about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/numpy/core/_add_newdocs.py
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/numpy/core/_add_newdocs.py
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are here HEAD master
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/core/_add_newdocs.py')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/core/_add_newdocs.py7080
1 files changed, 7080 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/_add_newdocs.py b/.venv/lib/python3.12/site-packages/numpy/core/_add_newdocs.py
new file mode 100644
index 00000000..6e29fcf5
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/core/_add_newdocs.py
@@ -0,0 +1,7080 @@
+"""
+This is only meant to add docs to objects defined in C-extension modules.
+The purpose is to allow easier editing of the docstrings without
+requiring a re-compile.
+
+NOTE: Many of the methods of ndarray have corresponding functions.
+      If you update these docstrings, please keep also the ones in
+      core/fromnumeric.py, core/defmatrix.py up-to-date.
+
+"""
+
+from numpy.core.function_base import add_newdoc
+from numpy.core.overrides import array_function_like_doc
+
+
+###############################################################################
+#
+# flatiter
+#
+# flatiter needs a toplevel description
+#
+###############################################################################
+
+add_newdoc('numpy.core', 'flatiter',
+    """
+    Flat iterator object to iterate over arrays.
+
+    A `flatiter` iterator is returned by ``x.flat`` for any array `x`.
+    It allows iterating over the array as if it were a 1-D array,
+    either in a for-loop or by calling its `next` method.
+
+    Iteration is done in row-major, C-style order (the last
+    index varying the fastest). The iterator can also be indexed using
+    basic slicing or advanced indexing.
+
+    See Also
+    --------
+    ndarray.flat : Return a flat iterator over an array.
+    ndarray.flatten : Returns a flattened copy of an array.
+
+    Notes
+    -----
+    A `flatiter` iterator can not be constructed directly from Python code
+    by calling the `flatiter` constructor.
+
+    Examples
+    --------
+    >>> x = np.arange(6).reshape(2, 3)
+    >>> fl = x.flat
+    >>> type(fl)
+    <class 'numpy.flatiter'>
+    >>> for item in fl:
+    ...     print(item)
+    ...
+    0
+    1
+    2
+    3
+    4
+    5
+
+    >>> fl[2:4]
+    array([2, 3])
+
+    """)
+
+# flatiter attributes
+
+add_newdoc('numpy.core', 'flatiter', ('base',
+    """
+    A reference to the array that is iterated over.
+
+    Examples
+    --------
+    >>> x = np.arange(5)
+    >>> fl = x.flat
+    >>> fl.base is x
+    True
+
+    """))
+
+
+
+add_newdoc('numpy.core', 'flatiter', ('coords',
+    """
+    An N-dimensional tuple of current coordinates.
+
+    Examples
+    --------
+    >>> x = np.arange(6).reshape(2, 3)
+    >>> fl = x.flat
+    >>> fl.coords
+    (0, 0)
+    >>> next(fl)
+    0
+    >>> fl.coords
+    (0, 1)
+
+    """))
+
+
+
+add_newdoc('numpy.core', 'flatiter', ('index',
+    """
+    Current flat index into the array.
+
+    Examples
+    --------
+    >>> x = np.arange(6).reshape(2, 3)
+    >>> fl = x.flat
+    >>> fl.index
+    0
+    >>> next(fl)
+    0
+    >>> fl.index
+    1
+
+    """))
+
+# flatiter functions
+
+add_newdoc('numpy.core', 'flatiter', ('__array__',
+    """__array__(type=None) Get array from iterator
+
+    """))
+
+
+add_newdoc('numpy.core', 'flatiter', ('copy',
+    """
+    copy()
+
+    Get a copy of the iterator as a 1-D array.
+
+    Examples
+    --------
+    >>> x = np.arange(6).reshape(2, 3)
+    >>> x
+    array([[0, 1, 2],
+           [3, 4, 5]])
+    >>> fl = x.flat
+    >>> fl.copy()
+    array([0, 1, 2, 3, 4, 5])
+
+    """))
+
+
+###############################################################################
+#
+# nditer
+#
+###############################################################################
+
+add_newdoc('numpy.core', 'nditer',
+    """
+    nditer(op, flags=None, op_flags=None, op_dtypes=None, order='K', casting='safe', op_axes=None, itershape=None, buffersize=0)
+
+    Efficient multi-dimensional iterator object to iterate over arrays.
+    To get started using this object, see the
+    :ref:`introductory guide to array iteration <arrays.nditer>`.
+
+    Parameters
+    ----------
+    op : ndarray or sequence of array_like
+        The array(s) to iterate over.
+
+    flags : sequence of str, optional
+          Flags to control the behavior of the iterator.
+
+          * ``buffered`` enables buffering when required.
+          * ``c_index`` causes a C-order index to be tracked.
+          * ``f_index`` causes a Fortran-order index to be tracked.
+          * ``multi_index`` causes a multi-index, or a tuple of indices
+            with one per iteration dimension, to be tracked.
+          * ``common_dtype`` causes all the operands to be converted to
+            a common data type, with copying or buffering as necessary.
+          * ``copy_if_overlap`` causes the iterator to determine if read
+            operands have overlap with write operands, and make temporary
+            copies as necessary to avoid overlap. False positives (needless
+            copying) are possible in some cases.
+          * ``delay_bufalloc`` delays allocation of the buffers until
+            a reset() call is made. Allows ``allocate`` operands to
+            be initialized before their values are copied into the buffers.
+          * ``external_loop`` causes the ``values`` given to be
+            one-dimensional arrays with multiple values instead of
+            zero-dimensional arrays.
+          * ``grow_inner`` allows the ``value`` array sizes to be made
+            larger than the buffer size when both ``buffered`` and
+            ``external_loop`` is used.
+          * ``ranged`` allows the iterator to be restricted to a sub-range
+            of the iterindex values.
+          * ``refs_ok`` enables iteration of reference types, such as
+            object arrays.
+          * ``reduce_ok`` enables iteration of ``readwrite`` operands
+            which are broadcasted, also known as reduction operands.
+          * ``zerosize_ok`` allows `itersize` to be zero.
+    op_flags : list of list of str, optional
+          This is a list of flags for each operand. At minimum, one of
+          ``readonly``, ``readwrite``, or ``writeonly`` must be specified.
+
+          * ``readonly`` indicates the operand will only be read from.
+          * ``readwrite`` indicates the operand will be read from and written to.
+          * ``writeonly`` indicates the operand will only be written to.
+          * ``no_broadcast`` prevents the operand from being broadcasted.
+          * ``contig`` forces the operand data to be contiguous.
+          * ``aligned`` forces the operand data to be aligned.
+          * ``nbo`` forces the operand data to be in native byte order.
+          * ``copy`` allows a temporary read-only copy if required.
+          * ``updateifcopy`` allows a temporary read-write copy if required.
+          * ``allocate`` causes the array to be allocated if it is None
+            in the ``op`` parameter.
+          * ``no_subtype`` prevents an ``allocate`` operand from using a subtype.
+          * ``arraymask`` indicates that this operand is the mask to use
+            for selecting elements when writing to operands with the
+            'writemasked' flag set. The iterator does not enforce this,
+            but when writing from a buffer back to the array, it only
+            copies those elements indicated by this mask.
+          * ``writemasked`` indicates that only elements where the chosen
+            ``arraymask`` operand is True will be written to.
+          * ``overlap_assume_elementwise`` can be used to mark operands that are
+            accessed only in the iterator order, to allow less conservative
+            copying when ``copy_if_overlap`` is present.
+    op_dtypes : dtype or tuple of dtype(s), optional
+        The required data type(s) of the operands. If copying or buffering
+        is enabled, the data will be converted to/from their original types.
+    order : {'C', 'F', 'A', 'K'}, optional
+        Controls the iteration order. 'C' means C order, 'F' means
+        Fortran order, 'A' means 'F' order if all the arrays are Fortran
+        contiguous, 'C' order otherwise, and 'K' means as close to the
+        order the array elements appear in memory as possible. This also
+        affects the element memory order of ``allocate`` operands, as they
+        are allocated to be compatible with iteration order.
+        Default is 'K'.
+    casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
+        Controls what kind of data casting may occur when making a copy
+        or buffering.  Setting this to 'unsafe' is not recommended,
+        as it can adversely affect accumulations.
+
+        * 'no' means the data types should not be cast at all.
+        * 'equiv' means only byte-order changes are allowed.
+        * 'safe' means only casts which can preserve values are allowed.
+        * 'same_kind' means only safe casts or casts within a kind,
+          like float64 to float32, are allowed.
+        * 'unsafe' means any data conversions may be done.
+    op_axes : list of list of ints, optional
+        If provided, is a list of ints or None for each operands.
+        The list of axes for an operand is a mapping from the dimensions
+        of the iterator to the dimensions of the operand. A value of
+        -1 can be placed for entries, causing that dimension to be
+        treated as `newaxis`.
+    itershape : tuple of ints, optional
+        The desired shape of the iterator. This allows ``allocate`` operands
+        with a dimension mapped by op_axes not corresponding to a dimension
+        of a different operand to get a value not equal to 1 for that
+        dimension.
+    buffersize : int, optional
+        When buffering is enabled, controls the size of the temporary
+        buffers. Set to 0 for the default value.
+
+    Attributes
+    ----------
+    dtypes : tuple of dtype(s)
+        The data types of the values provided in `value`. This may be
+        different from the operand data types if buffering is enabled.
+        Valid only before the iterator is closed.
+    finished : bool
+        Whether the iteration over the operands is finished or not.
+    has_delayed_bufalloc : bool
+        If True, the iterator was created with the ``delay_bufalloc`` flag,
+        and no reset() function was called on it yet.
+    has_index : bool
+        If True, the iterator was created with either the ``c_index`` or
+        the ``f_index`` flag, and the property `index` can be used to
+        retrieve it.
+    has_multi_index : bool
+        If True, the iterator was created with the ``multi_index`` flag,
+        and the property `multi_index` can be used to retrieve it.
+    index
+        When the ``c_index`` or ``f_index`` flag was used, this property
+        provides access to the index. Raises a ValueError if accessed
+        and ``has_index`` is False.
+    iterationneedsapi : bool
+        Whether iteration requires access to the Python API, for example
+        if one of the operands is an object array.
+    iterindex : int
+        An index which matches the order of iteration.
+    itersize : int
+        Size of the iterator.
+    itviews
+        Structured view(s) of `operands` in memory, matching the reordered
+        and optimized iterator access pattern. Valid only before the iterator
+        is closed.
+    multi_index
+        When the ``multi_index`` flag was used, this property
+        provides access to the index. Raises a ValueError if accessed
+        accessed and ``has_multi_index`` is False.
+    ndim : int
+        The dimensions of the iterator.
+    nop : int
+        The number of iterator operands.
+    operands : tuple of operand(s)
+        The array(s) to be iterated over. Valid only before the iterator is
+        closed.
+    shape : tuple of ints
+        Shape tuple, the shape of the iterator.
+    value
+        Value of ``operands`` at current iteration. Normally, this is a
+        tuple of array scalars, but if the flag ``external_loop`` is used,
+        it is a tuple of one dimensional arrays.
+
+    Notes
+    -----
+    `nditer` supersedes `flatiter`.  The iterator implementation behind
+    `nditer` is also exposed by the NumPy C API.
+
+    The Python exposure supplies two iteration interfaces, one which follows
+    the Python iterator protocol, and another which mirrors the C-style
+    do-while pattern.  The native Python approach is better in most cases, but
+    if you need the coordinates or index of an iterator, use the C-style pattern.
+
+    Examples
+    --------
+    Here is how we might write an ``iter_add`` function, using the
+    Python iterator protocol:
+
+    >>> def iter_add_py(x, y, out=None):
+    ...     addop = np.add
+    ...     it = np.nditer([x, y, out], [],
+    ...                 [['readonly'], ['readonly'], ['writeonly','allocate']])
+    ...     with it:
+    ...         for (a, b, c) in it:
+    ...             addop(a, b, out=c)
+    ...         return it.operands[2]
+
+    Here is the same function, but following the C-style pattern:
+
+    >>> def iter_add(x, y, out=None):
+    ...    addop = np.add
+    ...    it = np.nditer([x, y, out], [],
+    ...                [['readonly'], ['readonly'], ['writeonly','allocate']])
+    ...    with it:
+    ...        while not it.finished:
+    ...            addop(it[0], it[1], out=it[2])
+    ...            it.iternext()
+    ...        return it.operands[2]
+
+    Here is an example outer product function:
+
+    >>> def outer_it(x, y, out=None):
+    ...     mulop = np.multiply
+    ...     it = np.nditer([x, y, out], ['external_loop'],
+    ...             [['readonly'], ['readonly'], ['writeonly', 'allocate']],
+    ...             op_axes=[list(range(x.ndim)) + [-1] * y.ndim,
+    ...                      [-1] * x.ndim + list(range(y.ndim)),
+    ...                      None])
+    ...     with it:
+    ...         for (a, b, c) in it:
+    ...             mulop(a, b, out=c)
+    ...         return it.operands[2]
+
+    >>> a = np.arange(2)+1
+    >>> b = np.arange(3)+1
+    >>> outer_it(a,b)
+    array([[1, 2, 3],
+           [2, 4, 6]])
+
+    Here is an example function which operates like a "lambda" ufunc:
+
+    >>> def luf(lamdaexpr, *args, **kwargs):
+    ...    '''luf(lambdaexpr, op1, ..., opn, out=None, order='K', casting='safe', buffersize=0)'''
+    ...    nargs = len(args)
+    ...    op = (kwargs.get('out',None),) + args
+    ...    it = np.nditer(op, ['buffered','external_loop'],
+    ...            [['writeonly','allocate','no_broadcast']] +
+    ...                            [['readonly','nbo','aligned']]*nargs,
+    ...            order=kwargs.get('order','K'),
+    ...            casting=kwargs.get('casting','safe'),
+    ...            buffersize=kwargs.get('buffersize',0))
+    ...    while not it.finished:
+    ...        it[0] = lamdaexpr(*it[1:])
+    ...        it.iternext()
+    ...    return it.operands[0]
+
+    >>> a = np.arange(5)
+    >>> b = np.ones(5)
+    >>> luf(lambda i,j:i*i + j/2, a, b)
+    array([  0.5,   1.5,   4.5,   9.5,  16.5])
+
+    If operand flags ``"writeonly"`` or ``"readwrite"`` are used the
+    operands may be views into the original data with the
+    `WRITEBACKIFCOPY` flag. In this case `nditer` must be used as a
+    context manager or the `nditer.close` method must be called before
+    using the result. The temporary data will be written back to the
+    original data when the `__exit__` function is called but not before:
+
+    >>> a = np.arange(6, dtype='i4')[::-2]
+    >>> with np.nditer(a, [],
+    ...        [['writeonly', 'updateifcopy']],
+    ...        casting='unsafe',
+    ...        op_dtypes=[np.dtype('f4')]) as i:
+    ...    x = i.operands[0]
+    ...    x[:] = [-1, -2, -3]
+    ...    # a still unchanged here
+    >>> a, x
+    (array([-1, -2, -3], dtype=int32), array([-1., -2., -3.], dtype=float32))
+
+    It is important to note that once the iterator is exited, dangling
+    references (like `x` in the example) may or may not share data with
+    the original data `a`. If writeback semantics were active, i.e. if
+    `x.base.flags.writebackifcopy` is `True`, then exiting the iterator
+    will sever the connection between `x` and `a`, writing to `x` will
+    no longer write to `a`. If writeback semantics are not active, then
+    `x.data` will still point at some part of `a.data`, and writing to
+    one will affect the other.
+
+    Context management and the `close` method appeared in version 1.15.0.
+
+    """)
+
+# nditer methods
+
+add_newdoc('numpy.core', 'nditer', ('copy',
+    """
+    copy()
+
+    Get a copy of the iterator in its current state.
+
+    Examples
+    --------
+    >>> x = np.arange(10)
+    >>> y = x + 1
+    >>> it = np.nditer([x, y])
+    >>> next(it)
+    (array(0), array(1))
+    >>> it2 = it.copy()
+    >>> next(it2)
+    (array(1), array(2))
+
+    """))
+
+add_newdoc('numpy.core', 'nditer', ('operands',
+    """
+    operands[`Slice`]
+
+    The array(s) to be iterated over. Valid only before the iterator is closed.
+    """))
+
+add_newdoc('numpy.core', 'nditer', ('debug_print',
+    """
+    debug_print()
+
+    Print the current state of the `nditer` instance and debug info to stdout.
+
+    """))
+
+add_newdoc('numpy.core', 'nditer', ('enable_external_loop',
+    """
+    enable_external_loop()
+
+    When the "external_loop" was not used during construction, but
+    is desired, this modifies the iterator to behave as if the flag
+    was specified.
+
+    """))
+
+add_newdoc('numpy.core', 'nditer', ('iternext',
+    """
+    iternext()
+
+    Check whether iterations are left, and perform a single internal iteration
+    without returning the result.  Used in the C-style pattern do-while
+    pattern.  For an example, see `nditer`.
+
+    Returns
+    -------
+    iternext : bool
+        Whether or not there are iterations left.
+
+    """))
+
+add_newdoc('numpy.core', 'nditer', ('remove_axis',
+    """
+    remove_axis(i, /)
+
+    Removes axis `i` from the iterator. Requires that the flag "multi_index"
+    be enabled.
+
+    """))
+
+add_newdoc('numpy.core', 'nditer', ('remove_multi_index',
+    """
+    remove_multi_index()
+
+    When the "multi_index" flag was specified, this removes it, allowing
+    the internal iteration structure to be optimized further.
+
+    """))
+
+add_newdoc('numpy.core', 'nditer', ('reset',
+    """
+    reset()
+
+    Reset the iterator to its initial state.
+
+    """))
+
+add_newdoc('numpy.core', 'nested_iters',
+    """
+    nested_iters(op, axes, flags=None, op_flags=None, op_dtypes=None, \
+    order="K", casting="safe", buffersize=0)
+
+    Create nditers for use in nested loops
+
+    Create a tuple of `nditer` objects which iterate in nested loops over
+    different axes of the op argument. The first iterator is used in the
+    outermost loop, the last in the innermost loop. Advancing one will change
+    the subsequent iterators to point at its new element.
+
+    Parameters
+    ----------
+    op : ndarray or sequence of array_like
+        The array(s) to iterate over.
+
+    axes : list of list of int
+        Each item is used as an "op_axes" argument to an nditer
+
+    flags, op_flags, op_dtypes, order, casting, buffersize (optional)
+        See `nditer` parameters of the same name
+
+    Returns
+    -------
+    iters : tuple of nditer
+        An nditer for each item in `axes`, outermost first
+
+    See Also
+    --------
+    nditer
+
+    Examples
+    --------
+
+    Basic usage. Note how y is the "flattened" version of
+    [a[:, 0, :], a[:, 1, 0], a[:, 2, :]] since we specified
+    the first iter's axes as [1]
+
+    >>> a = np.arange(12).reshape(2, 3, 2)
+    >>> i, j = np.nested_iters(a, [[1], [0, 2]], flags=["multi_index"])
+    >>> for x in i:
+    ...      print(i.multi_index)
+    ...      for y in j:
+    ...          print('', j.multi_index, y)
+    (0,)
+     (0, 0) 0
+     (0, 1) 1
+     (1, 0) 6
+     (1, 1) 7
+    (1,)
+     (0, 0) 2
+     (0, 1) 3
+     (1, 0) 8
+     (1, 1) 9
+    (2,)
+     (0, 0) 4
+     (0, 1) 5
+     (1, 0) 10
+     (1, 1) 11
+
+    """)
+
+add_newdoc('numpy.core', 'nditer', ('close',
+    """
+    close()
+
+    Resolve all writeback semantics in writeable operands.
+
+    .. versionadded:: 1.15.0
+
+    See Also
+    --------
+
+    :ref:`nditer-context-manager`
+
+    """))
+
+
+###############################################################################
+#
+# broadcast
+#
+###############################################################################
+
+add_newdoc('numpy.core', 'broadcast',
+    """
+    Produce an object that mimics broadcasting.
+
+    Parameters
+    ----------
+    in1, in2, ... : array_like
+        Input parameters.
+
+    Returns
+    -------
+    b : broadcast object
+        Broadcast the input parameters against one another, and
+        return an object that encapsulates the result.
+        Amongst others, it has ``shape`` and ``nd`` properties, and
+        may be used as an iterator.
+
+    See Also
+    --------
+    broadcast_arrays
+    broadcast_to
+    broadcast_shapes
+
+    Examples
+    --------
+
+    Manually adding two vectors, using broadcasting:
+
+    >>> x = np.array([[1], [2], [3]])
+    >>> y = np.array([4, 5, 6])
+    >>> b = np.broadcast(x, y)
+
+    >>> out = np.empty(b.shape)
+    >>> out.flat = [u+v for (u,v) in b]
+    >>> out
+    array([[5.,  6.,  7.],
+           [6.,  7.,  8.],
+           [7.,  8.,  9.]])
+
+    Compare against built-in broadcasting:
+
+    >>> x + y
+    array([[5, 6, 7],
+           [6, 7, 8],
+           [7, 8, 9]])
+
+    """)
+
+# attributes
+
+add_newdoc('numpy.core', 'broadcast', ('index',
+    """
+    current index in broadcasted result
+
+    Examples
+    --------
+    >>> x = np.array([[1], [2], [3]])
+    >>> y = np.array([4, 5, 6])
+    >>> b = np.broadcast(x, y)
+    >>> b.index
+    0
+    >>> next(b), next(b), next(b)
+    ((1, 4), (1, 5), (1, 6))
+    >>> b.index
+    3
+
+    """))
+
+add_newdoc('numpy.core', 'broadcast', ('iters',
+    """
+    tuple of iterators along ``self``'s "components."
+
+    Returns a tuple of `numpy.flatiter` objects, one for each "component"
+    of ``self``.
+
+    See Also
+    --------
+    numpy.flatiter
+
+    Examples
+    --------
+    >>> x = np.array([1, 2, 3])
+    >>> y = np.array([[4], [5], [6]])
+    >>> b = np.broadcast(x, y)
+    >>> row, col = b.iters
+    >>> next(row), next(col)
+    (1, 4)
+
+    """))
+
+add_newdoc('numpy.core', 'broadcast', ('ndim',
+    """
+    Number of dimensions of broadcasted result. Alias for `nd`.
+
+    .. versionadded:: 1.12.0
+
+    Examples
+    --------
+    >>> x = np.array([1, 2, 3])
+    >>> y = np.array([[4], [5], [6]])
+    >>> b = np.broadcast(x, y)
+    >>> b.ndim
+    2
+
+    """))
+
+add_newdoc('numpy.core', 'broadcast', ('nd',
+    """
+    Number of dimensions of broadcasted result. For code intended for NumPy
+    1.12.0 and later the more consistent `ndim` is preferred.
+
+    Examples
+    --------
+    >>> x = np.array([1, 2, 3])
+    >>> y = np.array([[4], [5], [6]])
+    >>> b = np.broadcast(x, y)
+    >>> b.nd
+    2
+
+    """))
+
+add_newdoc('numpy.core', 'broadcast', ('numiter',
+    """
+    Number of iterators possessed by the broadcasted result.
+
+    Examples
+    --------
+    >>> x = np.array([1, 2, 3])
+    >>> y = np.array([[4], [5], [6]])
+    >>> b = np.broadcast(x, y)
+    >>> b.numiter
+    2
+
+    """))
+
+add_newdoc('numpy.core', 'broadcast', ('shape',
+    """
+    Shape of broadcasted result.
+
+    Examples
+    --------
+    >>> x = np.array([1, 2, 3])
+    >>> y = np.array([[4], [5], [6]])
+    >>> b = np.broadcast(x, y)
+    >>> b.shape
+    (3, 3)
+
+    """))
+
+add_newdoc('numpy.core', 'broadcast', ('size',
+    """
+    Total size of broadcasted result.
+
+    Examples
+    --------
+    >>> x = np.array([1, 2, 3])
+    >>> y = np.array([[4], [5], [6]])
+    >>> b = np.broadcast(x, y)
+    >>> b.size
+    9
+
+    """))
+
+add_newdoc('numpy.core', 'broadcast', ('reset',
+    """
+    reset()
+
+    Reset the broadcasted result's iterator(s).
+
+    Parameters
+    ----------
+    None
+
+    Returns
+    -------
+    None
+
+    Examples
+    --------
+    >>> x = np.array([1, 2, 3])
+    >>> y = np.array([[4], [5], [6]])
+    >>> b = np.broadcast(x, y)
+    >>> b.index
+    0
+    >>> next(b), next(b), next(b)
+    ((1, 4), (2, 4), (3, 4))
+    >>> b.index
+    3
+    >>> b.reset()
+    >>> b.index
+    0
+
+    """))
+
+###############################################################################
+#
+# numpy functions
+#
+###############################################################################
+
+add_newdoc('numpy.core.multiarray', 'array',
+    """
+    array(object, dtype=None, *, copy=True, order='K', subok=False, ndmin=0,
+          like=None)
+
+    Create an array.
+
+    Parameters
+    ----------
+    object : array_like
+        An array, any object exposing the array interface, an object whose
+        ``__array__`` method returns an array, or any (nested) sequence.
+        If object is a scalar, a 0-dimensional array containing object is
+        returned.
+    dtype : data-type, optional
+        The desired data-type for the array. If not given, NumPy will try to use
+        a default ``dtype`` that can represent the values (by applying promotion
+        rules when necessary.)
+    copy : bool, optional
+        If true (default), then the object is copied.  Otherwise, a copy will
+        only be made if ``__array__`` returns a copy, if obj is a nested
+        sequence, or if a copy is needed to satisfy any of the other
+        requirements (``dtype``, ``order``, etc.).
+    order : {'K', 'A', 'C', 'F'}, optional
+        Specify the memory layout of the array. If object is not an array, the
+        newly created array will be in C order (row major) unless 'F' is
+        specified, in which case it will be in Fortran order (column major).
+        If object is an array the following holds.
+
+        ===== ========= ===================================================
+        order  no copy                     copy=True
+        ===== ========= ===================================================
+        'K'   unchanged F & C order preserved, otherwise most similar order
+        'A'   unchanged F order if input is F and not C, otherwise C order
+        'C'   C order   C order
+        'F'   F order   F order
+        ===== ========= ===================================================
+
+        When ``copy=False`` and a copy is made for other reasons, the result is
+        the same as if ``copy=True``, with some exceptions for 'A', see the
+        Notes section. The default order is 'K'.
+    subok : bool, optional
+        If True, then sub-classes will be passed-through, otherwise
+        the returned array will be forced to be a base-class array (default).
+    ndmin : int, optional
+        Specifies the minimum number of dimensions that the resulting
+        array should have.  Ones will be prepended to the shape as
+        needed to meet this requirement.
+    ${ARRAY_FUNCTION_LIKE}
+
+        .. versionadded:: 1.20.0
+
+    Returns
+    -------
+    out : ndarray
+        An array object satisfying the specified requirements.
+
+    See Also
+    --------
+    empty_like : Return an empty array with shape and type of input.
+    ones_like : Return an array of ones with shape and type of input.
+    zeros_like : Return an array of zeros with shape and type of input.
+    full_like : Return a new array with shape of input filled with value.
+    empty : Return a new uninitialized array.
+    ones : Return a new array setting values to one.
+    zeros : Return a new array setting values to zero.
+    full : Return a new array of given shape filled with value.
+
+
+    Notes
+    -----
+    When order is 'A' and ``object`` is an array in neither 'C' nor 'F' order,
+    and a copy is forced by a change in dtype, then the order of the result is
+    not necessarily 'C' as expected. This is likely a bug.
+
+    Examples
+    --------
+    >>> np.array([1, 2, 3])
+    array([1, 2, 3])
+
+    Upcasting:
+
+    >>> np.array([1, 2, 3.0])
+    array([ 1.,  2.,  3.])
+
+    More than one dimension:
+
+    >>> np.array([[1, 2], [3, 4]])
+    array([[1, 2],
+           [3, 4]])
+
+    Minimum dimensions 2:
+
+    >>> np.array([1, 2, 3], ndmin=2)
+    array([[1, 2, 3]])
+
+    Type provided:
+
+    >>> np.array([1, 2, 3], dtype=complex)
+    array([ 1.+0.j,  2.+0.j,  3.+0.j])
+
+    Data-type consisting of more than one element:
+
+    >>> x = np.array([(1,2),(3,4)],dtype=[('a','<i4'),('b','<i4')])
+    >>> x['a']
+    array([1, 3])
+
+    Creating an array from sub-classes:
+
+    >>> np.array(np.mat('1 2; 3 4'))
+    array([[1, 2],
+           [3, 4]])
+
+    >>> np.array(np.mat('1 2; 3 4'), subok=True)
+    matrix([[1, 2],
+            [3, 4]])
+
+    """.replace(
+        "${ARRAY_FUNCTION_LIKE}",
+        array_function_like_doc,
+    ))
+
+add_newdoc('numpy.core.multiarray', 'asarray',
+    """
+    asarray(a, dtype=None, order=None, *, like=None)
+
+    Convert the input to an array.
+
+    Parameters
+    ----------
+    a : array_like
+        Input data, in any form that can be converted to an array.  This
+        includes lists, lists of tuples, tuples, tuples of tuples, tuples
+        of lists and ndarrays.
+    dtype : data-type, optional
+        By default, the data-type is inferred from the input data.
+    order : {'C', 'F', 'A', 'K'}, optional
+        Memory layout.  'A' and 'K' depend on the order of input array a.
+        'C' row-major (C-style),
+        'F' column-major (Fortran-style) memory representation.
+        'A' (any) means 'F' if `a` is Fortran contiguous, 'C' otherwise
+        'K' (keep) preserve input order
+        Defaults to 'K'.
+    ${ARRAY_FUNCTION_LIKE}
+
+        .. versionadded:: 1.20.0
+
+    Returns
+    -------
+    out : ndarray
+        Array interpretation of `a`.  No copy is performed if the input
+        is already an ndarray with matching dtype and order.  If `a` is a
+        subclass of ndarray, a base class ndarray is returned.
+
+    See Also
+    --------
+    asanyarray : Similar function which passes through subclasses.
+    ascontiguousarray : Convert input to a contiguous array.
+    asfarray : Convert input to a floating point ndarray.
+    asfortranarray : Convert input to an ndarray with column-major
+                     memory order.
+    asarray_chkfinite : Similar function which checks input for NaNs and Infs.
+    fromiter : Create an array from an iterator.
+    fromfunction : Construct an array by executing a function on grid
+                   positions.
+
+    Examples
+    --------
+    Convert a list into an array:
+
+    >>> a = [1, 2]
+    >>> np.asarray(a)
+    array([1, 2])
+
+    Existing arrays are not copied:
+
+    >>> a = np.array([1, 2])
+    >>> np.asarray(a) is a
+    True
+
+    If `dtype` is set, array is copied only if dtype does not match:
+
+    >>> a = np.array([1, 2], dtype=np.float32)
+    >>> np.asarray(a, dtype=np.float32) is a
+    True
+    >>> np.asarray(a, dtype=np.float64) is a
+    False
+
+    Contrary to `asanyarray`, ndarray subclasses are not passed through:
+
+    >>> issubclass(np.recarray, np.ndarray)
+    True
+    >>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray)
+    >>> np.asarray(a) is a
+    False
+    >>> np.asanyarray(a) is a
+    True
+
+    """.replace(
+        "${ARRAY_FUNCTION_LIKE}",
+        array_function_like_doc,
+    ))
+
+add_newdoc('numpy.core.multiarray', 'asanyarray',
+    """
+    asanyarray(a, dtype=None, order=None, *, like=None)
+
+    Convert the input to an ndarray, but pass ndarray subclasses through.
+
+    Parameters
+    ----------
+    a : array_like
+        Input data, in any form that can be converted to an array.  This
+        includes scalars, lists, lists of tuples, tuples, tuples of tuples,
+        tuples of lists, and ndarrays.
+    dtype : data-type, optional
+        By default, the data-type is inferred from the input data.
+    order : {'C', 'F', 'A', 'K'}, optional
+        Memory layout.  'A' and 'K' depend on the order of input array a.
+        'C' row-major (C-style),
+        'F' column-major (Fortran-style) memory representation.
+        'A' (any) means 'F' if `a` is Fortran contiguous, 'C' otherwise
+        'K' (keep) preserve input order
+        Defaults to 'C'.
+    ${ARRAY_FUNCTION_LIKE}
+
+        .. versionadded:: 1.20.0
+
+    Returns
+    -------
+    out : ndarray or an ndarray subclass
+        Array interpretation of `a`.  If `a` is an ndarray or a subclass
+        of ndarray, it is returned as-is and no copy is performed.
+
+    See Also
+    --------
+    asarray : Similar function which always returns ndarrays.
+    ascontiguousarray : Convert input to a contiguous array.
+    asfarray : Convert input to a floating point ndarray.
+    asfortranarray : Convert input to an ndarray with column-major
+                     memory order.
+    asarray_chkfinite : Similar function which checks input for NaNs and
+                        Infs.
+    fromiter : Create an array from an iterator.
+    fromfunction : Construct an array by executing a function on grid
+                   positions.
+
+    Examples
+    --------
+    Convert a list into an array:
+
+    >>> a = [1, 2]
+    >>> np.asanyarray(a)
+    array([1, 2])
+
+    Instances of `ndarray` subclasses are passed through as-is:
+
+    >>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray)
+    >>> np.asanyarray(a) is a
+    True
+
+    """.replace(
+        "${ARRAY_FUNCTION_LIKE}",
+        array_function_like_doc,
+    ))
+
+add_newdoc('numpy.core.multiarray', 'ascontiguousarray',
+    """
+    ascontiguousarray(a, dtype=None, *, like=None)
+
+    Return a contiguous array (ndim >= 1) in memory (C order).
+
+    Parameters
+    ----------
+    a : array_like
+        Input array.
+    dtype : str or dtype object, optional
+        Data-type of returned array.
+    ${ARRAY_FUNCTION_LIKE}
+
+        .. versionadded:: 1.20.0
+
+    Returns
+    -------
+    out : ndarray
+        Contiguous array of same shape and content as `a`, with type `dtype`
+        if specified.
+
+    See Also
+    --------
+    asfortranarray : Convert input to an ndarray with column-major
+                     memory order.
+    require : Return an ndarray that satisfies requirements.
+    ndarray.flags : Information about the memory layout of the array.
+
+    Examples
+    --------
+    Starting with a Fortran-contiguous array:
+
+    >>> x = np.ones((2, 3), order='F')
+    >>> x.flags['F_CONTIGUOUS']
+    True
+
+    Calling ``ascontiguousarray`` makes a C-contiguous copy:
+
+    >>> y = np.ascontiguousarray(x)
+    >>> y.flags['C_CONTIGUOUS']
+    True
+    >>> np.may_share_memory(x, y)
+    False
+
+    Now, starting with a C-contiguous array:
+
+    >>> x = np.ones((2, 3), order='C')
+    >>> x.flags['C_CONTIGUOUS']
+    True
+
+    Then, calling ``ascontiguousarray`` returns the same object:
+
+    >>> y = np.ascontiguousarray(x)
+    >>> x is y
+    True
+
+    Note: This function returns an array with at least one-dimension (1-d)
+    so it will not preserve 0-d arrays.
+
+    """.replace(
+        "${ARRAY_FUNCTION_LIKE}",
+        array_function_like_doc,
+    ))
+
+add_newdoc('numpy.core.multiarray', 'asfortranarray',
+    """
+    asfortranarray(a, dtype=None, *, like=None)
+
+    Return an array (ndim >= 1) laid out in Fortran order in memory.
+
+    Parameters
+    ----------
+    a : array_like
+        Input array.
+    dtype : str or dtype object, optional
+        By default, the data-type is inferred from the input data.
+    ${ARRAY_FUNCTION_LIKE}
+
+        .. versionadded:: 1.20.0
+
+    Returns
+    -------
+    out : ndarray
+        The input `a` in Fortran, or column-major, order.
+
+    See Also
+    --------
+    ascontiguousarray : Convert input to a contiguous (C order) array.
+    asanyarray : Convert input to an ndarray with either row or
+        column-major memory order.
+    require : Return an ndarray that satisfies requirements.
+    ndarray.flags : Information about the memory layout of the array.
+
+    Examples
+    --------
+    Starting with a C-contiguous array:
+
+    >>> x = np.ones((2, 3), order='C')
+    >>> x.flags['C_CONTIGUOUS']
+    True
+
+    Calling ``asfortranarray`` makes a Fortran-contiguous copy:
+
+    >>> y = np.asfortranarray(x)
+    >>> y.flags['F_CONTIGUOUS']
+    True
+    >>> np.may_share_memory(x, y)
+    False
+
+    Now, starting with a Fortran-contiguous array:
+
+    >>> x = np.ones((2, 3), order='F')
+    >>> x.flags['F_CONTIGUOUS']
+    True
+
+    Then, calling ``asfortranarray`` returns the same object:
+
+    >>> y = np.asfortranarray(x)
+    >>> x is y
+    True
+
+    Note: This function returns an array with at least one-dimension (1-d)
+    so it will not preserve 0-d arrays.
+
+    """.replace(
+        "${ARRAY_FUNCTION_LIKE}",
+        array_function_like_doc,
+    ))
+
+add_newdoc('numpy.core.multiarray', 'empty',
+    """
+    empty(shape, dtype=float, order='C', *, like=None)
+
+    Return a new array of given shape and type, without initializing entries.
+
+    Parameters
+    ----------
+    shape : int or tuple of int
+        Shape of the empty array, e.g., ``(2, 3)`` or ``2``.
+    dtype : data-type, optional
+        Desired output data-type for the array, e.g, `numpy.int8`. Default is
+        `numpy.float64`.
+    order : {'C', 'F'}, optional, default: 'C'
+        Whether to store multi-dimensional data in row-major
+        (C-style) or column-major (Fortran-style) order in
+        memory.
+    ${ARRAY_FUNCTION_LIKE}
+
+        .. versionadded:: 1.20.0
+
+    Returns
+    -------
+    out : ndarray
+        Array of uninitialized (arbitrary) data of the given shape, dtype, and
+        order.  Object arrays will be initialized to None.
+
+    See Also
+    --------
+    empty_like : Return an empty array with shape and type of input.
+    ones : Return a new array setting values to one.
+    zeros : Return a new array setting values to zero.
+    full : Return a new array of given shape filled with value.
+
+
+    Notes
+    -----
+    `empty`, unlike `zeros`, does not set the array values to zero,
+    and may therefore be marginally faster.  On the other hand, it requires
+    the user to manually set all the values in the array, and should be
+    used with caution.
+
+    Examples
+    --------
+    >>> np.empty([2, 2])
+    array([[ -9.74499359e+001,   6.69583040e-309],
+           [  2.13182611e-314,   3.06959433e-309]])         #uninitialized
+
+    >>> np.empty([2, 2], dtype=int)
+    array([[-1073741821, -1067949133],
+           [  496041986,    19249760]])                     #uninitialized
+
+    """.replace(
+        "${ARRAY_FUNCTION_LIKE}",
+        array_function_like_doc,
+    ))
+
+add_newdoc('numpy.core.multiarray', 'scalar',
+    """
+    scalar(dtype, obj)
+
+    Return a new scalar array of the given type initialized with obj.
+
+    This function is meant mainly for pickle support. `dtype` must be a
+    valid data-type descriptor. If `dtype` corresponds to an object
+    descriptor, then `obj` can be any object, otherwise `obj` must be a
+    string. If `obj` is not given, it will be interpreted as None for object
+    type and as zeros for all other types.
+
+    """)
+
+add_newdoc('numpy.core.multiarray', 'zeros',
+    """
+    zeros(shape, dtype=float, order='C', *, like=None)
+
+    Return a new array of given shape and type, filled with zeros.
+
+    Parameters
+    ----------
+    shape : int or tuple of ints
+        Shape of the new array, e.g., ``(2, 3)`` or ``2``.
+    dtype : data-type, optional
+        The desired data-type for the array, e.g., `numpy.int8`.  Default is
+        `numpy.float64`.
+    order : {'C', 'F'}, optional, default: 'C'
+        Whether to store multi-dimensional data in row-major
+        (C-style) or column-major (Fortran-style) order in
+        memory.
+    ${ARRAY_FUNCTION_LIKE}
+
+        .. versionadded:: 1.20.0
+
+    Returns
+    -------
+    out : ndarray
+        Array of zeros with the given shape, dtype, and order.
+
+    See Also
+    --------
+    zeros_like : Return an array of zeros with shape and type of input.
+    empty : Return a new uninitialized array.
+    ones : Return a new array setting values to one.
+    full : Return a new array of given shape filled with value.
+
+    Examples
+    --------
+    >>> np.zeros(5)
+    array([ 0.,  0.,  0.,  0.,  0.])
+
+    >>> np.zeros((5,), dtype=int)
+    array([0, 0, 0, 0, 0])
+
+    >>> np.zeros((2, 1))
+    array([[ 0.],
+           [ 0.]])
+
+    >>> s = (2,2)
+    >>> np.zeros(s)
+    array([[ 0.,  0.],
+           [ 0.,  0.]])
+
+    >>> np.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')]) # custom dtype
+    array([(0, 0), (0, 0)],
+          dtype=[('x', '<i4'), ('y', '<i4')])
+
+    """.replace(
+        "${ARRAY_FUNCTION_LIKE}",
+        array_function_like_doc,
+    ))
+
+add_newdoc('numpy.core.multiarray', 'set_typeDict',
+    """set_typeDict(dict)
+
+    Set the internal dictionary that can look up an array type using a
+    registered code.
+
+    """)
+
+add_newdoc('numpy.core.multiarray', 'fromstring',
+    """
+    fromstring(string, dtype=float, count=-1, *, sep, like=None)
+
+    A new 1-D array initialized from text data in a string.
+
+    Parameters
+    ----------
+    string : str
+        A string containing the data.
+    dtype : data-type, optional
+        The data type of the array; default: float.  For binary input data,
+        the data must be in exactly this format. Most builtin numeric types are
+        supported and extension types may be supported.
+
+        .. versionadded:: 1.18.0
+            Complex dtypes.
+
+    count : int, optional
+        Read this number of `dtype` elements from the data.  If this is
+        negative (the default), the count will be determined from the
+        length of the data.
+    sep : str, optional
+        The string separating numbers in the data; extra whitespace between
+        elements is also ignored.
+
+        .. deprecated:: 1.14
+            Passing ``sep=''``, the default, is deprecated since it will
+            trigger the deprecated binary mode of this function. This mode
+            interprets `string` as binary bytes, rather than ASCII text with
+            decimal numbers, an operation which is better spelt
+            ``frombuffer(string, dtype, count)``. If `string` contains unicode
+            text, the binary mode of `fromstring` will first encode it into
+            bytes using utf-8, which will not produce sane results.
+
+    ${ARRAY_FUNCTION_LIKE}
+
+        .. versionadded:: 1.20.0
+
+    Returns
+    -------
+    arr : ndarray
+        The constructed array.
+
+    Raises
+    ------
+    ValueError
+        If the string is not the correct size to satisfy the requested
+        `dtype` and `count`.
+
+    See Also
+    --------
+    frombuffer, fromfile, fromiter
+
+    Examples
+    --------
+    >>> np.fromstring('1 2', dtype=int, sep=' ')
+    array([1, 2])
+    >>> np.fromstring('1, 2', dtype=int, sep=',')
+    array([1, 2])
+
+    """.replace(
+        "${ARRAY_FUNCTION_LIKE}",
+        array_function_like_doc,
+    ))
+
+add_newdoc('numpy.core.multiarray', 'compare_chararrays',
+    """
+    compare_chararrays(a1, a2, cmp, rstrip)
+
+    Performs element-wise comparison of two string arrays using the
+    comparison operator specified by `cmp_op`.
+
+    Parameters
+    ----------
+    a1, a2 : array_like
+        Arrays to be compared.
+    cmp : {"<", "<=", "==", ">=", ">", "!="}
+        Type of comparison.
+    rstrip : Boolean
+        If True, the spaces at the end of Strings are removed before the comparison.
+
+    Returns
+    -------
+    out : ndarray
+        The output array of type Boolean with the same shape as a and b.
+
+    Raises
+    ------
+    ValueError
+        If `cmp_op` is not valid.
+    TypeError
+        If at least one of `a` or `b` is a non-string array
+
+    Examples
+    --------
+    >>> a = np.array(["a", "b", "cde"])
+    >>> b = np.array(["a", "a", "dec"])
+    >>> np.compare_chararrays(a, b, ">", True)
+    array([False,  True, False])
+
+    """)
+
+add_newdoc('numpy.core.multiarray', 'fromiter',
+    """
+    fromiter(iter, dtype, count=-1, *, like=None)
+
+    Create a new 1-dimensional array from an iterable object.
+
+    Parameters
+    ----------
+    iter : iterable object
+        An iterable object providing data for the array.
+    dtype : data-type
+        The data-type of the returned array.
+
+        .. versionchanged:: 1.23
+            Object and subarray dtypes are now supported (note that the final
+            result is not 1-D for a subarray dtype).
+
+    count : int, optional
+        The number of items to read from *iterable*.  The default is -1,
+        which means all data is read.
+    ${ARRAY_FUNCTION_LIKE}
+
+        .. versionadded:: 1.20.0
+
+    Returns
+    -------
+    out : ndarray
+        The output array.
+
+    Notes
+    -----
+    Specify `count` to improve performance.  It allows ``fromiter`` to
+    pre-allocate the output array, instead of resizing it on demand.
+
+    Examples
+    --------
+    >>> iterable = (x*x for x in range(5))
+    >>> np.fromiter(iterable, float)
+    array([  0.,   1.,   4.,   9.,  16.])
+
+    A carefully constructed subarray dtype will lead to higher dimensional
+    results:
+
+    >>> iterable = ((x+1, x+2) for x in range(5))
+    >>> np.fromiter(iterable, dtype=np.dtype((int, 2)))
+    array([[1, 2],
+           [2, 3],
+           [3, 4],
+           [4, 5],
+           [5, 6]])
+
+
+    """.replace(
+        "${ARRAY_FUNCTION_LIKE}",
+        array_function_like_doc,
+    ))
+
+add_newdoc('numpy.core.multiarray', 'fromfile',
+    """
+    fromfile(file, dtype=float, count=-1, sep='', offset=0, *, like=None)
+
+    Construct an array from data in a text or binary file.
+
+    A highly efficient way of reading binary data with a known data-type,
+    as well as parsing simply formatted text files.  Data written using the
+    `tofile` method can be read using this function.
+
+    Parameters
+    ----------
+    file : file or str or Path
+        Open file object or filename.
+
+        .. versionchanged:: 1.17.0
+            `pathlib.Path` objects are now accepted.
+
+    dtype : data-type
+        Data type of the returned array.
+        For binary files, it is used to determine the size and byte-order
+        of the items in the file.
+        Most builtin numeric types are supported and extension types may be supported.
+
+        .. versionadded:: 1.18.0
+            Complex dtypes.
+
+    count : int
+        Number of items to read. ``-1`` means all items (i.e., the complete
+        file).
+    sep : str
+        Separator between items if file is a text file.
+        Empty ("") separator means the file should be treated as binary.
+        Spaces (" ") in the separator match zero or more whitespace characters.
+        A separator consisting only of spaces must match at least one
+        whitespace.
+    offset : int
+        The offset (in bytes) from the file's current position. Defaults to 0.
+        Only permitted for binary files.
+
+        .. versionadded:: 1.17.0
+    ${ARRAY_FUNCTION_LIKE}
+
+        .. versionadded:: 1.20.0
+
+    See also
+    --------
+    load, save
+    ndarray.tofile
+    loadtxt : More flexible way of loading data from a text file.
+
+    Notes
+    -----
+    Do not rely on the combination of `tofile` and `fromfile` for
+    data storage, as the binary files generated are not platform
+    independent.  In particular, no byte-order or data-type information is
+    saved.  Data can be stored in the platform independent ``.npy`` format
+    using `save` and `load` instead.
+
+    Examples
+    --------
+    Construct an ndarray:
+
+    >>> dt = np.dtype([('time', [('min', np.int64), ('sec', np.int64)]),
+    ...                ('temp', float)])
+    >>> x = np.zeros((1,), dtype=dt)
+    >>> x['time']['min'] = 10; x['temp'] = 98.25
+    >>> x
+    array([((10, 0), 98.25)],
+          dtype=[('time', [('min', '<i8'), ('sec', '<i8')]), ('temp', '<f8')])
+
+    Save the raw data to disk:
+
+    >>> import tempfile
+    >>> fname = tempfile.mkstemp()[1]
+    >>> x.tofile(fname)
+
+    Read the raw data from disk:
+
+    >>> np.fromfile(fname, dtype=dt)
+    array([((10, 0), 98.25)],
+          dtype=[('time', [('min', '<i8'), ('sec', '<i8')]), ('temp', '<f8')])
+
+    The recommended way to store and load data:
+
+    >>> np.save(fname, x)
+    >>> np.load(fname + '.npy')
+    array([((10, 0), 98.25)],
+          dtype=[('time', [('min', '<i8'), ('sec', '<i8')]), ('temp', '<f8')])
+
+    """.replace(
+        "${ARRAY_FUNCTION_LIKE}",
+        array_function_like_doc,
+    ))
+
+add_newdoc('numpy.core.multiarray', 'frombuffer',
+    """
+    frombuffer(buffer, dtype=float, count=-1, offset=0, *, like=None)
+
+    Interpret a buffer as a 1-dimensional array.
+
+    Parameters
+    ----------
+    buffer : buffer_like
+        An object that exposes the buffer interface.
+    dtype : data-type, optional
+        Data-type of the returned array; default: float.
+    count : int, optional
+        Number of items to read. ``-1`` means all data in the buffer.
+    offset : int, optional
+        Start reading the buffer from this offset (in bytes); default: 0.
+    ${ARRAY_FUNCTION_LIKE}
+
+        .. versionadded:: 1.20.0
+
+    Returns
+    -------
+    out : ndarray
+
+    See also
+    --------
+    ndarray.tobytes
+        Inverse of this operation, construct Python bytes from the raw data
+        bytes in the array.
+
+    Notes
+    -----
+    If the buffer has data that is not in machine byte-order, this should
+    be specified as part of the data-type, e.g.::
+
+      >>> dt = np.dtype(int)
+      >>> dt = dt.newbyteorder('>')
+      >>> np.frombuffer(buf, dtype=dt) # doctest: +SKIP
+
+    The data of the resulting array will not be byteswapped, but will be
+    interpreted correctly.
+
+    This function creates a view into the original object.  This should be safe
+    in general, but it may make sense to copy the result when the original
+    object is mutable or untrusted.
+
+    Examples
+    --------
+    >>> s = b'hello world'
+    >>> np.frombuffer(s, dtype='S1', count=5, offset=6)
+    array([b'w', b'o', b'r', b'l', b'd'], dtype='|S1')
+
+    >>> np.frombuffer(b'\\x01\\x02', dtype=np.uint8)
+    array([1, 2], dtype=uint8)
+    >>> np.frombuffer(b'\\x01\\x02\\x03\\x04\\x05', dtype=np.uint8, count=3)
+    array([1, 2, 3], dtype=uint8)
+
+    """.replace(
+        "${ARRAY_FUNCTION_LIKE}",
+        array_function_like_doc,
+    ))
+
+add_newdoc('numpy.core.multiarray', 'from_dlpack',
+    """
+    from_dlpack(x, /)
+
+    Create a NumPy array from an object implementing the ``__dlpack__``
+    protocol. Generally, the returned NumPy array is a read-only view
+    of the input object. See [1]_ and [2]_ for more details.
+
+    Parameters
+    ----------
+    x : object
+        A Python object that implements the ``__dlpack__`` and
+        ``__dlpack_device__`` methods.
+
+    Returns
+    -------
+    out : ndarray
+
+    References
+    ----------
+    .. [1] Array API documentation,
+       https://data-apis.org/array-api/latest/design_topics/data_interchange.html#syntax-for-data-interchange-with-dlpack
+
+    .. [2] Python specification for DLPack,
+       https://dmlc.github.io/dlpack/latest/python_spec.html
+
+    Examples
+    --------
+    >>> import torch
+    >>> x = torch.arange(10)
+    >>> # create a view of the torch tensor "x" in NumPy
+    >>> y = np.from_dlpack(x)
+    """)
+
+add_newdoc('numpy.core', 'fastCopyAndTranspose',
+    """
+    fastCopyAndTranspose(a)
+
+    .. deprecated:: 1.24
+
+       fastCopyAndTranspose is deprecated and will be removed. Use the copy and
+       transpose methods instead, e.g. ``arr.T.copy()``
+    """)
+
+add_newdoc('numpy.core.multiarray', 'correlate',
+    """cross_correlate(a,v, mode=0)""")
+
+add_newdoc('numpy.core.multiarray', 'arange',
+    """
+    arange([start,] stop[, step,], dtype=None, *, like=None)
+
+    Return evenly spaced values within a given interval.
+
+    ``arange`` can be called with a varying number of positional arguments:
+
+    * ``arange(stop)``: Values are generated within the half-open interval
+      ``[0, stop)`` (in other words, the interval including `start` but
+      excluding `stop`).
+    * ``arange(start, stop)``: Values are generated within the half-open
+      interval ``[start, stop)``.
+    * ``arange(start, stop, step)`` Values are generated within the half-open
+      interval ``[start, stop)``, with spacing between values given by
+      ``step``.
+
+    For integer arguments the function is roughly equivalent to the Python
+    built-in :py:class:`range`, but returns an ndarray rather than a ``range``
+    instance.
+
+    When using a non-integer step, such as 0.1, it is often better to use
+    `numpy.linspace`.
+
+    See the Warning sections below for more information.
+
+    Parameters
+    ----------
+    start : integer or real, optional
+        Start of interval.  The interval includes this value.  The default
+        start value is 0.
+    stop : integer or real
+        End of interval.  The interval does not include this value, except
+        in some cases where `step` is not an integer and floating point
+        round-off affects the length of `out`.
+    step : integer or real, optional
+        Spacing between values.  For any output `out`, this is the distance
+        between two adjacent values, ``out[i+1] - out[i]``.  The default
+        step size is 1.  If `step` is specified as a position argument,
+        `start` must also be given.
+    dtype : dtype, optional
+        The type of the output array.  If `dtype` is not given, infer the data
+        type from the other input arguments.
+    ${ARRAY_FUNCTION_LIKE}
+
+        .. versionadded:: 1.20.0
+
+    Returns
+    -------
+    arange : ndarray
+        Array of evenly spaced values.
+
+        For floating point arguments, the length of the result is
+        ``ceil((stop - start)/step)``.  Because of floating point overflow,
+        this rule may result in the last element of `out` being greater
+        than `stop`.
+
+    Warnings
+    --------
+    The length of the output might not be numerically stable.
+
+    Another stability issue is due to the internal implementation of
+    `numpy.arange`.
+    The actual step value used to populate the array is
+    ``dtype(start + step) - dtype(start)`` and not `step`. Precision loss
+    can occur here, due to casting or due to using floating points when
+    `start` is much larger than `step`. This can lead to unexpected
+    behaviour. For example::
+
+      >>> np.arange(0, 5, 0.5, dtype=int)
+      array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
+      >>> np.arange(-3, 3, 0.5, dtype=int)
+      array([-3, -2, -1,  0,  1,  2,  3,  4,  5,  6,  7,  8])
+
+    In such cases, the use of `numpy.linspace` should be preferred.
+
+    The built-in :py:class:`range` generates :std:doc:`Python built-in integers
+    that have arbitrary size <python:c-api/long>`, while `numpy.arange`
+    produces `numpy.int32` or `numpy.int64` numbers. This may result in
+    incorrect results for large integer values::
+
+      >>> power = 40
+      >>> modulo = 10000
+      >>> x1 = [(n ** power) % modulo for n in range(8)]
+      >>> x2 = [(n ** power) % modulo for n in np.arange(8)]
+      >>> print(x1)
+      [0, 1, 7776, 8801, 6176, 625, 6576, 4001]  # correct
+      >>> print(x2)
+      [0, 1, 7776, 7185, 0, 5969, 4816, 3361]  # incorrect
+
+    See Also
+    --------
+    numpy.linspace : Evenly spaced numbers with careful handling of endpoints.
+    numpy.ogrid: Arrays of evenly spaced numbers in N-dimensions.
+    numpy.mgrid: Grid-shaped arrays of evenly spaced numbers in N-dimensions.
+    :ref:`how-to-partition`
+
+    Examples
+    --------
+    >>> np.arange(3)
+    array([0, 1, 2])
+    >>> np.arange(3.0)
+    array([ 0.,  1.,  2.])
+    >>> np.arange(3,7)
+    array([3, 4, 5, 6])
+    >>> np.arange(3,7,2)
+    array([3, 5])
+
+    """.replace(
+        "${ARRAY_FUNCTION_LIKE}",
+        array_function_like_doc,
+    ))
+
+add_newdoc('numpy.core.multiarray', '_get_ndarray_c_version',
+    """_get_ndarray_c_version()
+
+    Return the compile time NPY_VERSION (formerly called NDARRAY_VERSION) number.
+
+    """)
+
+add_newdoc('numpy.core.multiarray', '_reconstruct',
+    """_reconstruct(subtype, shape, dtype)
+
+    Construct an empty array. Used by Pickles.
+
+    """)
+
+
+add_newdoc('numpy.core.multiarray', 'set_string_function',
+    """
+    set_string_function(f, repr=1)
+
+    Internal method to set a function to be used when pretty printing arrays.
+
+    """)
+
+add_newdoc('numpy.core.multiarray', 'set_numeric_ops',
+    """
+    set_numeric_ops(op1=func1, op2=func2, ...)
+
+    Set numerical operators for array objects.
+
+    .. deprecated:: 1.16
+
+        For the general case, use :c:func:`PyUFunc_ReplaceLoopBySignature`.
+        For ndarray subclasses, define the ``__array_ufunc__`` method and
+        override the relevant ufunc.
+
+    Parameters
+    ----------
+    op1, op2, ... : callable
+        Each ``op = func`` pair describes an operator to be replaced.
+        For example, ``add = lambda x, y: np.add(x, y) % 5`` would replace
+        addition by modulus 5 addition.
+
+    Returns
+    -------
+    saved_ops : list of callables
+        A list of all operators, stored before making replacements.
+
+    Notes
+    -----
+    .. warning::
+       Use with care!  Incorrect usage may lead to memory errors.
+
+    A function replacing an operator cannot make use of that operator.
+    For example, when replacing add, you may not use ``+``.  Instead,
+    directly call ufuncs.
+
+    Examples
+    --------
+    >>> def add_mod5(x, y):
+    ...     return np.add(x, y) % 5
+    ...
+    >>> old_funcs = np.set_numeric_ops(add=add_mod5)
+
+    >>> x = np.arange(12).reshape((3, 4))
+    >>> x + x
+    array([[0, 2, 4, 1],
+           [3, 0, 2, 4],
+           [1, 3, 0, 2]])
+
+    >>> ignore = np.set_numeric_ops(**old_funcs) # restore operators
+
+    """)
+
+add_newdoc('numpy.core.multiarray', 'promote_types',
+    """
+    promote_types(type1, type2)
+
+    Returns the data type with the smallest size and smallest scalar
+    kind to which both ``type1`` and ``type2`` may be safely cast.
+    The returned data type is always considered "canonical", this mainly
+    means that the promoted dtype will always be in native byte order.
+
+    This function is symmetric, but rarely associative.
+
+    Parameters
+    ----------
+    type1 : dtype or dtype specifier
+        First data type.
+    type2 : dtype or dtype specifier
+        Second data type.
+
+    Returns
+    -------
+    out : dtype
+        The promoted data type.
+
+    Notes
+    -----
+    Please see `numpy.result_type` for additional information about promotion.
+
+    .. versionadded:: 1.6.0
+
+    Starting in NumPy 1.9, promote_types function now returns a valid string
+    length when given an integer or float dtype as one argument and a string
+    dtype as another argument. Previously it always returned the input string
+    dtype, even if it wasn't long enough to store the max integer/float value
+    converted to a string.
+
+    .. versionchanged:: 1.23.0
+
+    NumPy now supports promotion for more structured dtypes.  It will now
+    remove unnecessary padding from a structure dtype and promote included
+    fields individually.
+
+    See Also
+    --------
+    result_type, dtype, can_cast
+
+    Examples
+    --------
+    >>> np.promote_types('f4', 'f8')
+    dtype('float64')
+
+    >>> np.promote_types('i8', 'f4')
+    dtype('float64')
+
+    >>> np.promote_types('>i8', '<c8')
+    dtype('complex128')
+
+    >>> np.promote_types('i4', 'S8')
+    dtype('S11')
+
+    An example of a non-associative case:
+
+    >>> p = np.promote_types
+    >>> p('S', p('i1', 'u1'))
+    dtype('S6')
+    >>> p(p('S', 'i1'), 'u1')
+    dtype('S4')
+
+    """)
+
+add_newdoc('numpy.core.multiarray', 'c_einsum',
+    """
+    c_einsum(subscripts, *operands, out=None, dtype=None, order='K',
+           casting='safe')
+
+    *This documentation shadows that of the native python implementation of the `einsum` function,
+    except all references and examples related to the `optimize` argument (v 0.12.0) have been removed.*
+
+    Evaluates the Einstein summation convention on the operands.
+
+    Using the Einstein summation convention, many common multi-dimensional,
+    linear algebraic array operations can be represented in a simple fashion.
+    In *implicit* mode `einsum` computes these values.
+
+    In *explicit* mode, `einsum` provides further flexibility to compute
+    other array operations that might not be considered classical Einstein
+    summation operations, by disabling, or forcing summation over specified
+    subscript labels.
+
+    See the notes and examples for clarification.
+
+    Parameters
+    ----------
+    subscripts : str
+        Specifies the subscripts for summation as comma separated list of
+        subscript labels. An implicit (classical Einstein summation)
+        calculation is performed unless the explicit indicator '->' is
+        included as well as subscript labels of the precise output form.
+    operands : list of array_like
+        These are the arrays for the operation.
+    out : ndarray, optional
+        If provided, the calculation is done into this array.
+    dtype : {data-type, None}, optional
+        If provided, forces the calculation to use the data type specified.
+        Note that you may have to also give a more liberal `casting`
+        parameter to allow the conversions. Default is None.
+    order : {'C', 'F', 'A', 'K'}, optional
+        Controls the memory layout of the output. 'C' means it should
+        be C contiguous. 'F' means it should be Fortran contiguous,
+        'A' means it should be 'F' if the inputs are all 'F', 'C' otherwise.
+        'K' means it should be as close to the layout of the inputs as
+        is possible, including arbitrarily permuted axes.
+        Default is 'K'.
+    casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
+        Controls what kind of data casting may occur.  Setting this to
+        'unsafe' is not recommended, as it can adversely affect accumulations.
+
+          * 'no' means the data types should not be cast at all.
+          * 'equiv' means only byte-order changes are allowed.
+          * 'safe' means only casts which can preserve values are allowed.
+          * 'same_kind' means only safe casts or casts within a kind,
+            like float64 to float32, are allowed.
+          * 'unsafe' means any data conversions may be done.
+
+        Default is 'safe'.
+    optimize : {False, True, 'greedy', 'optimal'}, optional
+        Controls if intermediate optimization should occur. No optimization
+        will occur if False and True will default to the 'greedy' algorithm.
+        Also accepts an explicit contraction list from the ``np.einsum_path``
+        function. See ``np.einsum_path`` for more details. Defaults to False.
+
+    Returns
+    -------
+    output : ndarray
+        The calculation based on the Einstein summation convention.
+
+    See Also
+    --------
+    einsum_path, dot, inner, outer, tensordot, linalg.multi_dot
+
+    Notes
+    -----
+    .. versionadded:: 1.6.0
+
+    The Einstein summation convention can be used to compute
+    many multi-dimensional, linear algebraic array operations. `einsum`
+    provides a succinct way of representing these.
+
+    A non-exhaustive list of these operations,
+    which can be computed by `einsum`, is shown below along with examples:
+
+    * Trace of an array, :py:func:`numpy.trace`.
+    * Return a diagonal, :py:func:`numpy.diag`.
+    * Array axis summations, :py:func:`numpy.sum`.
+    * Transpositions and permutations, :py:func:`numpy.transpose`.
+    * Matrix multiplication and dot product, :py:func:`numpy.matmul` :py:func:`numpy.dot`.
+    * Vector inner and outer products, :py:func:`numpy.inner` :py:func:`numpy.outer`.
+    * Broadcasting, element-wise and scalar multiplication, :py:func:`numpy.multiply`.
+    * Tensor contractions, :py:func:`numpy.tensordot`.
+    * Chained array operations, in efficient calculation order, :py:func:`numpy.einsum_path`.
+
+    The subscripts string is a comma-separated list of subscript labels,
+    where each label refers to a dimension of the corresponding operand.
+    Whenever a label is repeated it is summed, so ``np.einsum('i,i', a, b)``
+    is equivalent to :py:func:`np.inner(a,b) <numpy.inner>`. If a label
+    appears only once, it is not summed, so ``np.einsum('i', a)`` produces a
+    view of ``a`` with no changes. A further example ``np.einsum('ij,jk', a, b)``
+    describes traditional matrix multiplication and is equivalent to
+    :py:func:`np.matmul(a,b) <numpy.matmul>`. Repeated subscript labels in one
+    operand take the diagonal. For example, ``np.einsum('ii', a)`` is equivalent
+    to :py:func:`np.trace(a) <numpy.trace>`.
+
+    In *implicit mode*, the chosen subscripts are important
+    since the axes of the output are reordered alphabetically.  This
+    means that ``np.einsum('ij', a)`` doesn't affect a 2D array, while
+    ``np.einsum('ji', a)`` takes its transpose. Additionally,
+    ``np.einsum('ij,jk', a, b)`` returns a matrix multiplication, while,
+    ``np.einsum('ij,jh', a, b)`` returns the transpose of the
+    multiplication since subscript 'h' precedes subscript 'i'.
+
+    In *explicit mode* the output can be directly controlled by
+    specifying output subscript labels.  This requires the
+    identifier '->' as well as the list of output subscript labels.
+    This feature increases the flexibility of the function since
+    summing can be disabled or forced when required. The call
+    ``np.einsum('i->', a)`` is like :py:func:`np.sum(a, axis=-1) <numpy.sum>`,
+    and ``np.einsum('ii->i', a)`` is like :py:func:`np.diag(a) <numpy.diag>`.
+    The difference is that `einsum` does not allow broadcasting by default.
+    Additionally ``np.einsum('ij,jh->ih', a, b)`` directly specifies the
+    order of the output subscript labels and therefore returns matrix
+    multiplication, unlike the example above in implicit mode.
+
+    To enable and control broadcasting, use an ellipsis.  Default
+    NumPy-style broadcasting is done by adding an ellipsis
+    to the left of each term, like ``np.einsum('...ii->...i', a)``.
+    To take the trace along the first and last axes,
+    you can do ``np.einsum('i...i', a)``, or to do a matrix-matrix
+    product with the left-most indices instead of rightmost, one can do
+    ``np.einsum('ij...,jk...->ik...', a, b)``.
+
+    When there is only one operand, no axes are summed, and no output
+    parameter is provided, a view into the operand is returned instead
+    of a new array.  Thus, taking the diagonal as ``np.einsum('ii->i', a)``
+    produces a view (changed in version 1.10.0).
+
+    `einsum` also provides an alternative way to provide the subscripts
+    and operands as ``einsum(op0, sublist0, op1, sublist1, ..., [sublistout])``.
+    If the output shape is not provided in this format `einsum` will be
+    calculated in implicit mode, otherwise it will be performed explicitly.
+    The examples below have corresponding `einsum` calls with the two
+    parameter methods.
+
+    .. versionadded:: 1.10.0
+
+    Views returned from einsum are now writeable whenever the input array
+    is writeable. For example, ``np.einsum('ijk...->kji...', a)`` will now
+    have the same effect as :py:func:`np.swapaxes(a, 0, 2) <numpy.swapaxes>`
+    and ``np.einsum('ii->i', a)`` will return a writeable view of the diagonal
+    of a 2D array.
+
+    Examples
+    --------
+    >>> a = np.arange(25).reshape(5,5)
+    >>> b = np.arange(5)
+    >>> c = np.arange(6).reshape(2,3)
+
+    Trace of a matrix:
+
+    >>> np.einsum('ii', a)
+    60
+    >>> np.einsum(a, [0,0])
+    60
+    >>> np.trace(a)
+    60
+
+    Extract the diagonal (requires explicit form):
+
+    >>> np.einsum('ii->i', a)
+    array([ 0,  6, 12, 18, 24])
+    >>> np.einsum(a, [0,0], [0])
+    array([ 0,  6, 12, 18, 24])
+    >>> np.diag(a)
+    array([ 0,  6, 12, 18, 24])
+
+    Sum over an axis (requires explicit form):
+
+    >>> np.einsum('ij->i', a)
+    array([ 10,  35,  60,  85, 110])
+    >>> np.einsum(a, [0,1], [0])
+    array([ 10,  35,  60,  85, 110])
+    >>> np.sum(a, axis=1)
+    array([ 10,  35,  60,  85, 110])
+
+    For higher dimensional arrays summing a single axis can be done with ellipsis:
+
+    >>> np.einsum('...j->...', a)
+    array([ 10,  35,  60,  85, 110])
+    >>> np.einsum(a, [Ellipsis,1], [Ellipsis])
+    array([ 10,  35,  60,  85, 110])
+
+    Compute a matrix transpose, or reorder any number of axes:
+
+    >>> np.einsum('ji', c)
+    array([[0, 3],
+           [1, 4],
+           [2, 5]])
+    >>> np.einsum('ij->ji', c)
+    array([[0, 3],
+           [1, 4],
+           [2, 5]])
+    >>> np.einsum(c, [1,0])
+    array([[0, 3],
+           [1, 4],
+           [2, 5]])
+    >>> np.transpose(c)
+    array([[0, 3],
+           [1, 4],
+           [2, 5]])
+
+    Vector inner products:
+
+    >>> np.einsum('i,i', b, b)
+    30
+    >>> np.einsum(b, [0], b, [0])
+    30
+    >>> np.inner(b,b)
+    30
+
+    Matrix vector multiplication:
+
+    >>> np.einsum('ij,j', a, b)
+    array([ 30,  80, 130, 180, 230])
+    >>> np.einsum(a, [0,1], b, [1])
+    array([ 30,  80, 130, 180, 230])
+    >>> np.dot(a, b)
+    array([ 30,  80, 130, 180, 230])
+    >>> np.einsum('...j,j', a, b)
+    array([ 30,  80, 130, 180, 230])
+
+    Broadcasting and scalar multiplication:
+
+    >>> np.einsum('..., ...', 3, c)
+    array([[ 0,  3,  6],
+           [ 9, 12, 15]])
+    >>> np.einsum(',ij', 3, c)
+    array([[ 0,  3,  6],
+           [ 9, 12, 15]])
+    >>> np.einsum(3, [Ellipsis], c, [Ellipsis])
+    array([[ 0,  3,  6],
+           [ 9, 12, 15]])
+    >>> np.multiply(3, c)
+    array([[ 0,  3,  6],
+           [ 9, 12, 15]])
+
+    Vector outer product:
+
+    >>> np.einsum('i,j', np.arange(2)+1, b)
+    array([[0, 1, 2, 3, 4],
+           [0, 2, 4, 6, 8]])
+    >>> np.einsum(np.arange(2)+1, [0], b, [1])
+    array([[0, 1, 2, 3, 4],
+           [0, 2, 4, 6, 8]])
+    >>> np.outer(np.arange(2)+1, b)
+    array([[0, 1, 2, 3, 4],
+           [0, 2, 4, 6, 8]])
+
+    Tensor contraction:
+
+    >>> a = np.arange(60.).reshape(3,4,5)
+    >>> b = np.arange(24.).reshape(4,3,2)
+    >>> np.einsum('ijk,jil->kl', a, b)
+    array([[ 4400.,  4730.],
+           [ 4532.,  4874.],
+           [ 4664.,  5018.],
+           [ 4796.,  5162.],
+           [ 4928.,  5306.]])
+    >>> np.einsum(a, [0,1,2], b, [1,0,3], [2,3])
+    array([[ 4400.,  4730.],
+           [ 4532.,  4874.],
+           [ 4664.,  5018.],
+           [ 4796.,  5162.],
+           [ 4928.,  5306.]])
+    >>> np.tensordot(a,b, axes=([1,0],[0,1]))
+    array([[ 4400.,  4730.],
+           [ 4532.,  4874.],
+           [ 4664.,  5018.],
+           [ 4796.,  5162.],
+           [ 4928.,  5306.]])
+
+    Writeable returned arrays (since version 1.10.0):
+
+    >>> a = np.zeros((3, 3))
+    >>> np.einsum('ii->i', a)[:] = 1
+    >>> a
+    array([[ 1.,  0.,  0.],
+           [ 0.,  1.,  0.],
+           [ 0.,  0.,  1.]])
+
+    Example of ellipsis use:
+
+    >>> a = np.arange(6).reshape((3,2))
+    >>> b = np.arange(12).reshape((4,3))
+    >>> np.einsum('ki,jk->ij', a, b)
+    array([[10, 28, 46, 64],
+           [13, 40, 67, 94]])
+    >>> np.einsum('ki,...k->i...', a, b)
+    array([[10, 28, 46, 64],
+           [13, 40, 67, 94]])
+    >>> np.einsum('k...,jk', a, b)
+    array([[10, 28, 46, 64],
+           [13, 40, 67, 94]])
+
+    """)
+
+
+##############################################################################
+#
+# Documentation for ndarray attributes and methods
+#
+##############################################################################
+
+
+##############################################################################
+#
+# ndarray object
+#
+##############################################################################
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray',
+    """
+    ndarray(shape, dtype=float, buffer=None, offset=0,
+            strides=None, order=None)
+
+    An array object represents a multidimensional, homogeneous array
+    of fixed-size items.  An associated data-type object describes the
+    format of each element in the array (its byte-order, how many bytes it
+    occupies in memory, whether it is an integer, a floating point number,
+    or something else, etc.)
+
+    Arrays should be constructed using `array`, `zeros` or `empty` (refer
+    to the See Also section below).  The parameters given here refer to
+    a low-level method (`ndarray(...)`) for instantiating an array.
+
+    For more information, refer to the `numpy` module and examine the
+    methods and attributes of an array.
+
+    Parameters
+    ----------
+    (for the __new__ method; see Notes below)
+
+    shape : tuple of ints
+        Shape of created array.
+    dtype : data-type, optional
+        Any object that can be interpreted as a numpy data type.
+    buffer : object exposing buffer interface, optional
+        Used to fill the array with data.
+    offset : int, optional
+        Offset of array data in buffer.
+    strides : tuple of ints, optional
+        Strides of data in memory.
+    order : {'C', 'F'}, optional
+        Row-major (C-style) or column-major (Fortran-style) order.
+
+    Attributes
+    ----------
+    T : ndarray
+        Transpose of the array.
+    data : buffer
+        The array's elements, in memory.
+    dtype : dtype object
+        Describes the format of the elements in the array.
+    flags : dict
+        Dictionary containing information related to memory use, e.g.,
+        'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc.
+    flat : numpy.flatiter object
+        Flattened version of the array as an iterator.  The iterator
+        allows assignments, e.g., ``x.flat = 3`` (See `ndarray.flat` for
+        assignment examples; TODO).
+    imag : ndarray
+        Imaginary part of the array.
+    real : ndarray
+        Real part of the array.
+    size : int
+        Number of elements in the array.
+    itemsize : int
+        The memory use of each array element in bytes.
+    nbytes : int
+        The total number of bytes required to store the array data,
+        i.e., ``itemsize * size``.
+    ndim : int
+        The array's number of dimensions.
+    shape : tuple of ints
+        Shape of the array.
+    strides : tuple of ints
+        The step-size required to move from one element to the next in
+        memory. For example, a contiguous ``(3, 4)`` array of type
+        ``int16`` in C-order has strides ``(8, 2)``.  This implies that
+        to move from element to element in memory requires jumps of 2 bytes.
+        To move from row-to-row, one needs to jump 8 bytes at a time
+        (``2 * 4``).
+    ctypes : ctypes object
+        Class containing properties of the array needed for interaction
+        with ctypes.
+    base : ndarray
+        If the array is a view into another array, that array is its `base`
+        (unless that array is also a view).  The `base` array is where the
+        array data is actually stored.
+
+    See Also
+    --------
+    array : Construct an array.
+    zeros : Create an array, each element of which is zero.
+    empty : Create an array, but leave its allocated memory unchanged (i.e.,
+            it contains "garbage").
+    dtype : Create a data-type.
+    numpy.typing.NDArray : An ndarray alias :term:`generic <generic type>`
+                           w.r.t. its `dtype.type <numpy.dtype.type>`.
+
+    Notes
+    -----
+    There are two modes of creating an array using ``__new__``:
+
+    1. If `buffer` is None, then only `shape`, `dtype`, and `order`
+       are used.
+    2. If `buffer` is an object exposing the buffer interface, then
+       all keywords are interpreted.
+
+    No ``__init__`` method is needed because the array is fully initialized
+    after the ``__new__`` method.
+
+    Examples
+    --------
+    These examples illustrate the low-level `ndarray` constructor.  Refer
+    to the `See Also` section above for easier ways of constructing an
+    ndarray.
+
+    First mode, `buffer` is None:
+
+    >>> np.ndarray(shape=(2,2), dtype=float, order='F')
+    array([[0.0e+000, 0.0e+000], # random
+           [     nan, 2.5e-323]])
+
+    Second mode:
+
+    >>> np.ndarray((2,), buffer=np.array([1,2,3]),
+    ...            offset=np.int_().itemsize,
+    ...            dtype=int) # offset = 1*itemsize, i.e. skip first element
+    array([2, 3])
+
+    """)
+
+
+##############################################################################
+#
+# ndarray attributes
+#
+##############################################################################
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_interface__',
+    """Array protocol: Python side."""))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_priority__',
+    """Array priority."""))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_struct__',
+    """Array protocol: C-struct side."""))
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__dlpack__',
+    """a.__dlpack__(*, stream=None)
+
+    DLPack Protocol: Part of the Array API."""))
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__dlpack_device__',
+    """a.__dlpack_device__()
+
+    DLPack Protocol: Part of the Array API."""))
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('base',
+    """
+    Base object if memory is from some other object.
+
+    Examples
+    --------
+    The base of an array that owns its memory is None:
+
+    >>> x = np.array([1,2,3,4])
+    >>> x.base is None
+    True
+
+    Slicing creates a view, whose memory is shared with x:
+
+    >>> y = x[2:]
+    >>> y.base is x
+    True
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('ctypes',
+    """
+    An object to simplify the interaction of the array with the ctypes
+    module.
+
+    This attribute creates an object that makes it easier to use arrays
+    when calling shared libraries with the ctypes module. The returned
+    object has, among others, data, shape, and strides attributes (see
+    Notes below) which themselves return ctypes objects that can be used
+    as arguments to a shared library.
+
+    Parameters
+    ----------
+    None
+
+    Returns
+    -------
+    c : Python object
+        Possessing attributes data, shape, strides, etc.
+
+    See Also
+    --------
+    numpy.ctypeslib
+
+    Notes
+    -----
+    Below are the public attributes of this object which were documented
+    in "Guide to NumPy" (we have omitted undocumented public attributes,
+    as well as documented private attributes):
+
+    .. autoattribute:: numpy.core._internal._ctypes.data
+        :noindex:
+
+    .. autoattribute:: numpy.core._internal._ctypes.shape
+        :noindex:
+
+    .. autoattribute:: numpy.core._internal._ctypes.strides
+        :noindex:
+
+    .. automethod:: numpy.core._internal._ctypes.data_as
+        :noindex:
+
+    .. automethod:: numpy.core._internal._ctypes.shape_as
+        :noindex:
+
+    .. automethod:: numpy.core._internal._ctypes.strides_as
+        :noindex:
+
+    If the ctypes module is not available, then the ctypes attribute
+    of array objects still returns something useful, but ctypes objects
+    are not returned and errors may be raised instead. In particular,
+    the object will still have the ``as_parameter`` attribute which will
+    return an integer equal to the data attribute.
+
+    Examples
+    --------
+    >>> import ctypes
+    >>> x = np.array([[0, 1], [2, 3]], dtype=np.int32)
+    >>> x
+    array([[0, 1],
+           [2, 3]], dtype=int32)
+    >>> x.ctypes.data
+    31962608 # may vary
+    >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint32))
+    <__main__.LP_c_uint object at 0x7ff2fc1fc200> # may vary
+    >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint32)).contents
+    c_uint(0)
+    >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint64)).contents
+    c_ulong(4294967296)
+    >>> x.ctypes.shape
+    <numpy.core._internal.c_long_Array_2 object at 0x7ff2fc1fce60> # may vary
+    >>> x.ctypes.strides
+    <numpy.core._internal.c_long_Array_2 object at 0x7ff2fc1ff320> # may vary
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('data',
+    """Python buffer object pointing to the start of the array's data."""))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('dtype',
+    """
+    Data-type of the array's elements.
+
+    .. warning::
+
+        Setting ``arr.dtype`` is discouraged and may be deprecated in the
+        future.  Setting will replace the ``dtype`` without modifying the
+        memory (see also `ndarray.view` and `ndarray.astype`).
+
+    Parameters
+    ----------
+    None
+
+    Returns
+    -------
+    d : numpy dtype object
+
+    See Also
+    --------
+    ndarray.astype : Cast the values contained in the array to a new data-type.
+    ndarray.view : Create a view of the same data but a different data-type.
+    numpy.dtype
+
+    Examples
+    --------
+    >>> x
+    array([[0, 1],
+           [2, 3]])
+    >>> x.dtype
+    dtype('int32')
+    >>> type(x.dtype)
+    <type 'numpy.dtype'>
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('imag',
+    """
+    The imaginary part of the array.
+
+    Examples
+    --------
+    >>> x = np.sqrt([1+0j, 0+1j])
+    >>> x.imag
+    array([ 0.        ,  0.70710678])
+    >>> x.imag.dtype
+    dtype('float64')
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('itemsize',
+    """
+    Length of one array element in bytes.
+
+    Examples
+    --------
+    >>> x = np.array([1,2,3], dtype=np.float64)
+    >>> x.itemsize
+    8
+    >>> x = np.array([1,2,3], dtype=np.complex128)
+    >>> x.itemsize
+    16
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('flags',
+    """
+    Information about the memory layout of the array.
+
+    Attributes
+    ----------
+    C_CONTIGUOUS (C)
+        The data is in a single, C-style contiguous segment.
+    F_CONTIGUOUS (F)
+        The data is in a single, Fortran-style contiguous segment.
+    OWNDATA (O)
+        The array owns the memory it uses or borrows it from another object.
+    WRITEABLE (W)
+        The data area can be written to.  Setting this to False locks
+        the data, making it read-only.  A view (slice, etc.) inherits WRITEABLE
+        from its base array at creation time, but a view of a writeable
+        array may be subsequently locked while the base array remains writeable.
+        (The opposite is not true, in that a view of a locked array may not
+        be made writeable.  However, currently, locking a base object does not
+        lock any views that already reference it, so under that circumstance it
+        is possible to alter the contents of a locked array via a previously
+        created writeable view onto it.)  Attempting to change a non-writeable
+        array raises a RuntimeError exception.
+    ALIGNED (A)
+        The data and all elements are aligned appropriately for the hardware.
+    WRITEBACKIFCOPY (X)
+        This array is a copy of some other array. The C-API function
+        PyArray_ResolveWritebackIfCopy must be called before deallocating
+        to the base array will be updated with the contents of this array.
+    FNC
+        F_CONTIGUOUS and not C_CONTIGUOUS.
+    FORC
+        F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).
+    BEHAVED (B)
+        ALIGNED and WRITEABLE.
+    CARRAY (CA)
+        BEHAVED and C_CONTIGUOUS.
+    FARRAY (FA)
+        BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.
+
+    Notes
+    -----
+    The `flags` object can be accessed dictionary-like (as in ``a.flags['WRITEABLE']``),
+    or by using lowercased attribute names (as in ``a.flags.writeable``). Short flag
+    names are only supported in dictionary access.
+
+    Only the WRITEBACKIFCOPY, WRITEABLE, and ALIGNED flags can be
+    changed by the user, via direct assignment to the attribute or dictionary
+    entry, or by calling `ndarray.setflags`.
+
+    The array flags cannot be set arbitrarily:
+
+    - WRITEBACKIFCOPY can only be set ``False``.
+    - ALIGNED can only be set ``True`` if the data is truly aligned.
+    - WRITEABLE can only be set ``True`` if the array owns its own memory
+      or the ultimate owner of the memory exposes a writeable buffer
+      interface or is a string.
+
+    Arrays can be both C-style and Fortran-style contiguous simultaneously.
+    This is clear for 1-dimensional arrays, but can also be true for higher
+    dimensional arrays.
+
+    Even for contiguous arrays a stride for a given dimension
+    ``arr.strides[dim]`` may be *arbitrary* if ``arr.shape[dim] == 1``
+    or the array has no elements.
+    It does *not* generally hold that ``self.strides[-1] == self.itemsize``
+    for C-style contiguous arrays or ``self.strides[0] == self.itemsize`` for
+    Fortran-style contiguous arrays is true.
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('flat',
+    """
+    A 1-D iterator over the array.
+
+    This is a `numpy.flatiter` instance, which acts similarly to, but is not
+    a subclass of, Python's built-in iterator object.
+
+    See Also
+    --------
+    flatten : Return a copy of the array collapsed into one dimension.
+
+    flatiter
+
+    Examples
+    --------
+    >>> x = np.arange(1, 7).reshape(2, 3)
+    >>> x
+    array([[1, 2, 3],
+           [4, 5, 6]])
+    >>> x.flat[3]
+    4
+    >>> x.T
+    array([[1, 4],
+           [2, 5],
+           [3, 6]])
+    >>> x.T.flat[3]
+    5
+    >>> type(x.flat)
+    <class 'numpy.flatiter'>
+
+    An assignment example:
+
+    >>> x.flat = 3; x
+    array([[3, 3, 3],
+           [3, 3, 3]])
+    >>> x.flat[[1,4]] = 1; x
+    array([[3, 1, 3],
+           [3, 1, 3]])
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('nbytes',
+    """
+    Total bytes consumed by the elements of the array.
+
+    Notes
+    -----
+    Does not include memory consumed by non-element attributes of the
+    array object.
+
+    See Also
+    --------
+    sys.getsizeof
+        Memory consumed by the object itself without parents in case view.
+        This does include memory consumed by non-element attributes.
+
+    Examples
+    --------
+    >>> x = np.zeros((3,5,2), dtype=np.complex128)
+    >>> x.nbytes
+    480
+    >>> np.prod(x.shape) * x.itemsize
+    480
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('ndim',
+    """
+    Number of array dimensions.
+
+    Examples
+    --------
+    >>> x = np.array([1, 2, 3])
+    >>> x.ndim
+    1
+    >>> y = np.zeros((2, 3, 4))
+    >>> y.ndim
+    3
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('real',
+    """
+    The real part of the array.
+
+    Examples
+    --------
+    >>> x = np.sqrt([1+0j, 0+1j])
+    >>> x.real
+    array([ 1.        ,  0.70710678])
+    >>> x.real.dtype
+    dtype('float64')
+
+    See Also
+    --------
+    numpy.real : equivalent function
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('shape',
+    """
+    Tuple of array dimensions.
+
+    The shape property is usually used to get the current shape of an array,
+    but may also be used to reshape the array in-place by assigning a tuple of
+    array dimensions to it.  As with `numpy.reshape`, one of the new shape
+    dimensions can be -1, in which case its value is inferred from the size of
+    the array and the remaining dimensions. Reshaping an array in-place will
+    fail if a copy is required.
+
+    .. warning::
+
+        Setting ``arr.shape`` is discouraged and may be deprecated in the
+        future.  Using `ndarray.reshape` is the preferred approach.
+
+    Examples
+    --------
+    >>> x = np.array([1, 2, 3, 4])
+    >>> x.shape
+    (4,)
+    >>> y = np.zeros((2, 3, 4))
+    >>> y.shape
+    (2, 3, 4)
+    >>> y.shape = (3, 8)
+    >>> y
+    array([[ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
+           [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
+           [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.]])
+    >>> y.shape = (3, 6)
+    Traceback (most recent call last):
+      File "<stdin>", line 1, in <module>
+    ValueError: total size of new array must be unchanged
+    >>> np.zeros((4,2))[::2].shape = (-1,)
+    Traceback (most recent call last):
+      File "<stdin>", line 1, in <module>
+    AttributeError: Incompatible shape for in-place modification. Use
+    `.reshape()` to make a copy with the desired shape.
+
+    See Also
+    --------
+    numpy.shape : Equivalent getter function.
+    numpy.reshape : Function similar to setting ``shape``.
+    ndarray.reshape : Method similar to setting ``shape``.
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('size',
+    """
+    Number of elements in the array.
+
+    Equal to ``np.prod(a.shape)``, i.e., the product of the array's
+    dimensions.
+
+    Notes
+    -----
+    `a.size` returns a standard arbitrary precision Python integer. This
+    may not be the case with other methods of obtaining the same value
+    (like the suggested ``np.prod(a.shape)``, which returns an instance
+    of ``np.int_``), and may be relevant if the value is used further in
+    calculations that may overflow a fixed size integer type.
+
+    Examples
+    --------
+    >>> x = np.zeros((3, 5, 2), dtype=np.complex128)
+    >>> x.size
+    30
+    >>> np.prod(x.shape)
+    30
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('strides',
+    """
+    Tuple of bytes to step in each dimension when traversing an array.
+
+    The byte offset of element ``(i[0], i[1], ..., i[n])`` in an array `a`
+    is::
+
+        offset = sum(np.array(i) * a.strides)
+
+    A more detailed explanation of strides can be found in the
+    "ndarray.rst" file in the NumPy reference guide.
+
+    .. warning::
+
+        Setting ``arr.strides`` is discouraged and may be deprecated in the
+        future.  `numpy.lib.stride_tricks.as_strided` should be preferred
+        to create a new view of the same data in a safer way.
+
+    Notes
+    -----
+    Imagine an array of 32-bit integers (each 4 bytes)::
+
+      x = np.array([[0, 1, 2, 3, 4],
+                    [5, 6, 7, 8, 9]], dtype=np.int32)
+
+    This array is stored in memory as 40 bytes, one after the other
+    (known as a contiguous block of memory).  The strides of an array tell
+    us how many bytes we have to skip in memory to move to the next position
+    along a certain axis.  For example, we have to skip 4 bytes (1 value) to
+    move to the next column, but 20 bytes (5 values) to get to the same
+    position in the next row.  As such, the strides for the array `x` will be
+    ``(20, 4)``.
+
+    See Also
+    --------
+    numpy.lib.stride_tricks.as_strided
+
+    Examples
+    --------
+    >>> y = np.reshape(np.arange(2*3*4), (2,3,4))
+    >>> y
+    array([[[ 0,  1,  2,  3],
+            [ 4,  5,  6,  7],
+            [ 8,  9, 10, 11]],
+           [[12, 13, 14, 15],
+            [16, 17, 18, 19],
+            [20, 21, 22, 23]]])
+    >>> y.strides
+    (48, 16, 4)
+    >>> y[1,1,1]
+    17
+    >>> offset=sum(y.strides * np.array((1,1,1)))
+    >>> offset/y.itemsize
+    17
+
+    >>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
+    >>> x.strides
+    (32, 4, 224, 1344)
+    >>> i = np.array([3,5,2,2])
+    >>> offset = sum(i * x.strides)
+    >>> x[3,5,2,2]
+    813
+    >>> offset / x.itemsize
+    813
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('T',
+    """
+    View of the transposed array.
+
+    Same as ``self.transpose()``.
+
+    Examples
+    --------
+    >>> a = np.array([[1, 2], [3, 4]])
+    >>> a
+    array([[1, 2],
+           [3, 4]])
+    >>> a.T
+    array([[1, 3],
+           [2, 4]])
+
+    >>> a = np.array([1, 2, 3, 4])
+    >>> a
+    array([1, 2, 3, 4])
+    >>> a.T
+    array([1, 2, 3, 4])
+
+    See Also
+    --------
+    transpose
+
+    """))
+
+
+##############################################################################
+#
+# ndarray methods
+#
+##############################################################################
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__array__',
+    """ a.__array__([dtype], /)
+
+    Returns either a new reference to self if dtype is not given or a new array
+    of provided data type if dtype is different from the current dtype of the
+    array.
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_finalize__',
+    """a.__array_finalize__(obj, /)
+
+    Present so subclasses can call super. Does nothing.
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_prepare__',
+    """a.__array_prepare__(array[, context], /)
+
+    Returns a view of `array` with the same type as self.
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_wrap__',
+    """a.__array_wrap__(array[, context], /)
+
+    Returns a view of `array` with the same type as self.
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__copy__',
+    """a.__copy__()
+
+    Used if :func:`copy.copy` is called on an array. Returns a copy of the array.
+
+    Equivalent to ``a.copy(order='K')``.
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__class_getitem__',
+    """a.__class_getitem__(item, /)
+
+    Return a parametrized wrapper around the `~numpy.ndarray` type.
+
+    .. versionadded:: 1.22
+
+    Returns
+    -------
+    alias : types.GenericAlias
+        A parametrized `~numpy.ndarray` type.
+
+    Examples
+    --------
+    >>> from typing import Any
+    >>> import numpy as np
+
+    >>> np.ndarray[Any, np.dtype[Any]]
+    numpy.ndarray[typing.Any, numpy.dtype[typing.Any]]
+
+    See Also
+    --------
+    :pep:`585` : Type hinting generics in standard collections.
+    numpy.typing.NDArray : An ndarray alias :term:`generic <generic type>`
+                        w.r.t. its `dtype.type <numpy.dtype.type>`.
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__deepcopy__',
+    """a.__deepcopy__(memo, /)
+
+    Used if :func:`copy.deepcopy` is called on an array.
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__reduce__',
+    """a.__reduce__()
+
+    For pickling.
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__setstate__',
+    """a.__setstate__(state, /)
+
+    For unpickling.
+
+    The `state` argument must be a sequence that contains the following
+    elements:
+
+    Parameters
+    ----------
+    version : int
+        optional pickle version. If omitted defaults to 0.
+    shape : tuple
+    dtype : data-type
+    isFortran : bool
+    rawdata : string or list
+        a binary string with the data (or a list if 'a' is an object array)
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('all',
+    """
+    a.all(axis=None, out=None, keepdims=False, *, where=True)
+
+    Returns True if all elements evaluate to True.
+
+    Refer to `numpy.all` for full documentation.
+
+    See Also
+    --------
+    numpy.all : equivalent function
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('any',
+    """
+    a.any(axis=None, out=None, keepdims=False, *, where=True)
+
+    Returns True if any of the elements of `a` evaluate to True.
+
+    Refer to `numpy.any` for full documentation.
+
+    See Also
+    --------
+    numpy.any : equivalent function
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('argmax',
+    """
+    a.argmax(axis=None, out=None, *, keepdims=False)
+
+    Return indices of the maximum values along the given axis.
+
+    Refer to `numpy.argmax` for full documentation.
+
+    See Also
+    --------
+    numpy.argmax : equivalent function
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('argmin',
+    """
+    a.argmin(axis=None, out=None, *, keepdims=False)
+
+    Return indices of the minimum values along the given axis.
+
+    Refer to `numpy.argmin` for detailed documentation.
+
+    See Also
+    --------
+    numpy.argmin : equivalent function
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('argsort',
+    """
+    a.argsort(axis=-1, kind=None, order=None)
+
+    Returns the indices that would sort this array.
+
+    Refer to `numpy.argsort` for full documentation.
+
+    See Also
+    --------
+    numpy.argsort : equivalent function
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('argpartition',
+    """
+    a.argpartition(kth, axis=-1, kind='introselect', order=None)
+
+    Returns the indices that would partition this array.
+
+    Refer to `numpy.argpartition` for full documentation.
+
+    .. versionadded:: 1.8.0
+
+    See Also
+    --------
+    numpy.argpartition : equivalent function
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('astype',
+    """
+    a.astype(dtype, order='K', casting='unsafe', subok=True, copy=True)
+
+    Copy of the array, cast to a specified type.
+
+    Parameters
+    ----------
+    dtype : str or dtype
+        Typecode or data-type to which the array is cast.
+    order : {'C', 'F', 'A', 'K'}, optional
+        Controls the memory layout order of the result.
+        'C' means C order, 'F' means Fortran order, 'A'
+        means 'F' order if all the arrays are Fortran contiguous,
+        'C' order otherwise, and 'K' means as close to the
+        order the array elements appear in memory as possible.
+        Default is 'K'.
+    casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
+        Controls what kind of data casting may occur. Defaults to 'unsafe'
+        for backwards compatibility.
+
+          * 'no' means the data types should not be cast at all.
+          * 'equiv' means only byte-order changes are allowed.
+          * 'safe' means only casts which can preserve values are allowed.
+          * 'same_kind' means only safe casts or casts within a kind,
+            like float64 to float32, are allowed.
+          * 'unsafe' means any data conversions may be done.
+    subok : bool, optional
+        If True, then sub-classes will be passed-through (default), otherwise
+        the returned array will be forced to be a base-class array.
+    copy : bool, optional
+        By default, astype always returns a newly allocated array. If this
+        is set to false, and the `dtype`, `order`, and `subok`
+        requirements are satisfied, the input array is returned instead
+        of a copy.
+
+    Returns
+    -------
+    arr_t : ndarray
+        Unless `copy` is False and the other conditions for returning the input
+        array are satisfied (see description for `copy` input parameter), `arr_t`
+        is a new array of the same shape as the input array, with dtype, order
+        given by `dtype`, `order`.
+
+    Notes
+    -----
+    .. versionchanged:: 1.17.0
+       Casting between a simple data type and a structured one is possible only
+       for "unsafe" casting.  Casting to multiple fields is allowed, but
+       casting from multiple fields is not.
+
+    .. versionchanged:: 1.9.0
+       Casting from numeric to string types in 'safe' casting mode requires
+       that the string dtype length is long enough to store the max
+       integer/float value converted.
+
+    Raises
+    ------
+    ComplexWarning
+        When casting from complex to float or int. To avoid this,
+        one should use ``a.real.astype(t)``.
+
+    Examples
+    --------
+    >>> x = np.array([1, 2, 2.5])
+    >>> x
+    array([1. ,  2. ,  2.5])
+
+    >>> x.astype(int)
+    array([1, 2, 2])
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('byteswap',
+    """
+    a.byteswap(inplace=False)
+
+    Swap the bytes of the array elements
+
+    Toggle between low-endian and big-endian data representation by
+    returning a byteswapped array, optionally swapped in-place.
+    Arrays of byte-strings are not swapped. The real and imaginary
+    parts of a complex number are swapped individually.
+
+    Parameters
+    ----------
+    inplace : bool, optional
+        If ``True``, swap bytes in-place, default is ``False``.
+
+    Returns
+    -------
+    out : ndarray
+        The byteswapped array. If `inplace` is ``True``, this is
+        a view to self.
+
+    Examples
+    --------
+    >>> A = np.array([1, 256, 8755], dtype=np.int16)
+    >>> list(map(hex, A))
+    ['0x1', '0x100', '0x2233']
+    >>> A.byteswap(inplace=True)
+    array([  256,     1, 13090], dtype=int16)
+    >>> list(map(hex, A))
+    ['0x100', '0x1', '0x3322']
+
+    Arrays of byte-strings are not swapped
+
+    >>> A = np.array([b'ceg', b'fac'])
+    >>> A.byteswap()
+    array([b'ceg', b'fac'], dtype='|S3')
+
+    ``A.newbyteorder().byteswap()`` produces an array with the same values
+      but different representation in memory
+
+    >>> A = np.array([1, 2, 3])
+    >>> A.view(np.uint8)
+    array([1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0,
+           0, 0], dtype=uint8)
+    >>> A.newbyteorder().byteswap(inplace=True)
+    array([1, 2, 3])
+    >>> A.view(np.uint8)
+    array([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0,
+           0, 3], dtype=uint8)
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('choose',
+    """
+    a.choose(choices, out=None, mode='raise')
+
+    Use an index array to construct a new array from a set of choices.
+
+    Refer to `numpy.choose` for full documentation.
+
+    See Also
+    --------
+    numpy.choose : equivalent function
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('clip',
+    """
+    a.clip(min=None, max=None, out=None, **kwargs)
+
+    Return an array whose values are limited to ``[min, max]``.
+    One of max or min must be given.
+
+    Refer to `numpy.clip` for full documentation.
+
+    See Also
+    --------
+    numpy.clip : equivalent function
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('compress',
+    """
+    a.compress(condition, axis=None, out=None)
+
+    Return selected slices of this array along given axis.
+
+    Refer to `numpy.compress` for full documentation.
+
+    See Also
+    --------
+    numpy.compress : equivalent function
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('conj',
+    """
+    a.conj()
+
+    Complex-conjugate all elements.
+
+    Refer to `numpy.conjugate` for full documentation.
+
+    See Also
+    --------
+    numpy.conjugate : equivalent function
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('conjugate',
+    """
+    a.conjugate()
+
+    Return the complex conjugate, element-wise.
+
+    Refer to `numpy.conjugate` for full documentation.
+
+    See Also
+    --------
+    numpy.conjugate : equivalent function
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('copy',
+    """
+    a.copy(order='C')
+
+    Return a copy of the array.
+
+    Parameters
+    ----------
+    order : {'C', 'F', 'A', 'K'}, optional
+        Controls the memory layout of the copy. 'C' means C-order,
+        'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous,
+        'C' otherwise. 'K' means match the layout of `a` as closely
+        as possible. (Note that this function and :func:`numpy.copy` are very
+        similar but have different default values for their order=
+        arguments, and this function always passes sub-classes through.)
+
+    See also
+    --------
+    numpy.copy : Similar function with different default behavior
+    numpy.copyto
+
+    Notes
+    -----
+    This function is the preferred method for creating an array copy.  The
+    function :func:`numpy.copy` is similar, but it defaults to using order 'K',
+    and will not pass sub-classes through by default.
+
+    Examples
+    --------
+    >>> x = np.array([[1,2,3],[4,5,6]], order='F')
+
+    >>> y = x.copy()
+
+    >>> x.fill(0)
+
+    >>> x
+    array([[0, 0, 0],
+           [0, 0, 0]])
+
+    >>> y
+    array([[1, 2, 3],
+           [4, 5, 6]])
+
+    >>> y.flags['C_CONTIGUOUS']
+    True
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('cumprod',
+    """
+    a.cumprod(axis=None, dtype=None, out=None)
+
+    Return the cumulative product of the elements along the given axis.
+
+    Refer to `numpy.cumprod` for full documentation.
+
+    See Also
+    --------
+    numpy.cumprod : equivalent function
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('cumsum',
+    """
+    a.cumsum(axis=None, dtype=None, out=None)
+
+    Return the cumulative sum of the elements along the given axis.
+
+    Refer to `numpy.cumsum` for full documentation.
+
+    See Also
+    --------
+    numpy.cumsum : equivalent function
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('diagonal',
+    """
+    a.diagonal(offset=0, axis1=0, axis2=1)
+
+    Return specified diagonals. In NumPy 1.9 the returned array is a
+    read-only view instead of a copy as in previous NumPy versions.  In
+    a future version the read-only restriction will be removed.
+
+    Refer to :func:`numpy.diagonal` for full documentation.
+
+    See Also
+    --------
+    numpy.diagonal : equivalent function
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('dot'))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('dump',
+    """a.dump(file)
+
+    Dump a pickle of the array to the specified file.
+    The array can be read back with pickle.load or numpy.load.
+
+    Parameters
+    ----------
+    file : str or Path
+        A string naming the dump file.
+
+        .. versionchanged:: 1.17.0
+            `pathlib.Path` objects are now accepted.
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('dumps',
+    """
+    a.dumps()
+
+    Returns the pickle of the array as a string.
+    pickle.loads will convert the string back to an array.
+
+    Parameters
+    ----------
+    None
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('fill',
+    """
+    a.fill(value)
+
+    Fill the array with a scalar value.
+
+    Parameters
+    ----------
+    value : scalar
+        All elements of `a` will be assigned this value.
+
+    Examples
+    --------
+    >>> a = np.array([1, 2])
+    >>> a.fill(0)
+    >>> a
+    array([0, 0])
+    >>> a = np.empty(2)
+    >>> a.fill(1)
+    >>> a
+    array([1.,  1.])
+
+    Fill expects a scalar value and always behaves the same as assigning
+    to a single array element.  The following is a rare example where this
+    distinction is important:
+
+    >>> a = np.array([None, None], dtype=object)
+    >>> a[0] = np.array(3)
+    >>> a
+    array([array(3), None], dtype=object)
+    >>> a.fill(np.array(3))
+    >>> a
+    array([array(3), array(3)], dtype=object)
+
+    Where other forms of assignments will unpack the array being assigned:
+
+    >>> a[...] = np.array(3)
+    >>> a
+    array([3, 3], dtype=object)
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('flatten',
+    """
+    a.flatten(order='C')
+
+    Return a copy of the array collapsed into one dimension.
+
+    Parameters
+    ----------
+    order : {'C', 'F', 'A', 'K'}, optional
+        'C' means to flatten in row-major (C-style) order.
+        'F' means to flatten in column-major (Fortran-
+        style) order. 'A' means to flatten in column-major
+        order if `a` is Fortran *contiguous* in memory,
+        row-major order otherwise. 'K' means to flatten
+        `a` in the order the elements occur in memory.
+        The default is 'C'.
+
+    Returns
+    -------
+    y : ndarray
+        A copy of the input array, flattened to one dimension.
+
+    See Also
+    --------
+    ravel : Return a flattened array.
+    flat : A 1-D flat iterator over the array.
+
+    Examples
+    --------
+    >>> a = np.array([[1,2], [3,4]])
+    >>> a.flatten()
+    array([1, 2, 3, 4])
+    >>> a.flatten('F')
+    array([1, 3, 2, 4])
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('getfield',
+    """
+    a.getfield(dtype, offset=0)
+
+    Returns a field of the given array as a certain type.
+
+    A field is a view of the array data with a given data-type. The values in
+    the view are determined by the given type and the offset into the current
+    array in bytes. The offset needs to be such that the view dtype fits in the
+    array dtype; for example an array of dtype complex128 has 16-byte elements.
+    If taking a view with a 32-bit integer (4 bytes), the offset needs to be
+    between 0 and 12 bytes.
+
+    Parameters
+    ----------
+    dtype : str or dtype
+        The data type of the view. The dtype size of the view can not be larger
+        than that of the array itself.
+    offset : int
+        Number of bytes to skip before beginning the element view.
+
+    Examples
+    --------
+    >>> x = np.diag([1.+1.j]*2)
+    >>> x[1, 1] = 2 + 4.j
+    >>> x
+    array([[1.+1.j,  0.+0.j],
+           [0.+0.j,  2.+4.j]])
+    >>> x.getfield(np.float64)
+    array([[1.,  0.],
+           [0.,  2.]])
+
+    By choosing an offset of 8 bytes we can select the complex part of the
+    array for our view:
+
+    >>> x.getfield(np.float64, offset=8)
+    array([[1.,  0.],
+           [0.,  4.]])
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('item',
+    """
+    a.item(*args)
+
+    Copy an element of an array to a standard Python scalar and return it.
+
+    Parameters
+    ----------
+    \\*args : Arguments (variable number and type)
+
+        * none: in this case, the method only works for arrays
+          with one element (`a.size == 1`), which element is
+          copied into a standard Python scalar object and returned.
+
+        * int_type: this argument is interpreted as a flat index into
+          the array, specifying which element to copy and return.
+
+        * tuple of int_types: functions as does a single int_type argument,
+          except that the argument is interpreted as an nd-index into the
+          array.
+
+    Returns
+    -------
+    z : Standard Python scalar object
+        A copy of the specified element of the array as a suitable
+        Python scalar
+
+    Notes
+    -----
+    When the data type of `a` is longdouble or clongdouble, item() returns
+    a scalar array object because there is no available Python scalar that
+    would not lose information. Void arrays return a buffer object for item(),
+    unless fields are defined, in which case a tuple is returned.
+
+    `item` is very similar to a[args], except, instead of an array scalar,
+    a standard Python scalar is returned. This can be useful for speeding up
+    access to elements of the array and doing arithmetic on elements of the
+    array using Python's optimized math.
+
+    Examples
+    --------
+    >>> np.random.seed(123)
+    >>> x = np.random.randint(9, size=(3, 3))
+    >>> x
+    array([[2, 2, 6],
+           [1, 3, 6],
+           [1, 0, 1]])
+    >>> x.item(3)
+    1
+    >>> x.item(7)
+    0
+    >>> x.item((0, 1))
+    2
+    >>> x.item((2, 2))
+    1
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('itemset',
+    """
+    a.itemset(*args)
+
+    Insert scalar into an array (scalar is cast to array's dtype, if possible)
+
+    There must be at least 1 argument, and define the last argument
+    as *item*.  Then, ``a.itemset(*args)`` is equivalent to but faster
+    than ``a[args] = item``.  The item should be a scalar value and `args`
+    must select a single item in the array `a`.
+
+    Parameters
+    ----------
+    \\*args : Arguments
+        If one argument: a scalar, only used in case `a` is of size 1.
+        If two arguments: the last argument is the value to be set
+        and must be a scalar, the first argument specifies a single array
+        element location. It is either an int or a tuple.
+
+    Notes
+    -----
+    Compared to indexing syntax, `itemset` provides some speed increase
+    for placing a scalar into a particular location in an `ndarray`,
+    if you must do this.  However, generally this is discouraged:
+    among other problems, it complicates the appearance of the code.
+    Also, when using `itemset` (and `item`) inside a loop, be sure
+    to assign the methods to a local variable to avoid the attribute
+    look-up at each loop iteration.
+
+    Examples
+    --------
+    >>> np.random.seed(123)
+    >>> x = np.random.randint(9, size=(3, 3))
+    >>> x
+    array([[2, 2, 6],
+           [1, 3, 6],
+           [1, 0, 1]])
+    >>> x.itemset(4, 0)
+    >>> x.itemset((2, 2), 9)
+    >>> x
+    array([[2, 2, 6],
+           [1, 0, 6],
+           [1, 0, 9]])
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('max',
+    """
+    a.max(axis=None, out=None, keepdims=False, initial=<no value>, where=True)
+
+    Return the maximum along a given axis.
+
+    Refer to `numpy.amax` for full documentation.
+
+    See Also
+    --------
+    numpy.amax : equivalent function
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('mean',
+    """
+    a.mean(axis=None, dtype=None, out=None, keepdims=False, *, where=True)
+
+    Returns the average of the array elements along given axis.
+
+    Refer to `numpy.mean` for full documentation.
+
+    See Also
+    --------
+    numpy.mean : equivalent function
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('min',
+    """
+    a.min(axis=None, out=None, keepdims=False, initial=<no value>, where=True)
+
+    Return the minimum along a given axis.
+
+    Refer to `numpy.amin` for full documentation.
+
+    See Also
+    --------
+    numpy.amin : equivalent function
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('newbyteorder',
+    """
+    arr.newbyteorder(new_order='S', /)
+
+    Return the array with the same data viewed with a different byte order.
+
+    Equivalent to::
+
+        arr.view(arr.dtype.newbytorder(new_order))
+
+    Changes are also made in all fields and sub-arrays of the array data
+    type.
+
+
+
+    Parameters
+    ----------
+    new_order : string, optional
+        Byte order to force; a value from the byte order specifications
+        below. `new_order` codes can be any of:
+
+        * 'S' - swap dtype from current to opposite endian
+        * {'<', 'little'} - little endian
+        * {'>', 'big'} - big endian
+        * {'=', 'native'} - native order, equivalent to `sys.byteorder`
+        * {'|', 'I'} - ignore (no change to byte order)
+
+        The default value ('S') results in swapping the current
+        byte order.
+
+
+    Returns
+    -------
+    new_arr : array
+        New array object with the dtype reflecting given change to the
+        byte order.
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('nonzero',
+    """
+    a.nonzero()
+
+    Return the indices of the elements that are non-zero.
+
+    Refer to `numpy.nonzero` for full documentation.
+
+    See Also
+    --------
+    numpy.nonzero : equivalent function
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('prod',
+    """
+    a.prod(axis=None, dtype=None, out=None, keepdims=False, initial=1, where=True)
+
+    Return the product of the array elements over the given axis
+
+    Refer to `numpy.prod` for full documentation.
+
+    See Also
+    --------
+    numpy.prod : equivalent function
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('ptp',
+    """
+    a.ptp(axis=None, out=None, keepdims=False)
+
+    Peak to peak (maximum - minimum) value along a given axis.
+
+    Refer to `numpy.ptp` for full documentation.
+
+    See Also
+    --------
+    numpy.ptp : equivalent function
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('put',
+    """
+    a.put(indices, values, mode='raise')
+
+    Set ``a.flat[n] = values[n]`` for all `n` in indices.
+
+    Refer to `numpy.put` for full documentation.
+
+    See Also
+    --------
+    numpy.put : equivalent function
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('ravel',
+    """
+    a.ravel([order])
+
+    Return a flattened array.
+
+    Refer to `numpy.ravel` for full documentation.
+
+    See Also
+    --------
+    numpy.ravel : equivalent function
+
+    ndarray.flat : a flat iterator on the array.
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('repeat',
+    """
+    a.repeat(repeats, axis=None)
+
+    Repeat elements of an array.
+
+    Refer to `numpy.repeat` for full documentation.
+
+    See Also
+    --------
+    numpy.repeat : equivalent function
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('reshape',
+    """
+    a.reshape(shape, order='C')
+
+    Returns an array containing the same data with a new shape.
+
+    Refer to `numpy.reshape` for full documentation.
+
+    See Also
+    --------
+    numpy.reshape : equivalent function
+
+    Notes
+    -----
+    Unlike the free function `numpy.reshape`, this method on `ndarray` allows
+    the elements of the shape parameter to be passed in as separate arguments.
+    For example, ``a.reshape(10, 11)`` is equivalent to
+    ``a.reshape((10, 11))``.
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('resize',
+    """
+    a.resize(new_shape, refcheck=True)
+
+    Change shape and size of array in-place.
+
+    Parameters
+    ----------
+    new_shape : tuple of ints, or `n` ints
+        Shape of resized array.
+    refcheck : bool, optional
+        If False, reference count will not be checked. Default is True.
+
+    Returns
+    -------
+    None
+
+    Raises
+    ------
+    ValueError
+        If `a` does not own its own data or references or views to it exist,
+        and the data memory must be changed.
+        PyPy only: will always raise if the data memory must be changed, since
+        there is no reliable way to determine if references or views to it
+        exist.
+
+    SystemError
+        If the `order` keyword argument is specified. This behaviour is a
+        bug in NumPy.
+
+    See Also
+    --------
+    resize : Return a new array with the specified shape.
+
+    Notes
+    -----
+    This reallocates space for the data area if necessary.
+
+    Only contiguous arrays (data elements consecutive in memory) can be
+    resized.
+
+    The purpose of the reference count check is to make sure you
+    do not use this array as a buffer for another Python object and then
+    reallocate the memory. However, reference counts can increase in
+    other ways so if you are sure that you have not shared the memory
+    for this array with another Python object, then you may safely set
+    `refcheck` to False.
+
+    Examples
+    --------
+    Shrinking an array: array is flattened (in the order that the data are
+    stored in memory), resized, and reshaped:
+
+    >>> a = np.array([[0, 1], [2, 3]], order='C')
+    >>> a.resize((2, 1))
+    >>> a
+    array([[0],
+           [1]])
+
+    >>> a = np.array([[0, 1], [2, 3]], order='F')
+    >>> a.resize((2, 1))
+    >>> a
+    array([[0],
+           [2]])
+
+    Enlarging an array: as above, but missing entries are filled with zeros:
+
+    >>> b = np.array([[0, 1], [2, 3]])
+    >>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
+    >>> b
+    array([[0, 1, 2],
+           [3, 0, 0]])
+
+    Referencing an array prevents resizing...
+
+    >>> c = a
+    >>> a.resize((1, 1))
+    Traceback (most recent call last):
+    ...
+    ValueError: cannot resize an array that references or is referenced ...
+
+    Unless `refcheck` is False:
+
+    >>> a.resize((1, 1), refcheck=False)
+    >>> a
+    array([[0]])
+    >>> c
+    array([[0]])
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('round',
+    """
+    a.round(decimals=0, out=None)
+
+    Return `a` with each element rounded to the given number of decimals.
+
+    Refer to `numpy.around` for full documentation.
+
+    See Also
+    --------
+    numpy.around : equivalent function
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('searchsorted',
+    """
+    a.searchsorted(v, side='left', sorter=None)
+
+    Find indices where elements of v should be inserted in a to maintain order.
+
+    For full documentation, see `numpy.searchsorted`
+
+    See Also
+    --------
+    numpy.searchsorted : equivalent function
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('setfield',
+    """
+    a.setfield(val, dtype, offset=0)
+
+    Put a value into a specified place in a field defined by a data-type.
+
+    Place `val` into `a`'s field defined by `dtype` and beginning `offset`
+    bytes into the field.
+
+    Parameters
+    ----------
+    val : object
+        Value to be placed in field.
+    dtype : dtype object
+        Data-type of the field in which to place `val`.
+    offset : int, optional
+        The number of bytes into the field at which to place `val`.
+
+    Returns
+    -------
+    None
+
+    See Also
+    --------
+    getfield
+
+    Examples
+    --------
+    >>> x = np.eye(3)
+    >>> x.getfield(np.float64)
+    array([[1.,  0.,  0.],
+           [0.,  1.,  0.],
+           [0.,  0.,  1.]])
+    >>> x.setfield(3, np.int32)
+    >>> x.getfield(np.int32)
+    array([[3, 3, 3],
+           [3, 3, 3],
+           [3, 3, 3]], dtype=int32)
+    >>> x
+    array([[1.0e+000, 1.5e-323, 1.5e-323],
+           [1.5e-323, 1.0e+000, 1.5e-323],
+           [1.5e-323, 1.5e-323, 1.0e+000]])
+    >>> x.setfield(np.eye(3), np.int32)
+    >>> x
+    array([[1.,  0.,  0.],
+           [0.,  1.,  0.],
+           [0.,  0.,  1.]])
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('setflags',
+    """
+    a.setflags(write=None, align=None, uic=None)
+
+    Set array flags WRITEABLE, ALIGNED, WRITEBACKIFCOPY,
+    respectively.
+
+    These Boolean-valued flags affect how numpy interprets the memory
+    area used by `a` (see Notes below). The ALIGNED flag can only
+    be set to True if the data is actually aligned according to the type.
+    The WRITEBACKIFCOPY and flag can never be set
+    to True. The flag WRITEABLE can only be set to True if the array owns its
+    own memory, or the ultimate owner of the memory exposes a writeable buffer
+    interface, or is a string. (The exception for string is made so that
+    unpickling can be done without copying memory.)
+
+    Parameters
+    ----------
+    write : bool, optional
+        Describes whether or not `a` can be written to.
+    align : bool, optional
+        Describes whether or not `a` is aligned properly for its type.
+    uic : bool, optional
+        Describes whether or not `a` is a copy of another "base" array.
+
+    Notes
+    -----
+    Array flags provide information about how the memory area used
+    for the array is to be interpreted. There are 7 Boolean flags
+    in use, only four of which can be changed by the user:
+    WRITEBACKIFCOPY, WRITEABLE, and ALIGNED.
+
+    WRITEABLE (W) the data area can be written to;
+
+    ALIGNED (A) the data and strides are aligned appropriately for the hardware
+    (as determined by the compiler);
+
+    WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced
+    by .base). When the C-API function PyArray_ResolveWritebackIfCopy is
+    called, the base array will be updated with the contents of this array.
+
+    All flags can be accessed using the single (upper case) letter as well
+    as the full name.
+
+    Examples
+    --------
+    >>> y = np.array([[3, 1, 7],
+    ...               [2, 0, 0],
+    ...               [8, 5, 9]])
+    >>> y
+    array([[3, 1, 7],
+           [2, 0, 0],
+           [8, 5, 9]])
+    >>> y.flags
+      C_CONTIGUOUS : True
+      F_CONTIGUOUS : False
+      OWNDATA : True
+      WRITEABLE : True
+      ALIGNED : True
+      WRITEBACKIFCOPY : False
+    >>> y.setflags(write=0, align=0)
+    >>> y.flags
+      C_CONTIGUOUS : True
+      F_CONTIGUOUS : False
+      OWNDATA : True
+      WRITEABLE : False
+      ALIGNED : False
+      WRITEBACKIFCOPY : False
+    >>> y.setflags(uic=1)
+    Traceback (most recent call last):
+      File "<stdin>", line 1, in <module>
+    ValueError: cannot set WRITEBACKIFCOPY flag to True
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('sort',
+    """
+    a.sort(axis=-1, kind=None, order=None)
+
+    Sort an array in-place. Refer to `numpy.sort` for full documentation.
+
+    Parameters
+    ----------
+    axis : int, optional
+        Axis along which to sort. Default is -1, which means sort along the
+        last axis.
+    kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional
+        Sorting algorithm. The default is 'quicksort'. Note that both 'stable'
+        and 'mergesort' use timsort under the covers and, in general, the
+        actual implementation will vary with datatype. The 'mergesort' option
+        is retained for backwards compatibility.
+
+        .. versionchanged:: 1.15.0
+           The 'stable' option was added.
+
+    order : str or list of str, optional
+        When `a` is an array with fields defined, this argument specifies
+        which fields to compare first, second, etc.  A single field can
+        be specified as a string, and not all fields need be specified,
+        but unspecified fields will still be used, in the order in which
+        they come up in the dtype, to break ties.
+
+    See Also
+    --------
+    numpy.sort : Return a sorted copy of an array.
+    numpy.argsort : Indirect sort.
+    numpy.lexsort : Indirect stable sort on multiple keys.
+    numpy.searchsorted : Find elements in sorted array.
+    numpy.partition: Partial sort.
+
+    Notes
+    -----
+    See `numpy.sort` for notes on the different sorting algorithms.
+
+    Examples
+    --------
+    >>> a = np.array([[1,4], [3,1]])
+    >>> a.sort(axis=1)
+    >>> a
+    array([[1, 4],
+           [1, 3]])
+    >>> a.sort(axis=0)
+    >>> a
+    array([[1, 3],
+           [1, 4]])
+
+    Use the `order` keyword to specify a field to use when sorting a
+    structured array:
+
+    >>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
+    >>> a.sort(order='y')
+    >>> a
+    array([(b'c', 1), (b'a', 2)],
+          dtype=[('x', 'S1'), ('y', '<i8')])
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('partition',
+    """
+    a.partition(kth, axis=-1, kind='introselect', order=None)
+
+    Rearranges the elements in the array in such a way that the value of the
+    element in kth position is in the position it would be in a sorted array.
+    All elements smaller than the kth element are moved before this element and
+    all equal or greater are moved behind it. The ordering of the elements in
+    the two partitions is undefined.
+
+    .. versionadded:: 1.8.0
+
+    Parameters
+    ----------
+    kth : int or sequence of ints
+        Element index to partition by. The kth element value will be in its
+        final sorted position and all smaller elements will be moved before it
+        and all equal or greater elements behind it.
+        The order of all elements in the partitions is undefined.
+        If provided with a sequence of kth it will partition all elements
+        indexed by kth of them into their sorted position at once.
+
+        .. deprecated:: 1.22.0
+            Passing booleans as index is deprecated.
+    axis : int, optional
+        Axis along which to sort. Default is -1, which means sort along the
+        last axis.
+    kind : {'introselect'}, optional
+        Selection algorithm. Default is 'introselect'.
+    order : str or list of str, optional
+        When `a` is an array with fields defined, this argument specifies
+        which fields to compare first, second, etc. A single field can
+        be specified as a string, and not all fields need to be specified,
+        but unspecified fields will still be used, in the order in which
+        they come up in the dtype, to break ties.
+
+    See Also
+    --------
+    numpy.partition : Return a partitioned copy of an array.
+    argpartition : Indirect partition.
+    sort : Full sort.
+
+    Notes
+    -----
+    See ``np.partition`` for notes on the different algorithms.
+
+    Examples
+    --------
+    >>> a = np.array([3, 4, 2, 1])
+    >>> a.partition(3)
+    >>> a
+    array([2, 1, 3, 4])
+
+    >>> a.partition((1, 3))
+    >>> a
+    array([1, 2, 3, 4])
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('squeeze',
+    """
+    a.squeeze(axis=None)
+
+    Remove axes of length one from `a`.
+
+    Refer to `numpy.squeeze` for full documentation.
+
+    See Also
+    --------
+    numpy.squeeze : equivalent function
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('std',
+    """
+    a.std(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True)
+
+    Returns the standard deviation of the array elements along given axis.
+
+    Refer to `numpy.std` for full documentation.
+
+    See Also
+    --------
+    numpy.std : equivalent function
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('sum',
+    """
+    a.sum(axis=None, dtype=None, out=None, keepdims=False, initial=0, where=True)
+
+    Return the sum of the array elements over the given axis.
+
+    Refer to `numpy.sum` for full documentation.
+
+    See Also
+    --------
+    numpy.sum : equivalent function
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('swapaxes',
+    """
+    a.swapaxes(axis1, axis2)
+
+    Return a view of the array with `axis1` and `axis2` interchanged.
+
+    Refer to `numpy.swapaxes` for full documentation.
+
+    See Also
+    --------
+    numpy.swapaxes : equivalent function
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('take',
+    """
+    a.take(indices, axis=None, out=None, mode='raise')
+
+    Return an array formed from the elements of `a` at the given indices.
+
+    Refer to `numpy.take` for full documentation.
+
+    See Also
+    --------
+    numpy.take : equivalent function
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('tofile',
+    """
+    a.tofile(fid, sep="", format="%s")
+
+    Write array to a file as text or binary (default).
+
+    Data is always written in 'C' order, independent of the order of `a`.
+    The data produced by this method can be recovered using the function
+    fromfile().
+
+    Parameters
+    ----------
+    fid : file or str or Path
+        An open file object, or a string containing a filename.
+
+        .. versionchanged:: 1.17.0
+            `pathlib.Path` objects are now accepted.
+
+    sep : str
+        Separator between array items for text output.
+        If "" (empty), a binary file is written, equivalent to
+        ``file.write(a.tobytes())``.
+    format : str
+        Format string for text file output.
+        Each entry in the array is formatted to text by first converting
+        it to the closest Python type, and then using "format" % item.
+
+    Notes
+    -----
+    This is a convenience function for quick storage of array data.
+    Information on endianness and precision is lost, so this method is not a
+    good choice for files intended to archive data or transport data between
+    machines with different endianness. Some of these problems can be overcome
+    by outputting the data as text files, at the expense of speed and file
+    size.
+
+    When fid is a file object, array contents are directly written to the
+    file, bypassing the file object's ``write`` method. As a result, tofile
+    cannot be used with files objects supporting compression (e.g., GzipFile)
+    or file-like objects that do not support ``fileno()`` (e.g., BytesIO).
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('tolist',
+    """
+    a.tolist()
+
+    Return the array as an ``a.ndim``-levels deep nested list of Python scalars.
+
+    Return a copy of the array data as a (nested) Python list.
+    Data items are converted to the nearest compatible builtin Python type, via
+    the `~numpy.ndarray.item` function.
+
+    If ``a.ndim`` is 0, then since the depth of the nested list is 0, it will
+    not be a list at all, but a simple Python scalar.
+
+    Parameters
+    ----------
+    none
+
+    Returns
+    -------
+    y : object, or list of object, or list of list of object, or ...
+        The possibly nested list of array elements.
+
+    Notes
+    -----
+    The array may be recreated via ``a = np.array(a.tolist())``, although this
+    may sometimes lose precision.
+
+    Examples
+    --------
+    For a 1D array, ``a.tolist()`` is almost the same as ``list(a)``,
+    except that ``tolist`` changes numpy scalars to Python scalars:
+
+    >>> a = np.uint32([1, 2])
+    >>> a_list = list(a)
+    >>> a_list
+    [1, 2]
+    >>> type(a_list[0])
+    <class 'numpy.uint32'>
+    >>> a_tolist = a.tolist()
+    >>> a_tolist
+    [1, 2]
+    >>> type(a_tolist[0])
+    <class 'int'>
+
+    Additionally, for a 2D array, ``tolist`` applies recursively:
+
+    >>> a = np.array([[1, 2], [3, 4]])
+    >>> list(a)
+    [array([1, 2]), array([3, 4])]
+    >>> a.tolist()
+    [[1, 2], [3, 4]]
+
+    The base case for this recursion is a 0D array:
+
+    >>> a = np.array(1)
+    >>> list(a)
+    Traceback (most recent call last):
+      ...
+    TypeError: iteration over a 0-d array
+    >>> a.tolist()
+    1
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('tobytes', """
+    a.tobytes(order='C')
+
+    Construct Python bytes containing the raw data bytes in the array.
+
+    Constructs Python bytes showing a copy of the raw contents of
+    data memory. The bytes object is produced in C-order by default.
+    This behavior is controlled by the ``order`` parameter.
+
+    .. versionadded:: 1.9.0
+
+    Parameters
+    ----------
+    order : {'C', 'F', 'A'}, optional
+        Controls the memory layout of the bytes object. 'C' means C-order,
+        'F' means F-order, 'A' (short for *Any*) means 'F' if `a` is
+        Fortran contiguous, 'C' otherwise. Default is 'C'.
+
+    Returns
+    -------
+    s : bytes
+        Python bytes exhibiting a copy of `a`'s raw data.
+
+    See also
+    --------
+    frombuffer
+        Inverse of this operation, construct a 1-dimensional array from Python
+        bytes.
+
+    Examples
+    --------
+    >>> x = np.array([[0, 1], [2, 3]], dtype='<u2')
+    >>> x.tobytes()
+    b'\\x00\\x00\\x01\\x00\\x02\\x00\\x03\\x00'
+    >>> x.tobytes('C') == x.tobytes()
+    True
+    >>> x.tobytes('F')
+    b'\\x00\\x00\\x02\\x00\\x01\\x00\\x03\\x00'
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('tostring', r"""
+    a.tostring(order='C')
+
+    A compatibility alias for `tobytes`, with exactly the same behavior.
+
+    Despite its name, it returns `bytes` not `str`\ s.
+
+    .. deprecated:: 1.19.0
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('trace',
+    """
+    a.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
+
+    Return the sum along diagonals of the array.
+
+    Refer to `numpy.trace` for full documentation.
+
+    See Also
+    --------
+    numpy.trace : equivalent function
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('transpose',
+    """
+    a.transpose(*axes)
+
+    Returns a view of the array with axes transposed.
+
+    Refer to `numpy.transpose` for full documentation.
+
+    Parameters
+    ----------
+    axes : None, tuple of ints, or `n` ints
+
+     * None or no argument: reverses the order of the axes.
+
+     * tuple of ints: `i` in the `j`-th place in the tuple means that the
+       array's `i`-th axis becomes the transposed array's `j`-th axis.
+
+     * `n` ints: same as an n-tuple of the same ints (this form is
+       intended simply as a "convenience" alternative to the tuple form).
+
+    Returns
+    -------
+    p : ndarray
+        View of the array with its axes suitably permuted.
+
+    See Also
+    --------
+    transpose : Equivalent function.
+    ndarray.T : Array property returning the array transposed.
+    ndarray.reshape : Give a new shape to an array without changing its data.
+
+    Examples
+    --------
+    >>> a = np.array([[1, 2], [3, 4]])
+    >>> a
+    array([[1, 2],
+           [3, 4]])
+    >>> a.transpose()
+    array([[1, 3],
+           [2, 4]])
+    >>> a.transpose((1, 0))
+    array([[1, 3],
+           [2, 4]])
+    >>> a.transpose(1, 0)
+    array([[1, 3],
+           [2, 4]])
+
+    >>> a = np.array([1, 2, 3, 4])
+    >>> a
+    array([1, 2, 3, 4])
+    >>> a.transpose()
+    array([1, 2, 3, 4])
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('var',
+    """
+    a.var(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True)
+
+    Returns the variance of the array elements, along given axis.
+
+    Refer to `numpy.var` for full documentation.
+
+    See Also
+    --------
+    numpy.var : equivalent function
+
+    """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('view',
+    """
+    a.view([dtype][, type])
+
+    New view of array with the same data.
+
+    .. note::
+        Passing None for ``dtype`` is different from omitting the parameter,
+        since the former invokes ``dtype(None)`` which is an alias for
+        ``dtype('float_')``.
+
+    Parameters
+    ----------
+    dtype : data-type or ndarray sub-class, optional
+        Data-type descriptor of the returned view, e.g., float32 or int16.
+        Omitting it results in the view having the same data-type as `a`.
+        This argument can also be specified as an ndarray sub-class, which
+        then specifies the type of the returned object (this is equivalent to
+        setting the ``type`` parameter).
+    type : Python type, optional
+        Type of the returned view, e.g., ndarray or matrix.  Again, omission
+        of the parameter results in type preservation.
+
+    Notes
+    -----
+    ``a.view()`` is used two different ways:
+
+    ``a.view(some_dtype)`` or ``a.view(dtype=some_dtype)`` constructs a view
+    of the array's memory with a different data-type.  This can cause a
+    reinterpretation of the bytes of memory.
+
+    ``a.view(ndarray_subclass)`` or ``a.view(type=ndarray_subclass)`` just
+    returns an instance of `ndarray_subclass` that looks at the same array
+    (same shape, dtype, etc.)  This does not cause a reinterpretation of the
+    memory.
+
+    For ``a.view(some_dtype)``, if ``some_dtype`` has a different number of
+    bytes per entry than the previous dtype (for example, converting a regular
+    array to a structured array), then the last axis of ``a`` must be
+    contiguous. This axis will be resized in the result.
+
+    .. versionchanged:: 1.23.0
+       Only the last axis needs to be contiguous. Previously, the entire array
+       had to be C-contiguous.
+
+    Examples
+    --------
+    >>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])
+
+    Viewing array data using a different type and dtype:
+
+    >>> y = x.view(dtype=np.int16, type=np.matrix)
+    >>> y
+    matrix([[513]], dtype=int16)
+    >>> print(type(y))
+    <class 'numpy.matrix'>
+
+    Creating a view on a structured array so it can be used in calculations
+
+    >>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
+    >>> xv = x.view(dtype=np.int8).reshape(-1,2)
+    >>> xv
+    array([[1, 2],
+           [3, 4]], dtype=int8)
+    >>> xv.mean(0)
+    array([2.,  3.])
+
+    Making changes to the view changes the underlying array
+
+    >>> xv[0,1] = 20
+    >>> x
+    array([(1, 20), (3,  4)], dtype=[('a', 'i1'), ('b', 'i1')])
+
+    Using a view to convert an array to a recarray:
+
+    >>> z = x.view(np.recarray)
+    >>> z.a
+    array([1, 3], dtype=int8)
+
+    Views share data:
+
+    >>> x[0] = (9, 10)
+    >>> z[0]
+    (9, 10)
+
+    Views that change the dtype size (bytes per entry) should normally be
+    avoided on arrays defined by slices, transposes, fortran-ordering, etc.:
+
+    >>> x = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int16)
+    >>> y = x[:, ::2]
+    >>> y
+    array([[1, 3],
+           [4, 6]], dtype=int16)
+    >>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
+    Traceback (most recent call last):
+        ...
+    ValueError: To change to a dtype of a different size, the last axis must be contiguous
+    >>> z = y.copy()
+    >>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
+    array([[(1, 3)],
+           [(4, 6)]], dtype=[('width', '<i2'), ('length', '<i2')])
+
+    However, views that change dtype are totally fine for arrays with a
+    contiguous last axis, even if the rest of the axes are not C-contiguous:
+
+    >>> x = np.arange(2 * 3 * 4, dtype=np.int8).reshape(2, 3, 4)
+    >>> x.transpose(1, 0, 2).view(np.int16)
+    array([[[ 256,  770],
+            [3340, 3854]],
+    <BLANKLINE>
+           [[1284, 1798],
+            [4368, 4882]],
+    <BLANKLINE>
+           [[2312, 2826],
+            [5396, 5910]]], dtype=int16)
+
+    """))
+
+
+##############################################################################
+#
+# umath functions
+#
+##############################################################################
+
+add_newdoc('numpy.core.umath', 'frompyfunc',
+    """
+    frompyfunc(func, /, nin, nout, *[, identity])
+
+    Takes an arbitrary Python function and returns a NumPy ufunc.
+
+    Can be used, for example, to add broadcasting to a built-in Python
+    function (see Examples section).
+
+    Parameters
+    ----------
+    func : Python function object
+        An arbitrary Python function.
+    nin : int
+        The number of input arguments.
+    nout : int
+        The number of objects returned by `func`.
+    identity : object, optional
+        The value to use for the `~numpy.ufunc.identity` attribute of the resulting
+        object. If specified, this is equivalent to setting the underlying
+        C ``identity`` field to ``PyUFunc_IdentityValue``.
+        If omitted, the identity is set to ``PyUFunc_None``. Note that this is
+        _not_ equivalent to setting the identity to ``None``, which implies the
+        operation is reorderable.
+
+    Returns
+    -------
+    out : ufunc
+        Returns a NumPy universal function (``ufunc``) object.
+
+    See Also
+    --------
+    vectorize : Evaluates pyfunc over input arrays using broadcasting rules of numpy.
+
+    Notes
+    -----
+    The returned ufunc always returns PyObject arrays.
+
+    Examples
+    --------
+    Use frompyfunc to add broadcasting to the Python function ``oct``:
+
+    >>> oct_array = np.frompyfunc(oct, 1, 1)
+    >>> oct_array(np.array((10, 30, 100)))
+    array(['0o12', '0o36', '0o144'], dtype=object)
+    >>> np.array((oct(10), oct(30), oct(100))) # for comparison
+    array(['0o12', '0o36', '0o144'], dtype='<U5')
+
+    """)
+
+add_newdoc('numpy.core.umath', 'geterrobj',
+    """
+    geterrobj()
+
+    Return the current object that defines floating-point error handling.
+
+    The error object contains all information that defines the error handling
+    behavior in NumPy. `geterrobj` is used internally by the other
+    functions that get and set error handling behavior (`geterr`, `seterr`,
+    `geterrcall`, `seterrcall`).
+
+    Returns
+    -------
+    errobj : list
+        The error object, a list containing three elements:
+        [internal numpy buffer size, error mask, error callback function].
+
+        The error mask is a single integer that holds the treatment information
+        on all four floating point errors. The information for each error type
+        is contained in three bits of the integer. If we print it in base 8, we
+        can see what treatment is set for "invalid", "under", "over", and
+        "divide" (in that order). The printed string can be interpreted with
+
+        * 0 : 'ignore'
+        * 1 : 'warn'
+        * 2 : 'raise'
+        * 3 : 'call'
+        * 4 : 'print'
+        * 5 : 'log'
+
+    See Also
+    --------
+    seterrobj, seterr, geterr, seterrcall, geterrcall
+    getbufsize, setbufsize
+
+    Notes
+    -----
+    For complete documentation of the types of floating-point exceptions and
+    treatment options, see `seterr`.
+
+    Examples
+    --------
+    >>> np.geterrobj()  # first get the defaults
+    [8192, 521, None]
+
+    >>> def err_handler(type, flag):
+    ...     print("Floating point error (%s), with flag %s" % (type, flag))
+    ...
+    >>> old_bufsize = np.setbufsize(20000)
+    >>> old_err = np.seterr(divide='raise')
+    >>> old_handler = np.seterrcall(err_handler)
+    >>> np.geterrobj()
+    [8192, 521, <function err_handler at 0x91dcaac>]
+
+    >>> old_err = np.seterr(all='ignore')
+    >>> np.base_repr(np.geterrobj()[1], 8)
+    '0'
+    >>> old_err = np.seterr(divide='warn', over='log', under='call',
+    ...                     invalid='print')
+    >>> np.base_repr(np.geterrobj()[1], 8)
+    '4351'
+
+    """)
+
+add_newdoc('numpy.core.umath', 'seterrobj',
+    """
+    seterrobj(errobj, /)
+
+    Set the object that defines floating-point error handling.
+
+    The error object contains all information that defines the error handling
+    behavior in NumPy. `seterrobj` is used internally by the other
+    functions that set error handling behavior (`seterr`, `seterrcall`).
+
+    Parameters
+    ----------
+    errobj : list
+        The error object, a list containing three elements:
+        [internal numpy buffer size, error mask, error callback function].
+
+        The error mask is a single integer that holds the treatment information
+        on all four floating point errors. The information for each error type
+        is contained in three bits of the integer. If we print it in base 8, we
+        can see what treatment is set for "invalid", "under", "over", and
+        "divide" (in that order). The printed string can be interpreted with
+
+        * 0 : 'ignore'
+        * 1 : 'warn'
+        * 2 : 'raise'
+        * 3 : 'call'
+        * 4 : 'print'
+        * 5 : 'log'
+
+    See Also
+    --------
+    geterrobj, seterr, geterr, seterrcall, geterrcall
+    getbufsize, setbufsize
+
+    Notes
+    -----
+    For complete documentation of the types of floating-point exceptions and
+    treatment options, see `seterr`.
+
+    Examples
+    --------
+    >>> old_errobj = np.geterrobj()  # first get the defaults
+    >>> old_errobj
+    [8192, 521, None]
+
+    >>> def err_handler(type, flag):
+    ...     print("Floating point error (%s), with flag %s" % (type, flag))
+    ...
+    >>> new_errobj = [20000, 12, err_handler]
+    >>> np.seterrobj(new_errobj)
+    >>> np.base_repr(12, 8)  # int for divide=4 ('print') and over=1 ('warn')
+    '14'
+    >>> np.geterr()
+    {'over': 'warn', 'divide': 'print', 'invalid': 'ignore', 'under': 'ignore'}
+    >>> np.geterrcall() is err_handler
+    True
+
+    """)
+
+
+##############################################################################
+#
+# compiled_base functions
+#
+##############################################################################
+
+add_newdoc('numpy.core.multiarray', 'add_docstring',
+    """
+    add_docstring(obj, docstring)
+
+    Add a docstring to a built-in obj if possible.
+    If the obj already has a docstring raise a RuntimeError
+    If this routine does not know how to add a docstring to the object
+    raise a TypeError
+    """)
+
+add_newdoc('numpy.core.umath', '_add_newdoc_ufunc',
+    """
+    add_ufunc_docstring(ufunc, new_docstring)
+
+    Replace the docstring for a ufunc with new_docstring.
+    This method will only work if the current docstring for
+    the ufunc is NULL. (At the C level, i.e. when ufunc->doc is NULL.)
+
+    Parameters
+    ----------
+    ufunc : numpy.ufunc
+        A ufunc whose current doc is NULL.
+    new_docstring : string
+        The new docstring for the ufunc.
+
+    Notes
+    -----
+    This method allocates memory for new_docstring on
+    the heap. Technically this creates a mempory leak, since this
+    memory will not be reclaimed until the end of the program
+    even if the ufunc itself is removed. However this will only
+    be a problem if the user is repeatedly creating ufuncs with
+    no documentation, adding documentation via add_newdoc_ufunc,
+    and then throwing away the ufunc.
+    """)
+
+add_newdoc('numpy.core.multiarray', 'get_handler_name',
+    """
+    get_handler_name(a: ndarray) -> str,None
+
+    Return the name of the memory handler used by `a`. If not provided, return
+    the name of the memory handler that will be used to allocate data for the
+    next `ndarray` in this context. May return None if `a` does not own its
+    memory, in which case you can traverse ``a.base`` for a memory handler.
+    """)
+
+add_newdoc('numpy.core.multiarray', 'get_handler_version',
+    """
+    get_handler_version(a: ndarray) -> int,None
+
+    Return the version of the memory handler used by `a`. If not provided,
+    return the version of the memory handler that will be used to allocate data
+    for the next `ndarray` in this context. May return None if `a` does not own
+    its memory, in which case you can traverse ``a.base`` for a memory handler.
+    """)
+
+add_newdoc('numpy.core.multiarray', '_get_madvise_hugepage',
+    """
+    _get_madvise_hugepage() -> bool
+
+    Get use of ``madvise (2)`` MADV_HUGEPAGE support when
+    allocating the array data. Returns the currently set value.
+    See `global_state` for more information.
+    """)
+
+add_newdoc('numpy.core.multiarray', '_set_madvise_hugepage',
+    """
+    _set_madvise_hugepage(enabled: bool) -> bool
+
+    Set  or unset use of ``madvise (2)`` MADV_HUGEPAGE support when
+    allocating the array data. Returns the previously set value.
+    See `global_state` for more information.
+    """)
+
+add_newdoc('numpy.core._multiarray_tests', 'format_float_OSprintf_g',
+    """
+    format_float_OSprintf_g(val, precision)
+
+    Print a floating point scalar using the system's printf function,
+    equivalent to:
+
+        printf("%.*g", precision, val);
+
+    for half/float/double, or replacing 'g' by 'Lg' for longdouble. This
+    method is designed to help cross-validate the format_float_* methods.
+
+    Parameters
+    ----------
+    val : python float or numpy floating scalar
+        Value to format.
+
+    precision : non-negative integer, optional
+        Precision given to printf.
+
+    Returns
+    -------
+    rep : string
+        The string representation of the floating point value
+
+    See Also
+    --------
+    format_float_scientific
+    format_float_positional
+    """)
+
+
+##############################################################################
+#
+# Documentation for ufunc attributes and methods
+#
+##############################################################################
+
+
+##############################################################################
+#
+# ufunc object
+#
+##############################################################################
+
+add_newdoc('numpy.core', 'ufunc',
+    """
+    Functions that operate element by element on whole arrays.
+
+    To see the documentation for a specific ufunc, use `info`.  For
+    example, ``np.info(np.sin)``.  Because ufuncs are written in C
+    (for speed) and linked into Python with NumPy's ufunc facility,
+    Python's help() function finds this page whenever help() is called
+    on a ufunc.
+
+    A detailed explanation of ufuncs can be found in the docs for :ref:`ufuncs`.
+
+    **Calling ufuncs:** ``op(*x[, out], where=True, **kwargs)``
+
+    Apply `op` to the arguments `*x` elementwise, broadcasting the arguments.
+
+    The broadcasting rules are:
+
+    * Dimensions of length 1 may be prepended to either array.
+    * Arrays may be repeated along dimensions of length 1.
+
+    Parameters
+    ----------
+    *x : array_like
+        Input arrays.
+    out : ndarray, None, or tuple of ndarray and None, optional
+        Alternate array object(s) in which to put the result; if provided, it
+        must have a shape that the inputs broadcast to. A tuple of arrays
+        (possible only as a keyword argument) must have length equal to the
+        number of outputs; use None for uninitialized outputs to be
+        allocated by the ufunc.
+    where : array_like, optional
+        This condition is broadcast over the input. At locations where the
+        condition is True, the `out` array will be set to the ufunc result.
+        Elsewhere, the `out` array will retain its original value.
+        Note that if an uninitialized `out` array is created via the default
+        ``out=None``, locations within it where the condition is False will
+        remain uninitialized.
+    **kwargs
+        For other keyword-only arguments, see the :ref:`ufunc docs <ufuncs.kwargs>`.
+
+    Returns
+    -------
+    r : ndarray or tuple of ndarray
+        `r` will have the shape that the arrays in `x` broadcast to; if `out` is
+        provided, it will be returned. If not, `r` will be allocated and
+        may contain uninitialized values. If the function has more than one
+        output, then the result will be a tuple of arrays.
+
+    """)
+
+
+##############################################################################
+#
+# ufunc attributes
+#
+##############################################################################
+
+add_newdoc('numpy.core', 'ufunc', ('identity',
+    """
+    The identity value.
+
+    Data attribute containing the identity element for the ufunc, if it has one.
+    If it does not, the attribute value is None.
+
+    Examples
+    --------
+    >>> np.add.identity
+    0
+    >>> np.multiply.identity
+    1
+    >>> np.power.identity
+    1
+    >>> print(np.exp.identity)
+    None
+    """))
+
+add_newdoc('numpy.core', 'ufunc', ('nargs',
+    """
+    The number of arguments.
+
+    Data attribute containing the number of arguments the ufunc takes, including
+    optional ones.
+
+    Notes
+    -----
+    Typically this value will be one more than what you might expect because all
+    ufuncs take  the optional "out" argument.
+
+    Examples
+    --------
+    >>> np.add.nargs
+    3
+    >>> np.multiply.nargs
+    3
+    >>> np.power.nargs
+    3
+    >>> np.exp.nargs
+    2
+    """))
+
+add_newdoc('numpy.core', 'ufunc', ('nin',
+    """
+    The number of inputs.
+
+    Data attribute containing the number of arguments the ufunc treats as input.
+
+    Examples
+    --------
+    >>> np.add.nin
+    2
+    >>> np.multiply.nin
+    2
+    >>> np.power.nin
+    2
+    >>> np.exp.nin
+    1
+    """))
+
+add_newdoc('numpy.core', 'ufunc', ('nout',
+    """
+    The number of outputs.
+
+    Data attribute containing the number of arguments the ufunc treats as output.
+
+    Notes
+    -----
+    Since all ufuncs can take output arguments, this will always be (at least) 1.
+
+    Examples
+    --------
+    >>> np.add.nout
+    1
+    >>> np.multiply.nout
+    1
+    >>> np.power.nout
+    1
+    >>> np.exp.nout
+    1
+
+    """))
+
+add_newdoc('numpy.core', 'ufunc', ('ntypes',
+    """
+    The number of types.
+
+    The number of numerical NumPy types - of which there are 18 total - on which
+    the ufunc can operate.
+
+    See Also
+    --------
+    numpy.ufunc.types
+
+    Examples
+    --------
+    >>> np.add.ntypes
+    18
+    >>> np.multiply.ntypes
+    18
+    >>> np.power.ntypes
+    17
+    >>> np.exp.ntypes
+    7
+    >>> np.remainder.ntypes
+    14
+
+    """))
+
+add_newdoc('numpy.core', 'ufunc', ('types',
+    """
+    Returns a list with types grouped input->output.
+
+    Data attribute listing the data-type "Domain-Range" groupings the ufunc can
+    deliver. The data-types are given using the character codes.
+
+    See Also
+    --------
+    numpy.ufunc.ntypes
+
+    Examples
+    --------
+    >>> np.add.types
+    ['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l',
+    'LL->L', 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D',
+    'GG->G', 'OO->O']
+
+    >>> np.multiply.types
+    ['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l',
+    'LL->L', 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D',
+    'GG->G', 'OO->O']
+
+    >>> np.power.types
+    ['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 'LL->L',
+    'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D', 'GG->G',
+    'OO->O']
+
+    >>> np.exp.types
+    ['f->f', 'd->d', 'g->g', 'F->F', 'D->D', 'G->G', 'O->O']
+
+    >>> np.remainder.types
+    ['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 'LL->L',
+    'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'OO->O']
+
+    """))
+
+add_newdoc('numpy.core', 'ufunc', ('signature',
+    """
+    Definition of the core elements a generalized ufunc operates on.
+
+    The signature determines how the dimensions of each input/output array
+    are split into core and loop dimensions:
+
+    1. Each dimension in the signature is matched to a dimension of the
+       corresponding passed-in array, starting from the end of the shape tuple.
+    2. Core dimensions assigned to the same label in the signature must have
+       exactly matching sizes, no broadcasting is performed.
+    3. The core dimensions are removed from all inputs and the remaining
+       dimensions are broadcast together, defining the loop dimensions.
+
+    Notes
+    -----
+    Generalized ufuncs are used internally in many linalg functions, and in
+    the testing suite; the examples below are taken from these.
+    For ufuncs that operate on scalars, the signature is None, which is
+    equivalent to '()' for every argument.
+
+    Examples
+    --------
+    >>> np.core.umath_tests.matrix_multiply.signature
+    '(m,n),(n,p)->(m,p)'
+    >>> np.linalg._umath_linalg.det.signature
+    '(m,m)->()'
+    >>> np.add.signature is None
+    True  # equivalent to '(),()->()'
+    """))
+
+##############################################################################
+#
+# ufunc methods
+#
+##############################################################################
+
+add_newdoc('numpy.core', 'ufunc', ('reduce',
+    """
+    reduce(array, axis=0, dtype=None, out=None, keepdims=False, initial=<no value>, where=True)
+
+    Reduces `array`'s dimension by one, by applying ufunc along one axis.
+
+    Let :math:`array.shape = (N_0, ..., N_i, ..., N_{M-1})`.  Then
+    :math:`ufunc.reduce(array, axis=i)[k_0, ..,k_{i-1}, k_{i+1}, .., k_{M-1}]` =
+    the result of iterating `j` over :math:`range(N_i)`, cumulatively applying
+    ufunc to each :math:`array[k_0, ..,k_{i-1}, j, k_{i+1}, .., k_{M-1}]`.
+    For a one-dimensional array, reduce produces results equivalent to:
+    ::
+
+     r = op.identity # op = ufunc
+     for i in range(len(A)):
+       r = op(r, A[i])
+     return r
+
+    For example, add.reduce() is equivalent to sum().
+
+    Parameters
+    ----------
+    array : array_like
+        The array to act on.
+    axis : None or int or tuple of ints, optional
+        Axis or axes along which a reduction is performed.
+        The default (`axis` = 0) is perform a reduction over the first
+        dimension of the input array. `axis` may be negative, in
+        which case it counts from the last to the first axis.
+
+        .. versionadded:: 1.7.0
+
+        If this is None, a reduction is performed over all the axes.
+        If this is a tuple of ints, a reduction is performed on multiple
+        axes, instead of a single axis or all the axes as before.
+
+        For operations which are either not commutative or not associative,
+        doing a reduction over multiple axes is not well-defined. The
+        ufuncs do not currently raise an exception in this case, but will
+        likely do so in the future.
+    dtype : data-type code, optional
+        The type used to represent the intermediate results. Defaults
+        to the data-type of the output array if this is provided, or
+        the data-type of the input array if no output array is provided.
+    out : ndarray, None, or tuple of ndarray and None, optional
+        A location into which the result is stored. If not provided or None,
+        a freshly-allocated array is returned. For consistency with
+        ``ufunc.__call__``, if given as a keyword, this may be wrapped in a
+        1-element tuple.
+
+        .. versionchanged:: 1.13.0
+           Tuples are allowed for keyword argument.
+    keepdims : bool, optional
+        If this is set to True, the axes which are reduced are left
+        in the result as dimensions with size one. With this option,
+        the result will broadcast correctly against the original `array`.
+
+        .. versionadded:: 1.7.0
+    initial : scalar, optional
+        The value with which to start the reduction.
+        If the ufunc has no identity or the dtype is object, this defaults
+        to None - otherwise it defaults to ufunc.identity.
+        If ``None`` is given, the first element of the reduction is used,
+        and an error is thrown if the reduction is empty.
+
+        .. versionadded:: 1.15.0
+
+    where : array_like of bool, optional
+        A boolean array which is broadcasted to match the dimensions
+        of `array`, and selects elements to include in the reduction. Note
+        that for ufuncs like ``minimum`` that do not have an identity
+        defined, one has to pass in also ``initial``.
+
+        .. versionadded:: 1.17.0
+
+    Returns
+    -------
+    r : ndarray
+        The reduced array. If `out` was supplied, `r` is a reference to it.
+
+    Examples
+    --------
+    >>> np.multiply.reduce([2,3,5])
+    30
+
+    A multi-dimensional array example:
+
+    >>> X = np.arange(8).reshape((2,2,2))
+    >>> X
+    array([[[0, 1],
+            [2, 3]],
+           [[4, 5],
+            [6, 7]]])
+    >>> np.add.reduce(X, 0)
+    array([[ 4,  6],
+           [ 8, 10]])
+    >>> np.add.reduce(X) # confirm: default axis value is 0
+    array([[ 4,  6],
+           [ 8, 10]])
+    >>> np.add.reduce(X, 1)
+    array([[ 2,  4],
+           [10, 12]])
+    >>> np.add.reduce(X, 2)
+    array([[ 1,  5],
+           [ 9, 13]])
+
+    You can use the ``initial`` keyword argument to initialize the reduction
+    with a different value, and ``where`` to select specific elements to include:
+
+    >>> np.add.reduce([10], initial=5)
+    15
+    >>> np.add.reduce(np.ones((2, 2, 2)), axis=(0, 2), initial=10)
+    array([14., 14.])
+    >>> a = np.array([10., np.nan, 10])
+    >>> np.add.reduce(a, where=~np.isnan(a))
+    20.0
+
+    Allows reductions of empty arrays where they would normally fail, i.e.
+    for ufuncs without an identity.
+
+    >>> np.minimum.reduce([], initial=np.inf)
+    inf
+    >>> np.minimum.reduce([[1., 2.], [3., 4.]], initial=10., where=[True, False])
+    array([ 1., 10.])
+    >>> np.minimum.reduce([])
+    Traceback (most recent call last):
+        ...
+    ValueError: zero-size array to reduction operation minimum which has no identity
+    """))
+
+add_newdoc('numpy.core', 'ufunc', ('accumulate',
+    """
+    accumulate(array, axis=0, dtype=None, out=None)
+
+    Accumulate the result of applying the operator to all elements.
+
+    For a one-dimensional array, accumulate produces results equivalent to::
+
+      r = np.empty(len(A))
+      t = op.identity        # op = the ufunc being applied to A's  elements
+      for i in range(len(A)):
+          t = op(t, A[i])
+          r[i] = t
+      return r
+
+    For example, add.accumulate() is equivalent to np.cumsum().
+
+    For a multi-dimensional array, accumulate is applied along only one
+    axis (axis zero by default; see Examples below) so repeated use is
+    necessary if one wants to accumulate over multiple axes.
+
+    Parameters
+    ----------
+    array : array_like
+        The array to act on.
+    axis : int, optional
+        The axis along which to apply the accumulation; default is zero.
+    dtype : data-type code, optional
+        The data-type used to represent the intermediate results. Defaults
+        to the data-type of the output array if such is provided, or the
+        data-type of the input array if no output array is provided.
+    out : ndarray, None, or tuple of ndarray and None, optional
+        A location into which the result is stored. If not provided or None,
+        a freshly-allocated array is returned. For consistency with
+        ``ufunc.__call__``, if given as a keyword, this may be wrapped in a
+        1-element tuple.
+
+        .. versionchanged:: 1.13.0
+           Tuples are allowed for keyword argument.
+
+    Returns
+    -------
+    r : ndarray
+        The accumulated values. If `out` was supplied, `r` is a reference to
+        `out`.
+
+    Examples
+    --------
+    1-D array examples:
+
+    >>> np.add.accumulate([2, 3, 5])
+    array([ 2,  5, 10])
+    >>> np.multiply.accumulate([2, 3, 5])
+    array([ 2,  6, 30])
+
+    2-D array examples:
+
+    >>> I = np.eye(2)
+    >>> I
+    array([[1.,  0.],
+           [0.,  1.]])
+
+    Accumulate along axis 0 (rows), down columns:
+
+    >>> np.add.accumulate(I, 0)
+    array([[1.,  0.],
+           [1.,  1.]])
+    >>> np.add.accumulate(I) # no axis specified = axis zero
+    array([[1.,  0.],
+           [1.,  1.]])
+
+    Accumulate along axis 1 (columns), through rows:
+
+    >>> np.add.accumulate(I, 1)
+    array([[1.,  1.],
+           [0.,  1.]])
+
+    """))
+
+add_newdoc('numpy.core', 'ufunc', ('reduceat',
+    """
+    reduceat(array, indices, axis=0, dtype=None, out=None)
+
+    Performs a (local) reduce with specified slices over a single axis.
+
+    For i in ``range(len(indices))``, `reduceat` computes
+    ``ufunc.reduce(array[indices[i]:indices[i+1]])``, which becomes the i-th
+    generalized "row" parallel to `axis` in the final result (i.e., in a
+    2-D array, for example, if `axis = 0`, it becomes the i-th row, but if
+    `axis = 1`, it becomes the i-th column).  There are three exceptions to this:
+
+    * when ``i = len(indices) - 1`` (so for the last index),
+      ``indices[i+1] = array.shape[axis]``.
+    * if ``indices[i] >= indices[i + 1]``, the i-th generalized "row" is
+      simply ``array[indices[i]]``.
+    * if ``indices[i] >= len(array)`` or ``indices[i] < 0``, an error is raised.
+
+    The shape of the output depends on the size of `indices`, and may be
+    larger than `array` (this happens if ``len(indices) > array.shape[axis]``).
+
+    Parameters
+    ----------
+    array : array_like
+        The array to act on.
+    indices : array_like
+        Paired indices, comma separated (not colon), specifying slices to
+        reduce.
+    axis : int, optional
+        The axis along which to apply the reduceat.
+    dtype : data-type code, optional
+        The type used to represent the intermediate results. Defaults
+        to the data type of the output array if this is provided, or
+        the data type of the input array if no output array is provided.
+    out : ndarray, None, or tuple of ndarray and None, optional
+        A location into which the result is stored. If not provided or None,
+        a freshly-allocated array is returned. For consistency with
+        ``ufunc.__call__``, if given as a keyword, this may be wrapped in a
+        1-element tuple.
+
+        .. versionchanged:: 1.13.0
+           Tuples are allowed for keyword argument.
+
+    Returns
+    -------
+    r : ndarray
+        The reduced values. If `out` was supplied, `r` is a reference to
+        `out`.
+
+    Notes
+    -----
+    A descriptive example:
+
+    If `array` is 1-D, the function `ufunc.accumulate(array)` is the same as
+    ``ufunc.reduceat(array, indices)[::2]`` where `indices` is
+    ``range(len(array) - 1)`` with a zero placed
+    in every other element:
+    ``indices = zeros(2 * len(array) - 1)``,
+    ``indices[1::2] = range(1, len(array))``.
+
+    Don't be fooled by this attribute's name: `reduceat(array)` is not
+    necessarily smaller than `array`.
+
+    Examples
+    --------
+    To take the running sum of four successive values:
+
+    >>> np.add.reduceat(np.arange(8),[0,4, 1,5, 2,6, 3,7])[::2]
+    array([ 6, 10, 14, 18])
+
+    A 2-D example:
+
+    >>> x = np.linspace(0, 15, 16).reshape(4,4)
+    >>> x
+    array([[ 0.,   1.,   2.,   3.],
+           [ 4.,   5.,   6.,   7.],
+           [ 8.,   9.,  10.,  11.],
+           [12.,  13.,  14.,  15.]])
+
+    ::
+
+     # reduce such that the result has the following five rows:
+     # [row1 + row2 + row3]
+     # [row4]
+     # [row2]
+     # [row3]
+     # [row1 + row2 + row3 + row4]
+
+    >>> np.add.reduceat(x, [0, 3, 1, 2, 0])
+    array([[12.,  15.,  18.,  21.],
+           [12.,  13.,  14.,  15.],
+           [ 4.,   5.,   6.,   7.],
+           [ 8.,   9.,  10.,  11.],
+           [24.,  28.,  32.,  36.]])
+
+    ::
+
+     # reduce such that result has the following two columns:
+     # [col1 * col2 * col3, col4]
+
+    >>> np.multiply.reduceat(x, [0, 3], 1)
+    array([[   0.,     3.],
+           [ 120.,     7.],
+           [ 720.,    11.],
+           [2184.,    15.]])
+
+    """))
+
+add_newdoc('numpy.core', 'ufunc', ('outer',
+    r"""
+    outer(A, B, /, **kwargs)
+
+    Apply the ufunc `op` to all pairs (a, b) with a in `A` and b in `B`.
+
+    Let ``M = A.ndim``, ``N = B.ndim``. Then the result, `C`, of
+    ``op.outer(A, B)`` is an array of dimension M + N such that:
+
+    .. math:: C[i_0, ..., i_{M-1}, j_0, ..., j_{N-1}] =
+       op(A[i_0, ..., i_{M-1}], B[j_0, ..., j_{N-1}])
+
+    For `A` and `B` one-dimensional, this is equivalent to::
+
+      r = empty(len(A),len(B))
+      for i in range(len(A)):
+          for j in range(len(B)):
+              r[i,j] = op(A[i], B[j])  # op = ufunc in question
+
+    Parameters
+    ----------
+    A : array_like
+        First array
+    B : array_like
+        Second array
+    kwargs : any
+        Arguments to pass on to the ufunc. Typically `dtype` or `out`.
+        See `ufunc` for a comprehensive overview of all available arguments.
+
+    Returns
+    -------
+    r : ndarray
+        Output array
+
+    See Also
+    --------
+    numpy.outer : A less powerful version of ``np.multiply.outer``
+                  that `ravel`\ s all inputs to 1D. This exists
+                  primarily for compatibility with old code.
+
+    tensordot : ``np.tensordot(a, b, axes=((), ()))`` and
+                ``np.multiply.outer(a, b)`` behave same for all
+                dimensions of a and b.
+
+    Examples
+    --------
+    >>> np.multiply.outer([1, 2, 3], [4, 5, 6])
+    array([[ 4,  5,  6],
+           [ 8, 10, 12],
+           [12, 15, 18]])
+
+    A multi-dimensional example:
+
+    >>> A = np.array([[1, 2, 3], [4, 5, 6]])
+    >>> A.shape
+    (2, 3)
+    >>> B = np.array([[1, 2, 3, 4]])
+    >>> B.shape
+    (1, 4)
+    >>> C = np.multiply.outer(A, B)
+    >>> C.shape; C
+    (2, 3, 1, 4)
+    array([[[[ 1,  2,  3,  4]],
+            [[ 2,  4,  6,  8]],
+            [[ 3,  6,  9, 12]]],
+           [[[ 4,  8, 12, 16]],
+            [[ 5, 10, 15, 20]],
+            [[ 6, 12, 18, 24]]]])
+
+    """))
+
+add_newdoc('numpy.core', 'ufunc', ('at',
+    """
+    at(a, indices, b=None, /)
+
+    Performs unbuffered in place operation on operand 'a' for elements
+    specified by 'indices'. For addition ufunc, this method is equivalent to
+    ``a[indices] += b``, except that results are accumulated for elements that
+    are indexed more than once. For example, ``a[[0,0]] += 1`` will only
+    increment the first element once because of buffering, whereas
+    ``add.at(a, [0,0], 1)`` will increment the first element twice.
+
+    .. versionadded:: 1.8.0
+
+    Parameters
+    ----------
+    a : array_like
+        The array to perform in place operation on.
+    indices : array_like or tuple
+        Array like index object or slice object for indexing into first
+        operand. If first operand has multiple dimensions, indices can be a
+        tuple of array like index objects or slice objects.
+    b : array_like
+        Second operand for ufuncs requiring two operands. Operand must be
+        broadcastable over first operand after indexing or slicing.
+
+    Examples
+    --------
+    Set items 0 and 1 to their negative values:
+
+    >>> a = np.array([1, 2, 3, 4])
+    >>> np.negative.at(a, [0, 1])
+    >>> a
+    array([-1, -2,  3,  4])
+
+    Increment items 0 and 1, and increment item 2 twice:
+
+    >>> a = np.array([1, 2, 3, 4])
+    >>> np.add.at(a, [0, 1, 2, 2], 1)
+    >>> a
+    array([2, 3, 5, 4])
+
+    Add items 0 and 1 in first array to second array,
+    and store results in first array:
+
+    >>> a = np.array([1, 2, 3, 4])
+    >>> b = np.array([1, 2])
+    >>> np.add.at(a, [0, 1], b)
+    >>> a
+    array([2, 4, 3, 4])
+
+    """))
+
+add_newdoc('numpy.core', 'ufunc', ('resolve_dtypes',
+    """
+    resolve_dtypes(dtypes, *, signature=None, casting=None, reduction=False)
+
+    Find the dtypes NumPy will use for the operation.  Both input and
+    output dtypes are returned and may differ from those provided.
+
+    .. note::
+
+        This function always applies NEP 50 rules since it is not provided
+        any actual values.  The Python types ``int``, ``float``, and
+        ``complex`` thus behave weak and should be passed for "untyped"
+        Python input.
+
+    Parameters
+    ----------
+    dtypes : tuple of dtypes, None, or literal int, float, complex
+        The input dtypes for each operand.  Output operands can be
+        None, indicating that the dtype must be found.
+    signature : tuple of DTypes or None, optional
+        If given, enforces exact DType (classes) of the specific operand.
+        The ufunc ``dtype`` argument is equivalent to passing a tuple with
+        only output dtypes set.
+    casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
+        The casting mode when casting is necessary.  This is identical to
+        the ufunc call casting modes.
+    reduction : boolean
+        If given, the resolution assumes a reduce operation is happening
+        which slightly changes the promotion and type resolution rules.
+        `dtypes` is usually something like ``(None, np.dtype("i2"), None)``
+        for reductions (first input is also the output).
+
+        .. note::
+
+            The default casting mode is "same_kind", however, as of
+            NumPy 1.24, NumPy uses "unsafe" for reductions.
+
+    Returns
+    -------
+    dtypes : tuple of dtypes
+        The dtypes which NumPy would use for the calculation.  Note that
+        dtypes may not match the passed in ones (casting is necessary).
+
+    See Also
+    --------
+    numpy.ufunc._resolve_dtypes_and_context :
+        Similar function to this, but returns additional information which
+        give access to the core C functionality of NumPy.
+
+    Examples
+    --------
+    This API requires passing dtypes, define them for convenience:
+
+    >>> int32 = np.dtype("int32")
+    >>> float32 = np.dtype("float32")
+
+    The typical ufunc call does not pass an output dtype.  `np.add` has two
+    inputs and one output, so leave the output as ``None`` (not provided):
+
+    >>> np.add.resolve_dtypes((int32, float32, None))
+    (dtype('float64'), dtype('float64'), dtype('float64'))
+
+    The loop found uses "float64" for all operands (including the output), the
+    first input would be cast.
+
+    ``resolve_dtypes`` supports "weak" handling for Python scalars by passing
+    ``int``, ``float``, or ``complex``:
+
+    >>> np.add.resolve_dtypes((float32, float, None))
+    (dtype('float32'), dtype('float32'), dtype('float32'))
+
+    Where the Python ``float`` behaves samilar to a Python value ``0.0``
+    in a ufunc call.  (See :ref:`NEP 50 <NEP50>` for details.)
+
+    """))
+
+add_newdoc('numpy.core', 'ufunc', ('_resolve_dtypes_and_context',
+    """
+    _resolve_dtypes_and_context(dtypes, *, signature=None, casting=None, reduction=False)
+
+    See `numpy.ufunc.resolve_dtypes` for parameter information.  This
+    function is considered *unstable*.  You may use it, but the returned
+    information is NumPy version specific and expected to change.
+    Large API/ABI changes are not expected, but a new NumPy version is
+    expected to require updating code using this functionality.
+
+    This function is designed to be used in conjunction with
+    `numpy.ufunc._get_strided_loop`.  The calls are split to mirror the C API
+    and allow future improvements.
+
+    Returns
+    -------
+    dtypes : tuple of dtypes
+    call_info :
+        PyCapsule with all necessary information to get access to low level
+        C calls.  See `numpy.ufunc._get_strided_loop` for more information.
+
+    """))
+
+add_newdoc('numpy.core', 'ufunc', ('_get_strided_loop',
+    """
+    _get_strided_loop(call_info, /, *, fixed_strides=None)
+
+    This function fills in the ``call_info`` capsule to include all
+    information necessary to call the low-level strided loop from NumPy.
+
+    See notes for more information.
+
+    Parameters
+    ----------
+    call_info : PyCapsule
+        The PyCapsule returned by `numpy.ufunc._resolve_dtypes_and_context`.
+    fixed_strides : tuple of int or None, optional
+        A tuple with fixed byte strides of all input arrays.  NumPy may use
+        this information to find specialized loops, so any call must follow
+        the given stride.  Use ``None`` to indicate that the stride is not
+        known (or not fixed) for all calls.
+
+    Notes
+    -----
+    Together with `numpy.ufunc._resolve_dtypes_and_context` this function
+    gives low-level access to the NumPy ufunc loops.
+    The first function does general preparation and returns the required
+    information. It returns this as a C capsule with the version specific
+    name ``numpy_1.24_ufunc_call_info``.
+    The NumPy 1.24 ufunc call info capsule has the following layout::
+
+        typedef struct {
+            PyArrayMethod_StridedLoop *strided_loop;
+            PyArrayMethod_Context *context;
+            NpyAuxData *auxdata;
+
+            /* Flag information (expected to change) */
+            npy_bool requires_pyapi;  /* GIL is required by loop */
+
+            /* Loop doesn't set FPE flags; if not set check FPE flags */
+            npy_bool no_floatingpoint_errors;
+        } ufunc_call_info;
+
+    Note that the first call only fills in the ``context``.  The call to
+    ``_get_strided_loop`` fills in all other data.
+    Please see the ``numpy/experimental_dtype_api.h`` header for exact
+    call information; the main thing to note is that the new-style loops
+    return 0 on success, -1 on failure.  They are passed context as new
+    first input and ``auxdata`` as (replaced) last.
+
+    Only the ``strided_loop``signature is considered guaranteed stable
+    for NumPy bug-fix releases.  All other API is tied to the experimental
+    API versioning.
+
+    The reason for the split call is that cast information is required to
+    decide what the fixed-strides will be.
+
+    NumPy ties the lifetime of the ``auxdata`` information to the capsule.
+
+    """))
+
+
+
+##############################################################################
+#
+# Documentation for dtype attributes and methods
+#
+##############################################################################
+
+##############################################################################
+#
+# dtype object
+#
+##############################################################################
+
+add_newdoc('numpy.core.multiarray', 'dtype',
+    """
+    dtype(dtype, align=False, copy=False, [metadata])
+
+    Create a data type object.
+
+    A numpy array is homogeneous, and contains elements described by a
+    dtype object. A dtype object can be constructed from different
+    combinations of fundamental numeric types.
+
+    Parameters
+    ----------
+    dtype
+        Object to be converted to a data type object.
+    align : bool, optional
+        Add padding to the fields to match what a C compiler would output
+        for a similar C-struct. Can be ``True`` only if `obj` is a dictionary
+        or a comma-separated string. If a struct dtype is being created,
+        this also sets a sticky alignment flag ``isalignedstruct``.
+    copy : bool, optional
+        Make a new copy of the data-type object. If ``False``, the result
+        may just be a reference to a built-in data-type object.
+    metadata : dict, optional
+        An optional dictionary with dtype metadata.
+
+    See also
+    --------
+    result_type
+
+    Examples
+    --------
+    Using array-scalar type:
+
+    >>> np.dtype(np.int16)
+    dtype('int16')
+
+    Structured type, one field name 'f1', containing int16:
+
+    >>> np.dtype([('f1', np.int16)])
+    dtype([('f1', '<i2')])
+
+    Structured type, one field named 'f1', in itself containing a structured
+    type with one field:
+
+    >>> np.dtype([('f1', [('f1', np.int16)])])
+    dtype([('f1', [('f1', '<i2')])])
+
+    Structured type, two fields: the first field contains an unsigned int, the
+    second an int32:
+
+    >>> np.dtype([('f1', np.uint64), ('f2', np.int32)])
+    dtype([('f1', '<u8'), ('f2', '<i4')])
+
+    Using array-protocol type strings:
+
+    >>> np.dtype([('a','f8'),('b','S10')])
+    dtype([('a', '<f8'), ('b', 'S10')])
+
+    Using comma-separated field formats.  The shape is (2,3):
+
+    >>> np.dtype("i4, (2,3)f8")
+    dtype([('f0', '<i4'), ('f1', '<f8', (2, 3))])
+
+    Using tuples.  ``int`` is a fixed type, 3 the field's shape.  ``void``
+    is a flexible type, here of size 10:
+
+    >>> np.dtype([('hello',(np.int64,3)),('world',np.void,10)])
+    dtype([('hello', '<i8', (3,)), ('world', 'V10')])
+
+    Subdivide ``int16`` into 2 ``int8``'s, called x and y.  0 and 1 are
+    the offsets in bytes:
+
+    >>> np.dtype((np.int16, {'x':(np.int8,0), 'y':(np.int8,1)}))
+    dtype((numpy.int16, [('x', 'i1'), ('y', 'i1')]))
+
+    Using dictionaries.  Two fields named 'gender' and 'age':
+
+    >>> np.dtype({'names':['gender','age'], 'formats':['S1',np.uint8]})
+    dtype([('gender', 'S1'), ('age', 'u1')])
+
+    Offsets in bytes, here 0 and 25:
+
+    >>> np.dtype({'surname':('S25',0),'age':(np.uint8,25)})
+    dtype([('surname', 'S25'), ('age', 'u1')])
+
+    """)
+
+##############################################################################
+#
+# dtype attributes
+#
+##############################################################################
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('alignment',
+    """
+    The required alignment (bytes) of this data-type according to the compiler.
+
+    More information is available in the C-API section of the manual.
+
+    Examples
+    --------
+
+    >>> x = np.dtype('i4')
+    >>> x.alignment
+    4
+
+    >>> x = np.dtype(float)
+    >>> x.alignment
+    8
+
+    """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('byteorder',
+    """
+    A character indicating the byte-order of this data-type object.
+
+    One of:
+
+    ===  ==============
+    '='  native
+    '<'  little-endian
+    '>'  big-endian
+    '|'  not applicable
+    ===  ==============
+
+    All built-in data-type objects have byteorder either '=' or '|'.
+
+    Examples
+    --------
+
+    >>> dt = np.dtype('i2')
+    >>> dt.byteorder
+    '='
+    >>> # endian is not relevant for 8 bit numbers
+    >>> np.dtype('i1').byteorder
+    '|'
+    >>> # or ASCII strings
+    >>> np.dtype('S2').byteorder
+    '|'
+    >>> # Even if specific code is given, and it is native
+    >>> # '=' is the byteorder
+    >>> import sys
+    >>> sys_is_le = sys.byteorder == 'little'
+    >>> native_code = '<' if sys_is_le else '>'
+    >>> swapped_code = '>' if sys_is_le else '<'
+    >>> dt = np.dtype(native_code + 'i2')
+    >>> dt.byteorder
+    '='
+    >>> # Swapped code shows up as itself
+    >>> dt = np.dtype(swapped_code + 'i2')
+    >>> dt.byteorder == swapped_code
+    True
+
+    """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('char',
+    """A unique character code for each of the 21 different built-in types.
+
+    Examples
+    --------
+
+    >>> x = np.dtype(float)
+    >>> x.char
+    'd'
+
+    """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('descr',
+    """
+    `__array_interface__` description of the data-type.
+
+    The format is that required by the 'descr' key in the
+    `__array_interface__` attribute.
+
+    Warning: This attribute exists specifically for `__array_interface__`,
+    and passing it directly to `np.dtype` will not accurately reconstruct
+    some dtypes (e.g., scalar and subarray dtypes).
+
+    Examples
+    --------
+
+    >>> x = np.dtype(float)
+    >>> x.descr
+    [('', '<f8')]
+
+    >>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
+    >>> dt.descr
+    [('name', '<U16'), ('grades', '<f8', (2,))]
+
+    """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('fields',
+    """
+    Dictionary of named fields defined for this data type, or ``None``.
+
+    The dictionary is indexed by keys that are the names of the fields.
+    Each entry in the dictionary is a tuple fully describing the field::
+
+      (dtype, offset[, title])
+
+    Offset is limited to C int, which is signed and usually 32 bits.
+    If present, the optional title can be any object (if it is a string
+    or unicode then it will also be a key in the fields dictionary,
+    otherwise it's meta-data). Notice also that the first two elements
+    of the tuple can be passed directly as arguments to the ``ndarray.getfield``
+    and ``ndarray.setfield`` methods.
+
+    See Also
+    --------
+    ndarray.getfield, ndarray.setfield
+
+    Examples
+    --------
+    >>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
+    >>> print(dt.fields)
+    {'grades': (dtype(('float64',(2,))), 16), 'name': (dtype('|S16'), 0)}
+
+    """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('flags',
+    """
+    Bit-flags describing how this data type is to be interpreted.
+
+    Bit-masks are in `numpy.core.multiarray` as the constants
+    `ITEM_HASOBJECT`, `LIST_PICKLE`, `ITEM_IS_POINTER`, `NEEDS_INIT`,
+    `NEEDS_PYAPI`, `USE_GETITEM`, `USE_SETITEM`. A full explanation
+    of these flags is in C-API documentation; they are largely useful
+    for user-defined data-types.
+
+    The following example demonstrates that operations on this particular
+    dtype requires Python C-API.
+
+    Examples
+    --------
+
+    >>> x = np.dtype([('a', np.int32, 8), ('b', np.float64, 6)])
+    >>> x.flags
+    16
+    >>> np.core.multiarray.NEEDS_PYAPI
+    16
+
+    """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('hasobject',
+    """
+    Boolean indicating whether this dtype contains any reference-counted
+    objects in any fields or sub-dtypes.
+
+    Recall that what is actually in the ndarray memory representing
+    the Python object is the memory address of that object (a pointer).
+    Special handling may be required, and this attribute is useful for
+    distinguishing data types that may contain arbitrary Python objects
+    and data-types that won't.
+
+    """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('isbuiltin',
+    """
+    Integer indicating how this dtype relates to the built-in dtypes.
+
+    Read-only.
+
+    =  ========================================================================
+    0  if this is a structured array type, with fields
+    1  if this is a dtype compiled into numpy (such as ints, floats etc)
+    2  if the dtype is for a user-defined numpy type
+       A user-defined type uses the numpy C-API machinery to extend
+       numpy to handle a new array type. See
+       :ref:`user.user-defined-data-types` in the NumPy manual.
+    =  ========================================================================
+
+    Examples
+    --------
+    >>> dt = np.dtype('i2')
+    >>> dt.isbuiltin
+    1
+    >>> dt = np.dtype('f8')
+    >>> dt.isbuiltin
+    1
+    >>> dt = np.dtype([('field1', 'f8')])
+    >>> dt.isbuiltin
+    0
+
+    """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('isnative',
+    """
+    Boolean indicating whether the byte order of this dtype is native
+    to the platform.
+
+    """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('isalignedstruct',
+    """
+    Boolean indicating whether the dtype is a struct which maintains
+    field alignment. This flag is sticky, so when combining multiple
+    structs together, it is preserved and produces new dtypes which
+    are also aligned.
+
+    """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('itemsize',
+    """
+    The element size of this data-type object.
+
+    For 18 of the 21 types this number is fixed by the data-type.
+    For the flexible data-types, this number can be anything.
+
+    Examples
+    --------
+
+    >>> arr = np.array([[1, 2], [3, 4]])
+    >>> arr.dtype
+    dtype('int64')
+    >>> arr.itemsize
+    8
+
+    >>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
+    >>> dt.itemsize
+    80
+
+    """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('kind',
+    """
+    A character code (one of 'biufcmMOSUV') identifying the general kind of data.
+
+    =  ======================
+    b  boolean
+    i  signed integer
+    u  unsigned integer
+    f  floating-point
+    c  complex floating-point
+    m  timedelta
+    M  datetime
+    O  object
+    S  (byte-)string
+    U  Unicode
+    V  void
+    =  ======================
+
+    Examples
+    --------
+
+    >>> dt = np.dtype('i4')
+    >>> dt.kind
+    'i'
+    >>> dt = np.dtype('f8')
+    >>> dt.kind
+    'f'
+    >>> dt = np.dtype([('field1', 'f8')])
+    >>> dt.kind
+    'V'
+
+    """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('metadata',
+    """
+    Either ``None`` or a readonly dictionary of metadata (mappingproxy).
+
+    The metadata field can be set using any dictionary at data-type
+    creation. NumPy currently has no uniform approach to propagating
+    metadata; although some array operations preserve it, there is no
+    guarantee that others will.
+
+    .. warning::
+
+        Although used in certain projects, this feature was long undocumented
+        and is not well supported. Some aspects of metadata propagation
+        are expected to change in the future.
+
+    Examples
+    --------
+
+    >>> dt = np.dtype(float, metadata={"key": "value"})
+    >>> dt.metadata["key"]
+    'value'
+    >>> arr = np.array([1, 2, 3], dtype=dt)
+    >>> arr.dtype.metadata
+    mappingproxy({'key': 'value'})
+
+    Adding arrays with identical datatypes currently preserves the metadata:
+
+    >>> (arr + arr).dtype.metadata
+    mappingproxy({'key': 'value'})
+
+    But if the arrays have different dtype metadata, the metadata may be
+    dropped:
+
+    >>> dt2 = np.dtype(float, metadata={"key2": "value2"})
+    >>> arr2 = np.array([3, 2, 1], dtype=dt2)
+    >>> (arr + arr2).dtype.metadata is None
+    True  # The metadata field is cleared so None is returned
+    """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('name',
+    """
+    A bit-width name for this data-type.
+
+    Un-sized flexible data-type objects do not have this attribute.
+
+    Examples
+    --------
+
+    >>> x = np.dtype(float)
+    >>> x.name
+    'float64'
+    >>> x = np.dtype([('a', np.int32, 8), ('b', np.float64, 6)])
+    >>> x.name
+    'void640'
+
+    """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('names',
+    """
+    Ordered list of field names, or ``None`` if there are no fields.
+
+    The names are ordered according to increasing byte offset. This can be
+    used, for example, to walk through all of the named fields in offset order.
+
+    Examples
+    --------
+    >>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
+    >>> dt.names
+    ('name', 'grades')
+
+    """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('num',
+    """
+    A unique number for each of the 21 different built-in types.
+
+    These are roughly ordered from least-to-most precision.
+
+    Examples
+    --------
+
+    >>> dt = np.dtype(str)
+    >>> dt.num
+    19
+
+    >>> dt = np.dtype(float)
+    >>> dt.num
+    12
+
+    """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('shape',
+    """
+    Shape tuple of the sub-array if this data type describes a sub-array,
+    and ``()`` otherwise.
+
+    Examples
+    --------
+
+    >>> dt = np.dtype(('i4', 4))
+    >>> dt.shape
+    (4,)
+
+    >>> dt = np.dtype(('i4', (2, 3)))
+    >>> dt.shape
+    (2, 3)
+
+    """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('ndim',
+    """
+    Number of dimensions of the sub-array if this data type describes a
+    sub-array, and ``0`` otherwise.
+
+    .. versionadded:: 1.13.0
+
+    Examples
+    --------
+    >>> x = np.dtype(float)
+    >>> x.ndim
+    0
+
+    >>> x = np.dtype((float, 8))
+    >>> x.ndim
+    1
+
+    >>> x = np.dtype(('i4', (3, 4)))
+    >>> x.ndim
+    2
+
+    """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('str',
+    """The array-protocol typestring of this data-type object."""))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('subdtype',
+    """
+    Tuple ``(item_dtype, shape)`` if this `dtype` describes a sub-array, and
+    None otherwise.
+
+    The *shape* is the fixed shape of the sub-array described by this
+    data type, and *item_dtype* the data type of the array.
+
+    If a field whose dtype object has this attribute is retrieved,
+    then the extra dimensions implied by *shape* are tacked on to
+    the end of the retrieved array.
+
+    See Also
+    --------
+    dtype.base
+
+    Examples
+    --------
+    >>> x = numpy.dtype('8f')
+    >>> x.subdtype
+    (dtype('float32'), (8,))
+
+    >>> x =  numpy.dtype('i2')
+    >>> x.subdtype
+    >>>
+
+    """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('base',
+    """
+    Returns dtype for the base element of the subarrays,
+    regardless of their dimension or shape.
+
+    See Also
+    --------
+    dtype.subdtype
+
+    Examples
+    --------
+    >>> x = numpy.dtype('8f')
+    >>> x.base
+    dtype('float32')
+
+    >>> x =  numpy.dtype('i2')
+    >>> x.base
+    dtype('int16')
+
+    """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('type',
+    """The type object used to instantiate a scalar of this data-type."""))
+
+##############################################################################
+#
+# dtype methods
+#
+##############################################################################
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('newbyteorder',
+    """
+    newbyteorder(new_order='S', /)
+
+    Return a new dtype with a different byte order.
+
+    Changes are also made in all fields and sub-arrays of the data type.
+
+    Parameters
+    ----------
+    new_order : string, optional
+        Byte order to force; a value from the byte order specifications
+        below.  The default value ('S') results in swapping the current
+        byte order.  `new_order` codes can be any of:
+
+        * 'S' - swap dtype from current to opposite endian
+        * {'<', 'little'} - little endian
+        * {'>', 'big'} - big endian
+        * {'=', 'native'} - native order
+        * {'|', 'I'} - ignore (no change to byte order)
+
+    Returns
+    -------
+    new_dtype : dtype
+        New dtype object with the given change to the byte order.
+
+    Notes
+    -----
+    Changes are also made in all fields and sub-arrays of the data type.
+
+    Examples
+    --------
+    >>> import sys
+    >>> sys_is_le = sys.byteorder == 'little'
+    >>> native_code = '<' if sys_is_le else '>'
+    >>> swapped_code = '>' if sys_is_le else '<'
+    >>> native_dt = np.dtype(native_code+'i2')
+    >>> swapped_dt = np.dtype(swapped_code+'i2')
+    >>> native_dt.newbyteorder('S') == swapped_dt
+    True
+    >>> native_dt.newbyteorder() == swapped_dt
+    True
+    >>> native_dt == swapped_dt.newbyteorder('S')
+    True
+    >>> native_dt == swapped_dt.newbyteorder('=')
+    True
+    >>> native_dt == swapped_dt.newbyteorder('N')
+    True
+    >>> native_dt == native_dt.newbyteorder('|')
+    True
+    >>> np.dtype('<i2') == native_dt.newbyteorder('<')
+    True
+    >>> np.dtype('<i2') == native_dt.newbyteorder('L')
+    True
+    >>> np.dtype('>i2') == native_dt.newbyteorder('>')
+    True
+    >>> np.dtype('>i2') == native_dt.newbyteorder('B')
+    True
+
+    """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('__class_getitem__',
+    """
+    __class_getitem__(item, /)
+
+    Return a parametrized wrapper around the `~numpy.dtype` type.
+
+    .. versionadded:: 1.22
+
+    Returns
+    -------
+    alias : types.GenericAlias
+        A parametrized `~numpy.dtype` type.
+
+    Examples
+    --------
+    >>> import numpy as np
+
+    >>> np.dtype[np.int64]
+    numpy.dtype[numpy.int64]
+
+    See Also
+    --------
+    :pep:`585` : Type hinting generics in standard collections.
+
+    """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('__ge__',
+    """
+    __ge__(value, /)
+
+    Return ``self >= value``.
+
+    Equivalent to ``np.can_cast(value, self, casting="safe")``.
+
+    See Also
+    --------
+    can_cast : Returns True if cast between data types can occur according to
+               the casting rule.
+
+    """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('__le__',
+    """
+    __le__(value, /)
+
+    Return ``self <= value``.
+
+    Equivalent to ``np.can_cast(self, value, casting="safe")``.
+
+    See Also
+    --------
+    can_cast : Returns True if cast between data types can occur according to
+               the casting rule.
+
+    """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('__gt__',
+    """
+    __ge__(value, /)
+
+    Return ``self > value``.
+
+    Equivalent to
+    ``self != value and np.can_cast(value, self, casting="safe")``.
+
+    See Also
+    --------
+    can_cast : Returns True if cast between data types can occur according to
+               the casting rule.
+
+    """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('__lt__',
+    """
+    __lt__(value, /)
+
+    Return ``self < value``.
+
+    Equivalent to
+    ``self != value and np.can_cast(self, value, casting="safe")``.
+
+    See Also
+    --------
+    can_cast : Returns True if cast between data types can occur according to
+               the casting rule.
+
+    """))
+
+##############################################################################
+#
+# Datetime-related Methods
+#
+##############################################################################
+
+add_newdoc('numpy.core.multiarray', 'busdaycalendar',
+    """
+    busdaycalendar(weekmask='1111100', holidays=None)
+
+    A business day calendar object that efficiently stores information
+    defining valid days for the busday family of functions.
+
+    The default valid days are Monday through Friday ("business days").
+    A busdaycalendar object can be specified with any set of weekly
+    valid days, plus an optional "holiday" dates that always will be invalid.
+
+    Once a busdaycalendar object is created, the weekmask and holidays
+    cannot be modified.
+
+    .. versionadded:: 1.7.0
+
+    Parameters
+    ----------
+    weekmask : str or array_like of bool, optional
+        A seven-element array indicating which of Monday through Sunday are
+        valid days. May be specified as a length-seven list or array, like
+        [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string
+        like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for
+        weekdays, optionally separated by white space. Valid abbreviations
+        are: Mon Tue Wed Thu Fri Sat Sun
+    holidays : array_like of datetime64[D], optional
+        An array of dates to consider as invalid dates, no matter which
+        weekday they fall upon.  Holiday dates may be specified in any
+        order, and NaT (not-a-time) dates are ignored.  This list is
+        saved in a normalized form that is suited for fast calculations
+        of valid days.
+
+    Returns
+    -------
+    out : busdaycalendar
+        A business day calendar object containing the specified
+        weekmask and holidays values.
+
+    See Also
+    --------
+    is_busday : Returns a boolean array indicating valid days.
+    busday_offset : Applies an offset counted in valid days.
+    busday_count : Counts how many valid days are in a half-open date range.
+
+    Attributes
+    ----------
+    Note: once a busdaycalendar object is created, you cannot modify the
+    weekmask or holidays.  The attributes return copies of internal data.
+    weekmask : (copy) seven-element array of bool
+    holidays : (copy) sorted array of datetime64[D]
+
+    Examples
+    --------
+    >>> # Some important days in July
+    ... bdd = np.busdaycalendar(
+    ...             holidays=['2011-07-01', '2011-07-04', '2011-07-17'])
+    >>> # Default is Monday to Friday weekdays
+    ... bdd.weekmask
+    array([ True,  True,  True,  True,  True, False, False])
+    >>> # Any holidays already on the weekend are removed
+    ... bdd.holidays
+    array(['2011-07-01', '2011-07-04'], dtype='datetime64[D]')
+    """)
+
+add_newdoc('numpy.core.multiarray', 'busdaycalendar', ('weekmask',
+    """A copy of the seven-element boolean mask indicating valid days."""))
+
+add_newdoc('numpy.core.multiarray', 'busdaycalendar', ('holidays',
+    """A copy of the holiday array indicating additional invalid days."""))
+
+add_newdoc('numpy.core.multiarray', 'normalize_axis_index',
+    """
+    normalize_axis_index(axis, ndim, msg_prefix=None)
+
+    Normalizes an axis index, `axis`, such that is a valid positive index into
+    the shape of array with `ndim` dimensions. Raises an AxisError with an
+    appropriate message if this is not possible.
+
+    Used internally by all axis-checking logic.
+
+    .. versionadded:: 1.13.0
+
+    Parameters
+    ----------
+    axis : int
+        The un-normalized index of the axis. Can be negative
+    ndim : int
+        The number of dimensions of the array that `axis` should be normalized
+        against
+    msg_prefix : str
+        A prefix to put before the message, typically the name of the argument
+
+    Returns
+    -------
+    normalized_axis : int
+        The normalized axis index, such that `0 <= normalized_axis < ndim`
+
+    Raises
+    ------
+    AxisError
+        If the axis index is invalid, when `-ndim <= axis < ndim` is false.
+
+    Examples
+    --------
+    >>> normalize_axis_index(0, ndim=3)
+    0
+    >>> normalize_axis_index(1, ndim=3)
+    1
+    >>> normalize_axis_index(-1, ndim=3)
+    2
+
+    >>> normalize_axis_index(3, ndim=3)
+    Traceback (most recent call last):
+    ...
+    AxisError: axis 3 is out of bounds for array of dimension 3
+    >>> normalize_axis_index(-4, ndim=3, msg_prefix='axes_arg')
+    Traceback (most recent call last):
+    ...
+    AxisError: axes_arg: axis -4 is out of bounds for array of dimension 3
+    """)
+
+add_newdoc('numpy.core.multiarray', 'datetime_data',
+    """
+    datetime_data(dtype, /)
+
+    Get information about the step size of a date or time type.
+
+    The returned tuple can be passed as the second argument of `numpy.datetime64` and
+    `numpy.timedelta64`.
+
+    Parameters
+    ----------
+    dtype : dtype
+        The dtype object, which must be a `datetime64` or `timedelta64` type.
+
+    Returns
+    -------
+    unit : str
+        The :ref:`datetime unit <arrays.dtypes.dateunits>` on which this dtype
+        is based.
+    count : int
+        The number of base units in a step.
+
+    Examples
+    --------
+    >>> dt_25s = np.dtype('timedelta64[25s]')
+    >>> np.datetime_data(dt_25s)
+    ('s', 25)
+    >>> np.array(10, dt_25s).astype('timedelta64[s]')
+    array(250, dtype='timedelta64[s]')
+
+    The result can be used to construct a datetime that uses the same units
+    as a timedelta
+
+    >>> np.datetime64('2010', np.datetime_data(dt_25s))
+    numpy.datetime64('2010-01-01T00:00:00','25s')
+    """)
+
+
+##############################################################################
+#
+# Documentation for `generic` attributes and methods
+#
+##############################################################################
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+    """
+    Base class for numpy scalar types.
+
+    Class from which most (all?) numpy scalar types are derived.  For
+    consistency, exposes the same API as `ndarray`, despite many
+    consequent attributes being either "get-only," or completely irrelevant.
+    This is the class from which it is strongly suggested users should derive
+    custom scalar types.
+
+    """)
+
+# Attributes
+
+def refer_to_array_attribute(attr, method=True):
+    docstring = """
+    Scalar {} identical to the corresponding array attribute.
+
+    Please see `ndarray.{}`.
+    """
+
+    return attr, docstring.format("method" if method else "attribute", attr)
+
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('T', method=False))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('base', method=False))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('data',
+    """Pointer to start of data."""))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('dtype',
+    """Get array data-descriptor."""))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('flags',
+    """The integer value of flags."""))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('flat',
+    """A 1-D view of the scalar."""))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('imag',
+    """The imaginary part of the scalar."""))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('itemsize',
+    """The length of one element in bytes."""))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('nbytes',
+    """The length of the scalar in bytes."""))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('ndim',
+    """The number of array dimensions."""))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('real',
+    """The real part of the scalar."""))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('shape',
+    """Tuple of array dimensions."""))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('size',
+    """The number of elements in the gentype."""))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('strides',
+    """Tuple of bytes steps in each dimension."""))
+
+# Methods
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('all'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('any'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('argmax'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('argmin'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('argsort'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('astype'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('byteswap'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('choose'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('clip'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('compress'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('conjugate'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('copy'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('cumprod'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('cumsum'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('diagonal'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('dump'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('dumps'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('fill'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('flatten'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('getfield'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('item'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('itemset'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('max'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('mean'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('min'))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('newbyteorder',
+    """
+    newbyteorder(new_order='S', /)
+
+    Return a new `dtype` with a different byte order.
+
+    Changes are also made in all fields and sub-arrays of the data type.
+
+    The `new_order` code can be any from the following:
+
+    * 'S' - swap dtype from current to opposite endian
+    * {'<', 'little'} - little endian
+    * {'>', 'big'} - big endian
+    * {'=', 'native'} - native order
+    * {'|', 'I'} - ignore (no change to byte order)
+
+    Parameters
+    ----------
+    new_order : str, optional
+        Byte order to force; a value from the byte order specifications
+        above.  The default value ('S') results in swapping the current
+        byte order.
+
+
+    Returns
+    -------
+    new_dtype : dtype
+        New `dtype` object with the given change to the byte order.
+
+    """))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('nonzero'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('prod'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('ptp'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('put'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('ravel'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('repeat'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('reshape'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('resize'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('round'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('searchsorted'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('setfield'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('setflags'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('sort'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('squeeze'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('std'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('sum'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('swapaxes'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('take'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('tofile'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('tolist'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('tostring'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('trace'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('transpose'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('var'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+           refer_to_array_attribute('view'))
+
+add_newdoc('numpy.core.numerictypes', 'number', ('__class_getitem__',
+    """
+    __class_getitem__(item, /)
+
+    Return a parametrized wrapper around the `~numpy.number` type.
+
+    .. versionadded:: 1.22
+
+    Returns
+    -------
+    alias : types.GenericAlias
+        A parametrized `~numpy.number` type.
+
+    Examples
+    --------
+    >>> from typing import Any
+    >>> import numpy as np
+
+    >>> np.signedinteger[Any]
+    numpy.signedinteger[typing.Any]
+
+    See Also
+    --------
+    :pep:`585` : Type hinting generics in standard collections.
+
+    """))
+
+##############################################################################
+#
+# Documentation for scalar type abstract base classes in type hierarchy
+#
+##############################################################################
+
+
+add_newdoc('numpy.core.numerictypes', 'number',
+    """
+    Abstract base class of all numeric scalar types.
+
+    """)
+
+add_newdoc('numpy.core.numerictypes', 'integer',
+    """
+    Abstract base class of all integer scalar types.
+
+    """)
+
+add_newdoc('numpy.core.numerictypes', 'signedinteger',
+    """
+    Abstract base class of all signed integer scalar types.
+
+    """)
+
+add_newdoc('numpy.core.numerictypes', 'unsignedinteger',
+    """
+    Abstract base class of all unsigned integer scalar types.
+
+    """)
+
+add_newdoc('numpy.core.numerictypes', 'inexact',
+    """
+    Abstract base class of all numeric scalar types with a (potentially)
+    inexact representation of the values in its range, such as
+    floating-point numbers.
+
+    """)
+
+add_newdoc('numpy.core.numerictypes', 'floating',
+    """
+    Abstract base class of all floating-point scalar types.
+
+    """)
+
+add_newdoc('numpy.core.numerictypes', 'complexfloating',
+    """
+    Abstract base class of all complex number scalar types that are made up of
+    floating-point numbers.
+
+    """)
+
+add_newdoc('numpy.core.numerictypes', 'flexible',
+    """
+    Abstract base class of all scalar types without predefined length.
+    The actual size of these types depends on the specific `np.dtype`
+    instantiation.
+
+    """)
+
+add_newdoc('numpy.core.numerictypes', 'character',
+    """
+    Abstract base class of all character string scalar types.
+
+    """)