `numpy.linalg`).
+
+ Parameters
+ ----------
+ a : array_like
+ First argument.
+ b : array_like
+ Second argument.
+ out : ndarray, optional
+ Output argument. This must have the exact kind that would be returned
+ if it was not used. In particular, it must have the right type, must be
+ C-contiguous, and its dtype must be the dtype that would be returned
+ for `dot(a,b)`. This is a performance feature. Therefore, if these
+ conditions are not met, an exception is raised, instead of attempting
+ to be flexible.
+
+ Returns
+ -------
+ output : ndarray
+ Returns the dot product of `a` and `b`. If `a` and `b` are both
+ scalars or both 1-D arrays then a scalar is returned; otherwise
+ an array is returned.
+ If `out` is given, then it is returned.
+
+ Raises
+ ------
+ ValueError
+ If the last dimension of `a` is not the same size as
+ the second-to-last dimension of `b`.
+
+ See Also
+ --------
+ vdot : Complex-conjugating dot product.
+ tensordot : Sum products over arbitrary axes.
+ einsum : Einstein summation convention.
+ matmul : '@' operator as method with out parameter.
+ linalg.multi_dot : Chained dot product.
+
+ Examples
+ --------
+ >>> np.dot(3, 4)
+ 12
+
+ Neither argument is complex-conjugated:
+
+ >>> np.dot([2j, 3j], [2j, 3j])
+ (-13+0j)
+
+ For 2-D arrays it is the matrix product:
+
+ >>> a = [[1, 0], [0, 1]]
+ >>> b = [[4, 1], [2, 2]]
+ >>> np.dot(a, b)
+ array([[4, 1],
+ [2, 2]])
+
+ >>> a = np.arange(3*4*5*6).reshape((3,4,5,6))
+ >>> b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3))
+ >>> np.dot(a, b)[2,3,2,1,2,2]
+ 499128
+ >>> sum(a[2,3,2,:] * b[1,2,:,2])
+ 499128
+
+ """
+ return (a, b, out)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.vdot)
+def vdot(a, b):
+ """
+ vdot(a, b, /)
+
+ Return the dot product of two vectors.
+
+ The vdot(`a`, `b`) function handles complex numbers differently than
+ dot(`a`, `b`). If the first argument is complex the complex conjugate
+ of the first argument is used for the calculation of the dot product.
+
+ Note that `vdot` handles multidimensional arrays differently than `dot`:
+ it does *not* perform a matrix product, but flattens input arguments
+ to 1-D vectors first. Consequently, it should only be used for vectors.
+
+ Parameters
+ ----------
+ a : array_like
+ If `a` is complex the complex conjugate is taken before calculation
+ of the dot product.
+ b : array_like
+ Second argument to the dot product.
+
+ Returns
+ -------
+ output : ndarray
+ Dot product of `a` and `b`. Can be an int, float, or
+ complex depending on the types of `a` and `b`.
+
+ See Also
+ --------
+ dot : Return the dot product without using the complex conjugate of the
+ first argument.
+
+ Examples
+ --------
+ >>> a = np.array([1+2j,3+4j])
+ >>> b = np.array([5+6j,7+8j])
+ >>> np.vdot(a, b)
+ (70-8j)
+ >>> np.vdot(b, a)
+ (70+8j)
+
+ Note that higher-dimensional arrays are flattened!
+
+ >>> a = np.array([[1, 4], [5, 6]])
+ >>> b = np.array([[4, 1], [2, 2]])
+ >>> np.vdot(a, b)
+ 30
+ >>> np.vdot(b, a)
+ 30
+ >>> 1*4 + 4*1 + 5*2 + 6*2
+ 30
+
+ """
+ return (a, b)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.bincount)
+def bincount(x, weights=None, minlength=None):
+ """
+ bincount(x, /, weights=None, minlength=0)
+
+ Count number of occurrences of each value in array of non-negative ints.
+
+ The number of bins (of size 1) is one larger than the largest value in
+ `x`. If `minlength` is specified, there will be at least this number
+ of bins in the output array (though it will be longer if necessary,
+ depending on the contents of `x`).
+ Each bin gives the number of occurrences of its index value in `x`.
+ If `weights` is specified the input array is weighted by it, i.e. if a
+ value ``n`` is found at position ``i``, ``out[n] += weight[i]`` instead
+ of ``out[n] += 1``.
+
+ Parameters
+ ----------
+ x : array_like, 1 dimension, nonnegative ints
+ Input array.
+ weights : array_like, optional
+ Weights, array of the same shape as `x`.
+ minlength : int, optional
+ A minimum number of bins for the output array.
+
+ .. versionadded:: 1.6.0
+
+ Returns
+ -------
+ out : ndarray of ints
+ The result of binning the input array.
+ The length of `out` is equal to ``np.amax(x)+1``.
+
+ Raises
+ ------
+ ValueError
+ If the input is not 1-dimensional, or contains elements with negative
+ values, or if `minlength` is negative.
+ TypeError
+ If the type of the input is float or complex.
+
+ See Also
+ --------
+ histogram, digitize, unique
+
+ Examples
+ --------
+ >>> np.bincount(np.arange(5))
+ array([1, 1, 1, 1, 1])
+ >>> np.bincount(np.array([0, 1, 1, 3, 2, 1, 7]))
+ array([1, 3, 1, 1, 0, 0, 0, 1])
+
+ >>> x = np.array([0, 1, 1, 3, 2, 1, 7, 23])
+ >>> np.bincount(x).size == np.amax(x)+1
+ True
+
+ The input array needs to be of integer dtype, otherwise a
+ TypeError is raised:
+
+ >>> np.bincount(np.arange(5, dtype=float))
+ Traceback (most recent call last):
+ ...
+ TypeError: Cannot cast array data from dtype('float64') to dtype('int64')
+ according to the rule 'safe'
+
+ A possible use of ``bincount`` is to perform sums over
+ variable-size chunks of an array, using the ``weights`` keyword.
+
+ >>> w = np.array([0.3, 0.5, 0.2, 0.7, 1., -0.6]) # weights
+ >>> x = np.array([0, 1, 1, 2, 2, 2])
+ >>> np.bincount(x, weights=w)
+ array([ 0.3, 0.7, 1.1])
+
+ """
+ return (x, weights)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.ravel_multi_index)
+def ravel_multi_index(multi_index, dims, mode=None, order=None):
+ """
+ ravel_multi_index(multi_index, dims, mode='raise', order='C')
+
+ Converts a tuple of index arrays into an array of flat
+ indices, applying boundary modes to the multi-index.
+
+ Parameters
+ ----------
+ multi_index : tuple of array_like
+ A tuple of integer arrays, one array for each dimension.
+ dims : tuple of ints
+ The shape of array into which the indices from ``multi_index`` apply.
+ mode : {'raise', 'wrap', 'clip'}, optional
+ Specifies how out-of-bounds indices are handled. Can specify
+ either one mode or a tuple of modes, one mode per index.
+
+ * 'raise' -- raise an error (default)
+ * 'wrap' -- wrap around
+ * 'clip' -- clip to the range
+
+ In 'clip' mode, a negative index which would normally
+ wrap will clip to 0 instead.
+ order : {'C', 'F'}, optional
+ Determines whether the multi-index should be viewed as
+ indexing in row-major (C-style) or column-major
+ (Fortran-style) order.
+
+ Returns
+ -------
+ raveled_indices : ndarray
+ An array of indices into the flattened version of an array
+ of dimensions ``dims``.
+
+ See Also
+ --------
+ unravel_index
+
+ Notes
+ -----
+ .. versionadded:: 1.6.0
+
+ Examples
+ --------
+ >>> arr = np.array([[3,6,6],[4,5,1]])
+ >>> np.ravel_multi_index(arr, (7,6))
+ array([22, 41, 37])
+ >>> np.ravel_multi_index(arr, (7,6), order='F')
+ array([31, 41, 13])
+ >>> np.ravel_multi_index(arr, (4,6), mode='clip')
+ array([22, 23, 19])
+ >>> np.ravel_multi_index(arr, (4,4), mode=('clip','wrap'))
+ array([12, 13, 13])
+
+ >>> np.ravel_multi_index((3,1,4,1), (6,7,8,9))
+ 1621
+ """
+ return multi_index
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.unravel_index)
+def unravel_index(indices, shape=None, order=None):
+ """
+ unravel_index(indices, shape, order='C')
+
+ Converts a flat index or array of flat indices into a tuple
+ of coordinate arrays.
+
+ Parameters
+ ----------
+ indices : array_like
+ An integer array whose elements are indices into the flattened
+ version of an array of dimensions ``shape``. Before version 1.6.0,
+ this function accepted just one index value.
+ shape : tuple of ints
+ The shape of the array to use for unraveling ``indices``.
+
+ .. versionchanged:: 1.16.0
+ Renamed from ``dims`` to ``shape``.
+
+ order : {'C', 'F'}, optional
+ Determines whether the indices should be viewed as indexing in
+ row-major (C-style) or column-major (Fortran-style) order.
+
+ .. versionadded:: 1.6.0
+
+ Returns
+ -------
+ unraveled_coords : tuple of ndarray
+ Each array in the tuple has the same shape as the ``indices``
+ array.
+
+ See Also
+ --------
+ ravel_multi_index
+
+ Examples
+ --------
+ >>> np.unravel_index([22, 41, 37], (7,6))
+ (array([3, 6, 6]), array([4, 5, 1]))
+ >>> np.unravel_index([31, 41, 13], (7,6), order='F')
+ (array([3, 6, 6]), array([4, 5, 1]))
+
+ >>> np.unravel_index(1621, (6,7,8,9))
+ (3, 1, 4, 1)
+
+ """
+ return (indices,)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.copyto)
+def copyto(dst, src, casting=None, where=None):
+ """
+ copyto(dst, src, casting='same_kind', where=True)
+
+ Copies values from one array to another, broadcasting as necessary.
+
+ Raises a TypeError if the `casting` rule is violated, and if
+ `where` is provided, it selects which elements to copy.
+
+ .. versionadded:: 1.7.0
+
+ Parameters
+ ----------
+ dst : ndarray
+ The array into which values are copied.
+ src : array_like
+ The array from which values are copied.
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
+ Controls what kind of data casting may occur when copying.
+
+ * 'no' means the data types should not be cast at all.
+ * 'equiv' means only byte-order changes are allowed.
+ * 'safe' means only casts which can preserve values are allowed.
+ * 'same_kind' means only safe casts or casts within a kind,
+ like float64 to float32, are allowed.
+ * 'unsafe' means any data conversions may be done.
+ where : array_like of bool, optional
+ A boolean array which is broadcasted to match the dimensions
+ of `dst`, and selects elements to copy from `src` to `dst`
+ wherever it contains the value True.
+
+ Examples
+ --------
+ >>> A = np.array([4, 5, 6])
+ >>> B = [1, 2, 3]
+ >>> np.copyto(A, B)
+ >>> A
+ array([1, 2, 3])
+
+ >>> A = np.array([[1, 2, 3], [4, 5, 6]])
+ >>> B = [[4, 5, 6], [7, 8, 9]]
+ >>> np.copyto(A, B)
+ >>> A
+ array([[4, 5, 6],
+ [7, 8, 9]])
+
+ """
+ return (dst, src, where)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.putmask)
+def putmask(a, /, mask, values):
+ """
+ putmask(a, mask, values)
+
+ Changes elements of an array based on conditional and input values.
+
+ Sets ``a.flat[n] = values[n]`` for each n where ``mask.flat[n]==True``.
+
+ If `values` is not the same size as `a` and `mask` then it will repeat.
+ This gives behavior different from ``a[mask] = values``.
+
+ Parameters
+ ----------
+ a : ndarray
+ Target array.
+ mask : array_like
+ Boolean mask array. It has to be the same shape as `a`.
+ values : array_like
+ Values to put into `a` where `mask` is True. If `values` is smaller
+ than `a` it will be repeated.
+
+ See Also
+ --------
+ place, put, take, copyto
+
+ Examples
+ --------
+ >>> x = np.arange(6).reshape(2, 3)
+ >>> np.putmask(x, x>2, x**2)
+ >>> x
+ array([[ 0, 1, 2],
+ [ 9, 16, 25]])
+
+ If `values` is smaller than `a` it is repeated:
+
+ >>> x = np.arange(5)
+ >>> np.putmask(x, x>1, [-33, -44])
+ >>> x
+ array([ 0, 1, -33, -44, -33])
+
+ """
+ return (a, mask, values)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.packbits)
+def packbits(a, axis=None, bitorder='big'):
+ """
+ packbits(a, /, axis=None, bitorder='big')
+
+ Packs the elements of a binary-valued array into bits in a uint8 array.
+
+ The result is padded to full bytes by inserting zero bits at the end.
+
+ Parameters
+ ----------
+ a : array_like
+ An array of integers or booleans whose elements should be packed to
+ bits.
+ axis : int, optional
+ The dimension over which bit-packing is done.
+ ``None`` implies packing the flattened array.
+ bitorder : {'big', 'little'}, optional
+ The order of the input bits. 'big' will mimic bin(val),
+ ``[0, 0, 0, 0, 0, 0, 1, 1] => 3 = 0b00000011``, 'little' will
+ reverse the order so ``[1, 1, 0, 0, 0, 0, 0, 0] => 3``.
+ Defaults to 'big'.
+
+ .. versionadded:: 1.17.0
+
+ Returns
+ -------
+ packed : ndarray
+ Array of type uint8 whose elements represent bits corresponding to the
+ logical (0 or nonzero) value of the input elements. The shape of
+ `packed` has the same number of dimensions as the input (unless `axis`
+ is None, in which case the output is 1-D).
+
+ See Also
+ --------
+ unpackbits: Unpacks elements of a uint8 array into a binary-valued output
+ array.
+
+ Examples
+ --------
+ >>> a = np.array([[[1,0,1],
+ ... [0,1,0]],
+ ... [[1,1,0],
+ ... [0,0,1]]])
+ >>> b = np.packbits(a, axis=-1)
+ >>> b
+ array([[[160],
+ [ 64]],
+ [[192],
+ [ 32]]], dtype=uint8)
+
+ Note that in binary 160 = 1010 0000, 64 = 0100 0000, 192 = 1100 0000,
+ and 32 = 0010 0000.
+
+ """
+ return (a,)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.unpackbits)
+def unpackbits(a, axis=None, count=None, bitorder='big'):
+ """
+ unpackbits(a, /, axis=None, count=None, bitorder='big')
+
+ Unpacks elements of a uint8 array into a binary-valued output array.
+
+ Each element of `a` represents a bit-field that should be unpacked
+ into a binary-valued output array. The shape of the output array is
+ either 1-D (if `axis` is ``None``) or the same shape as the input
+ array with unpacking done along the axis specified.
+
+ Parameters
+ ----------
+ a : ndarray, uint8 type
+ Input array.
+ axis : int, optional
+ The dimension over which bit-unpacking is done.
+ ``None`` implies unpacking the flattened array.
+ count : int or None, optional
+ The number of elements to unpack along `axis`, provided as a way
+ of undoing the effect of packing a size that is not a multiple
+ of eight. A non-negative number means to only unpack `count`
+ bits. A negative number means to trim off that many bits from
+ the end. ``None`` means to unpack the entire array (the
+ default). Counts larger than the available number of bits will
+ add zero padding to the output. Negative counts must not
+ exceed the available number of bits.
+
+ .. versionadded:: 1.17.0
+
+ bitorder : {'big', 'little'}, optional
+ The order of the returned bits. 'big' will mimic bin(val),
+ ``3 = 0b00000011 => [0, 0, 0, 0, 0, 0, 1, 1]``, 'little' will reverse
+ the order to ``[1, 1, 0, 0, 0, 0, 0, 0]``.
+ Defaults to 'big'.
+
+ .. versionadded:: 1.17.0
+
+ Returns
+ -------
+ unpacked : ndarray, uint8 type
+ The elements are binary-valued (0 or 1).
+
+ See Also
+ --------
+ packbits : Packs the elements of a binary-valued array into bits in
+ a uint8 array.
+
+ Examples
+ --------
+ >>> a = np.array([[2], [7], [23]], dtype=np.uint8)
+ >>> a
+ array([[ 2],
+ [ 7],
+ [23]], dtype=uint8)
+ >>> b = np.unpackbits(a, axis=1)
+ >>> b
+ array([[0, 0, 0, 0, 0, 0, 1, 0],
+ [0, 0, 0, 0, 0, 1, 1, 1],
+ [0, 0, 0, 1, 0, 1, 1, 1]], dtype=uint8)
+ >>> c = np.unpackbits(a, axis=1, count=-3)
+ >>> c
+ array([[0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0],
+ [0, 0, 0, 1, 0]], dtype=uint8)
+
+ >>> p = np.packbits(b, axis=0)
+ >>> np.unpackbits(p, axis=0)
+ array([[0, 0, 0, 0, 0, 0, 1, 0],
+ [0, 0, 0, 0, 0, 1, 1, 1],
+ [0, 0, 0, 1, 0, 1, 1, 1],
+ [0, 0, 0, 0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
+ >>> np.array_equal(b, np.unpackbits(p, axis=0, count=b.shape[0]))
+ True
+
+ """
+ return (a,)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.shares_memory)
+def shares_memory(a, b, max_work=None):
+ """
+ shares_memory(a, b, /, max_work=None)
+
+ Determine if two arrays share memory.
+
+ .. warning::
+
+ This function can be exponentially slow for some inputs, unless
+ `max_work` is set to a finite number or ``MAY_SHARE_BOUNDS``.
+ If in doubt, use `numpy.may_share_memory` instead.
+
+ Parameters
+ ----------
+ a, b : ndarray
+ Input arrays
+ max_work : int, optional
+ Effort to spend on solving the overlap problem (maximum number
+ of candidate solutions to consider). The following special
+ values are recognized:
+
+ max_work=MAY_SHARE_EXACT (default)
+ The problem is solved exactly. In this case, the function returns
+ True only if there is an element shared between the arrays. Finding
+ the exact solution may take extremely long in some cases.
+ max_work=MAY_SHARE_BOUNDS
+ Only the memory bounds of a and b are checked.
+
+ Raises
+ ------
+ numpy.exceptions.TooHardError
+ Exceeded max_work.
+
+ Returns
+ -------
+ out : bool
+
+ See Also
+ --------
+ may_share_memory
+
+ Examples
+ --------
+ >>> x = np.array([1, 2, 3, 4])
+ >>> np.shares_memory(x, np.array([5, 6, 7]))
+ False
+ >>> np.shares_memory(x[::2], x)
+ True
+ >>> np.shares_memory(x[::2], x[1::2])
+ False
+
+ Checking whether two arrays share memory is NP-complete, and
+ runtime may increase exponentially in the number of
+ dimensions. Hence, `max_work` should generally be set to a finite
+ number, as it is possible to construct examples that take
+ extremely long to run:
+
+ >>> from numpy.lib.stride_tricks import as_strided
+ >>> x = np.zeros([192163377], dtype=np.int8)
+ >>> x1 = as_strided(x, strides=(36674, 61119, 85569), shape=(1049, 1049, 1049))
+ >>> x2 = as_strided(x[64023025:], strides=(12223, 12224, 1), shape=(1049, 1049, 1))
+ >>> np.shares_memory(x1, x2, max_work=1000)
+ Traceback (most recent call last):
+ ...
+ numpy.exceptions.TooHardError: Exceeded max_work
+
+ Running ``np.shares_memory(x1, x2)`` without `max_work` set takes
+ around 1 minute for this case. It is possible to find problems
+ that take still significantly longer.
+
+ """
+ return (a, b)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.may_share_memory)
+def may_share_memory(a, b, max_work=None):
+ """
+ may_share_memory(a, b, /, max_work=None)
+
+ Determine if two arrays might share memory
+
+ A return of True does not necessarily mean that the two arrays
+ share any element. It just means that they *might*.
+
+ Only the memory bounds of a and b are checked by default.
+
+ Parameters
+ ----------
+ a, b : ndarray
+ Input arrays
+ max_work : int, optional
+ Effort to spend on solving the overlap problem. See
+ `shares_memory` for details. Default for ``may_share_memory``
+ is to do a bounds check.
+
+ Returns
+ -------
+ out : bool
+
+ See Also
+ --------
+ shares_memory
+
+ Examples
+ --------
+ >>> np.may_share_memory(np.array([1,2]), np.array([5,8,9]))
+ False
+ >>> x = np.zeros([3, 4])
+ >>> np.may_share_memory(x[:,0], x[:,1])
+ True
+
+ """
+ return (a, b)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.is_busday)
+def is_busday(dates, weekmask=None, holidays=None, busdaycal=None, out=None):
+ """
+ is_busday(dates, weekmask='1111100', holidays=None, busdaycal=None, out=None)
+
+ Calculates which of the given dates are valid days, and which are not.
+
+ .. versionadded:: 1.7.0
+
+ Parameters
+ ----------
+ dates : array_like of datetime64[D]
+ The array of dates to process.
+ weekmask : str or array_like of bool, optional
+ A seven-element array indicating which of Monday through Sunday are
+ valid days. May be specified as a length-seven list or array, like
+ [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string
+ like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for
+ weekdays, optionally separated by white space. Valid abbreviations
+ are: Mon Tue Wed Thu Fri Sat Sun
+ holidays : array_like of datetime64[D], optional
+ An array of dates to consider as invalid dates. They may be
+ specified in any order, and NaT (not-a-time) dates are ignored.
+ This list is saved in a normalized form that is suited for
+ fast calculations of valid days.
+ busdaycal : busdaycalendar, optional
+ A `busdaycalendar` object which specifies the valid days. If this
+ parameter is provided, neither weekmask nor holidays may be
+ provided.
+ out : array of bool, optional
+ If provided, this array is filled with the result.
+
+ Returns
+ -------
+ out : array of bool
+ An array with the same shape as ``dates``, containing True for
+ each valid day, and False for each invalid day.
+
+ See Also
+ --------
+ busdaycalendar : An object that specifies a custom set of valid days.
+ busday_offset : Applies an offset counted in valid days.
+ busday_count : Counts how many valid days are in a half-open date range.
+
+ Examples
+ --------
+ >>> # The weekdays are Friday, Saturday, and Monday
+ ... np.is_busday(['2011-07-01', '2011-07-02', '2011-07-18'],
+ ... holidays=['2011-07-01', '2011-07-04', '2011-07-17'])
+ array([False, False, True])
+ """
+ return (dates, weekmask, holidays, out)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.busday_offset)
+def busday_offset(dates, offsets, roll=None, weekmask=None, holidays=None,
+ busdaycal=None, out=None):
+ """
+ busday_offset(dates, offsets, roll='raise', weekmask='1111100', holidays=None, busdaycal=None, out=None)
+
+ First adjusts the date to fall on a valid day according to
+ the ``roll`` rule, then applies offsets to the given dates
+ counted in valid days.
+
+ .. versionadded:: 1.7.0
+
+ Parameters
+ ----------
+ dates : array_like of datetime64[D]
+ The array of dates to process.
+ offsets : array_like of int
+ The array of offsets, which is broadcast with ``dates``.
+ roll : {'raise', 'nat', 'forward', 'following', 'backward', 'preceding', 'modifiedfollowing', 'modifiedpreceding'}, optional
+ How to treat dates that do not fall on a valid day. The default
+ is 'raise'.
+
+ * 'raise' means to raise an exception for an invalid day.
+ * 'nat' means to return a NaT (not-a-time) for an invalid day.
+ * 'forward' and 'following' mean to take the first valid day
+ later in time.
+ * 'backward' and 'preceding' mean to take the first valid day
+ earlier in time.
+ * 'modifiedfollowing' means to take the first valid day
+ later in time unless it is across a Month boundary, in which
+ case to take the first valid day earlier in time.
+ * 'modifiedpreceding' means to take the first valid day
+ earlier in time unless it is across a Month boundary, in which
+ case to take the first valid day later in time.
+ weekmask : str or array_like of bool, optional
+ A seven-element array indicating which of Monday through Sunday are
+ valid days. May be specified as a length-seven list or array, like
+ [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string
+ like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for
+ weekdays, optionally separated by white space. Valid abbreviations
+ are: Mon Tue Wed Thu Fri Sat Sun
+ holidays : array_like of datetime64[D], optional
+ An array of dates to consider as invalid dates. They may be
+ specified in any order, and NaT (not-a-time) dates are ignored.
+ This list is saved in a normalized form that is suited for
+ fast calculations of valid days.
+ busdaycal : busdaycalendar, optional
+ A `busdaycalendar` object which specifies the valid days. If this
+ parameter is provided, neither weekmask nor holidays may be
+ provided.
+ out : array of datetime64[D], optional
+ If provided, this array is filled with the result.
+
+ Returns
+ -------
+ out : array of datetime64[D]
+ An array with a shape from broadcasting ``dates`` and ``offsets``
+ together, containing the dates with offsets applied.
+
+ See Also
+ --------
+ busdaycalendar : An object that specifies a custom set of valid days.
+ is_busday : Returns a boolean array indicating valid days.
+ busday_count : Counts how many valid days are in a half-open date range.
+
+ Examples
+ --------
+ >>> # First business day in October 2011 (not accounting for holidays)
+ ... np.busday_offset('2011-10', 0, roll='forward')
+ numpy.datetime64('2011-10-03')
+ >>> # Last business day in February 2012 (not accounting for holidays)
+ ... np.busday_offset('2012-03', -1, roll='forward')
+ numpy.datetime64('2012-02-29')
+ >>> # Third Wednesday in January 2011
+ ... np.busday_offset('2011-01', 2, roll='forward', weekmask='Wed')
+ numpy.datetime64('2011-01-19')
+ >>> # 2012 Mother's Day in Canada and the U.S.
+ ... np.busday_offset('2012-05', 1, roll='forward', weekmask='Sun')
+ numpy.datetime64('2012-05-13')
+
+ >>> # First business day on or after a date
+ ... np.busday_offset('2011-03-20', 0, roll='forward')
+ numpy.datetime64('2011-03-21')
+ >>> np.busday_offset('2011-03-22', 0, roll='forward')
+ numpy.datetime64('2011-03-22')
+ >>> # First business day after a date
+ ... np.busday_offset('2011-03-20', 1, roll='backward')
+ numpy.datetime64('2011-03-21')
+ >>> np.busday_offset('2011-03-22', 1, roll='backward')
+ numpy.datetime64('2011-03-23')
+ """
+ return (dates, offsets, weekmask, holidays, out)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.busday_count)
+def busday_count(begindates, enddates, weekmask=None, holidays=None,
+ busdaycal=None, out=None):
+ """
+ busday_count(begindates, enddates, weekmask='1111100', holidays=[], busdaycal=None, out=None)
+
+ Counts the number of valid days between `begindates` and
+ `enddates`, not including the day of `enddates`.
+
+ If ``enddates`` specifies a date value that is earlier than the
+ corresponding ``begindates`` date value, the count will be negative.
+
+ .. versionadded:: 1.7.0
+
+ Parameters
+ ----------
+ begindates : array_like of datetime64[D]
+ The array of the first dates for counting.
+ enddates : array_like of datetime64[D]
+ The array of the end dates for counting, which are excluded
+ from the count themselves.
+ weekmask : str or array_like of bool, optional
+ A seven-element array indicating which of Monday through Sunday are
+ valid days. May be specified as a length-seven list or array, like
+ [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string
+ like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for
+ weekdays, optionally separated by white space. Valid abbreviations
+ are: Mon Tue Wed Thu Fri Sat Sun
+ holidays : array_like of datetime64[D], optional
+ An array of dates to consider as invalid dates. They may be
+ specified in any order, and NaT (not-a-time) dates are ignored.
+ This list is saved in a normalized form that is suited for
+ fast calculations of valid days.
+ busdaycal : busdaycalendar, optional
+ A `busdaycalendar` object which specifies the valid days. If this
+ parameter is provided, neither weekmask nor holidays may be
+ provided.
+ out : array of int, optional
+ If provided, this array is filled with the result.
+
+ Returns
+ -------
+ out : array of int
+ An array with a shape from broadcasting ``begindates`` and ``enddates``
+ together, containing the number of valid days between
+ the begin and end dates.
+
+ See Also
+ --------
+ busdaycalendar : An object that specifies a custom set of valid days.
+ is_busday : Returns a boolean array indicating valid days.
+ busday_offset : Applies an offset counted in valid days.
+
+ Examples
+ --------
+ >>> # Number of weekdays in January 2011
+ ... np.busday_count('2011-01', '2011-02')
+ 21
+ >>> # Number of weekdays in 2011
+ >>> np.busday_count('2011', '2012')
+ 260
+ >>> # Number of Saturdays in 2011
+ ... np.busday_count('2011', '2012', weekmask='Sat')
+ 53
+ """
+ return (begindates, enddates, weekmask, holidays, out)
+
+
+@array_function_from_c_func_and_dispatcher(
+ _multiarray_umath.datetime_as_string)
+def datetime_as_string(arr, unit=None, timezone=None, casting=None):
+ """
+ datetime_as_string(arr, unit=None, timezone='naive', casting='same_kind')
+
+ Convert an array of datetimes into an array of strings.
+
+ Parameters
+ ----------
+ arr : array_like of datetime64
+ The array of UTC timestamps to format.
+ unit : str
+ One of None, 'auto', or a :ref:`datetime unit <arrays.dtypes.dateunits>`.
+ timezone : {'naive', 'UTC', 'local'} or tzinfo
+ Timezone information to use when displaying the datetime. If 'UTC', end
+ with a Z to indicate UTC time. If 'local', convert to the local timezone
+ first, and suffix with a +-#### timezone offset. If a tzinfo object,
+ then do as with 'local', but use the specified timezone.
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}
+ Casting to allow when changing between datetime units.
+
+ Returns
+ -------
+ str_arr : ndarray
+ An array of strings the same shape as `arr`.
+
+ Examples
+ --------
+ >>> import pytz
+ >>> d = np.arange('2002-10-27T04:30', 4*60, 60, dtype='M8[m]')
+ >>> d
+ array(['2002-10-27T04:30', '2002-10-27T05:30', '2002-10-27T06:30',
+ '2002-10-27T07:30'], dtype='datetime64[m]')
+
+ Setting the timezone to UTC shows the same information, but with a Z suffix
+
+ >>> np.datetime_as_string(d, timezone='UTC')
+ array(['2002-10-27T04:30Z', '2002-10-27T05:30Z', '2002-10-27T06:30Z',
+ '2002-10-27T07:30Z'], dtype='<U35')
+
+ Note that we picked datetimes that cross a DST boundary. Passing in a
+ ``pytz`` timezone object will print the appropriate offset
+
+ >>> np.datetime_as_string(d, timezone=pytz.timezone('US/Eastern'))
+ array(['2002-10-27T00:30-0400', '2002-10-27T01:30-0400',
+ '2002-10-27T01:30-0500', '2002-10-27T02:30-0500'], dtype='<U39')
+
+ Passing in a unit will change the precision
+
+ >>> np.datetime_as_string(d, unit='h')
+ array(['2002-10-27T04', '2002-10-27T05', '2002-10-27T06', '2002-10-27T07'],
+ dtype='<U32')
+ >>> np.datetime_as_string(d, unit='s')
+ array(['2002-10-27T04:30:00', '2002-10-27T05:30:00', '2002-10-27T06:30:00',
+ '2002-10-27T07:30:00'], dtype='<U38')
+
+ 'casting' can be used to specify whether precision can be changed
+
+ >>> np.datetime_as_string(d, unit='h', casting='safe')
+ Traceback (most recent call last):
+ ...
+ TypeError: Cannot create a datetime string as units 'h' from a NumPy
+ datetime with units 'm' according to the rule 'safe'
+ """
+ return (arr,)