about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/networkx/readwrite
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/networkx/readwrite
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are here HEAD master
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/readwrite')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/__init__.py17
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/adjlist.py310
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/edgelist.py489
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/gexf.py1066
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/gml.py879
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/graph6.py417
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/graphml.py1053
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/__init__.py19
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/adjacency.py156
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/cytoscape.py178
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/node_link.py330
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/tests/__init__.py0
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/tests/test_adjacency.py78
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/tests/test_cytoscape.py78
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/tests/test_node_link.py175
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/tests/test_tree.py48
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/tree.py137
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/leda.py108
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/multiline_adjlist.py393
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/p2g.py105
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/pajek.py286
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/sparse6.py377
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/tests/__init__.py0
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_adjlist.py262
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_edgelist.py314
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_gexf.py557
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_gml.py744
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_graph6.py168
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_graphml.py1531
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_leda.py30
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_p2g.py62
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_pajek.py126
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_sparse6.py166
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_text.py1742
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/readwrite/text.py852
35 files changed, 13253 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/__init__.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/__init__.py
new file mode 100644
index 00000000..a805c50a
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/__init__.py
@@ -0,0 +1,17 @@
+"""
+A package for reading and writing graphs in various formats.
+
+"""
+
+from networkx.readwrite.adjlist import *
+from networkx.readwrite.multiline_adjlist import *
+from networkx.readwrite.edgelist import *
+from networkx.readwrite.pajek import *
+from networkx.readwrite.leda import *
+from networkx.readwrite.sparse6 import *
+from networkx.readwrite.graph6 import *
+from networkx.readwrite.gml import *
+from networkx.readwrite.graphml import *
+from networkx.readwrite.gexf import *
+from networkx.readwrite.json_graph import *
+from networkx.readwrite.text import *
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/adjlist.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/adjlist.py
new file mode 100644
index 00000000..768af5ad
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/adjlist.py
@@ -0,0 +1,310 @@
+"""
+**************
+Adjacency List
+**************
+Read and write NetworkX graphs as adjacency lists.
+
+Adjacency list format is useful for graphs without data associated
+with nodes or edges and for nodes that can be meaningfully represented
+as strings.
+
+Format
+------
+The adjacency list format consists of lines with node labels.  The
+first label in a line is the source node.  Further labels in the line
+are considered target nodes and are added to the graph along with an edge
+between the source node and target node.
+
+The graph with edges a-b, a-c, d-e can be represented as the following
+adjacency list (anything following the # in a line is a comment)::
+
+     a b c # source target target
+     d e
+"""
+
+__all__ = ["generate_adjlist", "write_adjlist", "parse_adjlist", "read_adjlist"]
+
+import networkx as nx
+from networkx.utils import open_file
+
+
+def generate_adjlist(G, delimiter=" "):
+    """Generate a single line of the graph G in adjacency list format.
+
+    Parameters
+    ----------
+    G : NetworkX graph
+
+    delimiter : string, optional
+       Separator for node labels
+
+    Returns
+    -------
+    lines : string
+        Lines of data in adjlist format.
+
+    Examples
+    --------
+    >>> G = nx.lollipop_graph(4, 3)
+    >>> for line in nx.generate_adjlist(G):
+    ...     print(line)
+    0 1 2 3
+    1 2 3
+    2 3
+    3 4
+    4 5
+    5 6
+    6
+
+    See Also
+    --------
+    write_adjlist, read_adjlist
+
+    Notes
+    -----
+    The default `delimiter=" "` will result in unexpected results if node names contain
+    whitespace characters. To avoid this problem, specify an alternate delimiter when spaces are
+    valid in node names.
+
+    NB: This option is not available for data that isn't user-generated.
+
+    """
+    directed = G.is_directed()
+    seen = set()
+    for s, nbrs in G.adjacency():
+        line = str(s) + delimiter
+        for t, data in nbrs.items():
+            if not directed and t in seen:
+                continue
+            if G.is_multigraph():
+                for d in data.values():
+                    line += str(t) + delimiter
+            else:
+                line += str(t) + delimiter
+        if not directed:
+            seen.add(s)
+        yield line[: -len(delimiter)]
+
+
+@open_file(1, mode="wb")
+def write_adjlist(G, path, comments="#", delimiter=" ", encoding="utf-8"):
+    """Write graph G in single-line adjacency-list format to path.
+
+
+    Parameters
+    ----------
+    G : NetworkX graph
+
+    path : string or file
+       Filename or file handle for data output.
+       Filenames ending in .gz or .bz2 will be compressed.
+
+    comments : string, optional
+       Marker for comment lines
+
+    delimiter : string, optional
+       Separator for node labels
+
+    encoding : string, optional
+       Text encoding.
+
+    Examples
+    --------
+    >>> G = nx.path_graph(4)
+    >>> nx.write_adjlist(G, "test.adjlist")
+
+    The path can be a filehandle or a string with the name of the file. If a
+    filehandle is provided, it has to be opened in 'wb' mode.
+
+    >>> fh = open("test.adjlist", "wb")
+    >>> nx.write_adjlist(G, fh)
+
+    Notes
+    -----
+    The default `delimiter=" "` will result in unexpected results if node names contain
+    whitespace characters. To avoid this problem, specify an alternate delimiter when spaces are
+    valid in node names.
+    NB: This option is not available for data that isn't user-generated.
+
+    This format does not store graph, node, or edge data.
+
+    See Also
+    --------
+    read_adjlist, generate_adjlist
+    """
+    import sys
+    import time
+
+    pargs = comments + " ".join(sys.argv) + "\n"
+    header = (
+        pargs
+        + comments
+        + f" GMT {time.asctime(time.gmtime())}\n"
+        + comments
+        + f" {G.name}\n"
+    )
+    path.write(header.encode(encoding))
+
+    for line in generate_adjlist(G, delimiter):
+        line += "\n"
+        path.write(line.encode(encoding))
+
+
+@nx._dispatchable(graphs=None, returns_graph=True)
+def parse_adjlist(
+    lines, comments="#", delimiter=None, create_using=None, nodetype=None
+):
+    """Parse lines of a graph adjacency list representation.
+
+    Parameters
+    ----------
+    lines : list or iterator of strings
+        Input data in adjlist format
+
+    create_using : NetworkX graph constructor, optional (default=nx.Graph)
+       Graph type to create. If graph instance, then cleared before populated.
+
+    nodetype : Python type, optional
+       Convert nodes to this type.
+
+    comments : string, optional
+       Marker for comment lines
+
+    delimiter : string, optional
+       Separator for node labels.  The default is whitespace.
+
+    Returns
+    -------
+    G: NetworkX graph
+        The graph corresponding to the lines in adjacency list format.
+
+    Examples
+    --------
+    >>> lines = ["1 2 5", "2 3 4", "3 5", "4", "5"]
+    >>> G = nx.parse_adjlist(lines, nodetype=int)
+    >>> nodes = [1, 2, 3, 4, 5]
+    >>> all(node in G for node in nodes)
+    True
+    >>> edges = [(1, 2), (1, 5), (2, 3), (2, 4), (3, 5)]
+    >>> all((u, v) in G.edges() or (v, u) in G.edges() for (u, v) in edges)
+    True
+
+    See Also
+    --------
+    read_adjlist
+
+    """
+    G = nx.empty_graph(0, create_using)
+    for line in lines:
+        p = line.find(comments)
+        if p >= 0:
+            line = line[:p]
+        if not len(line):
+            continue
+        vlist = line.rstrip("\n").split(delimiter)
+        u = vlist.pop(0)
+        # convert types
+        if nodetype is not None:
+            try:
+                u = nodetype(u)
+            except BaseException as err:
+                raise TypeError(
+                    f"Failed to convert node ({u}) to type {nodetype}"
+                ) from err
+        G.add_node(u)
+        if nodetype is not None:
+            try:
+                vlist = list(map(nodetype, vlist))
+            except BaseException as err:
+                raise TypeError(
+                    f"Failed to convert nodes ({','.join(vlist)}) to type {nodetype}"
+                ) from err
+        G.add_edges_from([(u, v) for v in vlist])
+    return G
+
+
+@open_file(0, mode="rb")
+@nx._dispatchable(graphs=None, returns_graph=True)
+def read_adjlist(
+    path,
+    comments="#",
+    delimiter=None,
+    create_using=None,
+    nodetype=None,
+    encoding="utf-8",
+):
+    """Read graph in adjacency list format from path.
+
+    Parameters
+    ----------
+    path : string or file
+       Filename or file handle to read.
+       Filenames ending in .gz or .bz2 will be uncompressed.
+
+    create_using : NetworkX graph constructor, optional (default=nx.Graph)
+       Graph type to create. If graph instance, then cleared before populated.
+
+    nodetype : Python type, optional
+       Convert nodes to this type.
+
+    comments : string, optional
+       Marker for comment lines
+
+    delimiter : string, optional
+       Separator for node labels.  The default is whitespace.
+
+    Returns
+    -------
+    G: NetworkX graph
+        The graph corresponding to the lines in adjacency list format.
+
+    Examples
+    --------
+    >>> G = nx.path_graph(4)
+    >>> nx.write_adjlist(G, "test.adjlist")
+    >>> G = nx.read_adjlist("test.adjlist")
+
+    The path can be a filehandle or a string with the name of the file. If a
+    filehandle is provided, it has to be opened in 'rb' mode.
+
+    >>> fh = open("test.adjlist", "rb")
+    >>> G = nx.read_adjlist(fh)
+
+    Filenames ending in .gz or .bz2 will be compressed.
+
+    >>> nx.write_adjlist(G, "test.adjlist.gz")
+    >>> G = nx.read_adjlist("test.adjlist.gz")
+
+    The optional nodetype is a function to convert node strings to nodetype.
+
+    For example
+
+    >>> G = nx.read_adjlist("test.adjlist", nodetype=int)
+
+    will attempt to convert all nodes to integer type.
+
+    Since nodes must be hashable, the function nodetype must return hashable
+    types (e.g. int, float, str, frozenset - or tuples of those, etc.)
+
+    The optional create_using parameter indicates the type of NetworkX graph
+    created.  The default is `nx.Graph`, an undirected graph.
+    To read the data as a directed graph use
+
+    >>> G = nx.read_adjlist("test.adjlist", create_using=nx.DiGraph)
+
+    Notes
+    -----
+    This format does not store graph or node data.
+
+    See Also
+    --------
+    write_adjlist
+    """
+    lines = (line.decode(encoding) for line in path)
+    return parse_adjlist(
+        lines,
+        comments=comments,
+        delimiter=delimiter,
+        create_using=create_using,
+        nodetype=nodetype,
+    )
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/edgelist.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/edgelist.py
new file mode 100644
index 00000000..393b64ed
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/edgelist.py
@@ -0,0 +1,489 @@
+"""
+**********
+Edge Lists
+**********
+Read and write NetworkX graphs as edge lists.
+
+The multi-line adjacency list format is useful for graphs with nodes
+that can be meaningfully represented as strings.  With the edgelist
+format simple edge data can be stored but node or graph data is not.
+There is no way of representing isolated nodes unless the node has a
+self-loop edge.
+
+Format
+------
+You can read or write three formats of edge lists with these functions.
+
+Node pairs with no data::
+
+ 1 2
+
+Python dictionary as data::
+
+ 1 2 {'weight':7, 'color':'green'}
+
+Arbitrary data::
+
+ 1 2 7 green
+"""
+
+__all__ = [
+    "generate_edgelist",
+    "write_edgelist",
+    "parse_edgelist",
+    "read_edgelist",
+    "read_weighted_edgelist",
+    "write_weighted_edgelist",
+]
+
+import networkx as nx
+from networkx.utils import open_file
+
+
+def generate_edgelist(G, delimiter=" ", data=True):
+    """Generate a single line of the graph G in edge list format.
+
+    Parameters
+    ----------
+    G : NetworkX graph
+
+    delimiter : string, optional
+       Separator for node labels
+
+    data : bool or list of keys
+       If False generate no edge data.  If True use a dictionary
+       representation of edge data.  If a list of keys use a list of data
+       values corresponding to the keys.
+
+    Returns
+    -------
+    lines : string
+        Lines of data in adjlist format.
+
+    Examples
+    --------
+    >>> G = nx.lollipop_graph(4, 3)
+    >>> G[1][2]["weight"] = 3
+    >>> G[3][4]["capacity"] = 12
+    >>> for line in nx.generate_edgelist(G, data=False):
+    ...     print(line)
+    0 1
+    0 2
+    0 3
+    1 2
+    1 3
+    2 3
+    3 4
+    4 5
+    5 6
+
+    >>> for line in nx.generate_edgelist(G):
+    ...     print(line)
+    0 1 {}
+    0 2 {}
+    0 3 {}
+    1 2 {'weight': 3}
+    1 3 {}
+    2 3 {}
+    3 4 {'capacity': 12}
+    4 5 {}
+    5 6 {}
+
+    >>> for line in nx.generate_edgelist(G, data=["weight"]):
+    ...     print(line)
+    0 1
+    0 2
+    0 3
+    1 2 3
+    1 3
+    2 3
+    3 4
+    4 5
+    5 6
+
+    See Also
+    --------
+    write_adjlist, read_adjlist
+    """
+    if data is True:
+        for u, v, d in G.edges(data=True):
+            e = u, v, dict(d)
+            yield delimiter.join(map(str, e))
+    elif data is False:
+        for u, v in G.edges(data=False):
+            e = u, v
+            yield delimiter.join(map(str, e))
+    else:
+        for u, v, d in G.edges(data=True):
+            e = [u, v]
+            try:
+                e.extend(d[k] for k in data)
+            except KeyError:
+                pass  # missing data for this edge, should warn?
+            yield delimiter.join(map(str, e))
+
+
+@open_file(1, mode="wb")
+def write_edgelist(G, path, comments="#", delimiter=" ", data=True, encoding="utf-8"):
+    """Write graph as a list of edges.
+
+    Parameters
+    ----------
+    G : graph
+       A NetworkX graph
+    path : file or string
+       File or filename to write. If a file is provided, it must be
+       opened in 'wb' mode. Filenames ending in .gz or .bz2 will be compressed.
+    comments : string, optional
+       The character used to indicate the start of a comment
+    delimiter : string, optional
+       The string used to separate values.  The default is whitespace.
+    data : bool or list, optional
+       If False write no edge data.
+       If True write a string representation of the edge data dictionary..
+       If a list (or other iterable) is provided, write the  keys specified
+       in the list.
+    encoding: string, optional
+       Specify which encoding to use when writing file.
+
+    Examples
+    --------
+    >>> G = nx.path_graph(4)
+    >>> nx.write_edgelist(G, "test.edgelist")
+    >>> G = nx.path_graph(4)
+    >>> fh = open("test.edgelist", "wb")
+    >>> nx.write_edgelist(G, fh)
+    >>> nx.write_edgelist(G, "test.edgelist.gz")
+    >>> nx.write_edgelist(G, "test.edgelist.gz", data=False)
+
+    >>> G = nx.Graph()
+    >>> G.add_edge(1, 2, weight=7, color="red")
+    >>> nx.write_edgelist(G, "test.edgelist", data=False)
+    >>> nx.write_edgelist(G, "test.edgelist", data=["color"])
+    >>> nx.write_edgelist(G, "test.edgelist", data=["color", "weight"])
+
+    See Also
+    --------
+    read_edgelist
+    write_weighted_edgelist
+    """
+
+    for line in generate_edgelist(G, delimiter, data):
+        line += "\n"
+        path.write(line.encode(encoding))
+
+
+@nx._dispatchable(graphs=None, returns_graph=True)
+def parse_edgelist(
+    lines, comments="#", delimiter=None, create_using=None, nodetype=None, data=True
+):
+    """Parse lines of an edge list representation of a graph.
+
+    Parameters
+    ----------
+    lines : list or iterator of strings
+        Input data in edgelist format
+    comments : string, optional
+       Marker for comment lines. Default is `'#'`. To specify that no character
+       should be treated as a comment, use ``comments=None``.
+    delimiter : string, optional
+       Separator for node labels. Default is `None`, meaning any whitespace.
+    create_using : NetworkX graph constructor, optional (default=nx.Graph)
+       Graph type to create. If graph instance, then cleared before populated.
+    nodetype : Python type, optional
+       Convert nodes to this type. Default is `None`, meaning no conversion is
+       performed.
+    data : bool or list of (label,type) tuples
+       If `False` generate no edge data or if `True` use a dictionary
+       representation of edge data or a list tuples specifying dictionary
+       key names and types for edge data.
+
+    Returns
+    -------
+    G: NetworkX Graph
+        The graph corresponding to lines
+
+    Examples
+    --------
+    Edgelist with no data:
+
+    >>> lines = ["1 2", "2 3", "3 4"]
+    >>> G = nx.parse_edgelist(lines, nodetype=int)
+    >>> list(G)
+    [1, 2, 3, 4]
+    >>> list(G.edges())
+    [(1, 2), (2, 3), (3, 4)]
+
+    Edgelist with data in Python dictionary representation:
+
+    >>> lines = ["1 2 {'weight': 3}", "2 3 {'weight': 27}", "3 4 {'weight': 3.0}"]
+    >>> G = nx.parse_edgelist(lines, nodetype=int)
+    >>> list(G)
+    [1, 2, 3, 4]
+    >>> list(G.edges(data=True))
+    [(1, 2, {'weight': 3}), (2, 3, {'weight': 27}), (3, 4, {'weight': 3.0})]
+
+    Edgelist with data in a list:
+
+    >>> lines = ["1 2 3", "2 3 27", "3 4 3.0"]
+    >>> G = nx.parse_edgelist(lines, nodetype=int, data=(("weight", float),))
+    >>> list(G)
+    [1, 2, 3, 4]
+    >>> list(G.edges(data=True))
+    [(1, 2, {'weight': 3.0}), (2, 3, {'weight': 27.0}), (3, 4, {'weight': 3.0})]
+
+    See Also
+    --------
+    read_weighted_edgelist
+    """
+    from ast import literal_eval
+
+    G = nx.empty_graph(0, create_using)
+    for line in lines:
+        if comments is not None:
+            p = line.find(comments)
+            if p >= 0:
+                line = line[:p]
+            if not line:
+                continue
+        # split line, should have 2 or more
+        s = line.rstrip("\n").split(delimiter)
+        if len(s) < 2:
+            continue
+        u = s.pop(0)
+        v = s.pop(0)
+        d = s
+        if nodetype is not None:
+            try:
+                u = nodetype(u)
+                v = nodetype(v)
+            except Exception as err:
+                raise TypeError(
+                    f"Failed to convert nodes {u},{v} to type {nodetype}."
+                ) from err
+
+        if len(d) == 0 or data is False:
+            # no data or data type specified
+            edgedata = {}
+        elif data is True:
+            # no edge types specified
+            try:  # try to evaluate as dictionary
+                if delimiter == ",":
+                    edgedata_str = ",".join(d)
+                else:
+                    edgedata_str = " ".join(d)
+                edgedata = dict(literal_eval(edgedata_str.strip()))
+            except Exception as err:
+                raise TypeError(
+                    f"Failed to convert edge data ({d}) to dictionary."
+                ) from err
+        else:
+            # convert edge data to dictionary with specified keys and type
+            if len(d) != len(data):
+                raise IndexError(
+                    f"Edge data {d} and data_keys {data} are not the same length"
+                )
+            edgedata = {}
+            for (edge_key, edge_type), edge_value in zip(data, d):
+                try:
+                    edge_value = edge_type(edge_value)
+                except Exception as err:
+                    raise TypeError(
+                        f"Failed to convert {edge_key} data {edge_value} "
+                        f"to type {edge_type}."
+                    ) from err
+                edgedata.update({edge_key: edge_value})
+        G.add_edge(u, v, **edgedata)
+    return G
+
+
+@open_file(0, mode="rb")
+@nx._dispatchable(graphs=None, returns_graph=True)
+def read_edgelist(
+    path,
+    comments="#",
+    delimiter=None,
+    create_using=None,
+    nodetype=None,
+    data=True,
+    edgetype=None,
+    encoding="utf-8",
+):
+    """Read a graph from a list of edges.
+
+    Parameters
+    ----------
+    path : file or string
+       File or filename to read. If a file is provided, it must be
+       opened in 'rb' mode.
+       Filenames ending in .gz or .bz2 will be uncompressed.
+    comments : string, optional
+       The character used to indicate the start of a comment. To specify that
+       no character should be treated as a comment, use ``comments=None``.
+    delimiter : string, optional
+       The string used to separate values.  The default is whitespace.
+    create_using : NetworkX graph constructor, optional (default=nx.Graph)
+       Graph type to create. If graph instance, then cleared before populated.
+    nodetype : int, float, str, Python type, optional
+       Convert node data from strings to specified type
+    data : bool or list of (label,type) tuples
+       Tuples specifying dictionary key names and types for edge data
+    edgetype : int, float, str, Python type, optional OBSOLETE
+       Convert edge data from strings to specified type and use as 'weight'
+    encoding: string, optional
+       Specify which encoding to use when reading file.
+
+    Returns
+    -------
+    G : graph
+       A networkx Graph or other type specified with create_using
+
+    Examples
+    --------
+    >>> nx.write_edgelist(nx.path_graph(4), "test.edgelist")
+    >>> G = nx.read_edgelist("test.edgelist")
+
+    >>> fh = open("test.edgelist", "rb")
+    >>> G = nx.read_edgelist(fh)
+    >>> fh.close()
+
+    >>> G = nx.read_edgelist("test.edgelist", nodetype=int)
+    >>> G = nx.read_edgelist("test.edgelist", create_using=nx.DiGraph)
+
+    Edgelist with data in a list:
+
+    >>> textline = "1 2 3"
+    >>> fh = open("test.edgelist", "w")
+    >>> d = fh.write(textline)
+    >>> fh.close()
+    >>> G = nx.read_edgelist("test.edgelist", nodetype=int, data=(("weight", float),))
+    >>> list(G)
+    [1, 2]
+    >>> list(G.edges(data=True))
+    [(1, 2, {'weight': 3.0})]
+
+    See parse_edgelist() for more examples of formatting.
+
+    See Also
+    --------
+    parse_edgelist
+    write_edgelist
+
+    Notes
+    -----
+    Since nodes must be hashable, the function nodetype must return hashable
+    types (e.g. int, float, str, frozenset - or tuples of those, etc.)
+    """
+    lines = (line if isinstance(line, str) else line.decode(encoding) for line in path)
+    return parse_edgelist(
+        lines,
+        comments=comments,
+        delimiter=delimiter,
+        create_using=create_using,
+        nodetype=nodetype,
+        data=data,
+    )
+
+
+def write_weighted_edgelist(G, path, comments="#", delimiter=" ", encoding="utf-8"):
+    """Write graph G as a list of edges with numeric weights.
+
+    Parameters
+    ----------
+    G : graph
+       A NetworkX graph
+    path : file or string
+       File or filename to write. If a file is provided, it must be
+       opened in 'wb' mode.
+       Filenames ending in .gz or .bz2 will be compressed.
+    comments : string, optional
+       The character used to indicate the start of a comment
+    delimiter : string, optional
+       The string used to separate values.  The default is whitespace.
+    encoding: string, optional
+       Specify which encoding to use when writing file.
+
+    Examples
+    --------
+    >>> G = nx.Graph()
+    >>> G.add_edge(1, 2, weight=7)
+    >>> nx.write_weighted_edgelist(G, "test.weighted.edgelist")
+
+    See Also
+    --------
+    read_edgelist
+    write_edgelist
+    read_weighted_edgelist
+    """
+    write_edgelist(
+        G,
+        path,
+        comments=comments,
+        delimiter=delimiter,
+        data=("weight",),
+        encoding=encoding,
+    )
+
+
+@nx._dispatchable(graphs=None, returns_graph=True)
+def read_weighted_edgelist(
+    path,
+    comments="#",
+    delimiter=None,
+    create_using=None,
+    nodetype=None,
+    encoding="utf-8",
+):
+    """Read a graph as list of edges with numeric weights.
+
+    Parameters
+    ----------
+    path : file or string
+       File or filename to read. If a file is provided, it must be
+       opened in 'rb' mode.
+       Filenames ending in .gz or .bz2 will be uncompressed.
+    comments : string, optional
+       The character used to indicate the start of a comment.
+    delimiter : string, optional
+       The string used to separate values.  The default is whitespace.
+    create_using : NetworkX graph constructor, optional (default=nx.Graph)
+       Graph type to create. If graph instance, then cleared before populated.
+    nodetype : int, float, str, Python type, optional
+       Convert node data from strings to specified type
+    encoding: string, optional
+       Specify which encoding to use when reading file.
+
+    Returns
+    -------
+    G : graph
+       A networkx Graph or other type specified with create_using
+
+    Notes
+    -----
+    Since nodes must be hashable, the function nodetype must return hashable
+    types (e.g. int, float, str, frozenset - or tuples of those, etc.)
+
+    Example edgelist file format.
+
+    With numeric edge data::
+
+     # read with
+     # >>> G=nx.read_weighted_edgelist(fh)
+     # source target data
+     a b 1
+     a c 3.14159
+     d e 42
+
+    See Also
+    --------
+    write_weighted_edgelist
+    """
+    return read_edgelist(
+        path,
+        comments=comments,
+        delimiter=delimiter,
+        create_using=create_using,
+        nodetype=nodetype,
+        data=(("weight", float),),
+        encoding=encoding,
+    )
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/gexf.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/gexf.py
new file mode 100644
index 00000000..f830dd12
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/gexf.py
@@ -0,0 +1,1066 @@
+"""Read and write graphs in GEXF format.
+
+.. warning::
+    This parser uses the standard xml library present in Python, which is
+    insecure - see :external+python:mod:`xml` for additional information.
+    Only parse GEFX files you trust.
+
+GEXF (Graph Exchange XML Format) is a language for describing complex
+network structures, their associated data and dynamics.
+
+This implementation does not support mixed graphs (directed and
+undirected edges together).
+
+Format
+------
+GEXF is an XML format.  See http://gexf.net/schema.html for the
+specification and http://gexf.net/basic.html for examples.
+"""
+
+import itertools
+import time
+from xml.etree.ElementTree import (
+    Element,
+    ElementTree,
+    SubElement,
+    register_namespace,
+    tostring,
+)
+
+import networkx as nx
+from networkx.utils import open_file
+
+__all__ = ["write_gexf", "read_gexf", "relabel_gexf_graph", "generate_gexf"]
+
+
+@open_file(1, mode="wb")
+def write_gexf(G, path, encoding="utf-8", prettyprint=True, version="1.2draft"):
+    """Write G in GEXF format to path.
+
+    "GEXF (Graph Exchange XML Format) is a language for describing
+    complex networks structures, their associated data and dynamics" [1]_.
+
+    Node attributes are checked according to the version of the GEXF
+    schemas used for parameters which are not user defined,
+    e.g. visualization 'viz' [2]_. See example for usage.
+
+    Parameters
+    ----------
+    G : graph
+       A NetworkX graph
+    path : file or string
+       File or file name to write.
+       File names ending in .gz or .bz2 will be compressed.
+    encoding : string (optional, default: 'utf-8')
+       Encoding for text data.
+    prettyprint : bool (optional, default: True)
+       If True use line breaks and indenting in output XML.
+    version: string (optional, default: '1.2draft')
+       The version of GEXF to be used for nodes attributes checking
+
+    Examples
+    --------
+    >>> G = nx.path_graph(4)
+    >>> nx.write_gexf(G, "test.gexf")
+
+    # visualization data
+    >>> G.nodes[0]["viz"] = {"size": 54}
+    >>> G.nodes[0]["viz"]["position"] = {"x": 0, "y": 1}
+    >>> G.nodes[0]["viz"]["color"] = {"r": 0, "g": 0, "b": 256}
+
+
+    Notes
+    -----
+    This implementation does not support mixed graphs (directed and undirected
+    edges together).
+
+    The node id attribute is set to be the string of the node label.
+    If you want to specify an id use set it as node data, e.g.
+    node['a']['id']=1 to set the id of node 'a' to 1.
+
+    References
+    ----------
+    .. [1] GEXF File Format, http://gexf.net/
+    .. [2] GEXF schema, http://gexf.net/schema.html
+    """
+    writer = GEXFWriter(encoding=encoding, prettyprint=prettyprint, version=version)
+    writer.add_graph(G)
+    writer.write(path)
+
+
+def generate_gexf(G, encoding="utf-8", prettyprint=True, version="1.2draft"):
+    """Generate lines of GEXF format representation of G.
+
+    "GEXF (Graph Exchange XML Format) is a language for describing
+    complex networks structures, their associated data and dynamics" [1]_.
+
+    Parameters
+    ----------
+    G : graph
+    A NetworkX graph
+    encoding : string (optional, default: 'utf-8')
+    Encoding for text data.
+    prettyprint : bool (optional, default: True)
+    If True use line breaks and indenting in output XML.
+    version : string (default: 1.2draft)
+    Version of GEFX File Format (see http://gexf.net/schema.html)
+    Supported values: "1.1draft", "1.2draft"
+
+
+    Examples
+    --------
+    >>> G = nx.path_graph(4)
+    >>> linefeed = chr(10)  # linefeed=\n
+    >>> s = linefeed.join(nx.generate_gexf(G))
+    >>> for line in nx.generate_gexf(G):  # doctest: +SKIP
+    ...     print(line)
+
+    Notes
+    -----
+    This implementation does not support mixed graphs (directed and undirected
+    edges together).
+
+    The node id attribute is set to be the string of the node label.
+    If you want to specify an id use set it as node data, e.g.
+    node['a']['id']=1 to set the id of node 'a' to 1.
+
+    References
+    ----------
+    .. [1] GEXF File Format, https://gephi.org/gexf/format/
+    """
+    writer = GEXFWriter(encoding=encoding, prettyprint=prettyprint, version=version)
+    writer.add_graph(G)
+    yield from str(writer).splitlines()
+
+
+@open_file(0, mode="rb")
+@nx._dispatchable(graphs=None, returns_graph=True)
+def read_gexf(path, node_type=None, relabel=False, version="1.2draft"):
+    """Read graph in GEXF format from path.
+
+    "GEXF (Graph Exchange XML Format) is a language for describing
+    complex networks structures, their associated data and dynamics" [1]_.
+
+    Parameters
+    ----------
+    path : file or string
+       File or file name to read.
+       File names ending in .gz or .bz2 will be decompressed.
+    node_type: Python type (default: None)
+       Convert node ids to this type if not None.
+    relabel : bool (default: False)
+       If True relabel the nodes to use the GEXF node "label" attribute
+       instead of the node "id" attribute as the NetworkX node label.
+    version : string (default: 1.2draft)
+    Version of GEFX File Format (see http://gexf.net/schema.html)
+       Supported values: "1.1draft", "1.2draft"
+
+    Returns
+    -------
+    graph: NetworkX graph
+        If no parallel edges are found a Graph or DiGraph is returned.
+        Otherwise a MultiGraph or MultiDiGraph is returned.
+
+    Notes
+    -----
+    This implementation does not support mixed graphs (directed and undirected
+    edges together).
+
+    References
+    ----------
+    .. [1] GEXF File Format, http://gexf.net/
+    """
+    reader = GEXFReader(node_type=node_type, version=version)
+    if relabel:
+        G = relabel_gexf_graph(reader(path))
+    else:
+        G = reader(path)
+    return G
+
+
+class GEXF:
+    versions = {
+        "1.1draft": {
+            "NS_GEXF": "http://www.gexf.net/1.1draft",
+            "NS_VIZ": "http://www.gexf.net/1.1draft/viz",
+            "NS_XSI": "http://www.w3.org/2001/XMLSchema-instance",
+            "SCHEMALOCATION": " ".join(
+                [
+                    "http://www.gexf.net/1.1draft",
+                    "http://www.gexf.net/1.1draft/gexf.xsd",
+                ]
+            ),
+            "VERSION": "1.1",
+        },
+        "1.2draft": {
+            "NS_GEXF": "http://www.gexf.net/1.2draft",
+            "NS_VIZ": "http://www.gexf.net/1.2draft/viz",
+            "NS_XSI": "http://www.w3.org/2001/XMLSchema-instance",
+            "SCHEMALOCATION": " ".join(
+                [
+                    "http://www.gexf.net/1.2draft",
+                    "http://www.gexf.net/1.2draft/gexf.xsd",
+                ]
+            ),
+            "VERSION": "1.2",
+        },
+    }
+
+    def construct_types(self):
+        types = [
+            (int, "integer"),
+            (float, "float"),
+            (float, "double"),
+            (bool, "boolean"),
+            (list, "string"),
+            (dict, "string"),
+            (int, "long"),
+            (str, "liststring"),
+            (str, "anyURI"),
+            (str, "string"),
+        ]
+
+        # These additions to types allow writing numpy types
+        try:
+            import numpy as np
+        except ImportError:
+            pass
+        else:
+            # prepend so that python types are created upon read (last entry wins)
+            types = [
+                (np.float64, "float"),
+                (np.float32, "float"),
+                (np.float16, "float"),
+                (np.int_, "int"),
+                (np.int8, "int"),
+                (np.int16, "int"),
+                (np.int32, "int"),
+                (np.int64, "int"),
+                (np.uint8, "int"),
+                (np.uint16, "int"),
+                (np.uint32, "int"),
+                (np.uint64, "int"),
+                (np.int_, "int"),
+                (np.intc, "int"),
+                (np.intp, "int"),
+            ] + types
+
+        self.xml_type = dict(types)
+        self.python_type = dict(reversed(a) for a in types)
+
+    # http://www.w3.org/TR/xmlschema-2/#boolean
+    convert_bool = {
+        "true": True,
+        "false": False,
+        "True": True,
+        "False": False,
+        "0": False,
+        0: False,
+        "1": True,
+        1: True,
+    }
+
+    def set_version(self, version):
+        d = self.versions.get(version)
+        if d is None:
+            raise nx.NetworkXError(f"Unknown GEXF version {version}.")
+        self.NS_GEXF = d["NS_GEXF"]
+        self.NS_VIZ = d["NS_VIZ"]
+        self.NS_XSI = d["NS_XSI"]
+        self.SCHEMALOCATION = d["SCHEMALOCATION"]
+        self.VERSION = d["VERSION"]
+        self.version = version
+
+
+class GEXFWriter(GEXF):
+    # class for writing GEXF format files
+    # use write_gexf() function
+    def __init__(
+        self, graph=None, encoding="utf-8", prettyprint=True, version="1.2draft"
+    ):
+        self.construct_types()
+        self.prettyprint = prettyprint
+        self.encoding = encoding
+        self.set_version(version)
+        self.xml = Element(
+            "gexf",
+            {
+                "xmlns": self.NS_GEXF,
+                "xmlns:xsi": self.NS_XSI,
+                "xsi:schemaLocation": self.SCHEMALOCATION,
+                "version": self.VERSION,
+            },
+        )
+
+        # Make meta element a non-graph element
+        # Also add lastmodifieddate as attribute, not tag
+        meta_element = Element("meta")
+        subelement_text = f"NetworkX {nx.__version__}"
+        SubElement(meta_element, "creator").text = subelement_text
+        meta_element.set("lastmodifieddate", time.strftime("%Y-%m-%d"))
+        self.xml.append(meta_element)
+
+        register_namespace("viz", self.NS_VIZ)
+
+        # counters for edge and attribute identifiers
+        self.edge_id = itertools.count()
+        self.attr_id = itertools.count()
+        self.all_edge_ids = set()
+        # default attributes are stored in dictionaries
+        self.attr = {}
+        self.attr["node"] = {}
+        self.attr["edge"] = {}
+        self.attr["node"]["dynamic"] = {}
+        self.attr["node"]["static"] = {}
+        self.attr["edge"]["dynamic"] = {}
+        self.attr["edge"]["static"] = {}
+
+        if graph is not None:
+            self.add_graph(graph)
+
+    def __str__(self):
+        if self.prettyprint:
+            self.indent(self.xml)
+        s = tostring(self.xml).decode(self.encoding)
+        return s
+
+    def add_graph(self, G):
+        # first pass through G collecting edge ids
+        for u, v, dd in G.edges(data=True):
+            eid = dd.get("id")
+            if eid is not None:
+                self.all_edge_ids.add(str(eid))
+        # set graph attributes
+        if G.graph.get("mode") == "dynamic":
+            mode = "dynamic"
+        else:
+            mode = "static"
+        # Add a graph element to the XML
+        if G.is_directed():
+            default = "directed"
+        else:
+            default = "undirected"
+        name = G.graph.get("name", "")
+        graph_element = Element("graph", defaultedgetype=default, mode=mode, name=name)
+        self.graph_element = graph_element
+        self.add_nodes(G, graph_element)
+        self.add_edges(G, graph_element)
+        self.xml.append(graph_element)
+
+    def add_nodes(self, G, graph_element):
+        nodes_element = Element("nodes")
+        for node, data in G.nodes(data=True):
+            node_data = data.copy()
+            node_id = str(node_data.pop("id", node))
+            kw = {"id": node_id}
+            label = str(node_data.pop("label", node))
+            kw["label"] = label
+            try:
+                pid = node_data.pop("pid")
+                kw["pid"] = str(pid)
+            except KeyError:
+                pass
+            try:
+                start = node_data.pop("start")
+                kw["start"] = str(start)
+                self.alter_graph_mode_timeformat(start)
+            except KeyError:
+                pass
+            try:
+                end = node_data.pop("end")
+                kw["end"] = str(end)
+                self.alter_graph_mode_timeformat(end)
+            except KeyError:
+                pass
+            # add node element with attributes
+            node_element = Element("node", **kw)
+            # add node element and attr subelements
+            default = G.graph.get("node_default", {})
+            node_data = self.add_parents(node_element, node_data)
+            if self.VERSION == "1.1":
+                node_data = self.add_slices(node_element, node_data)
+            else:
+                node_data = self.add_spells(node_element, node_data)
+            node_data = self.add_viz(node_element, node_data)
+            node_data = self.add_attributes("node", node_element, node_data, default)
+            nodes_element.append(node_element)
+        graph_element.append(nodes_element)
+
+    def add_edges(self, G, graph_element):
+        def edge_key_data(G):
+            # helper function to unify multigraph and graph edge iterator
+            if G.is_multigraph():
+                for u, v, key, data in G.edges(data=True, keys=True):
+                    edge_data = data.copy()
+                    edge_data.update(key=key)
+                    edge_id = edge_data.pop("id", None)
+                    if edge_id is None:
+                        edge_id = next(self.edge_id)
+                        while str(edge_id) in self.all_edge_ids:
+                            edge_id = next(self.edge_id)
+                        self.all_edge_ids.add(str(edge_id))
+                    yield u, v, edge_id, edge_data
+            else:
+                for u, v, data in G.edges(data=True):
+                    edge_data = data.copy()
+                    edge_id = edge_data.pop("id", None)
+                    if edge_id is None:
+                        edge_id = next(self.edge_id)
+                        while str(edge_id) in self.all_edge_ids:
+                            edge_id = next(self.edge_id)
+                        self.all_edge_ids.add(str(edge_id))
+                    yield u, v, edge_id, edge_data
+
+        edges_element = Element("edges")
+        for u, v, key, edge_data in edge_key_data(G):
+            kw = {"id": str(key)}
+            try:
+                edge_label = edge_data.pop("label")
+                kw["label"] = str(edge_label)
+            except KeyError:
+                pass
+            try:
+                edge_weight = edge_data.pop("weight")
+                kw["weight"] = str(edge_weight)
+            except KeyError:
+                pass
+            try:
+                edge_type = edge_data.pop("type")
+                kw["type"] = str(edge_type)
+            except KeyError:
+                pass
+            try:
+                start = edge_data.pop("start")
+                kw["start"] = str(start)
+                self.alter_graph_mode_timeformat(start)
+            except KeyError:
+                pass
+            try:
+                end = edge_data.pop("end")
+                kw["end"] = str(end)
+                self.alter_graph_mode_timeformat(end)
+            except KeyError:
+                pass
+            source_id = str(G.nodes[u].get("id", u))
+            target_id = str(G.nodes[v].get("id", v))
+            edge_element = Element("edge", source=source_id, target=target_id, **kw)
+            default = G.graph.get("edge_default", {})
+            if self.VERSION == "1.1":
+                edge_data = self.add_slices(edge_element, edge_data)
+            else:
+                edge_data = self.add_spells(edge_element, edge_data)
+            edge_data = self.add_viz(edge_element, edge_data)
+            edge_data = self.add_attributes("edge", edge_element, edge_data, default)
+            edges_element.append(edge_element)
+        graph_element.append(edges_element)
+
+    def add_attributes(self, node_or_edge, xml_obj, data, default):
+        # Add attrvalues to node or edge
+        attvalues = Element("attvalues")
+        if len(data) == 0:
+            return data
+        mode = "static"
+        for k, v in data.items():
+            # rename generic multigraph key to avoid any name conflict
+            if k == "key":
+                k = "networkx_key"
+            val_type = type(v)
+            if val_type not in self.xml_type:
+                raise TypeError(f"attribute value type is not allowed: {val_type}")
+            if isinstance(v, list):
+                # dynamic data
+                for val, start, end in v:
+                    val_type = type(val)
+                    if start is not None or end is not None:
+                        mode = "dynamic"
+                        self.alter_graph_mode_timeformat(start)
+                        self.alter_graph_mode_timeformat(end)
+                        break
+                attr_id = self.get_attr_id(
+                    str(k), self.xml_type[val_type], node_or_edge, default, mode
+                )
+                for val, start, end in v:
+                    e = Element("attvalue")
+                    e.attrib["for"] = attr_id
+                    e.attrib["value"] = str(val)
+                    # Handle nan, inf, -inf differently
+                    if val_type == float:
+                        if e.attrib["value"] == "inf":
+                            e.attrib["value"] = "INF"
+                        elif e.attrib["value"] == "nan":
+                            e.attrib["value"] = "NaN"
+                        elif e.attrib["value"] == "-inf":
+                            e.attrib["value"] = "-INF"
+                    if start is not None:
+                        e.attrib["start"] = str(start)
+                    if end is not None:
+                        e.attrib["end"] = str(end)
+                    attvalues.append(e)
+            else:
+                # static data
+                mode = "static"
+                attr_id = self.get_attr_id(
+                    str(k), self.xml_type[val_type], node_or_edge, default, mode
+                )
+                e = Element("attvalue")
+                e.attrib["for"] = attr_id
+                if isinstance(v, bool):
+                    e.attrib["value"] = str(v).lower()
+                else:
+                    e.attrib["value"] = str(v)
+                    # Handle float nan, inf, -inf differently
+                    if val_type == float:
+                        if e.attrib["value"] == "inf":
+                            e.attrib["value"] = "INF"
+                        elif e.attrib["value"] == "nan":
+                            e.attrib["value"] = "NaN"
+                        elif e.attrib["value"] == "-inf":
+                            e.attrib["value"] = "-INF"
+                attvalues.append(e)
+        xml_obj.append(attvalues)
+        return data
+
+    def get_attr_id(self, title, attr_type, edge_or_node, default, mode):
+        # find the id of the attribute or generate a new id
+        try:
+            return self.attr[edge_or_node][mode][title]
+        except KeyError:
+            # generate new id
+            new_id = str(next(self.attr_id))
+            self.attr[edge_or_node][mode][title] = new_id
+            attr_kwargs = {"id": new_id, "title": title, "type": attr_type}
+            attribute = Element("attribute", **attr_kwargs)
+            # add subelement for data default value if present
+            default_title = default.get(title)
+            if default_title is not None:
+                default_element = Element("default")
+                default_element.text = str(default_title)
+                attribute.append(default_element)
+            # new insert it into the XML
+            attributes_element = None
+            for a in self.graph_element.findall("attributes"):
+                # find existing attributes element by class and mode
+                a_class = a.get("class")
+                a_mode = a.get("mode", "static")
+                if a_class == edge_or_node and a_mode == mode:
+                    attributes_element = a
+            if attributes_element is None:
+                # create new attributes element
+                attr_kwargs = {"mode": mode, "class": edge_or_node}
+                attributes_element = Element("attributes", **attr_kwargs)
+                self.graph_element.insert(0, attributes_element)
+            attributes_element.append(attribute)
+        return new_id
+
+    def add_viz(self, element, node_data):
+        viz = node_data.pop("viz", False)
+        if viz:
+            color = viz.get("color")
+            if color is not None:
+                if self.VERSION == "1.1":
+                    e = Element(
+                        f"{{{self.NS_VIZ}}}color",
+                        r=str(color.get("r")),
+                        g=str(color.get("g")),
+                        b=str(color.get("b")),
+                    )
+                else:
+                    e = Element(
+                        f"{{{self.NS_VIZ}}}color",
+                        r=str(color.get("r")),
+                        g=str(color.get("g")),
+                        b=str(color.get("b")),
+                        a=str(color.get("a", 1.0)),
+                    )
+                element.append(e)
+
+            size = viz.get("size")
+            if size is not None:
+                e = Element(f"{{{self.NS_VIZ}}}size", value=str(size))
+                element.append(e)
+
+            thickness = viz.get("thickness")
+            if thickness is not None:
+                e = Element(f"{{{self.NS_VIZ}}}thickness", value=str(thickness))
+                element.append(e)
+
+            shape = viz.get("shape")
+            if shape is not None:
+                if shape.startswith("http"):
+                    e = Element(
+                        f"{{{self.NS_VIZ}}}shape", value="image", uri=str(shape)
+                    )
+                else:
+                    e = Element(f"{{{self.NS_VIZ}}}shape", value=str(shape))
+                element.append(e)
+
+            position = viz.get("position")
+            if position is not None:
+                e = Element(
+                    f"{{{self.NS_VIZ}}}position",
+                    x=str(position.get("x")),
+                    y=str(position.get("y")),
+                    z=str(position.get("z")),
+                )
+                element.append(e)
+        return node_data
+
+    def add_parents(self, node_element, node_data):
+        parents = node_data.pop("parents", False)
+        if parents:
+            parents_element = Element("parents")
+            for p in parents:
+                e = Element("parent")
+                e.attrib["for"] = str(p)
+                parents_element.append(e)
+            node_element.append(parents_element)
+        return node_data
+
+    def add_slices(self, node_or_edge_element, node_or_edge_data):
+        slices = node_or_edge_data.pop("slices", False)
+        if slices:
+            slices_element = Element("slices")
+            for start, end in slices:
+                e = Element("slice", start=str(start), end=str(end))
+                slices_element.append(e)
+            node_or_edge_element.append(slices_element)
+        return node_or_edge_data
+
+    def add_spells(self, node_or_edge_element, node_or_edge_data):
+        spells = node_or_edge_data.pop("spells", False)
+        if spells:
+            spells_element = Element("spells")
+            for start, end in spells:
+                e = Element("spell")
+                if start is not None:
+                    e.attrib["start"] = str(start)
+                    self.alter_graph_mode_timeformat(start)
+                if end is not None:
+                    e.attrib["end"] = str(end)
+                    self.alter_graph_mode_timeformat(end)
+                spells_element.append(e)
+            node_or_edge_element.append(spells_element)
+        return node_or_edge_data
+
+    def alter_graph_mode_timeformat(self, start_or_end):
+        # If 'start' or 'end' appears, alter Graph mode to dynamic and
+        # set timeformat
+        if self.graph_element.get("mode") == "static":
+            if start_or_end is not None:
+                if isinstance(start_or_end, str):
+                    timeformat = "date"
+                elif isinstance(start_or_end, float):
+                    timeformat = "double"
+                elif isinstance(start_or_end, int):
+                    timeformat = "long"
+                else:
+                    raise nx.NetworkXError(
+                        "timeformat should be of the type int, float or str"
+                    )
+                self.graph_element.set("timeformat", timeformat)
+                self.graph_element.set("mode", "dynamic")
+
+    def write(self, fh):
+        # Serialize graph G in GEXF to the open fh
+        if self.prettyprint:
+            self.indent(self.xml)
+        document = ElementTree(self.xml)
+        document.write(fh, encoding=self.encoding, xml_declaration=True)
+
+    def indent(self, elem, level=0):
+        # in-place prettyprint formatter
+        i = "\n" + "  " * level
+        if len(elem):
+            if not elem.text or not elem.text.strip():
+                elem.text = i + "  "
+            if not elem.tail or not elem.tail.strip():
+                elem.tail = i
+            for elem in elem:
+                self.indent(elem, level + 1)
+            if not elem.tail or not elem.tail.strip():
+                elem.tail = i
+        else:
+            if level and (not elem.tail or not elem.tail.strip()):
+                elem.tail = i
+
+
+class GEXFReader(GEXF):
+    # Class to read GEXF format files
+    # use read_gexf() function
+    def __init__(self, node_type=None, version="1.2draft"):
+        self.construct_types()
+        self.node_type = node_type
+        # assume simple graph and test for multigraph on read
+        self.simple_graph = True
+        self.set_version(version)
+
+    def __call__(self, stream):
+        self.xml = ElementTree(file=stream)
+        g = self.xml.find(f"{{{self.NS_GEXF}}}graph")
+        if g is not None:
+            return self.make_graph(g)
+        # try all the versions
+        for version in self.versions:
+            self.set_version(version)
+            g = self.xml.find(f"{{{self.NS_GEXF}}}graph")
+            if g is not None:
+                return self.make_graph(g)
+        raise nx.NetworkXError("No <graph> element in GEXF file.")
+
+    def make_graph(self, graph_xml):
+        # start with empty DiGraph or MultiDiGraph
+        edgedefault = graph_xml.get("defaultedgetype", None)
+        if edgedefault == "directed":
+            G = nx.MultiDiGraph()
+        else:
+            G = nx.MultiGraph()
+
+        # graph attributes
+        graph_name = graph_xml.get("name", "")
+        if graph_name != "":
+            G.graph["name"] = graph_name
+        graph_start = graph_xml.get("start")
+        if graph_start is not None:
+            G.graph["start"] = graph_start
+        graph_end = graph_xml.get("end")
+        if graph_end is not None:
+            G.graph["end"] = graph_end
+        graph_mode = graph_xml.get("mode", "")
+        if graph_mode == "dynamic":
+            G.graph["mode"] = "dynamic"
+        else:
+            G.graph["mode"] = "static"
+
+        # timeformat
+        self.timeformat = graph_xml.get("timeformat")
+        if self.timeformat == "date":
+            self.timeformat = "string"
+
+        # node and edge attributes
+        attributes_elements = graph_xml.findall(f"{{{self.NS_GEXF}}}attributes")
+        # dictionaries to hold attributes and attribute defaults
+        node_attr = {}
+        node_default = {}
+        edge_attr = {}
+        edge_default = {}
+        for a in attributes_elements:
+            attr_class = a.get("class")
+            if attr_class == "node":
+                na, nd = self.find_gexf_attributes(a)
+                node_attr.update(na)
+                node_default.update(nd)
+                G.graph["node_default"] = node_default
+            elif attr_class == "edge":
+                ea, ed = self.find_gexf_attributes(a)
+                edge_attr.update(ea)
+                edge_default.update(ed)
+                G.graph["edge_default"] = edge_default
+            else:
+                raise  # unknown attribute class
+
+        # Hack to handle Gephi0.7beta bug
+        # add weight attribute
+        ea = {"weight": {"type": "double", "mode": "static", "title": "weight"}}
+        ed = {}
+        edge_attr.update(ea)
+        edge_default.update(ed)
+        G.graph["edge_default"] = edge_default
+
+        # add nodes
+        nodes_element = graph_xml.find(f"{{{self.NS_GEXF}}}nodes")
+        if nodes_element is not None:
+            for node_xml in nodes_element.findall(f"{{{self.NS_GEXF}}}node"):
+                self.add_node(G, node_xml, node_attr)
+
+        # add edges
+        edges_element = graph_xml.find(f"{{{self.NS_GEXF}}}edges")
+        if edges_element is not None:
+            for edge_xml in edges_element.findall(f"{{{self.NS_GEXF}}}edge"):
+                self.add_edge(G, edge_xml, edge_attr)
+
+        # switch to Graph or DiGraph if no parallel edges were found.
+        if self.simple_graph:
+            if G.is_directed():
+                G = nx.DiGraph(G)
+            else:
+                G = nx.Graph(G)
+        return G
+
+    def add_node(self, G, node_xml, node_attr, node_pid=None):
+        # add a single node with attributes to the graph
+
+        # get attributes and subattributues for node
+        data = self.decode_attr_elements(node_attr, node_xml)
+        data = self.add_parents(data, node_xml)  # add any parents
+        if self.VERSION == "1.1":
+            data = self.add_slices(data, node_xml)  # add slices
+        else:
+            data = self.add_spells(data, node_xml)  # add spells
+        data = self.add_viz(data, node_xml)  # add viz
+        data = self.add_start_end(data, node_xml)  # add start/end
+
+        # find the node id and cast it to the appropriate type
+        node_id = node_xml.get("id")
+        if self.node_type is not None:
+            node_id = self.node_type(node_id)
+
+        # every node should have a label
+        node_label = node_xml.get("label")
+        data["label"] = node_label
+
+        # parent node id
+        node_pid = node_xml.get("pid", node_pid)
+        if node_pid is not None:
+            data["pid"] = node_pid
+
+        # check for subnodes, recursive
+        subnodes = node_xml.find(f"{{{self.NS_GEXF}}}nodes")
+        if subnodes is not None:
+            for node_xml in subnodes.findall(f"{{{self.NS_GEXF}}}node"):
+                self.add_node(G, node_xml, node_attr, node_pid=node_id)
+
+        G.add_node(node_id, **data)
+
+    def add_start_end(self, data, xml):
+        # start and end times
+        ttype = self.timeformat
+        node_start = xml.get("start")
+        if node_start is not None:
+            data["start"] = self.python_type[ttype](node_start)
+        node_end = xml.get("end")
+        if node_end is not None:
+            data["end"] = self.python_type[ttype](node_end)
+        return data
+
+    def add_viz(self, data, node_xml):
+        # add viz element for node
+        viz = {}
+        color = node_xml.find(f"{{{self.NS_VIZ}}}color")
+        if color is not None:
+            if self.VERSION == "1.1":
+                viz["color"] = {
+                    "r": int(color.get("r")),
+                    "g": int(color.get("g")),
+                    "b": int(color.get("b")),
+                }
+            else:
+                viz["color"] = {
+                    "r": int(color.get("r")),
+                    "g": int(color.get("g")),
+                    "b": int(color.get("b")),
+                    "a": float(color.get("a", 1)),
+                }
+
+        size = node_xml.find(f"{{{self.NS_VIZ}}}size")
+        if size is not None:
+            viz["size"] = float(size.get("value"))
+
+        thickness = node_xml.find(f"{{{self.NS_VIZ}}}thickness")
+        if thickness is not None:
+            viz["thickness"] = float(thickness.get("value"))
+
+        shape = node_xml.find(f"{{{self.NS_VIZ}}}shape")
+        if shape is not None:
+            viz["shape"] = shape.get("shape")
+            if viz["shape"] == "image":
+                viz["shape"] = shape.get("uri")
+
+        position = node_xml.find(f"{{{self.NS_VIZ}}}position")
+        if position is not None:
+            viz["position"] = {
+                "x": float(position.get("x", 0)),
+                "y": float(position.get("y", 0)),
+                "z": float(position.get("z", 0)),
+            }
+
+        if len(viz) > 0:
+            data["viz"] = viz
+        return data
+
+    def add_parents(self, data, node_xml):
+        parents_element = node_xml.find(f"{{{self.NS_GEXF}}}parents")
+        if parents_element is not None:
+            data["parents"] = []
+            for p in parents_element.findall(f"{{{self.NS_GEXF}}}parent"):
+                parent = p.get("for")
+                data["parents"].append(parent)
+        return data
+
+    def add_slices(self, data, node_or_edge_xml):
+        slices_element = node_or_edge_xml.find(f"{{{self.NS_GEXF}}}slices")
+        if slices_element is not None:
+            data["slices"] = []
+            for s in slices_element.findall(f"{{{self.NS_GEXF}}}slice"):
+                start = s.get("start")
+                end = s.get("end")
+                data["slices"].append((start, end))
+        return data
+
+    def add_spells(self, data, node_or_edge_xml):
+        spells_element = node_or_edge_xml.find(f"{{{self.NS_GEXF}}}spells")
+        if spells_element is not None:
+            data["spells"] = []
+            ttype = self.timeformat
+            for s in spells_element.findall(f"{{{self.NS_GEXF}}}spell"):
+                start = self.python_type[ttype](s.get("start"))
+                end = self.python_type[ttype](s.get("end"))
+                data["spells"].append((start, end))
+        return data
+
+    def add_edge(self, G, edge_element, edge_attr):
+        # add an edge to the graph
+
+        # raise error if we find mixed directed and undirected edges
+        edge_direction = edge_element.get("type")
+        if G.is_directed() and edge_direction == "undirected":
+            raise nx.NetworkXError("Undirected edge found in directed graph.")
+        if (not G.is_directed()) and edge_direction == "directed":
+            raise nx.NetworkXError("Directed edge found in undirected graph.")
+
+        # Get source and target and recast type if required
+        source = edge_element.get("source")
+        target = edge_element.get("target")
+        if self.node_type is not None:
+            source = self.node_type(source)
+            target = self.node_type(target)
+
+        data = self.decode_attr_elements(edge_attr, edge_element)
+        data = self.add_start_end(data, edge_element)
+
+        if self.VERSION == "1.1":
+            data = self.add_slices(data, edge_element)  # add slices
+        else:
+            data = self.add_spells(data, edge_element)  # add spells
+
+        # GEXF stores edge ids as an attribute
+        # NetworkX uses them as keys in multigraphs
+        # if networkx_key is not specified as an attribute
+        edge_id = edge_element.get("id")
+        if edge_id is not None:
+            data["id"] = edge_id
+
+        # check if there is a 'multigraph_key' and use that as edge_id
+        multigraph_key = data.pop("networkx_key", None)
+        if multigraph_key is not None:
+            edge_id = multigraph_key
+
+        weight = edge_element.get("weight")
+        if weight is not None:
+            data["weight"] = float(weight)
+
+        edge_label = edge_element.get("label")
+        if edge_label is not None:
+            data["label"] = edge_label
+
+        if G.has_edge(source, target):
+            # seen this edge before - this is a multigraph
+            self.simple_graph = False
+        G.add_edge(source, target, key=edge_id, **data)
+        if edge_direction == "mutual":
+            G.add_edge(target, source, key=edge_id, **data)
+
+    def decode_attr_elements(self, gexf_keys, obj_xml):
+        # Use the key information to decode the attr XML
+        attr = {}
+        # look for outer '<attvalues>' element
+        attr_element = obj_xml.find(f"{{{self.NS_GEXF}}}attvalues")
+        if attr_element is not None:
+            # loop over <attvalue> elements
+            for a in attr_element.findall(f"{{{self.NS_GEXF}}}attvalue"):
+                key = a.get("for")  # for is required
+                try:  # should be in our gexf_keys dictionary
+                    title = gexf_keys[key]["title"]
+                except KeyError as err:
+                    raise nx.NetworkXError(f"No attribute defined for={key}.") from err
+                atype = gexf_keys[key]["type"]
+                value = a.get("value")
+                if atype == "boolean":
+                    value = self.convert_bool[value]
+                else:
+                    value = self.python_type[atype](value)
+                if gexf_keys[key]["mode"] == "dynamic":
+                    # for dynamic graphs use list of three-tuples
+                    # [(value1,start1,end1), (value2,start2,end2), etc]
+                    ttype = self.timeformat
+                    start = self.python_type[ttype](a.get("start"))
+                    end = self.python_type[ttype](a.get("end"))
+                    if title in attr:
+                        attr[title].append((value, start, end))
+                    else:
+                        attr[title] = [(value, start, end)]
+                else:
+                    # for static graphs just assign the value
+                    attr[title] = value
+        return attr
+
+    def find_gexf_attributes(self, attributes_element):
+        # Extract all the attributes and defaults
+        attrs = {}
+        defaults = {}
+        mode = attributes_element.get("mode")
+        for k in attributes_element.findall(f"{{{self.NS_GEXF}}}attribute"):
+            attr_id = k.get("id")
+            title = k.get("title")
+            atype = k.get("type")
+            attrs[attr_id] = {"title": title, "type": atype, "mode": mode}
+            # check for the 'default' subelement of key element and add
+            default = k.find(f"{{{self.NS_GEXF}}}default")
+            if default is not None:
+                if atype == "boolean":
+                    value = self.convert_bool[default.text]
+                else:
+                    value = self.python_type[atype](default.text)
+                defaults[title] = value
+        return attrs, defaults
+
+
+def relabel_gexf_graph(G):
+    """Relabel graph using "label" node keyword for node label.
+
+    Parameters
+    ----------
+    G : graph
+       A NetworkX graph read from GEXF data
+
+    Returns
+    -------
+    H : graph
+      A NetworkX graph with relabeled nodes
+
+    Raises
+    ------
+    NetworkXError
+        If node labels are missing or not unique while relabel=True.
+
+    Notes
+    -----
+    This function relabels the nodes in a NetworkX graph with the
+    "label" attribute.  It also handles relabeling the specific GEXF
+    node attributes "parents", and "pid".
+    """
+    # build mapping of node labels, do some error checking
+    try:
+        mapping = [(u, G.nodes[u]["label"]) for u in G]
+    except KeyError as err:
+        raise nx.NetworkXError(
+            "Failed to relabel nodes: missing node labels found. Use relabel=False."
+        ) from err
+    x, y = zip(*mapping)
+    if len(set(y)) != len(G):
+        raise nx.NetworkXError(
+            "Failed to relabel nodes: "
+            "duplicate node labels found. "
+            "Use relabel=False."
+        )
+    mapping = dict(mapping)
+    H = nx.relabel_nodes(G, mapping)
+    # relabel attributes
+    for n in G:
+        m = mapping[n]
+        H.nodes[m]["id"] = n
+        H.nodes[m].pop("label")
+        if "pid" in H.nodes[m]:
+            H.nodes[m]["pid"] = mapping[G.nodes[n]["pid"]]
+        if "parents" in H.nodes[m]:
+            H.nodes[m]["parents"] = [mapping[p] for p in G.nodes[n]["parents"]]
+    return H
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/gml.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/gml.py
new file mode 100644
index 00000000..891d7096
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/gml.py
@@ -0,0 +1,879 @@
+"""
+Read graphs in GML format.
+
+"GML, the Graph Modelling Language, is our proposal for a portable
+file format for graphs. GML's key features are portability, simple
+syntax, extensibility and flexibility. A GML file consists of a
+hierarchical key-value lists. Graphs can be annotated with arbitrary
+data structures. The idea for a common file format was born at the
+GD'95; this proposal is the outcome of many discussions. GML is the
+standard file format in the Graphlet graph editor system. It has been
+overtaken and adapted by several other systems for drawing graphs."
+
+GML files are stored using a 7-bit ASCII encoding with any extended
+ASCII characters (iso8859-1) appearing as HTML character entities.
+You will need to give some thought into how the exported data should
+interact with different languages and even different Python versions.
+Re-importing from gml is also a concern.
+
+Without specifying a `stringizer`/`destringizer`, the code is capable of
+writing `int`/`float`/`str`/`dict`/`list` data as required by the GML
+specification.  For writing other data types, and for reading data other
+than `str` you need to explicitly supply a `stringizer`/`destringizer`.
+
+For additional documentation on the GML file format, please see the
+`GML website <https://web.archive.org/web/20190207140002/http://www.fim.uni-passau.de/index.php?id=17297&L=1>`_.
+
+Several example graphs in GML format may be found on Mark Newman's
+`Network data page <http://www-personal.umich.edu/~mejn/netdata/>`_.
+"""
+
+import html.entities as htmlentitydefs
+import re
+import warnings
+from ast import literal_eval
+from collections import defaultdict
+from enum import Enum
+from io import StringIO
+from typing import Any, NamedTuple
+
+import networkx as nx
+from networkx.exception import NetworkXError
+from networkx.utils import open_file
+
+__all__ = ["read_gml", "parse_gml", "generate_gml", "write_gml"]
+
+
+def escape(text):
+    """Use XML character references to escape characters.
+
+    Use XML character references for unprintable or non-ASCII
+    characters, double quotes and ampersands in a string
+    """
+
+    def fixup(m):
+        ch = m.group(0)
+        return "&#" + str(ord(ch)) + ";"
+
+    text = re.sub('[^ -~]|[&"]', fixup, text)
+    return text if isinstance(text, str) else str(text)
+
+
+def unescape(text):
+    """Replace XML character references with the referenced characters"""
+
+    def fixup(m):
+        text = m.group(0)
+        if text[1] == "#":
+            # Character reference
+            if text[2] == "x":
+                code = int(text[3:-1], 16)
+            else:
+                code = int(text[2:-1])
+        else:
+            # Named entity
+            try:
+                code = htmlentitydefs.name2codepoint[text[1:-1]]
+            except KeyError:
+                return text  # leave unchanged
+        try:
+            return chr(code)
+        except (ValueError, OverflowError):
+            return text  # leave unchanged
+
+    return re.sub("&(?:[0-9A-Za-z]+|#(?:[0-9]+|x[0-9A-Fa-f]+));", fixup, text)
+
+
+def literal_destringizer(rep):
+    """Convert a Python literal to the value it represents.
+
+    Parameters
+    ----------
+    rep : string
+        A Python literal.
+
+    Returns
+    -------
+    value : object
+        The value of the Python literal.
+
+    Raises
+    ------
+    ValueError
+        If `rep` is not a Python literal.
+    """
+    if isinstance(rep, str):
+        orig_rep = rep
+        try:
+            return literal_eval(rep)
+        except SyntaxError as err:
+            raise ValueError(f"{orig_rep!r} is not a valid Python literal") from err
+    else:
+        raise ValueError(f"{rep!r} is not a string")
+
+
+@open_file(0, mode="rb")
+@nx._dispatchable(graphs=None, returns_graph=True)
+def read_gml(path, label="label", destringizer=None):
+    """Read graph in GML format from `path`.
+
+    Parameters
+    ----------
+    path : filename or filehandle
+        The filename or filehandle to read from.
+
+    label : string, optional
+        If not None, the parsed nodes will be renamed according to node
+        attributes indicated by `label`. Default value: 'label'.
+
+    destringizer : callable, optional
+        A `destringizer` that recovers values stored as strings in GML. If it
+        cannot convert a string to a value, a `ValueError` is raised. Default
+        value : None.
+
+    Returns
+    -------
+    G : NetworkX graph
+        The parsed graph.
+
+    Raises
+    ------
+    NetworkXError
+        If the input cannot be parsed.
+
+    See Also
+    --------
+    write_gml, parse_gml
+    literal_destringizer
+
+    Notes
+    -----
+    GML files are stored using a 7-bit ASCII encoding with any extended
+    ASCII characters (iso8859-1) appearing as HTML character entities.
+    Without specifying a `stringizer`/`destringizer`, the code is capable of
+    writing `int`/`float`/`str`/`dict`/`list` data as required by the GML
+    specification.  For writing other data types, and for reading data other
+    than `str` you need to explicitly supply a `stringizer`/`destringizer`.
+
+    For additional documentation on the GML file format, please see the
+    `GML url <https://web.archive.org/web/20190207140002/http://www.fim.uni-passau.de/index.php?id=17297&L=1>`_.
+
+    See the module docstring :mod:`networkx.readwrite.gml` for more details.
+
+    Examples
+    --------
+    >>> G = nx.path_graph(4)
+    >>> nx.write_gml(G, "test.gml")
+
+    GML values are interpreted as strings by default:
+
+    >>> H = nx.read_gml("test.gml")
+    >>> H.nodes
+    NodeView(('0', '1', '2', '3'))
+
+    When a `destringizer` is provided, GML values are converted to the provided type.
+    For example, integer nodes can be recovered as shown below:
+
+    >>> J = nx.read_gml("test.gml", destringizer=int)
+    >>> J.nodes
+    NodeView((0, 1, 2, 3))
+
+    """
+
+    def filter_lines(lines):
+        for line in lines:
+            try:
+                line = line.decode("ascii")
+            except UnicodeDecodeError as err:
+                raise NetworkXError("input is not ASCII-encoded") from err
+            if not isinstance(line, str):
+                lines = str(lines)
+            if line and line[-1] == "\n":
+                line = line[:-1]
+            yield line
+
+    G = parse_gml_lines(filter_lines(path), label, destringizer)
+    return G
+
+
+@nx._dispatchable(graphs=None, returns_graph=True)
+def parse_gml(lines, label="label", destringizer=None):
+    """Parse GML graph from a string or iterable.
+
+    Parameters
+    ----------
+    lines : string or iterable of strings
+       Data in GML format.
+
+    label : string, optional
+        If not None, the parsed nodes will be renamed according to node
+        attributes indicated by `label`. Default value: 'label'.
+
+    destringizer : callable, optional
+        A `destringizer` that recovers values stored as strings in GML. If it
+        cannot convert a string to a value, a `ValueError` is raised. Default
+        value : None.
+
+    Returns
+    -------
+    G : NetworkX graph
+        The parsed graph.
+
+    Raises
+    ------
+    NetworkXError
+        If the input cannot be parsed.
+
+    See Also
+    --------
+    write_gml, read_gml
+
+    Notes
+    -----
+    This stores nested GML attributes as dictionaries in the NetworkX graph,
+    node, and edge attribute structures.
+
+    GML files are stored using a 7-bit ASCII encoding with any extended
+    ASCII characters (iso8859-1) appearing as HTML character entities.
+    Without specifying a `stringizer`/`destringizer`, the code is capable of
+    writing `int`/`float`/`str`/`dict`/`list` data as required by the GML
+    specification.  For writing other data types, and for reading data other
+    than `str` you need to explicitly supply a `stringizer`/`destringizer`.
+
+    For additional documentation on the GML file format, please see the
+    `GML url <https://web.archive.org/web/20190207140002/http://www.fim.uni-passau.de/index.php?id=17297&L=1>`_.
+
+    See the module docstring :mod:`networkx.readwrite.gml` for more details.
+    """
+
+    def decode_line(line):
+        if isinstance(line, bytes):
+            try:
+                line.decode("ascii")
+            except UnicodeDecodeError as err:
+                raise NetworkXError("input is not ASCII-encoded") from err
+        if not isinstance(line, str):
+            line = str(line)
+        return line
+
+    def filter_lines(lines):
+        if isinstance(lines, str):
+            lines = decode_line(lines)
+            lines = lines.splitlines()
+            yield from lines
+        else:
+            for line in lines:
+                line = decode_line(line)
+                if line and line[-1] == "\n":
+                    line = line[:-1]
+                if line.find("\n") != -1:
+                    raise NetworkXError("input line contains newline")
+                yield line
+
+    G = parse_gml_lines(filter_lines(lines), label, destringizer)
+    return G
+
+
+class Pattern(Enum):
+    """encodes the index of each token-matching pattern in `tokenize`."""
+
+    KEYS = 0
+    REALS = 1
+    INTS = 2
+    STRINGS = 3
+    DICT_START = 4
+    DICT_END = 5
+    COMMENT_WHITESPACE = 6
+
+
+class Token(NamedTuple):
+    category: Pattern
+    value: Any
+    line: int
+    position: int
+
+
+LIST_START_VALUE = "_networkx_list_start"
+
+
+def parse_gml_lines(lines, label, destringizer):
+    """Parse GML `lines` into a graph."""
+
+    def tokenize():
+        patterns = [
+            r"[A-Za-z][0-9A-Za-z_]*\b",  # keys
+            # reals
+            r"[+-]?(?:[0-9]*\.[0-9]+|[0-9]+\.[0-9]*|INF)(?:[Ee][+-]?[0-9]+)?",
+            r"[+-]?[0-9]+",  # ints
+            r'".*?"',  # strings
+            r"\[",  # dict start
+            r"\]",  # dict end
+            r"#.*$|\s+",  # comments and whitespaces
+        ]
+        tokens = re.compile("|".join(f"({pattern})" for pattern in patterns))
+        lineno = 0
+        multilines = []  # entries spread across multiple lines
+        for line in lines:
+            pos = 0
+
+            # deal with entries spread across multiple lines
+            #
+            # should we actually have to deal with escaped "s then do it here
+            if multilines:
+                multilines.append(line.strip())
+                if line[-1] == '"':  # closing multiline entry
+                    # multiline entries will be joined by space. cannot
+                    # reintroduce newlines as this will break the tokenizer
+                    line = " ".join(multilines)
+                    multilines = []
+                else:  # continued multiline entry
+                    lineno += 1
+                    continue
+            else:
+                if line.count('"') == 1:  # opening multiline entry
+                    if line.strip()[0] != '"' and line.strip()[-1] != '"':
+                        # since we expect something like key "value", the " should not be found at ends
+                        # otherwise tokenizer will pick up the formatting mistake.
+                        multilines = [line.rstrip()]
+                        lineno += 1
+                        continue
+
+            length = len(line)
+
+            while pos < length:
+                match = tokens.match(line, pos)
+                if match is None:
+                    m = f"cannot tokenize {line[pos:]} at ({lineno + 1}, {pos + 1})"
+                    raise NetworkXError(m)
+                for i in range(len(patterns)):
+                    group = match.group(i + 1)
+                    if group is not None:
+                        if i == 0:  # keys
+                            value = group.rstrip()
+                        elif i == 1:  # reals
+                            value = float(group)
+                        elif i == 2:  # ints
+                            value = int(group)
+                        else:
+                            value = group
+                        if i != 6:  # comments and whitespaces
+                            yield Token(Pattern(i), value, lineno + 1, pos + 1)
+                        pos += len(group)
+                        break
+            lineno += 1
+        yield Token(None, None, lineno + 1, 1)  # EOF
+
+    def unexpected(curr_token, expected):
+        category, value, lineno, pos = curr_token
+        value = repr(value) if value is not None else "EOF"
+        raise NetworkXError(f"expected {expected}, found {value} at ({lineno}, {pos})")
+
+    def consume(curr_token, category, expected):
+        if curr_token.category == category:
+            return next(tokens)
+        unexpected(curr_token, expected)
+
+    def parse_kv(curr_token):
+        dct = defaultdict(list)
+        while curr_token.category == Pattern.KEYS:
+            key = curr_token.value
+            curr_token = next(tokens)
+            category = curr_token.category
+            if category == Pattern.REALS or category == Pattern.INTS:
+                value = curr_token.value
+                curr_token = next(tokens)
+            elif category == Pattern.STRINGS:
+                value = unescape(curr_token.value[1:-1])
+                if destringizer:
+                    try:
+                        value = destringizer(value)
+                    except ValueError:
+                        pass
+                # Special handling for empty lists and tuples
+                if value == "()":
+                    value = ()
+                if value == "[]":
+                    value = []
+                curr_token = next(tokens)
+            elif category == Pattern.DICT_START:
+                curr_token, value = parse_dict(curr_token)
+            else:
+                # Allow for string convertible id and label values
+                if key in ("id", "label", "source", "target"):
+                    try:
+                        # String convert the token value
+                        value = unescape(str(curr_token.value))
+                        if destringizer:
+                            try:
+                                value = destringizer(value)
+                            except ValueError:
+                                pass
+                        curr_token = next(tokens)
+                    except Exception:
+                        msg = (
+                            "an int, float, string, '[' or string"
+                            + " convertible ASCII value for node id or label"
+                        )
+                        unexpected(curr_token, msg)
+                # Special handling for nan and infinity.  Since the gml language
+                # defines unquoted strings as keys, the numeric and string branches
+                # are skipped and we end up in this special branch, so we need to
+                # convert the current token value to a float for NAN and plain INF.
+                # +/-INF are handled in the pattern for 'reals' in tokenize().  This
+                # allows labels and values to be nan or infinity, but not keys.
+                elif curr_token.value in {"NAN", "INF"}:
+                    value = float(curr_token.value)
+                    curr_token = next(tokens)
+                else:  # Otherwise error out
+                    unexpected(curr_token, "an int, float, string or '['")
+            dct[key].append(value)
+
+        def clean_dict_value(value):
+            if not isinstance(value, list):
+                return value
+            if len(value) == 1:
+                return value[0]
+            if value[0] == LIST_START_VALUE:
+                return value[1:]
+            return value
+
+        dct = {key: clean_dict_value(value) for key, value in dct.items()}
+        return curr_token, dct
+
+    def parse_dict(curr_token):
+        # dict start
+        curr_token = consume(curr_token, Pattern.DICT_START, "'['")
+        # dict contents
+        curr_token, dct = parse_kv(curr_token)
+        # dict end
+        curr_token = consume(curr_token, Pattern.DICT_END, "']'")
+        return curr_token, dct
+
+    def parse_graph():
+        curr_token, dct = parse_kv(next(tokens))
+        if curr_token.category is not None:  # EOF
+            unexpected(curr_token, "EOF")
+        if "graph" not in dct:
+            raise NetworkXError("input contains no graph")
+        graph = dct["graph"]
+        if isinstance(graph, list):
+            raise NetworkXError("input contains more than one graph")
+        return graph
+
+    tokens = tokenize()
+    graph = parse_graph()
+
+    directed = graph.pop("directed", False)
+    multigraph = graph.pop("multigraph", False)
+    if not multigraph:
+        G = nx.DiGraph() if directed else nx.Graph()
+    else:
+        G = nx.MultiDiGraph() if directed else nx.MultiGraph()
+    graph_attr = {k: v for k, v in graph.items() if k not in ("node", "edge")}
+    G.graph.update(graph_attr)
+
+    def pop_attr(dct, category, attr, i):
+        try:
+            return dct.pop(attr)
+        except KeyError as err:
+            raise NetworkXError(f"{category} #{i} has no {attr!r} attribute") from err
+
+    nodes = graph.get("node", [])
+    mapping = {}
+    node_labels = set()
+    for i, node in enumerate(nodes if isinstance(nodes, list) else [nodes]):
+        id = pop_attr(node, "node", "id", i)
+        if id in G:
+            raise NetworkXError(f"node id {id!r} is duplicated")
+        if label is not None and label != "id":
+            node_label = pop_attr(node, "node", label, i)
+            if node_label in node_labels:
+                raise NetworkXError(f"node label {node_label!r} is duplicated")
+            node_labels.add(node_label)
+            mapping[id] = node_label
+        G.add_node(id, **node)
+
+    edges = graph.get("edge", [])
+    for i, edge in enumerate(edges if isinstance(edges, list) else [edges]):
+        source = pop_attr(edge, "edge", "source", i)
+        target = pop_attr(edge, "edge", "target", i)
+        if source not in G:
+            raise NetworkXError(f"edge #{i} has undefined source {source!r}")
+        if target not in G:
+            raise NetworkXError(f"edge #{i} has undefined target {target!r}")
+        if not multigraph:
+            if not G.has_edge(source, target):
+                G.add_edge(source, target, **edge)
+            else:
+                arrow = "->" if directed else "--"
+                msg = f"edge #{i} ({source!r}{arrow}{target!r}) is duplicated"
+                raise nx.NetworkXError(msg)
+        else:
+            key = edge.pop("key", None)
+            if key is not None and G.has_edge(source, target, key):
+                arrow = "->" if directed else "--"
+                msg = f"edge #{i} ({source!r}{arrow}{target!r}, {key!r})"
+                msg2 = 'Hint: If multigraph add "multigraph 1" to file header.'
+                raise nx.NetworkXError(msg + " is duplicated\n" + msg2)
+            G.add_edge(source, target, key, **edge)
+
+    if label is not None and label != "id":
+        G = nx.relabel_nodes(G, mapping)
+    return G
+
+
+def literal_stringizer(value):
+    """Convert a `value` to a Python literal in GML representation.
+
+    Parameters
+    ----------
+    value : object
+        The `value` to be converted to GML representation.
+
+    Returns
+    -------
+    rep : string
+        A double-quoted Python literal representing value. Unprintable
+        characters are replaced by XML character references.
+
+    Raises
+    ------
+    ValueError
+        If `value` cannot be converted to GML.
+
+    Notes
+    -----
+    The original value can be recovered using the
+    :func:`networkx.readwrite.gml.literal_destringizer` function.
+    """
+
+    def stringize(value):
+        if isinstance(value, int | bool) or value is None:
+            if value is True:  # GML uses 1/0 for boolean values.
+                buf.write(str(1))
+            elif value is False:
+                buf.write(str(0))
+            else:
+                buf.write(str(value))
+        elif isinstance(value, str):
+            text = repr(value)
+            if text[0] != "u":
+                try:
+                    value.encode("latin1")
+                except UnicodeEncodeError:
+                    text = "u" + text
+            buf.write(text)
+        elif isinstance(value, float | complex | str | bytes):
+            buf.write(repr(value))
+        elif isinstance(value, list):
+            buf.write("[")
+            first = True
+            for item in value:
+                if not first:
+                    buf.write(",")
+                else:
+                    first = False
+                stringize(item)
+            buf.write("]")
+        elif isinstance(value, tuple):
+            if len(value) > 1:
+                buf.write("(")
+                first = True
+                for item in value:
+                    if not first:
+                        buf.write(",")
+                    else:
+                        first = False
+                    stringize(item)
+                buf.write(")")
+            elif value:
+                buf.write("(")
+                stringize(value[0])
+                buf.write(",)")
+            else:
+                buf.write("()")
+        elif isinstance(value, dict):
+            buf.write("{")
+            first = True
+            for key, value in value.items():
+                if not first:
+                    buf.write(",")
+                else:
+                    first = False
+                stringize(key)
+                buf.write(":")
+                stringize(value)
+            buf.write("}")
+        elif isinstance(value, set):
+            buf.write("{")
+            first = True
+            for item in value:
+                if not first:
+                    buf.write(",")
+                else:
+                    first = False
+                stringize(item)
+            buf.write("}")
+        else:
+            msg = f"{value!r} cannot be converted into a Python literal"
+            raise ValueError(msg)
+
+    buf = StringIO()
+    stringize(value)
+    return buf.getvalue()
+
+
+def generate_gml(G, stringizer=None):
+    r"""Generate a single entry of the graph `G` in GML format.
+
+    Parameters
+    ----------
+    G : NetworkX graph
+        The graph to be converted to GML.
+
+    stringizer : callable, optional
+        A `stringizer` which converts non-int/non-float/non-dict values into
+        strings. If it cannot convert a value into a string, it should raise a
+        `ValueError` to indicate that. Default value: None.
+
+    Returns
+    -------
+    lines: generator of strings
+        Lines of GML data. Newlines are not appended.
+
+    Raises
+    ------
+    NetworkXError
+        If `stringizer` cannot convert a value into a string, or the value to
+        convert is not a string while `stringizer` is None.
+
+    See Also
+    --------
+    literal_stringizer
+
+    Notes
+    -----
+    Graph attributes named 'directed', 'multigraph', 'node' or
+    'edge', node attributes named 'id' or 'label', edge attributes
+    named 'source' or 'target' (or 'key' if `G` is a multigraph)
+    are ignored because these attribute names are used to encode the graph
+    structure.
+
+    GML files are stored using a 7-bit ASCII encoding with any extended
+    ASCII characters (iso8859-1) appearing as HTML character entities.
+    Without specifying a `stringizer`/`destringizer`, the code is capable of
+    writing `int`/`float`/`str`/`dict`/`list` data as required by the GML
+    specification.  For writing other data types, and for reading data other
+    than `str` you need to explicitly supply a `stringizer`/`destringizer`.
+
+    For additional documentation on the GML file format, please see the
+    `GML url <https://web.archive.org/web/20190207140002/http://www.fim.uni-passau.de/index.php?id=17297&L=1>`_.
+
+    See the module docstring :mod:`networkx.readwrite.gml` for more details.
+
+    Examples
+    --------
+    >>> G = nx.Graph()
+    >>> G.add_node("1")
+    >>> print("\n".join(nx.generate_gml(G)))
+    graph [
+      node [
+        id 0
+        label "1"
+      ]
+    ]
+    >>> G = nx.MultiGraph([("a", "b"), ("a", "b")])
+    >>> print("\n".join(nx.generate_gml(G)))
+    graph [
+      multigraph 1
+      node [
+        id 0
+        label "a"
+      ]
+      node [
+        id 1
+        label "b"
+      ]
+      edge [
+        source 0
+        target 1
+        key 0
+      ]
+      edge [
+        source 0
+        target 1
+        key 1
+      ]
+    ]
+    """
+    valid_keys = re.compile("^[A-Za-z][0-9A-Za-z_]*$")
+
+    def stringize(key, value, ignored_keys, indent, in_list=False):
+        if not isinstance(key, str):
+            raise NetworkXError(f"{key!r} is not a string")
+        if not valid_keys.match(key):
+            raise NetworkXError(f"{key!r} is not a valid key")
+        if not isinstance(key, str):
+            key = str(key)
+        if key not in ignored_keys:
+            if isinstance(value, int | bool):
+                if key == "label":
+                    yield indent + key + ' "' + str(value) + '"'
+                elif value is True:
+                    # python bool is an instance of int
+                    yield indent + key + " 1"
+                elif value is False:
+                    yield indent + key + " 0"
+                # GML only supports signed 32-bit integers
+                elif value < -(2**31) or value >= 2**31:
+                    yield indent + key + ' "' + str(value) + '"'
+                else:
+                    yield indent + key + " " + str(value)
+            elif isinstance(value, float):
+                text = repr(value).upper()
+                # GML matches INF to keys, so prepend + to INF. Use repr(float(*))
+                # instead of string literal to future proof against changes to repr.
+                if text == repr(float("inf")).upper():
+                    text = "+" + text
+                else:
+                    # GML requires that a real literal contain a decimal point, but
+                    # repr may not output a decimal point when the mantissa is
+                    # integral and hence needs fixing.
+                    epos = text.rfind("E")
+                    if epos != -1 and text.find(".", 0, epos) == -1:
+                        text = text[:epos] + "." + text[epos:]
+                if key == "label":
+                    yield indent + key + ' "' + text + '"'
+                else:
+                    yield indent + key + " " + text
+            elif isinstance(value, dict):
+                yield indent + key + " ["
+                next_indent = indent + "  "
+                for key, value in value.items():
+                    yield from stringize(key, value, (), next_indent)
+                yield indent + "]"
+            elif isinstance(value, tuple) and key == "label":
+                yield indent + key + f" \"({','.join(repr(v) for v in value)})\""
+            elif isinstance(value, list | tuple) and key != "label" and not in_list:
+                if len(value) == 0:
+                    yield indent + key + " " + f'"{value!r}"'
+                if len(value) == 1:
+                    yield indent + key + " " + f'"{LIST_START_VALUE}"'
+                for val in value:
+                    yield from stringize(key, val, (), indent, True)
+            else:
+                if stringizer:
+                    try:
+                        value = stringizer(value)
+                    except ValueError as err:
+                        raise NetworkXError(
+                            f"{value!r} cannot be converted into a string"
+                        ) from err
+                if not isinstance(value, str):
+                    raise NetworkXError(f"{value!r} is not a string")
+                yield indent + key + ' "' + escape(value) + '"'
+
+    multigraph = G.is_multigraph()
+    yield "graph ["
+
+    # Output graph attributes
+    if G.is_directed():
+        yield "  directed 1"
+    if multigraph:
+        yield "  multigraph 1"
+    ignored_keys = {"directed", "multigraph", "node", "edge"}
+    for attr, value in G.graph.items():
+        yield from stringize(attr, value, ignored_keys, "  ")
+
+    # Output node data
+    node_id = dict(zip(G, range(len(G))))
+    ignored_keys = {"id", "label"}
+    for node, attrs in G.nodes.items():
+        yield "  node ["
+        yield "    id " + str(node_id[node])
+        yield from stringize("label", node, (), "    ")
+        for attr, value in attrs.items():
+            yield from stringize(attr, value, ignored_keys, "    ")
+        yield "  ]"
+
+    # Output edge data
+    ignored_keys = {"source", "target"}
+    kwargs = {"data": True}
+    if multigraph:
+        ignored_keys.add("key")
+        kwargs["keys"] = True
+    for e in G.edges(**kwargs):
+        yield "  edge ["
+        yield "    source " + str(node_id[e[0]])
+        yield "    target " + str(node_id[e[1]])
+        if multigraph:
+            yield from stringize("key", e[2], (), "    ")
+        for attr, value in e[-1].items():
+            yield from stringize(attr, value, ignored_keys, "    ")
+        yield "  ]"
+    yield "]"
+
+
+@open_file(1, mode="wb")
+def write_gml(G, path, stringizer=None):
+    """Write a graph `G` in GML format to the file or file handle `path`.
+
+    Parameters
+    ----------
+    G : NetworkX graph
+        The graph to be converted to GML.
+
+    path : filename or filehandle
+        The filename or filehandle to write. Files whose names end with .gz or
+        .bz2 will be compressed.
+
+    stringizer : callable, optional
+        A `stringizer` which converts non-int/non-float/non-dict values into
+        strings. If it cannot convert a value into a string, it should raise a
+        `ValueError` to indicate that. Default value: None.
+
+    Raises
+    ------
+    NetworkXError
+        If `stringizer` cannot convert a value into a string, or the value to
+        convert is not a string while `stringizer` is None.
+
+    See Also
+    --------
+    read_gml, generate_gml
+    literal_stringizer
+
+    Notes
+    -----
+    Graph attributes named 'directed', 'multigraph', 'node' or
+    'edge', node attributes named 'id' or 'label', edge attributes
+    named 'source' or 'target' (or 'key' if `G` is a multigraph)
+    are ignored because these attribute names are used to encode the graph
+    structure.
+
+    GML files are stored using a 7-bit ASCII encoding with any extended
+    ASCII characters (iso8859-1) appearing as HTML character entities.
+    Without specifying a `stringizer`/`destringizer`, the code is capable of
+    writing `int`/`float`/`str`/`dict`/`list` data as required by the GML
+    specification.  For writing other data types, and for reading data other
+    than `str` you need to explicitly supply a `stringizer`/`destringizer`.
+
+    Note that while we allow non-standard GML to be read from a file, we make
+    sure to write GML format. In particular, underscores are not allowed in
+    attribute names.
+    For additional documentation on the GML file format, please see the
+    `GML url <https://web.archive.org/web/20190207140002/http://www.fim.uni-passau.de/index.php?id=17297&L=1>`_.
+
+    See the module docstring :mod:`networkx.readwrite.gml` for more details.
+
+    Examples
+    --------
+    >>> G = nx.path_graph(4)
+    >>> nx.write_gml(G, "test.gml")
+
+    Filenames ending in .gz or .bz2 will be compressed.
+
+    >>> nx.write_gml(G, "test.gml.gz")
+    """
+    for line in generate_gml(G, stringizer):
+        path.write((line + "\n").encode("ascii"))
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/graph6.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/graph6.py
new file mode 100644
index 00000000..4ff2f93c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/graph6.py
@@ -0,0 +1,417 @@
+# Original author: D. Eppstein, UC Irvine, August 12, 2003.
+# The original code at http://www.ics.uci.edu/~eppstein/PADS/ is public domain.
+"""Functions for reading and writing graphs in the *graph6* format.
+
+The *graph6* file format is suitable for small graphs or large dense
+graphs. For large sparse graphs, use the *sparse6* format.
+
+For more information, see the `graph6`_ homepage.
+
+.. _graph6: http://users.cecs.anu.edu.au/~bdm/data/formats.html
+
+"""
+
+from itertools import islice
+
+import networkx as nx
+from networkx.exception import NetworkXError
+from networkx.utils import not_implemented_for, open_file
+
+__all__ = ["from_graph6_bytes", "read_graph6", "to_graph6_bytes", "write_graph6"]
+
+
+def _generate_graph6_bytes(G, nodes, header):
+    """Yield bytes in the graph6 encoding of a graph.
+
+    `G` is an undirected simple graph. `nodes` is the list of nodes for
+    which the node-induced subgraph will be encoded; if `nodes` is the
+    list of all nodes in the graph, the entire graph will be
+    encoded. `header` is a Boolean that specifies whether to generate
+    the header ``b'>>graph6<<'`` before the remaining data.
+
+    This function generates `bytes` objects in the following order:
+
+    1. the header (if requested),
+    2. the encoding of the number of nodes,
+    3. each character, one-at-a-time, in the encoding of the requested
+       node-induced subgraph,
+    4. a newline character.
+
+    This function raises :exc:`ValueError` if the graph is too large for
+    the graph6 format (that is, greater than ``2 ** 36`` nodes).
+
+    """
+    n = len(G)
+    if n >= 2**36:
+        raise ValueError(
+            "graph6 is only defined if number of nodes is less than 2 ** 36"
+        )
+    if header:
+        yield b">>graph6<<"
+    for d in n_to_data(n):
+        yield str.encode(chr(d + 63))
+    # This generates the same as `(v in G[u] for u, v in combinations(G, 2))`,
+    # but in "column-major" order instead of "row-major" order.
+    bits = (nodes[j] in G[nodes[i]] for j in range(1, n) for i in range(j))
+    chunk = list(islice(bits, 6))
+    while chunk:
+        d = sum(b << 5 - i for i, b in enumerate(chunk))
+        yield str.encode(chr(d + 63))
+        chunk = list(islice(bits, 6))
+    yield b"\n"
+
+
+@nx._dispatchable(graphs=None, returns_graph=True)
+def from_graph6_bytes(bytes_in):
+    """Read a simple undirected graph in graph6 format from bytes.
+
+    Parameters
+    ----------
+    bytes_in : bytes
+       Data in graph6 format, without a trailing newline.
+
+    Returns
+    -------
+    G : Graph
+
+    Raises
+    ------
+    NetworkXError
+        If bytes_in is unable to be parsed in graph6 format
+
+    ValueError
+        If any character ``c`` in bytes_in does not satisfy
+        ``63 <= ord(c) < 127``.
+
+    Examples
+    --------
+    >>> G = nx.from_graph6_bytes(b"A_")
+    >>> sorted(G.edges())
+    [(0, 1)]
+
+    See Also
+    --------
+    read_graph6, write_graph6
+
+    References
+    ----------
+    .. [1] Graph6 specification
+           <http://users.cecs.anu.edu.au/~bdm/data/formats.html>
+
+    """
+
+    def bits():
+        """Returns sequence of individual bits from 6-bit-per-value
+        list of data values."""
+        for d in data:
+            for i in [5, 4, 3, 2, 1, 0]:
+                yield (d >> i) & 1
+
+    if bytes_in.startswith(b">>graph6<<"):
+        bytes_in = bytes_in[10:]
+
+    data = [c - 63 for c in bytes_in]
+    if any(c > 63 for c in data):
+        raise ValueError("each input character must be in range(63, 127)")
+
+    n, data = data_to_n(data)
+    nd = (n * (n - 1) // 2 + 5) // 6
+    if len(data) != nd:
+        raise NetworkXError(
+            f"Expected {n * (n - 1) // 2} bits but got {len(data) * 6} in graph6"
+        )
+
+    G = nx.Graph()
+    G.add_nodes_from(range(n))
+    for (i, j), b in zip(((i, j) for j in range(1, n) for i in range(j)), bits()):
+        if b:
+            G.add_edge(i, j)
+
+    return G
+
+
+@not_implemented_for("directed")
+@not_implemented_for("multigraph")
+def to_graph6_bytes(G, nodes=None, header=True):
+    """Convert a simple undirected graph to bytes in graph6 format.
+
+    Parameters
+    ----------
+    G : Graph (undirected)
+
+    nodes: list or iterable
+       Nodes are labeled 0...n-1 in the order provided.  If None the ordering
+       given by ``G.nodes()`` is used.
+
+    header: bool
+       If True add '>>graph6<<' bytes to head of data.
+
+    Raises
+    ------
+    NetworkXNotImplemented
+        If the graph is directed or is a multigraph.
+
+    ValueError
+        If the graph has at least ``2 ** 36`` nodes; the graph6 format
+        is only defined for graphs of order less than ``2 ** 36``.
+
+    Examples
+    --------
+    >>> nx.to_graph6_bytes(nx.path_graph(2))
+    b'>>graph6<<A_\\n'
+
+    See Also
+    --------
+    from_graph6_bytes, read_graph6, write_graph6_bytes
+
+    Notes
+    -----
+    The returned bytes end with a newline character.
+
+    The format does not support edge or node labels, parallel edges or
+    self loops. If self loops are present they are silently ignored.
+
+    References
+    ----------
+    .. [1] Graph6 specification
+           <http://users.cecs.anu.edu.au/~bdm/data/formats.html>
+
+    """
+    if nodes is not None:
+        G = G.subgraph(nodes)
+    H = nx.convert_node_labels_to_integers(G)
+    nodes = sorted(H.nodes())
+    return b"".join(_generate_graph6_bytes(H, nodes, header))
+
+
+@open_file(0, mode="rb")
+@nx._dispatchable(graphs=None, returns_graph=True)
+def read_graph6(path):
+    """Read simple undirected graphs in graph6 format from path.
+
+    Parameters
+    ----------
+    path : file or string
+       File or filename to write.
+
+    Returns
+    -------
+    G : Graph or list of Graphs
+       If the file contains multiple lines then a list of graphs is returned
+
+    Raises
+    ------
+    NetworkXError
+        If the string is unable to be parsed in graph6 format
+
+    Examples
+    --------
+    You can read a graph6 file by giving the path to the file::
+
+        >>> import tempfile
+        >>> with tempfile.NamedTemporaryFile(delete=False) as f:
+        ...     _ = f.write(b">>graph6<<A_\\n")
+        ...     _ = f.seek(0)
+        ...     G = nx.read_graph6(f.name)
+        >>> list(G.edges())
+        [(0, 1)]
+
+    You can also read a graph6 file by giving an open file-like object::
+
+        >>> import tempfile
+        >>> with tempfile.NamedTemporaryFile() as f:
+        ...     _ = f.write(b">>graph6<<A_\\n")
+        ...     _ = f.seek(0)
+        ...     G = nx.read_graph6(f)
+        >>> list(G.edges())
+        [(0, 1)]
+
+    See Also
+    --------
+    from_graph6_bytes, write_graph6
+
+    References
+    ----------
+    .. [1] Graph6 specification
+           <http://users.cecs.anu.edu.au/~bdm/data/formats.html>
+
+    """
+    glist = []
+    for line in path:
+        line = line.strip()
+        if not len(line):
+            continue
+        glist.append(from_graph6_bytes(line))
+    if len(glist) == 1:
+        return glist[0]
+    else:
+        return glist
+
+
+@not_implemented_for("directed")
+@not_implemented_for("multigraph")
+@open_file(1, mode="wb")
+def write_graph6(G, path, nodes=None, header=True):
+    """Write a simple undirected graph to a path in graph6 format.
+
+    Parameters
+    ----------
+    G : Graph (undirected)
+
+    path : str
+       The path naming the file to which to write the graph.
+
+    nodes: list or iterable
+       Nodes are labeled 0...n-1 in the order provided.  If None the ordering
+       given by ``G.nodes()`` is used.
+
+    header: bool
+       If True add '>>graph6<<' string to head of data
+
+    Raises
+    ------
+    NetworkXNotImplemented
+        If the graph is directed or is a multigraph.
+
+    ValueError
+        If the graph has at least ``2 ** 36`` nodes; the graph6 format
+        is only defined for graphs of order less than ``2 ** 36``.
+
+    Examples
+    --------
+    You can write a graph6 file by giving the path to a file::
+
+        >>> import tempfile
+        >>> with tempfile.NamedTemporaryFile(delete=False) as f:
+        ...     nx.write_graph6(nx.path_graph(2), f.name)
+        ...     _ = f.seek(0)
+        ...     print(f.read())
+        b'>>graph6<<A_\\n'
+
+    See Also
+    --------
+    from_graph6_bytes, read_graph6
+
+    Notes
+    -----
+    The function writes a newline character after writing the encoding
+    of the graph.
+
+    The format does not support edge or node labels, parallel edges or
+    self loops.  If self loops are present they are silently ignored.
+
+    References
+    ----------
+    .. [1] Graph6 specification
+           <http://users.cecs.anu.edu.au/~bdm/data/formats.html>
+
+    """
+    return write_graph6_file(G, path, nodes=nodes, header=header)
+
+
+@not_implemented_for("directed")
+@not_implemented_for("multigraph")
+def write_graph6_file(G, f, nodes=None, header=True):
+    """Write a simple undirected graph to a file-like object in graph6 format.
+
+    Parameters
+    ----------
+    G : Graph (undirected)
+
+    f : file-like object
+       The file to write.
+
+    nodes: list or iterable
+       Nodes are labeled 0...n-1 in the order provided.  If None the ordering
+       given by ``G.nodes()`` is used.
+
+    header: bool
+       If True add '>>graph6<<' string to head of data
+
+    Raises
+    ------
+    NetworkXNotImplemented
+        If the graph is directed or is a multigraph.
+
+    ValueError
+        If the graph has at least ``2 ** 36`` nodes; the graph6 format
+        is only defined for graphs of order less than ``2 ** 36``.
+
+    Examples
+    --------
+    You can write a graph6 file by giving an open file-like object::
+
+        >>> import tempfile
+        >>> with tempfile.NamedTemporaryFile() as f:
+        ...     nx.write_graph6(nx.path_graph(2), f)
+        ...     _ = f.seek(0)
+        ...     print(f.read())
+        b'>>graph6<<A_\\n'
+
+    See Also
+    --------
+    from_graph6_bytes, read_graph6
+
+    Notes
+    -----
+    The function writes a newline character after writing the encoding
+    of the graph.
+
+    The format does not support edge or node labels, parallel edges or
+    self loops.  If self loops are present they are silently ignored.
+
+    References
+    ----------
+    .. [1] Graph6 specification
+           <http://users.cecs.anu.edu.au/~bdm/data/formats.html>
+
+    """
+    if nodes is not None:
+        G = G.subgraph(nodes)
+    H = nx.convert_node_labels_to_integers(G)
+    nodes = sorted(H.nodes())
+    for b in _generate_graph6_bytes(H, nodes, header):
+        f.write(b)
+
+
+def data_to_n(data):
+    """Read initial one-, four- or eight-unit value from graph6
+    integer sequence.
+
+    Return (value, rest of seq.)"""
+    if data[0] <= 62:
+        return data[0], data[1:]
+    if data[1] <= 62:
+        return (data[1] << 12) + (data[2] << 6) + data[3], data[4:]
+    return (
+        (data[2] << 30)
+        + (data[3] << 24)
+        + (data[4] << 18)
+        + (data[5] << 12)
+        + (data[6] << 6)
+        + data[7],
+        data[8:],
+    )
+
+
+def n_to_data(n):
+    """Convert an integer to one-, four- or eight-unit graph6 sequence.
+
+    This function is undefined if `n` is not in ``range(2 ** 36)``.
+
+    """
+    if n <= 62:
+        return [n]
+    elif n <= 258047:
+        return [63, (n >> 12) & 0x3F, (n >> 6) & 0x3F, n & 0x3F]
+    else:  # if n <= 68719476735:
+        return [
+            63,
+            63,
+            (n >> 30) & 0x3F,
+            (n >> 24) & 0x3F,
+            (n >> 18) & 0x3F,
+            (n >> 12) & 0x3F,
+            (n >> 6) & 0x3F,
+            n & 0x3F,
+        ]
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/graphml.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/graphml.py
new file mode 100644
index 00000000..7d0a1da0
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/graphml.py
@@ -0,0 +1,1053 @@
+"""
+*******
+GraphML
+*******
+Read and write graphs in GraphML format.
+
+.. warning::
+
+    This parser uses the standard xml library present in Python, which is
+    insecure - see :external+python:mod:`xml` for additional information.
+    Only parse GraphML files you trust.
+
+This implementation does not support mixed graphs (directed and unidirected
+edges together), hyperedges, nested graphs, or ports.
+
+"GraphML is a comprehensive and easy-to-use file format for graphs. It
+consists of a language core to describe the structural properties of a
+graph and a flexible extension mechanism to add application-specific
+data. Its main features include support of
+
+    * directed, undirected, and mixed graphs,
+    * hypergraphs,
+    * hierarchical graphs,
+    * graphical representations,
+    * references to external data,
+    * application-specific attribute data, and
+    * light-weight parsers.
+
+Unlike many other file formats for graphs, GraphML does not use a
+custom syntax. Instead, it is based on XML and hence ideally suited as
+a common denominator for all kinds of services generating, archiving,
+or processing graphs."
+
+http://graphml.graphdrawing.org/
+
+Format
+------
+GraphML is an XML format.  See
+http://graphml.graphdrawing.org/specification.html for the specification and
+http://graphml.graphdrawing.org/primer/graphml-primer.html
+for examples.
+"""
+
+import warnings
+from collections import defaultdict
+
+import networkx as nx
+from networkx.utils import open_file
+
+__all__ = [
+    "write_graphml",
+    "read_graphml",
+    "generate_graphml",
+    "write_graphml_xml",
+    "write_graphml_lxml",
+    "parse_graphml",
+    "GraphMLWriter",
+    "GraphMLReader",
+]
+
+
+@open_file(1, mode="wb")
+def write_graphml_xml(
+    G,
+    path,
+    encoding="utf-8",
+    prettyprint=True,
+    infer_numeric_types=False,
+    named_key_ids=False,
+    edge_id_from_attribute=None,
+):
+    """Write G in GraphML XML format to path
+
+    Parameters
+    ----------
+    G : graph
+       A networkx graph
+    path : file or string
+       File or filename to write.
+       Filenames ending in .gz or .bz2 will be compressed.
+    encoding : string (optional)
+       Encoding for text data.
+    prettyprint : bool (optional)
+       If True use line breaks and indenting in output XML.
+    infer_numeric_types : boolean
+       Determine if numeric types should be generalized.
+       For example, if edges have both int and float 'weight' attributes,
+       we infer in GraphML that both are floats.
+    named_key_ids : bool (optional)
+       If True use attr.name as value for key elements' id attribute.
+    edge_id_from_attribute : dict key (optional)
+        If provided, the graphml edge id is set by looking up the corresponding
+        edge data attribute keyed by this parameter. If `None` or the key does not exist in edge data,
+        the edge id is set by the edge key if `G` is a MultiGraph, else the edge id is left unset.
+
+    Examples
+    --------
+    >>> G = nx.path_graph(4)
+    >>> nx.write_graphml(G, "test.graphml")
+
+    Notes
+    -----
+    This implementation does not support mixed graphs (directed
+    and unidirected edges together) hyperedges, nested graphs, or ports.
+    """
+    writer = GraphMLWriter(
+        encoding=encoding,
+        prettyprint=prettyprint,
+        infer_numeric_types=infer_numeric_types,
+        named_key_ids=named_key_ids,
+        edge_id_from_attribute=edge_id_from_attribute,
+    )
+    writer.add_graph_element(G)
+    writer.dump(path)
+
+
+@open_file(1, mode="wb")
+def write_graphml_lxml(
+    G,
+    path,
+    encoding="utf-8",
+    prettyprint=True,
+    infer_numeric_types=False,
+    named_key_ids=False,
+    edge_id_from_attribute=None,
+):
+    """Write G in GraphML XML format to path
+
+    This function uses the LXML framework and should be faster than
+    the version using the xml library.
+
+    Parameters
+    ----------
+    G : graph
+       A networkx graph
+    path : file or string
+       File or filename to write.
+       Filenames ending in .gz or .bz2 will be compressed.
+    encoding : string (optional)
+       Encoding for text data.
+    prettyprint : bool (optional)
+       If True use line breaks and indenting in output XML.
+    infer_numeric_types : boolean
+       Determine if numeric types should be generalized.
+       For example, if edges have both int and float 'weight' attributes,
+       we infer in GraphML that both are floats.
+    named_key_ids : bool (optional)
+       If True use attr.name as value for key elements' id attribute.
+    edge_id_from_attribute : dict key (optional)
+        If provided, the graphml edge id is set by looking up the corresponding
+        edge data attribute keyed by this parameter. If `None` or the key does not exist in edge data,
+        the edge id is set by the edge key if `G` is a MultiGraph, else the edge id is left unset.
+
+    Examples
+    --------
+    >>> G = nx.path_graph(4)
+    >>> nx.write_graphml_lxml(G, "fourpath.graphml")
+
+    Notes
+    -----
+    This implementation does not support mixed graphs (directed
+    and unidirected edges together) hyperedges, nested graphs, or ports.
+    """
+    try:
+        import lxml.etree as lxmletree
+    except ImportError:
+        return write_graphml_xml(
+            G,
+            path,
+            encoding,
+            prettyprint,
+            infer_numeric_types,
+            named_key_ids,
+            edge_id_from_attribute,
+        )
+
+    writer = GraphMLWriterLxml(
+        path,
+        graph=G,
+        encoding=encoding,
+        prettyprint=prettyprint,
+        infer_numeric_types=infer_numeric_types,
+        named_key_ids=named_key_ids,
+        edge_id_from_attribute=edge_id_from_attribute,
+    )
+    writer.dump()
+
+
+def generate_graphml(
+    G,
+    encoding="utf-8",
+    prettyprint=True,
+    named_key_ids=False,
+    edge_id_from_attribute=None,
+):
+    """Generate GraphML lines for G
+
+    Parameters
+    ----------
+    G : graph
+       A networkx graph
+    encoding : string (optional)
+       Encoding for text data.
+    prettyprint : bool (optional)
+       If True use line breaks and indenting in output XML.
+    named_key_ids : bool (optional)
+       If True use attr.name as value for key elements' id attribute.
+    edge_id_from_attribute : dict key (optional)
+        If provided, the graphml edge id is set by looking up the corresponding
+        edge data attribute keyed by this parameter. If `None` or the key does not exist in edge data,
+        the edge id is set by the edge key if `G` is a MultiGraph, else the edge id is left unset.
+
+    Examples
+    --------
+    >>> G = nx.path_graph(4)
+    >>> linefeed = chr(10)  # linefeed = \n
+    >>> s = linefeed.join(nx.generate_graphml(G))
+    >>> for line in nx.generate_graphml(G):  # doctest: +SKIP
+    ...     print(line)
+
+    Notes
+    -----
+    This implementation does not support mixed graphs (directed and unidirected
+    edges together) hyperedges, nested graphs, or ports.
+    """
+    writer = GraphMLWriter(
+        encoding=encoding,
+        prettyprint=prettyprint,
+        named_key_ids=named_key_ids,
+        edge_id_from_attribute=edge_id_from_attribute,
+    )
+    writer.add_graph_element(G)
+    yield from str(writer).splitlines()
+
+
+@open_file(0, mode="rb")
+@nx._dispatchable(graphs=None, returns_graph=True)
+def read_graphml(path, node_type=str, edge_key_type=int, force_multigraph=False):
+    """Read graph in GraphML format from path.
+
+    Parameters
+    ----------
+    path : file or string
+       File or filename to write.
+       Filenames ending in .gz or .bz2 will be compressed.
+
+    node_type: Python type (default: str)
+       Convert node ids to this type
+
+    edge_key_type: Python type (default: int)
+       Convert graphml edge ids to this type. Multigraphs use id as edge key.
+       Non-multigraphs add to edge attribute dict with name "id".
+
+    force_multigraph : bool (default: False)
+       If True, return a multigraph with edge keys. If False (the default)
+       return a multigraph when multiedges are in the graph.
+
+    Returns
+    -------
+    graph: NetworkX graph
+        If parallel edges are present or `force_multigraph=True` then
+        a MultiGraph or MultiDiGraph is returned. Otherwise a Graph/DiGraph.
+        The returned graph is directed if the file indicates it should be.
+
+    Notes
+    -----
+    Default node and edge attributes are not propagated to each node and edge.
+    They can be obtained from `G.graph` and applied to node and edge attributes
+    if desired using something like this:
+
+    >>> default_color = G.graph["node_default"]["color"]  # doctest: +SKIP
+    >>> for node, data in G.nodes(data=True):  # doctest: +SKIP
+    ...     if "color" not in data:
+    ...         data["color"] = default_color
+    >>> default_color = G.graph["edge_default"]["color"]  # doctest: +SKIP
+    >>> for u, v, data in G.edges(data=True):  # doctest: +SKIP
+    ...     if "color" not in data:
+    ...         data["color"] = default_color
+
+    This implementation does not support mixed graphs (directed and unidirected
+    edges together), hypergraphs, nested graphs, or ports.
+
+    For multigraphs the GraphML edge "id" will be used as the edge
+    key.  If not specified then they "key" attribute will be used.  If
+    there is no "key" attribute a default NetworkX multigraph edge key
+    will be provided.
+
+    Files with the yEd "yfiles" extension can be read. The type of the node's
+    shape is preserved in the `shape_type` node attribute.
+
+    yEd compressed files ("file.graphmlz" extension) can be read by renaming
+    the file to "file.graphml.gz".
+
+    """
+    reader = GraphMLReader(node_type, edge_key_type, force_multigraph)
+    # need to check for multiple graphs
+    glist = list(reader(path=path))
+    if len(glist) == 0:
+        # If no graph comes back, try looking for an incomplete header
+        header = b'<graphml xmlns="http://graphml.graphdrawing.org/xmlns">'
+        path.seek(0)
+        old_bytes = path.read()
+        new_bytes = old_bytes.replace(b"<graphml>", header)
+        glist = list(reader(string=new_bytes))
+        if len(glist) == 0:
+            raise nx.NetworkXError("file not successfully read as graphml")
+    return glist[0]
+
+
+@nx._dispatchable(graphs=None, returns_graph=True)
+def parse_graphml(
+    graphml_string, node_type=str, edge_key_type=int, force_multigraph=False
+):
+    """Read graph in GraphML format from string.
+
+    Parameters
+    ----------
+    graphml_string : string
+       String containing graphml information
+       (e.g., contents of a graphml file).
+
+    node_type: Python type (default: str)
+       Convert node ids to this type
+
+    edge_key_type: Python type (default: int)
+       Convert graphml edge ids to this type. Multigraphs use id as edge key.
+       Non-multigraphs add to edge attribute dict with name "id".
+
+    force_multigraph : bool (default: False)
+       If True, return a multigraph with edge keys. If False (the default)
+       return a multigraph when multiedges are in the graph.
+
+
+    Returns
+    -------
+    graph: NetworkX graph
+        If no parallel edges are found a Graph or DiGraph is returned.
+        Otherwise a MultiGraph or MultiDiGraph is returned.
+
+    Examples
+    --------
+    >>> G = nx.path_graph(4)
+    >>> linefeed = chr(10)  # linefeed = \n
+    >>> s = linefeed.join(nx.generate_graphml(G))
+    >>> H = nx.parse_graphml(s)
+
+    Notes
+    -----
+    Default node and edge attributes are not propagated to each node and edge.
+    They can be obtained from `G.graph` and applied to node and edge attributes
+    if desired using something like this:
+
+    >>> default_color = G.graph["node_default"]["color"]  # doctest: +SKIP
+    >>> for node, data in G.nodes(data=True):  # doctest: +SKIP
+    ...     if "color" not in data:
+    ...         data["color"] = default_color
+    >>> default_color = G.graph["edge_default"]["color"]  # doctest: +SKIP
+    >>> for u, v, data in G.edges(data=True):  # doctest: +SKIP
+    ...     if "color" not in data:
+    ...         data["color"] = default_color
+
+    This implementation does not support mixed graphs (directed and unidirected
+    edges together), hypergraphs, nested graphs, or ports.
+
+    For multigraphs the GraphML edge "id" will be used as the edge
+    key.  If not specified then they "key" attribute will be used.  If
+    there is no "key" attribute a default NetworkX multigraph edge key
+    will be provided.
+
+    """
+    reader = GraphMLReader(node_type, edge_key_type, force_multigraph)
+    # need to check for multiple graphs
+    glist = list(reader(string=graphml_string))
+    if len(glist) == 0:
+        # If no graph comes back, try looking for an incomplete header
+        header = '<graphml xmlns="http://graphml.graphdrawing.org/xmlns">'
+        new_string = graphml_string.replace("<graphml>", header)
+        glist = list(reader(string=new_string))
+        if len(glist) == 0:
+            raise nx.NetworkXError("file not successfully read as graphml")
+    return glist[0]
+
+
+class GraphML:
+    NS_GRAPHML = "http://graphml.graphdrawing.org/xmlns"
+    NS_XSI = "http://www.w3.org/2001/XMLSchema-instance"
+    # xmlns:y="http://www.yworks.com/xml/graphml"
+    NS_Y = "http://www.yworks.com/xml/graphml"
+    SCHEMALOCATION = " ".join(
+        [
+            "http://graphml.graphdrawing.org/xmlns",
+            "http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd",
+        ]
+    )
+
+    def construct_types(self):
+        types = [
+            (int, "integer"),  # for Gephi GraphML bug
+            (str, "yfiles"),
+            (str, "string"),
+            (int, "int"),
+            (int, "long"),
+            (float, "float"),
+            (float, "double"),
+            (bool, "boolean"),
+        ]
+
+        # These additions to types allow writing numpy types
+        try:
+            import numpy as np
+        except:
+            pass
+        else:
+            # prepend so that python types are created upon read (last entry wins)
+            types = [
+                (np.float64, "float"),
+                (np.float32, "float"),
+                (np.float16, "float"),
+                (np.int_, "int"),
+                (np.int8, "int"),
+                (np.int16, "int"),
+                (np.int32, "int"),
+                (np.int64, "int"),
+                (np.uint8, "int"),
+                (np.uint16, "int"),
+                (np.uint32, "int"),
+                (np.uint64, "int"),
+                (np.int_, "int"),
+                (np.intc, "int"),
+                (np.intp, "int"),
+            ] + types
+
+        self.xml_type = dict(types)
+        self.python_type = dict(reversed(a) for a in types)
+
+    # This page says that data types in GraphML follow Java(TM).
+    #  http://graphml.graphdrawing.org/primer/graphml-primer.html#AttributesDefinition
+    # true and false are the only boolean literals:
+    #  http://en.wikibooks.org/wiki/Java_Programming/Literals#Boolean_Literals
+    convert_bool = {
+        # We use data.lower() in actual use.
+        "true": True,
+        "false": False,
+        # Include integer strings for convenience.
+        "0": False,
+        0: False,
+        "1": True,
+        1: True,
+    }
+
+    def get_xml_type(self, key):
+        """Wrapper around the xml_type dict that raises a more informative
+        exception message when a user attempts to use data of a type not
+        supported by GraphML."""
+        try:
+            return self.xml_type[key]
+        except KeyError as err:
+            raise TypeError(
+                f"GraphML does not support type {key} as data values."
+            ) from err
+
+
+class GraphMLWriter(GraphML):
+    def __init__(
+        self,
+        graph=None,
+        encoding="utf-8",
+        prettyprint=True,
+        infer_numeric_types=False,
+        named_key_ids=False,
+        edge_id_from_attribute=None,
+    ):
+        self.construct_types()
+        from xml.etree.ElementTree import Element
+
+        self.myElement = Element
+
+        self.infer_numeric_types = infer_numeric_types
+        self.prettyprint = prettyprint
+        self.named_key_ids = named_key_ids
+        self.edge_id_from_attribute = edge_id_from_attribute
+        self.encoding = encoding
+        self.xml = self.myElement(
+            "graphml",
+            {
+                "xmlns": self.NS_GRAPHML,
+                "xmlns:xsi": self.NS_XSI,
+                "xsi:schemaLocation": self.SCHEMALOCATION,
+            },
+        )
+        self.keys = {}
+        self.attributes = defaultdict(list)
+        self.attribute_types = defaultdict(set)
+
+        if graph is not None:
+            self.add_graph_element(graph)
+
+    def __str__(self):
+        from xml.etree.ElementTree import tostring
+
+        if self.prettyprint:
+            self.indent(self.xml)
+        s = tostring(self.xml).decode(self.encoding)
+        return s
+
+    def attr_type(self, name, scope, value):
+        """Infer the attribute type of data named name. Currently this only
+        supports inference of numeric types.
+
+        If self.infer_numeric_types is false, type is used. Otherwise, pick the
+        most general of types found across all values with name and scope. This
+        means edges with data named 'weight' are treated separately from nodes
+        with data named 'weight'.
+        """
+        if self.infer_numeric_types:
+            types = self.attribute_types[(name, scope)]
+
+            if len(types) > 1:
+                types = {self.get_xml_type(t) for t in types}
+                if "string" in types:
+                    return str
+                elif "float" in types or "double" in types:
+                    return float
+                else:
+                    return int
+            else:
+                return list(types)[0]
+        else:
+            return type(value)
+
+    def get_key(self, name, attr_type, scope, default):
+        keys_key = (name, attr_type, scope)
+        try:
+            return self.keys[keys_key]
+        except KeyError:
+            if self.named_key_ids:
+                new_id = name
+            else:
+                new_id = f"d{len(list(self.keys))}"
+
+            self.keys[keys_key] = new_id
+            key_kwargs = {
+                "id": new_id,
+                "for": scope,
+                "attr.name": name,
+                "attr.type": attr_type,
+            }
+            key_element = self.myElement("key", **key_kwargs)
+            # add subelement for data default value if present
+            if default is not None:
+                default_element = self.myElement("default")
+                default_element.text = str(default)
+                key_element.append(default_element)
+            self.xml.insert(0, key_element)
+        return new_id
+
+    def add_data(self, name, element_type, value, scope="all", default=None):
+        """
+        Make a data element for an edge or a node. Keep a log of the
+        type in the keys table.
+        """
+        if element_type not in self.xml_type:
+            raise nx.NetworkXError(
+                f"GraphML writer does not support {element_type} as data values."
+            )
+        keyid = self.get_key(name, self.get_xml_type(element_type), scope, default)
+        data_element = self.myElement("data", key=keyid)
+        data_element.text = str(value)
+        return data_element
+
+    def add_attributes(self, scope, xml_obj, data, default):
+        """Appends attribute data to edges or nodes, and stores type information
+        to be added later. See add_graph_element.
+        """
+        for k, v in data.items():
+            self.attribute_types[(str(k), scope)].add(type(v))
+            self.attributes[xml_obj].append([k, v, scope, default.get(k)])
+
+    def add_nodes(self, G, graph_element):
+        default = G.graph.get("node_default", {})
+        for node, data in G.nodes(data=True):
+            node_element = self.myElement("node", id=str(node))
+            self.add_attributes("node", node_element, data, default)
+            graph_element.append(node_element)
+
+    def add_edges(self, G, graph_element):
+        if G.is_multigraph():
+            for u, v, key, data in G.edges(data=True, keys=True):
+                edge_element = self.myElement(
+                    "edge",
+                    source=str(u),
+                    target=str(v),
+                    id=str(data.get(self.edge_id_from_attribute))
+                    if self.edge_id_from_attribute
+                    and self.edge_id_from_attribute in data
+                    else str(key),
+                )
+                default = G.graph.get("edge_default", {})
+                self.add_attributes("edge", edge_element, data, default)
+                graph_element.append(edge_element)
+        else:
+            for u, v, data in G.edges(data=True):
+                if self.edge_id_from_attribute and self.edge_id_from_attribute in data:
+                    # select attribute to be edge id
+                    edge_element = self.myElement(
+                        "edge",
+                        source=str(u),
+                        target=str(v),
+                        id=str(data.get(self.edge_id_from_attribute)),
+                    )
+                else:
+                    # default: no edge id
+                    edge_element = self.myElement("edge", source=str(u), target=str(v))
+                default = G.graph.get("edge_default", {})
+                self.add_attributes("edge", edge_element, data, default)
+                graph_element.append(edge_element)
+
+    def add_graph_element(self, G):
+        """
+        Serialize graph G in GraphML to the stream.
+        """
+        if G.is_directed():
+            default_edge_type = "directed"
+        else:
+            default_edge_type = "undirected"
+
+        graphid = G.graph.pop("id", None)
+        if graphid is None:
+            graph_element = self.myElement("graph", edgedefault=default_edge_type)
+        else:
+            graph_element = self.myElement(
+                "graph", edgedefault=default_edge_type, id=graphid
+            )
+        default = {}
+        data = {
+            k: v
+            for (k, v) in G.graph.items()
+            if k not in ["node_default", "edge_default"]
+        }
+        self.add_attributes("graph", graph_element, data, default)
+        self.add_nodes(G, graph_element)
+        self.add_edges(G, graph_element)
+
+        # self.attributes contains a mapping from XML Objects to a list of
+        # data that needs to be added to them.
+        # We postpone processing in order to do type inference/generalization.
+        # See self.attr_type
+        for xml_obj, data in self.attributes.items():
+            for k, v, scope, default in data:
+                xml_obj.append(
+                    self.add_data(
+                        str(k), self.attr_type(k, scope, v), str(v), scope, default
+                    )
+                )
+        self.xml.append(graph_element)
+
+    def add_graphs(self, graph_list):
+        """Add many graphs to this GraphML document."""
+        for G in graph_list:
+            self.add_graph_element(G)
+
+    def dump(self, stream):
+        from xml.etree.ElementTree import ElementTree
+
+        if self.prettyprint:
+            self.indent(self.xml)
+        document = ElementTree(self.xml)
+        document.write(stream, encoding=self.encoding, xml_declaration=True)
+
+    def indent(self, elem, level=0):
+        # in-place prettyprint formatter
+        i = "\n" + level * "  "
+        if len(elem):
+            if not elem.text or not elem.text.strip():
+                elem.text = i + "  "
+            if not elem.tail or not elem.tail.strip():
+                elem.tail = i
+            for elem in elem:
+                self.indent(elem, level + 1)
+            if not elem.tail or not elem.tail.strip():
+                elem.tail = i
+        else:
+            if level and (not elem.tail or not elem.tail.strip()):
+                elem.tail = i
+
+
+class IncrementalElement:
+    """Wrapper for _IncrementalWriter providing an Element like interface.
+
+    This wrapper does not intend to be a complete implementation but rather to
+    deal with those calls used in GraphMLWriter.
+    """
+
+    def __init__(self, xml, prettyprint):
+        self.xml = xml
+        self.prettyprint = prettyprint
+
+    def append(self, element):
+        self.xml.write(element, pretty_print=self.prettyprint)
+
+
+class GraphMLWriterLxml(GraphMLWriter):
+    def __init__(
+        self,
+        path,
+        graph=None,
+        encoding="utf-8",
+        prettyprint=True,
+        infer_numeric_types=False,
+        named_key_ids=False,
+        edge_id_from_attribute=None,
+    ):
+        self.construct_types()
+        import lxml.etree as lxmletree
+
+        self.myElement = lxmletree.Element
+
+        self._encoding = encoding
+        self._prettyprint = prettyprint
+        self.named_key_ids = named_key_ids
+        self.edge_id_from_attribute = edge_id_from_attribute
+        self.infer_numeric_types = infer_numeric_types
+
+        self._xml_base = lxmletree.xmlfile(path, encoding=encoding)
+        self._xml = self._xml_base.__enter__()
+        self._xml.write_declaration()
+
+        # We need to have a xml variable that support insertion. This call is
+        # used for adding the keys to the document.
+        # We will store those keys in a plain list, and then after the graph
+        # element is closed we will add them to the main graphml element.
+        self.xml = []
+        self._keys = self.xml
+        self._graphml = self._xml.element(
+            "graphml",
+            {
+                "xmlns": self.NS_GRAPHML,
+                "xmlns:xsi": self.NS_XSI,
+                "xsi:schemaLocation": self.SCHEMALOCATION,
+            },
+        )
+        self._graphml.__enter__()
+        self.keys = {}
+        self.attribute_types = defaultdict(set)
+
+        if graph is not None:
+            self.add_graph_element(graph)
+
+    def add_graph_element(self, G):
+        """
+        Serialize graph G in GraphML to the stream.
+        """
+        if G.is_directed():
+            default_edge_type = "directed"
+        else:
+            default_edge_type = "undirected"
+
+        graphid = G.graph.pop("id", None)
+        if graphid is None:
+            graph_element = self._xml.element("graph", edgedefault=default_edge_type)
+        else:
+            graph_element = self._xml.element(
+                "graph", edgedefault=default_edge_type, id=graphid
+            )
+
+        # gather attributes types for the whole graph
+        # to find the most general numeric format needed.
+        # Then pass through attributes to create key_id for each.
+        graphdata = {
+            k: v
+            for k, v in G.graph.items()
+            if k not in ("node_default", "edge_default")
+        }
+        node_default = G.graph.get("node_default", {})
+        edge_default = G.graph.get("edge_default", {})
+        # Graph attributes
+        for k, v in graphdata.items():
+            self.attribute_types[(str(k), "graph")].add(type(v))
+        for k, v in graphdata.items():
+            element_type = self.get_xml_type(self.attr_type(k, "graph", v))
+            self.get_key(str(k), element_type, "graph", None)
+        # Nodes and data
+        for node, d in G.nodes(data=True):
+            for k, v in d.items():
+                self.attribute_types[(str(k), "node")].add(type(v))
+        for node, d in G.nodes(data=True):
+            for k, v in d.items():
+                T = self.get_xml_type(self.attr_type(k, "node", v))
+                self.get_key(str(k), T, "node", node_default.get(k))
+        # Edges and data
+        if G.is_multigraph():
+            for u, v, ekey, d in G.edges(keys=True, data=True):
+                for k, v in d.items():
+                    self.attribute_types[(str(k), "edge")].add(type(v))
+            for u, v, ekey, d in G.edges(keys=True, data=True):
+                for k, v in d.items():
+                    T = self.get_xml_type(self.attr_type(k, "edge", v))
+                    self.get_key(str(k), T, "edge", edge_default.get(k))
+        else:
+            for u, v, d in G.edges(data=True):
+                for k, v in d.items():
+                    self.attribute_types[(str(k), "edge")].add(type(v))
+            for u, v, d in G.edges(data=True):
+                for k, v in d.items():
+                    T = self.get_xml_type(self.attr_type(k, "edge", v))
+                    self.get_key(str(k), T, "edge", edge_default.get(k))
+
+        # Now add attribute keys to the xml file
+        for key in self.xml:
+            self._xml.write(key, pretty_print=self._prettyprint)
+
+        # The incremental_writer writes each node/edge as it is created
+        incremental_writer = IncrementalElement(self._xml, self._prettyprint)
+        with graph_element:
+            self.add_attributes("graph", incremental_writer, graphdata, {})
+            self.add_nodes(G, incremental_writer)  # adds attributes too
+            self.add_edges(G, incremental_writer)  # adds attributes too
+
+    def add_attributes(self, scope, xml_obj, data, default):
+        """Appends attribute data."""
+        for k, v in data.items():
+            data_element = self.add_data(
+                str(k), self.attr_type(str(k), scope, v), str(v), scope, default.get(k)
+            )
+            xml_obj.append(data_element)
+
+    def __str__(self):
+        return object.__str__(self)
+
+    def dump(self, stream=None):
+        self._graphml.__exit__(None, None, None)
+        self._xml_base.__exit__(None, None, None)
+
+
+# default is lxml is present.
+write_graphml = write_graphml_lxml
+
+
+class GraphMLReader(GraphML):
+    """Read a GraphML document.  Produces NetworkX graph objects."""
+
+    def __init__(self, node_type=str, edge_key_type=int, force_multigraph=False):
+        self.construct_types()
+        self.node_type = node_type
+        self.edge_key_type = edge_key_type
+        self.multigraph = force_multigraph  # If False, test for multiedges
+        self.edge_ids = {}  # dict mapping (u,v) tuples to edge id attributes
+
+    def __call__(self, path=None, string=None):
+        from xml.etree.ElementTree import ElementTree, fromstring
+
+        if path is not None:
+            self.xml = ElementTree(file=path)
+        elif string is not None:
+            self.xml = fromstring(string)
+        else:
+            raise ValueError("Must specify either 'path' or 'string' as kwarg")
+        (keys, defaults) = self.find_graphml_keys(self.xml)
+        for g in self.xml.findall(f"{{{self.NS_GRAPHML}}}graph"):
+            yield self.make_graph(g, keys, defaults)
+
+    def make_graph(self, graph_xml, graphml_keys, defaults, G=None):
+        # set default graph type
+        edgedefault = graph_xml.get("edgedefault", None)
+        if G is None:
+            if edgedefault == "directed":
+                G = nx.MultiDiGraph()
+            else:
+                G = nx.MultiGraph()
+        # set defaults for graph attributes
+        G.graph["node_default"] = {}
+        G.graph["edge_default"] = {}
+        for key_id, value in defaults.items():
+            key_for = graphml_keys[key_id]["for"]
+            name = graphml_keys[key_id]["name"]
+            python_type = graphml_keys[key_id]["type"]
+            if key_for == "node":
+                G.graph["node_default"].update({name: python_type(value)})
+            if key_for == "edge":
+                G.graph["edge_default"].update({name: python_type(value)})
+        # hyperedges are not supported
+        hyperedge = graph_xml.find(f"{{{self.NS_GRAPHML}}}hyperedge")
+        if hyperedge is not None:
+            raise nx.NetworkXError("GraphML reader doesn't support hyperedges")
+        # add nodes
+        for node_xml in graph_xml.findall(f"{{{self.NS_GRAPHML}}}node"):
+            self.add_node(G, node_xml, graphml_keys, defaults)
+        # add edges
+        for edge_xml in graph_xml.findall(f"{{{self.NS_GRAPHML}}}edge"):
+            self.add_edge(G, edge_xml, graphml_keys)
+        # add graph data
+        data = self.decode_data_elements(graphml_keys, graph_xml)
+        G.graph.update(data)
+
+        # switch to Graph or DiGraph if no parallel edges were found
+        if self.multigraph:
+            return G
+
+        G = nx.DiGraph(G) if G.is_directed() else nx.Graph(G)
+        # add explicit edge "id" from file as attribute in NX graph.
+        nx.set_edge_attributes(G, values=self.edge_ids, name="id")
+        return G
+
+    def add_node(self, G, node_xml, graphml_keys, defaults):
+        """Add a node to the graph."""
+        # warn on finding unsupported ports tag
+        ports = node_xml.find(f"{{{self.NS_GRAPHML}}}port")
+        if ports is not None:
+            warnings.warn("GraphML port tag not supported.")
+        # find the node by id and cast it to the appropriate type
+        node_id = self.node_type(node_xml.get("id"))
+        # get data/attributes for node
+        data = self.decode_data_elements(graphml_keys, node_xml)
+        G.add_node(node_id, **data)
+        # get child nodes
+        if node_xml.attrib.get("yfiles.foldertype") == "group":
+            graph_xml = node_xml.find(f"{{{self.NS_GRAPHML}}}graph")
+            self.make_graph(graph_xml, graphml_keys, defaults, G)
+
+    def add_edge(self, G, edge_element, graphml_keys):
+        """Add an edge to the graph."""
+        # warn on finding unsupported ports tag
+        ports = edge_element.find(f"{{{self.NS_GRAPHML}}}port")
+        if ports is not None:
+            warnings.warn("GraphML port tag not supported.")
+
+        # raise error if we find mixed directed and undirected edges
+        directed = edge_element.get("directed")
+        if G.is_directed() and directed == "false":
+            msg = "directed=false edge found in directed graph."
+            raise nx.NetworkXError(msg)
+        if (not G.is_directed()) and directed == "true":
+            msg = "directed=true edge found in undirected graph."
+            raise nx.NetworkXError(msg)
+
+        source = self.node_type(edge_element.get("source"))
+        target = self.node_type(edge_element.get("target"))
+        data = self.decode_data_elements(graphml_keys, edge_element)
+        # GraphML stores edge ids as an attribute
+        # NetworkX uses them as keys in multigraphs too if no key
+        # attribute is specified
+        edge_id = edge_element.get("id")
+        if edge_id:
+            # self.edge_ids is used by `make_graph` method for non-multigraphs
+            self.edge_ids[source, target] = edge_id
+            try:
+                edge_id = self.edge_key_type(edge_id)
+            except ValueError:  # Could not convert.
+                pass
+        else:
+            edge_id = data.get("key")
+
+        if G.has_edge(source, target):
+            # mark this as a multigraph
+            self.multigraph = True
+
+        # Use add_edges_from to avoid error with add_edge when `'key' in data`
+        # Note there is only one edge here...
+        G.add_edges_from([(source, target, edge_id, data)])
+
+    def decode_data_elements(self, graphml_keys, obj_xml):
+        """Use the key information to decode the data XML if present."""
+        data = {}
+        for data_element in obj_xml.findall(f"{{{self.NS_GRAPHML}}}data"):
+            key = data_element.get("key")
+            try:
+                data_name = graphml_keys[key]["name"]
+                data_type = graphml_keys[key]["type"]
+            except KeyError as err:
+                raise nx.NetworkXError(f"Bad GraphML data: no key {key}") from err
+            text = data_element.text
+            # assume anything with subelements is a yfiles extension
+            if text is not None and len(list(data_element)) == 0:
+                if data_type == bool:
+                    # Ignore cases.
+                    # http://docs.oracle.com/javase/6/docs/api/java/lang/
+                    # Boolean.html#parseBoolean%28java.lang.String%29
+                    data[data_name] = self.convert_bool[text.lower()]
+                else:
+                    data[data_name] = data_type(text)
+            elif len(list(data_element)) > 0:
+                # Assume yfiles as subelements, try to extract node_label
+                node_label = None
+                # set GenericNode's configuration as shape type
+                gn = data_element.find(f"{{{self.NS_Y}}}GenericNode")
+                if gn is not None:
+                    data["shape_type"] = gn.get("configuration")
+                for node_type in ["GenericNode", "ShapeNode", "SVGNode", "ImageNode"]:
+                    pref = f"{{{self.NS_Y}}}{node_type}/{{{self.NS_Y}}}"
+                    geometry = data_element.find(f"{pref}Geometry")
+                    if geometry is not None:
+                        data["x"] = geometry.get("x")
+                        data["y"] = geometry.get("y")
+                    if node_label is None:
+                        node_label = data_element.find(f"{pref}NodeLabel")
+                    shape = data_element.find(f"{pref}Shape")
+                    if shape is not None:
+                        data["shape_type"] = shape.get("type")
+                if node_label is not None:
+                    data["label"] = node_label.text
+
+                # check all the different types of edges available in yEd.
+                for edge_type in [
+                    "PolyLineEdge",
+                    "SplineEdge",
+                    "QuadCurveEdge",
+                    "BezierEdge",
+                    "ArcEdge",
+                ]:
+                    pref = f"{{{self.NS_Y}}}{edge_type}/{{{self.NS_Y}}}"
+                    edge_label = data_element.find(f"{pref}EdgeLabel")
+                    if edge_label is not None:
+                        break
+                if edge_label is not None:
+                    data["label"] = edge_label.text
+            elif text is None:
+                data[data_name] = ""
+        return data
+
+    def find_graphml_keys(self, graph_element):
+        """Extracts all the keys and key defaults from the xml."""
+        graphml_keys = {}
+        graphml_key_defaults = {}
+        for k in graph_element.findall(f"{{{self.NS_GRAPHML}}}key"):
+            attr_id = k.get("id")
+            attr_type = k.get("attr.type")
+            attr_name = k.get("attr.name")
+            yfiles_type = k.get("yfiles.type")
+            if yfiles_type is not None:
+                attr_name = yfiles_type
+                attr_type = "yfiles"
+            if attr_type is None:
+                attr_type = "string"
+                warnings.warn(f"No key type for id {attr_id}. Using string")
+            if attr_name is None:
+                raise nx.NetworkXError(f"Unknown key for id {attr_id}.")
+            graphml_keys[attr_id] = {
+                "name": attr_name,
+                "type": self.python_type[attr_type],
+                "for": k.get("for"),
+            }
+            # check for "default" sub-element of key element
+            default = k.find(f"{{{self.NS_GRAPHML}}}default")
+            if default is not None:
+                # Handle default values identically to data element values
+                python_type = graphml_keys[attr_id]["type"]
+                if python_type == bool:
+                    graphml_key_defaults[attr_id] = self.convert_bool[
+                        default.text.lower()
+                    ]
+                else:
+                    graphml_key_defaults[attr_id] = python_type(default.text)
+        return graphml_keys, graphml_key_defaults
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/__init__.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/__init__.py
new file mode 100644
index 00000000..532c71d7
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/__init__.py
@@ -0,0 +1,19 @@
+"""
+*********
+JSON data
+*********
+Generate and parse JSON serializable data for NetworkX graphs.
+
+These formats are suitable for use with the d3.js examples https://d3js.org/
+
+The three formats that you can generate with NetworkX are:
+
+ - node-link like in the d3.js example https://bl.ocks.org/mbostock/4062045
+ - tree like in the d3.js example https://bl.ocks.org/mbostock/4063550
+ - adjacency like in the d3.js example https://bost.ocks.org/mike/miserables/
+"""
+
+from networkx.readwrite.json_graph.node_link import *
+from networkx.readwrite.json_graph.adjacency import *
+from networkx.readwrite.json_graph.tree import *
+from networkx.readwrite.json_graph.cytoscape import *
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/adjacency.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/adjacency.py
new file mode 100644
index 00000000..3b057475
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/adjacency.py
@@ -0,0 +1,156 @@
+import networkx as nx
+
+__all__ = ["adjacency_data", "adjacency_graph"]
+
+_attrs = {"id": "id", "key": "key"}
+
+
+def adjacency_data(G, attrs=_attrs):
+    """Returns data in adjacency format that is suitable for JSON serialization
+    and use in JavaScript documents.
+
+    Parameters
+    ----------
+    G : NetworkX graph
+
+    attrs : dict
+        A dictionary that contains two keys 'id' and 'key'. The corresponding
+        values provide the attribute names for storing NetworkX-internal graph
+        data. The values should be unique. Default value:
+        :samp:`dict(id='id', key='key')`.
+
+        If some user-defined graph data use these attribute names as data keys,
+        they may be silently dropped.
+
+    Returns
+    -------
+    data : dict
+       A dictionary with adjacency formatted data.
+
+    Raises
+    ------
+    NetworkXError
+        If values in attrs are not unique.
+
+    Examples
+    --------
+    >>> from networkx.readwrite import json_graph
+    >>> G = nx.Graph([(1, 2)])
+    >>> data = json_graph.adjacency_data(G)
+
+    To serialize with json
+
+    >>> import json
+    >>> s = json.dumps(data)
+
+    Notes
+    -----
+    Graph, node, and link attributes will be written when using this format
+    but attribute keys must be strings if you want to serialize the resulting
+    data with JSON.
+
+    The default value of attrs will be changed in a future release of NetworkX.
+
+    See Also
+    --------
+    adjacency_graph, node_link_data, tree_data
+    """
+    multigraph = G.is_multigraph()
+    id_ = attrs["id"]
+    # Allow 'key' to be omitted from attrs if the graph is not a multigraph.
+    key = None if not multigraph else attrs["key"]
+    if id_ == key:
+        raise nx.NetworkXError("Attribute names are not unique.")
+    data = {}
+    data["directed"] = G.is_directed()
+    data["multigraph"] = multigraph
+    data["graph"] = list(G.graph.items())
+    data["nodes"] = []
+    data["adjacency"] = []
+    for n, nbrdict in G.adjacency():
+        data["nodes"].append({**G.nodes[n], id_: n})
+        adj = []
+        if multigraph:
+            for nbr, keys in nbrdict.items():
+                for k, d in keys.items():
+                    adj.append({**d, id_: nbr, key: k})
+        else:
+            for nbr, d in nbrdict.items():
+                adj.append({**d, id_: nbr})
+        data["adjacency"].append(adj)
+    return data
+
+
+@nx._dispatchable(graphs=None, returns_graph=True)
+def adjacency_graph(data, directed=False, multigraph=True, attrs=_attrs):
+    """Returns graph from adjacency data format.
+
+    Parameters
+    ----------
+    data : dict
+        Adjacency list formatted graph data
+
+    directed : bool
+        If True, and direction not specified in data, return a directed graph.
+
+    multigraph : bool
+        If True, and multigraph not specified in data, return a multigraph.
+
+    attrs : dict
+        A dictionary that contains two keys 'id' and 'key'. The corresponding
+        values provide the attribute names for storing NetworkX-internal graph
+        data. The values should be unique. Default value:
+        :samp:`dict(id='id', key='key')`.
+
+    Returns
+    -------
+    G : NetworkX graph
+       A NetworkX graph object
+
+    Examples
+    --------
+    >>> from networkx.readwrite import json_graph
+    >>> G = nx.Graph([(1, 2)])
+    >>> data = json_graph.adjacency_data(G)
+    >>> H = json_graph.adjacency_graph(data)
+
+    Notes
+    -----
+    The default value of attrs will be changed in a future release of NetworkX.
+
+    See Also
+    --------
+    adjacency_graph, node_link_data, tree_data
+    """
+    multigraph = data.get("multigraph", multigraph)
+    directed = data.get("directed", directed)
+    if multigraph:
+        graph = nx.MultiGraph()
+    else:
+        graph = nx.Graph()
+    if directed:
+        graph = graph.to_directed()
+    id_ = attrs["id"]
+    # Allow 'key' to be omitted from attrs if the graph is not a multigraph.
+    key = None if not multigraph else attrs["key"]
+    graph.graph = dict(data.get("graph", []))
+    mapping = []
+    for d in data["nodes"]:
+        node_data = d.copy()
+        node = node_data.pop(id_)
+        mapping.append(node)
+        graph.add_node(node)
+        graph.nodes[node].update(node_data)
+    for i, d in enumerate(data["adjacency"]):
+        source = mapping[i]
+        for tdata in d:
+            target_data = tdata.copy()
+            target = target_data.pop(id_)
+            if not multigraph:
+                graph.add_edge(source, target)
+                graph[source][target].update(target_data)
+            else:
+                ky = target_data.pop(key, None)
+                graph.add_edge(source, target, key=ky)
+                graph[source][target][ky].update(target_data)
+    return graph
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/cytoscape.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/cytoscape.py
new file mode 100644
index 00000000..2f3b2176
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/cytoscape.py
@@ -0,0 +1,178 @@
+import networkx as nx
+
+__all__ = ["cytoscape_data", "cytoscape_graph"]
+
+
+def cytoscape_data(G, name="name", ident="id"):
+    """Returns data in Cytoscape JSON format (cyjs).
+
+    Parameters
+    ----------
+    G : NetworkX Graph
+        The graph to convert to cytoscape format
+    name : string
+        A string which is mapped to the 'name' node element in cyjs format.
+        Must not have the same value as `ident`.
+    ident : string
+        A string which is mapped to the 'id' node element in cyjs format.
+        Must not have the same value as `name`.
+
+    Returns
+    -------
+    data: dict
+        A dictionary with cyjs formatted data.
+
+    Raises
+    ------
+    NetworkXError
+        If the values for `name` and `ident` are identical.
+
+    See Also
+    --------
+    cytoscape_graph: convert a dictionary in cyjs format to a graph
+
+    References
+    ----------
+    .. [1] Cytoscape user's manual:
+       http://manual.cytoscape.org/en/stable/index.html
+
+    Examples
+    --------
+    >>> G = nx.path_graph(2)
+    >>> nx.cytoscape_data(G)  # doctest: +SKIP
+    {'data': [],
+     'directed': False,
+     'multigraph': False,
+     'elements': {'nodes': [{'data': {'id': '0', 'value': 0, 'name': '0'}},
+       {'data': {'id': '1', 'value': 1, 'name': '1'}}],
+      'edges': [{'data': {'source': 0, 'target': 1}}]}}
+    """
+    if name == ident:
+        raise nx.NetworkXError("name and ident must be different.")
+
+    jsondata = {"data": list(G.graph.items())}
+    jsondata["directed"] = G.is_directed()
+    jsondata["multigraph"] = G.is_multigraph()
+    jsondata["elements"] = {"nodes": [], "edges": []}
+    nodes = jsondata["elements"]["nodes"]
+    edges = jsondata["elements"]["edges"]
+
+    for i, j in G.nodes.items():
+        n = {"data": j.copy()}
+        n["data"]["id"] = j.get(ident) or str(i)
+        n["data"]["value"] = i
+        n["data"]["name"] = j.get(name) or str(i)
+        nodes.append(n)
+
+    if G.is_multigraph():
+        for e in G.edges(keys=True):
+            n = {"data": G.adj[e[0]][e[1]][e[2]].copy()}
+            n["data"]["source"] = e[0]
+            n["data"]["target"] = e[1]
+            n["data"]["key"] = e[2]
+            edges.append(n)
+    else:
+        for e in G.edges():
+            n = {"data": G.adj[e[0]][e[1]].copy()}
+            n["data"]["source"] = e[0]
+            n["data"]["target"] = e[1]
+            edges.append(n)
+    return jsondata
+
+
+@nx._dispatchable(graphs=None, returns_graph=True)
+def cytoscape_graph(data, name="name", ident="id"):
+    """
+    Create a NetworkX graph from a dictionary in cytoscape JSON format.
+
+    Parameters
+    ----------
+    data : dict
+        A dictionary of data conforming to cytoscape JSON format.
+    name : string
+        A string which is mapped to the 'name' node element in cyjs format.
+        Must not have the same value as `ident`.
+    ident : string
+        A string which is mapped to the 'id' node element in cyjs format.
+        Must not have the same value as `name`.
+
+    Returns
+    -------
+    graph : a NetworkX graph instance
+        The `graph` can be an instance of `Graph`, `DiGraph`, `MultiGraph`, or
+        `MultiDiGraph` depending on the input data.
+
+    Raises
+    ------
+    NetworkXError
+        If the `name` and `ident` attributes are identical.
+
+    See Also
+    --------
+    cytoscape_data: convert a NetworkX graph to a dict in cyjs format
+
+    References
+    ----------
+    .. [1] Cytoscape user's manual:
+       http://manual.cytoscape.org/en/stable/index.html
+
+    Examples
+    --------
+    >>> data_dict = {
+    ...     "data": [],
+    ...     "directed": False,
+    ...     "multigraph": False,
+    ...     "elements": {
+    ...         "nodes": [
+    ...             {"data": {"id": "0", "value": 0, "name": "0"}},
+    ...             {"data": {"id": "1", "value": 1, "name": "1"}},
+    ...         ],
+    ...         "edges": [{"data": {"source": 0, "target": 1}}],
+    ...     },
+    ... }
+    >>> G = nx.cytoscape_graph(data_dict)
+    >>> G.name
+    ''
+    >>> G.nodes()
+    NodeView((0, 1))
+    >>> G.nodes(data=True)[0]
+    {'id': '0', 'value': 0, 'name': '0'}
+    >>> G.edges(data=True)
+    EdgeDataView([(0, 1, {'source': 0, 'target': 1})])
+    """
+    if name == ident:
+        raise nx.NetworkXError("name and ident must be different.")
+
+    multigraph = data.get("multigraph")
+    directed = data.get("directed")
+    if multigraph:
+        graph = nx.MultiGraph()
+    else:
+        graph = nx.Graph()
+    if directed:
+        graph = graph.to_directed()
+    graph.graph = dict(data.get("data"))
+    for d in data["elements"]["nodes"]:
+        node_data = d["data"].copy()
+        node = d["data"]["value"]
+
+        if d["data"].get(name):
+            node_data[name] = d["data"].get(name)
+        if d["data"].get(ident):
+            node_data[ident] = d["data"].get(ident)
+
+        graph.add_node(node)
+        graph.nodes[node].update(node_data)
+
+    for d in data["elements"]["edges"]:
+        edge_data = d["data"].copy()
+        sour = d["data"]["source"]
+        targ = d["data"]["target"]
+        if multigraph:
+            key = d["data"].get("key", 0)
+            graph.add_edge(sour, targ, key=key)
+            graph.edges[sour, targ, key].update(edge_data)
+        else:
+            graph.add_edge(sour, targ)
+            graph.edges[sour, targ].update(edge_data)
+    return graph
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/node_link.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/node_link.py
new file mode 100644
index 00000000..63ca9789
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/node_link.py
@@ -0,0 +1,330 @@
+import warnings
+from itertools import count
+
+import networkx as nx
+
+__all__ = ["node_link_data", "node_link_graph"]
+
+
+def _to_tuple(x):
+    """Converts lists to tuples, including nested lists.
+
+    All other non-list inputs are passed through unmodified. This function is
+    intended to be used to convert potentially nested lists from json files
+    into valid nodes.
+
+    Examples
+    --------
+    >>> _to_tuple([1, 2, [3, 4]])
+    (1, 2, (3, 4))
+    """
+    if not isinstance(x, tuple | list):
+        return x
+    return tuple(map(_to_tuple, x))
+
+
+def node_link_data(
+    G,
+    *,
+    source="source",
+    target="target",
+    name="id",
+    key="key",
+    edges=None,
+    nodes="nodes",
+    link=None,
+):
+    """Returns data in node-link format that is suitable for JSON serialization
+    and use in JavaScript documents.
+
+    Parameters
+    ----------
+    G : NetworkX graph
+    source : string
+        A string that provides the 'source' attribute name for storing NetworkX-internal graph data.
+    target : string
+        A string that provides the 'target' attribute name for storing NetworkX-internal graph data.
+    name : string
+        A string that provides the 'name' attribute name for storing NetworkX-internal graph data.
+    key : string
+        A string that provides the 'key' attribute name for storing NetworkX-internal graph data.
+    edges : string
+        A string that provides the 'edges' attribute name for storing NetworkX-internal graph data.
+    nodes : string
+        A string that provides the 'nodes' attribute name for storing NetworkX-internal graph data.
+    link : string
+        .. deprecated:: 3.4
+
+           The `link` argument is deprecated and will be removed in version `3.6`.
+           Use the `edges` keyword instead.
+
+        A string that provides the 'edges' attribute name for storing NetworkX-internal graph data.
+
+    Returns
+    -------
+    data : dict
+       A dictionary with node-link formatted data.
+
+    Raises
+    ------
+    NetworkXError
+        If the values of 'source', 'target' and 'key' are not unique.
+
+    Examples
+    --------
+    >>> from pprint import pprint
+    >>> G = nx.Graph([("A", "B")])
+    >>> data1 = nx.node_link_data(G, edges="edges")
+    >>> pprint(data1)
+    {'directed': False,
+     'edges': [{'source': 'A', 'target': 'B'}],
+     'graph': {},
+     'multigraph': False,
+     'nodes': [{'id': 'A'}, {'id': 'B'}]}
+
+    To serialize with JSON
+
+    >>> import json
+    >>> s1 = json.dumps(data1)
+    >>> s1
+    '{"directed": false, "multigraph": false, "graph": {}, "nodes": [{"id": "A"}, {"id": "B"}], "edges": [{"source": "A", "target": "B"}]}'
+
+    A graph can also be serialized by passing `node_link_data` as an encoder function.
+
+    >>> s1 = json.dumps(G, default=nx.node_link_data)
+    >>> s1
+    '{"directed": false, "multigraph": false, "graph": {}, "nodes": [{"id": "A"}, {"id": "B"}], "links": [{"source": "A", "target": "B"}]}'
+
+    The attribute names for storing NetworkX-internal graph data can
+    be specified as keyword options.
+
+    >>> H = nx.gn_graph(2)
+    >>> data2 = nx.node_link_data(
+    ...     H, edges="links", source="from", target="to", nodes="vertices"
+    ... )
+    >>> pprint(data2)
+    {'directed': True,
+     'graph': {},
+     'links': [{'from': 1, 'to': 0}],
+     'multigraph': False,
+     'vertices': [{'id': 0}, {'id': 1}]}
+
+    Notes
+    -----
+    Graph, node, and link attributes are stored in this format.  Note that
+    attribute keys will be converted to strings in order to comply with JSON.
+
+    Attribute 'key' is only used for multigraphs.
+
+    To use `node_link_data` in conjunction with `node_link_graph`,
+    the keyword names for the attributes must match.
+
+    See Also
+    --------
+    node_link_graph, adjacency_data, tree_data
+    """
+    # TODO: Remove between the lines when `link` deprecation expires
+    # -------------------------------------------------------------
+    if link is not None:
+        warnings.warn(
+            "Keyword argument 'link' is deprecated; use 'edges' instead",
+            DeprecationWarning,
+            stacklevel=2,
+        )
+        if edges is not None:
+            raise ValueError(
+                "Both 'edges' and 'link' are specified. Use 'edges', 'link' will be remove in a future release"
+            )
+        else:
+            edges = link
+    else:
+        if edges is None:
+            warnings.warn(
+                (
+                    '\nThe default value will be `edges="edges" in NetworkX 3.6.\n\n'
+                    "To make this warning go away, explicitly set the edges kwarg, e.g.:\n\n"
+                    '  nx.node_link_data(G, edges="links") to preserve current behavior, or\n'
+                    '  nx.node_link_data(G, edges="edges") for forward compatibility.'
+                ),
+                FutureWarning,
+            )
+            edges = "links"
+    # ------------------------------------------------------------
+
+    multigraph = G.is_multigraph()
+
+    # Allow 'key' to be omitted from attrs if the graph is not a multigraph.
+    key = None if not multigraph else key
+    if len({source, target, key}) < 3:
+        raise nx.NetworkXError("Attribute names are not unique.")
+    data = {
+        "directed": G.is_directed(),
+        "multigraph": multigraph,
+        "graph": G.graph,
+        nodes: [{**G.nodes[n], name: n} for n in G],
+    }
+    if multigraph:
+        data[edges] = [
+            {**d, source: u, target: v, key: k}
+            for u, v, k, d in G.edges(keys=True, data=True)
+        ]
+    else:
+        data[edges] = [{**d, source: u, target: v} for u, v, d in G.edges(data=True)]
+    return data
+
+
+@nx._dispatchable(graphs=None, returns_graph=True)
+def node_link_graph(
+    data,
+    directed=False,
+    multigraph=True,
+    *,
+    source="source",
+    target="target",
+    name="id",
+    key="key",
+    edges=None,
+    nodes="nodes",
+    link=None,
+):
+    """Returns graph from node-link data format.
+
+    Useful for de-serialization from JSON.
+
+    Parameters
+    ----------
+    data : dict
+        node-link formatted graph data
+
+    directed : bool
+        If True, and direction not specified in data, return a directed graph.
+
+    multigraph : bool
+        If True, and multigraph not specified in data, return a multigraph.
+
+    source : string
+        A string that provides the 'source' attribute name for storing NetworkX-internal graph data.
+    target : string
+        A string that provides the 'target' attribute name for storing NetworkX-internal graph data.
+    name : string
+        A string that provides the 'name' attribute name for storing NetworkX-internal graph data.
+    key : string
+        A string that provides the 'key' attribute name for storing NetworkX-internal graph data.
+    edges : string
+        A string that provides the 'edges' attribute name for storing NetworkX-internal graph data.
+    nodes : string
+        A string that provides the 'nodes' attribute name for storing NetworkX-internal graph data.
+    link : string
+        .. deprecated:: 3.4
+
+           The `link` argument is deprecated and will be removed in version `3.6`.
+           Use the `edges` keyword instead.
+
+        A string that provides the 'edges' attribute name for storing NetworkX-internal graph data.
+
+    Returns
+    -------
+    G : NetworkX graph
+        A NetworkX graph object
+
+    Examples
+    --------
+
+    Create data in node-link format by converting a graph.
+
+    >>> from pprint import pprint
+    >>> G = nx.Graph([("A", "B")])
+    >>> data = nx.node_link_data(G, edges="edges")
+    >>> pprint(data)
+    {'directed': False,
+     'edges': [{'source': 'A', 'target': 'B'}],
+     'graph': {},
+     'multigraph': False,
+     'nodes': [{'id': 'A'}, {'id': 'B'}]}
+
+    Revert data in node-link format to a graph.
+
+    >>> H = nx.node_link_graph(data, edges="edges")
+    >>> print(H.edges)
+    [('A', 'B')]
+
+    To serialize and deserialize a graph with JSON,
+
+    >>> import json
+    >>> d = json.dumps(nx.node_link_data(G, edges="edges"))
+    >>> H = nx.node_link_graph(json.loads(d), edges="edges")
+    >>> print(G.edges, H.edges)
+    [('A', 'B')] [('A', 'B')]
+
+
+    Notes
+    -----
+    Attribute 'key' is only used for multigraphs.
+
+    To use `node_link_data` in conjunction with `node_link_graph`,
+    the keyword names for the attributes must match.
+
+    See Also
+    --------
+    node_link_data, adjacency_data, tree_data
+    """
+    # TODO: Remove between the lines when `link` deprecation expires
+    # -------------------------------------------------------------
+    if link is not None:
+        warnings.warn(
+            "Keyword argument 'link' is deprecated; use 'edges' instead",
+            DeprecationWarning,
+            stacklevel=2,
+        )
+        if edges is not None:
+            raise ValueError(
+                "Both 'edges' and 'link' are specified. Use 'edges', 'link' will be remove in a future release"
+            )
+        else:
+            edges = link
+    else:
+        if edges is None:
+            warnings.warn(
+                (
+                    '\nThe default value will be changed to `edges="edges" in NetworkX 3.6.\n\n'
+                    "To make this warning go away, explicitly set the edges kwarg, e.g.:\n\n"
+                    '  nx.node_link_graph(data, edges="links") to preserve current behavior, or\n'
+                    '  nx.node_link_graph(data, edges="edges") for forward compatibility.'
+                ),
+                FutureWarning,
+            )
+            edges = "links"
+    # -------------------------------------------------------------
+
+    multigraph = data.get("multigraph", multigraph)
+    directed = data.get("directed", directed)
+    if multigraph:
+        graph = nx.MultiGraph()
+    else:
+        graph = nx.Graph()
+    if directed:
+        graph = graph.to_directed()
+
+    # Allow 'key' to be omitted from attrs if the graph is not a multigraph.
+    key = None if not multigraph else key
+    graph.graph = data.get("graph", {})
+    c = count()
+    for d in data[nodes]:
+        node = _to_tuple(d.get(name, next(c)))
+        nodedata = {str(k): v for k, v in d.items() if k != name}
+        graph.add_node(node, **nodedata)
+    for d in data[edges]:
+        src = tuple(d[source]) if isinstance(d[source], list) else d[source]
+        tgt = tuple(d[target]) if isinstance(d[target], list) else d[target]
+        if not multigraph:
+            edgedata = {str(k): v for k, v in d.items() if k != source and k != target}
+            graph.add_edge(src, tgt, **edgedata)
+        else:
+            ky = d.get(key, None)
+            edgedata = {
+                str(k): v
+                for k, v in d.items()
+                if k != source and k != target and k != key
+            }
+            graph.add_edge(src, tgt, ky, **edgedata)
+    return graph
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/tests/__init__.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/tests/__init__.py
new file mode 100644
index 00000000..e69de29b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/tests/__init__.py
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/tests/test_adjacency.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/tests/test_adjacency.py
new file mode 100644
index 00000000..37506382
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/tests/test_adjacency.py
@@ -0,0 +1,78 @@
+import copy
+import json
+
+import pytest
+
+import networkx as nx
+from networkx.readwrite.json_graph import adjacency_data, adjacency_graph
+from networkx.utils import graphs_equal
+
+
+class TestAdjacency:
+    def test_graph(self):
+        G = nx.path_graph(4)
+        H = adjacency_graph(adjacency_data(G))
+        assert graphs_equal(G, H)
+
+    def test_graph_attributes(self):
+        G = nx.path_graph(4)
+        G.add_node(1, color="red")
+        G.add_edge(1, 2, width=7)
+        G.graph["foo"] = "bar"
+        G.graph[1] = "one"
+
+        H = adjacency_graph(adjacency_data(G))
+        assert graphs_equal(G, H)
+        assert H.graph["foo"] == "bar"
+        assert H.nodes[1]["color"] == "red"
+        assert H[1][2]["width"] == 7
+
+        d = json.dumps(adjacency_data(G))
+        H = adjacency_graph(json.loads(d))
+        assert graphs_equal(G, H)
+        assert H.graph["foo"] == "bar"
+        assert H.graph[1] == "one"
+        assert H.nodes[1]["color"] == "red"
+        assert H[1][2]["width"] == 7
+
+    def test_digraph(self):
+        G = nx.DiGraph()
+        nx.add_path(G, [1, 2, 3])
+        H = adjacency_graph(adjacency_data(G))
+        assert H.is_directed()
+        assert graphs_equal(G, H)
+
+    def test_multidigraph(self):
+        G = nx.MultiDiGraph()
+        nx.add_path(G, [1, 2, 3])
+        H = adjacency_graph(adjacency_data(G))
+        assert H.is_directed()
+        assert H.is_multigraph()
+        assert graphs_equal(G, H)
+
+    def test_multigraph(self):
+        G = nx.MultiGraph()
+        G.add_edge(1, 2, key="first")
+        G.add_edge(1, 2, key="second", color="blue")
+        H = adjacency_graph(adjacency_data(G))
+        assert graphs_equal(G, H)
+        assert H[1][2]["second"]["color"] == "blue"
+
+    def test_input_data_is_not_modified_when_building_graph(self):
+        G = nx.path_graph(4)
+        input_data = adjacency_data(G)
+        orig_data = copy.deepcopy(input_data)
+        # Ensure input is unmodified by deserialisation
+        assert graphs_equal(G, adjacency_graph(input_data))
+        assert input_data == orig_data
+
+    def test_adjacency_form_json_serialisable(self):
+        G = nx.path_graph(4)
+        H = adjacency_graph(json.loads(json.dumps(adjacency_data(G))))
+        assert graphs_equal(G, H)
+
+    def test_exception(self):
+        with pytest.raises(nx.NetworkXError):
+            G = nx.MultiDiGraph()
+            attrs = {"id": "node", "key": "node"}
+            adjacency_data(G, attrs)
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/tests/test_cytoscape.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/tests/test_cytoscape.py
new file mode 100644
index 00000000..5d47f21f
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/tests/test_cytoscape.py
@@ -0,0 +1,78 @@
+import copy
+import json
+
+import pytest
+
+import networkx as nx
+from networkx.readwrite.json_graph import cytoscape_data, cytoscape_graph
+
+
+def test_graph():
+    G = nx.path_graph(4)
+    H = cytoscape_graph(cytoscape_data(G))
+    assert nx.is_isomorphic(G, H)
+
+
+def test_input_data_is_not_modified_when_building_graph():
+    G = nx.path_graph(4)
+    input_data = cytoscape_data(G)
+    orig_data = copy.deepcopy(input_data)
+    # Ensure input is unmodified by cytoscape_graph (gh-4173)
+    cytoscape_graph(input_data)
+    assert input_data == orig_data
+
+
+def test_graph_attributes():
+    G = nx.path_graph(4)
+    G.add_node(1, color="red")
+    G.add_edge(1, 2, width=7)
+    G.graph["foo"] = "bar"
+    G.graph[1] = "one"
+    G.add_node(3, name="node", id="123")
+
+    H = cytoscape_graph(cytoscape_data(G))
+    assert H.graph["foo"] == "bar"
+    assert H.nodes[1]["color"] == "red"
+    assert H[1][2]["width"] == 7
+    assert H.nodes[3]["name"] == "node"
+    assert H.nodes[3]["id"] == "123"
+
+    d = json.dumps(cytoscape_data(G))
+    H = cytoscape_graph(json.loads(d))
+    assert H.graph["foo"] == "bar"
+    assert H.graph[1] == "one"
+    assert H.nodes[1]["color"] == "red"
+    assert H[1][2]["width"] == 7
+    assert H.nodes[3]["name"] == "node"
+    assert H.nodes[3]["id"] == "123"
+
+
+def test_digraph():
+    G = nx.DiGraph()
+    nx.add_path(G, [1, 2, 3])
+    H = cytoscape_graph(cytoscape_data(G))
+    assert H.is_directed()
+    assert nx.is_isomorphic(G, H)
+
+
+def test_multidigraph():
+    G = nx.MultiDiGraph()
+    nx.add_path(G, [1, 2, 3])
+    H = cytoscape_graph(cytoscape_data(G))
+    assert H.is_directed()
+    assert H.is_multigraph()
+
+
+def test_multigraph():
+    G = nx.MultiGraph()
+    G.add_edge(1, 2, key="first")
+    G.add_edge(1, 2, key="second", color="blue")
+    H = cytoscape_graph(cytoscape_data(G))
+    assert nx.is_isomorphic(G, H)
+    assert H[1][2]["second"]["color"] == "blue"
+
+
+def test_exception():
+    with pytest.raises(nx.NetworkXError):
+        G = nx.MultiDiGraph()
+        cytoscape_data(G, name="foo", ident="foo")
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/tests/test_node_link.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/tests/test_node_link.py
new file mode 100644
index 00000000..f903f606
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/tests/test_node_link.py
@@ -0,0 +1,175 @@
+import json
+
+import pytest
+
+import networkx as nx
+from networkx.readwrite.json_graph import node_link_data, node_link_graph
+
+
+def test_node_link_edges_default_future_warning():
+    "Test FutureWarning is raised when `edges=None` in node_link_data and node_link_graph"
+    G = nx.Graph([(1, 2)])
+    with pytest.warns(FutureWarning, match="\nThe default value will be"):
+        data = nx.node_link_data(G)  # edges=None, the default
+    with pytest.warns(FutureWarning, match="\nThe default value will be"):
+        H = nx.node_link_graph(data)  # edges=None, the default
+
+
+def test_node_link_deprecated_link_param():
+    G = nx.Graph([(1, 2)])
+    with pytest.warns(DeprecationWarning, match="Keyword argument 'link'"):
+        data = nx.node_link_data(G, link="links")
+    with pytest.warns(DeprecationWarning, match="Keyword argument 'link'"):
+        H = nx.node_link_graph(data, link="links")
+
+
+class TestNodeLink:
+    # TODO: To be removed when signature change complete
+    def test_custom_attrs_dep(self):
+        G = nx.path_graph(4)
+        G.add_node(1, color="red")
+        G.add_edge(1, 2, width=7)
+        G.graph[1] = "one"
+        G.graph["foo"] = "bar"
+
+        attrs = {
+            "source": "c_source",
+            "target": "c_target",
+            "name": "c_id",
+            "key": "c_key",
+            "link": "c_links",
+        }
+
+        H = node_link_graph(node_link_data(G, **attrs), multigraph=False, **attrs)
+        assert nx.is_isomorphic(G, H)
+        assert H.graph["foo"] == "bar"
+        assert H.nodes[1]["color"] == "red"
+        assert H[1][2]["width"] == 7
+
+        # provide only a partial dictionary of keywords.
+        # This is similar to an example in the doc string
+        attrs = {
+            "link": "c_links",
+            "source": "c_source",
+            "target": "c_target",
+        }
+        H = node_link_graph(node_link_data(G, **attrs), multigraph=False, **attrs)
+        assert nx.is_isomorphic(G, H)
+        assert H.graph["foo"] == "bar"
+        assert H.nodes[1]["color"] == "red"
+        assert H[1][2]["width"] == 7
+
+    def test_exception_dep(self):
+        G = nx.MultiDiGraph()
+        with pytest.raises(nx.NetworkXError):
+            with pytest.warns(FutureWarning, match="\nThe default value will be"):
+                node_link_data(G, name="node", source="node", target="node", key="node")
+
+    def test_graph(self):
+        G = nx.path_graph(4)
+        with pytest.warns(FutureWarning, match="\nThe default value will be"):
+            H = node_link_graph(node_link_data(G))
+        assert nx.is_isomorphic(G, H)
+
+    def test_graph_attributes(self):
+        G = nx.path_graph(4)
+        G.add_node(1, color="red")
+        G.add_edge(1, 2, width=7)
+        G.graph[1] = "one"
+        G.graph["foo"] = "bar"
+
+        with pytest.warns(FutureWarning, match="\nThe default value will be"):
+            H = node_link_graph(node_link_data(G))
+        assert H.graph["foo"] == "bar"
+        assert H.nodes[1]["color"] == "red"
+        assert H[1][2]["width"] == 7
+
+        with pytest.warns(FutureWarning, match="\nThe default value will be"):
+            d = json.dumps(node_link_data(G))
+        with pytest.warns(FutureWarning, match="\nThe default value will be"):
+            H = node_link_graph(json.loads(d))
+        assert H.graph["foo"] == "bar"
+        assert H.graph["1"] == "one"
+        assert H.nodes[1]["color"] == "red"
+        assert H[1][2]["width"] == 7
+
+    def test_digraph(self):
+        G = nx.DiGraph()
+        with pytest.warns(FutureWarning, match="\nThe default value will be"):
+            H = node_link_graph(node_link_data(G))
+        assert H.is_directed()
+
+    def test_multigraph(self):
+        G = nx.MultiGraph()
+        G.add_edge(1, 2, key="first")
+        G.add_edge(1, 2, key="second", color="blue")
+        with pytest.warns(FutureWarning, match="\nThe default value will be"):
+            H = node_link_graph(node_link_data(G))
+        assert nx.is_isomorphic(G, H)
+        assert H[1][2]["second"]["color"] == "blue"
+
+    def test_graph_with_tuple_nodes(self):
+        G = nx.Graph()
+        G.add_edge((0, 0), (1, 0), color=[255, 255, 0])
+        with pytest.warns(FutureWarning, match="\nThe default value will be"):
+            d = node_link_data(G)
+        dumped_d = json.dumps(d)
+        dd = json.loads(dumped_d)
+        with pytest.warns(FutureWarning, match="\nThe default value will be"):
+            H = node_link_graph(dd)
+        assert H.nodes[(0, 0)] == G.nodes[(0, 0)]
+        assert H[(0, 0)][(1, 0)]["color"] == [255, 255, 0]
+
+    def test_unicode_keys(self):
+        q = "qualité"
+        G = nx.Graph()
+        G.add_node(1, **{q: q})
+        with pytest.warns(FutureWarning, match="\nThe default value will be"):
+            s = node_link_data(G)
+        output = json.dumps(s, ensure_ascii=False)
+        data = json.loads(output)
+        with pytest.warns(FutureWarning, match="\nThe default value will be"):
+            H = node_link_graph(data)
+        assert H.nodes[1][q] == q
+
+    def test_exception(self):
+        G = nx.MultiDiGraph()
+        attrs = {"name": "node", "source": "node", "target": "node", "key": "node"}
+        with pytest.raises(nx.NetworkXError):
+            with pytest.warns(FutureWarning, match="\nThe default value will be"):
+                node_link_data(G, **attrs)
+
+    def test_string_ids(self):
+        q = "qualité"
+        G = nx.DiGraph()
+        G.add_node("A")
+        G.add_node(q)
+        G.add_edge("A", q)
+        with pytest.warns(FutureWarning, match="\nThe default value will be"):
+            data = node_link_data(G)
+        assert data["links"][0]["source"] == "A"
+        assert data["links"][0]["target"] == q
+        with pytest.warns(FutureWarning, match="\nThe default value will be"):
+            H = node_link_graph(data)
+        assert nx.is_isomorphic(G, H)
+
+    def test_custom_attrs(self):
+        G = nx.path_graph(4)
+        G.add_node(1, color="red")
+        G.add_edge(1, 2, width=7)
+        G.graph[1] = "one"
+        G.graph["foo"] = "bar"
+
+        attrs = {
+            "source": "c_source",
+            "target": "c_target",
+            "name": "c_id",
+            "key": "c_key",
+            "link": "c_links",
+        }
+
+        H = node_link_graph(node_link_data(G, **attrs), multigraph=False, **attrs)
+        assert nx.is_isomorphic(G, H)
+        assert H.graph["foo"] == "bar"
+        assert H.nodes[1]["color"] == "red"
+        assert H[1][2]["width"] == 7
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/tests/test_tree.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/tests/test_tree.py
new file mode 100644
index 00000000..643a14d8
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/tests/test_tree.py
@@ -0,0 +1,48 @@
+import json
+
+import pytest
+
+import networkx as nx
+from networkx.readwrite.json_graph import tree_data, tree_graph
+
+
+def test_graph():
+    G = nx.DiGraph()
+    G.add_nodes_from([1, 2, 3], color="red")
+    G.add_edge(1, 2, foo=7)
+    G.add_edge(1, 3, foo=10)
+    G.add_edge(3, 4, foo=10)
+    H = tree_graph(tree_data(G, 1))
+    assert nx.is_isomorphic(G, H)
+
+
+def test_graph_attributes():
+    G = nx.DiGraph()
+    G.add_nodes_from([1, 2, 3], color="red")
+    G.add_edge(1, 2, foo=7)
+    G.add_edge(1, 3, foo=10)
+    G.add_edge(3, 4, foo=10)
+    H = tree_graph(tree_data(G, 1))
+    assert H.nodes[1]["color"] == "red"
+
+    d = json.dumps(tree_data(G, 1))
+    H = tree_graph(json.loads(d))
+    assert H.nodes[1]["color"] == "red"
+
+
+def test_exceptions():
+    with pytest.raises(TypeError, match="is not a tree."):
+        G = nx.complete_graph(3)
+        tree_data(G, 0)
+    with pytest.raises(TypeError, match="is not directed."):
+        G = nx.path_graph(3)
+        tree_data(G, 0)
+    with pytest.raises(TypeError, match="is not weakly connected."):
+        G = nx.path_graph(3, create_using=nx.DiGraph)
+        G.add_edge(2, 0)
+        G.add_node(3)
+        tree_data(G, 0)
+    with pytest.raises(nx.NetworkXError, match="must be different."):
+        G = nx.MultiDiGraph()
+        G.add_node(0)
+        tree_data(G, 0, ident="node", children="node")
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/tree.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/tree.py
new file mode 100644
index 00000000..22b07b09
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/json_graph/tree.py
@@ -0,0 +1,137 @@
+from itertools import chain
+
+import networkx as nx
+
+__all__ = ["tree_data", "tree_graph"]
+
+
+def tree_data(G, root, ident="id", children="children"):
+    """Returns data in tree format that is suitable for JSON serialization
+    and use in JavaScript documents.
+
+    Parameters
+    ----------
+    G : NetworkX graph
+       G must be an oriented tree
+
+    root : node
+       The root of the tree
+
+    ident : string
+        Attribute name for storing NetworkX-internal graph data. `ident` must
+        have a different value than `children`. The default is 'id'.
+
+    children : string
+        Attribute name for storing NetworkX-internal graph data. `children`
+        must have a different value than `ident`. The default is 'children'.
+
+    Returns
+    -------
+    data : dict
+       A dictionary with node-link formatted data.
+
+    Raises
+    ------
+    NetworkXError
+        If `children` and `ident` attributes are identical.
+
+    Examples
+    --------
+    >>> from networkx.readwrite import json_graph
+    >>> G = nx.DiGraph([(1, 2)])
+    >>> data = json_graph.tree_data(G, root=1)
+
+    To serialize with json
+
+    >>> import json
+    >>> s = json.dumps(data)
+
+    Notes
+    -----
+    Node attributes are stored in this format but keys
+    for attributes must be strings if you want to serialize with JSON.
+
+    Graph and edge attributes are not stored.
+
+    See Also
+    --------
+    tree_graph, node_link_data, adjacency_data
+    """
+    if G.number_of_nodes() != G.number_of_edges() + 1:
+        raise TypeError("G is not a tree.")
+    if not G.is_directed():
+        raise TypeError("G is not directed.")
+    if not nx.is_weakly_connected(G):
+        raise TypeError("G is not weakly connected.")
+
+    if ident == children:
+        raise nx.NetworkXError("The values for `id` and `children` must be different.")
+
+    def add_children(n, G):
+        nbrs = G[n]
+        if len(nbrs) == 0:
+            return []
+        children_ = []
+        for child in nbrs:
+            d = {**G.nodes[child], ident: child}
+            c = add_children(child, G)
+            if c:
+                d[children] = c
+            children_.append(d)
+        return children_
+
+    return {**G.nodes[root], ident: root, children: add_children(root, G)}
+
+
+@nx._dispatchable(graphs=None, returns_graph=True)
+def tree_graph(data, ident="id", children="children"):
+    """Returns graph from tree data format.
+
+    Parameters
+    ----------
+    data : dict
+        Tree formatted graph data
+
+    ident : string
+        Attribute name for storing NetworkX-internal graph data. `ident` must
+        have a different value than `children`. The default is 'id'.
+
+    children : string
+        Attribute name for storing NetworkX-internal graph data. `children`
+        must have a different value than `ident`. The default is 'children'.
+
+    Returns
+    -------
+    G : NetworkX DiGraph
+
+    Examples
+    --------
+    >>> from networkx.readwrite import json_graph
+    >>> G = nx.DiGraph([(1, 2)])
+    >>> data = json_graph.tree_data(G, root=1)
+    >>> H = json_graph.tree_graph(data)
+
+    See Also
+    --------
+    tree_data, node_link_data, adjacency_data
+    """
+    graph = nx.DiGraph()
+
+    def add_children(parent, children_):
+        for data in children_:
+            child = data[ident]
+            graph.add_edge(parent, child)
+            grandchildren = data.get(children, [])
+            if grandchildren:
+                add_children(child, grandchildren)
+            nodedata = {
+                str(k): v for k, v in data.items() if k != ident and k != children
+            }
+            graph.add_node(child, **nodedata)
+
+    root = data[ident]
+    children_ = data.get(children, [])
+    nodedata = {str(k): v for k, v in data.items() if k != ident and k != children}
+    graph.add_node(root, **nodedata)
+    add_children(root, children_)
+    return graph
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/leda.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/leda.py
new file mode 100644
index 00000000..9fb57db1
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/leda.py
@@ -0,0 +1,108 @@
+"""
+Read graphs in LEDA format.
+
+LEDA is a C++ class library for efficient data types and algorithms.
+
+Format
+------
+See http://www.algorithmic-solutions.info/leda_guide/graphs/leda_native_graph_fileformat.html
+
+"""
+# Original author: D. Eppstein, UC Irvine, August 12, 2003.
+# The original code at http://www.ics.uci.edu/~eppstein/PADS/ is public domain.
+
+__all__ = ["read_leda", "parse_leda"]
+
+import networkx as nx
+from networkx.exception import NetworkXError
+from networkx.utils import open_file
+
+
+@open_file(0, mode="rb")
+@nx._dispatchable(graphs=None, returns_graph=True)
+def read_leda(path, encoding="UTF-8"):
+    """Read graph in LEDA format from path.
+
+    Parameters
+    ----------
+    path : file or string
+       File or filename to read.  Filenames ending in .gz or .bz2  will be
+       uncompressed.
+
+    Returns
+    -------
+    G : NetworkX graph
+
+    Examples
+    --------
+    G=nx.read_leda('file.leda')
+
+    References
+    ----------
+    .. [1] http://www.algorithmic-solutions.info/leda_guide/graphs/leda_native_graph_fileformat.html
+    """
+    lines = (line.decode(encoding) for line in path)
+    G = parse_leda(lines)
+    return G
+
+
+@nx._dispatchable(graphs=None, returns_graph=True)
+def parse_leda(lines):
+    """Read graph in LEDA format from string or iterable.
+
+    Parameters
+    ----------
+    lines : string or iterable
+       Data in LEDA format.
+
+    Returns
+    -------
+    G : NetworkX graph
+
+    Examples
+    --------
+    G=nx.parse_leda(string)
+
+    References
+    ----------
+    .. [1] http://www.algorithmic-solutions.info/leda_guide/graphs/leda_native_graph_fileformat.html
+    """
+    if isinstance(lines, str):
+        lines = iter(lines.split("\n"))
+    lines = iter(
+        [
+            line.rstrip("\n")
+            for line in lines
+            if not (line.startswith(("#", "\n")) or line == "")
+        ]
+    )
+    for i in range(3):
+        next(lines)
+    # Graph
+    du = int(next(lines))  # -1=directed, -2=undirected
+    if du == -1:
+        G = nx.DiGraph()
+    else:
+        G = nx.Graph()
+
+    # Nodes
+    n = int(next(lines))  # number of nodes
+    node = {}
+    for i in range(1, n + 1):  # LEDA counts from 1 to n
+        symbol = next(lines).rstrip().strip("|{}|  ")
+        if symbol == "":
+            symbol = str(i)  # use int if no label - could be trouble
+        node[i] = symbol
+
+    G.add_nodes_from([s for i, s in node.items()])
+
+    # Edges
+    m = int(next(lines))  # number of edges
+    for i in range(m):
+        try:
+            s, t, reversal, label = next(lines).split()
+        except BaseException as err:
+            raise NetworkXError(f"Too few fields in LEDA.GRAPH edge {i+1}") from err
+        # BEWARE: no handling of reversal edges
+        G.add_edge(node[int(s)], node[int(t)], label=label[2:-2])
+    return G
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/multiline_adjlist.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/multiline_adjlist.py
new file mode 100644
index 00000000..808445db
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/multiline_adjlist.py
@@ -0,0 +1,393 @@
+"""
+*************************
+Multi-line Adjacency List
+*************************
+Read and write NetworkX graphs as multi-line adjacency lists.
+
+The multi-line adjacency list format is useful for graphs with
+nodes that can be meaningfully represented as strings.  With this format
+simple edge data can be stored but node or graph data is not.
+
+Format
+------
+The first label in a line is the source node label followed by the node degree
+d.  The next d lines are target node labels and optional edge data.
+That pattern repeats for all nodes in the graph.
+
+The graph with edges a-b, a-c, d-e can be represented as the following
+adjacency list (anything following the # in a line is a comment)::
+
+     # example.multiline-adjlist
+     a 2
+     b
+     c
+     d 1
+     e
+"""
+
+__all__ = [
+    "generate_multiline_adjlist",
+    "write_multiline_adjlist",
+    "parse_multiline_adjlist",
+    "read_multiline_adjlist",
+]
+
+import networkx as nx
+from networkx.utils import open_file
+
+
+def generate_multiline_adjlist(G, delimiter=" "):
+    """Generate a single line of the graph G in multiline adjacency list format.
+
+    Parameters
+    ----------
+    G : NetworkX graph
+
+    delimiter : string, optional
+       Separator for node labels
+
+    Returns
+    -------
+    lines : string
+        Lines of data in multiline adjlist format.
+
+    Examples
+    --------
+    >>> G = nx.lollipop_graph(4, 3)
+    >>> for line in nx.generate_multiline_adjlist(G):
+    ...     print(line)
+    0 3
+    1 {}
+    2 {}
+    3 {}
+    1 2
+    2 {}
+    3 {}
+    2 1
+    3 {}
+    3 1
+    4 {}
+    4 1
+    5 {}
+    5 1
+    6 {}
+    6 0
+
+    See Also
+    --------
+    write_multiline_adjlist, read_multiline_adjlist
+    """
+    if G.is_directed():
+        if G.is_multigraph():
+            for s, nbrs in G.adjacency():
+                nbr_edges = [
+                    (u, data)
+                    for u, datadict in nbrs.items()
+                    for key, data in datadict.items()
+                ]
+                deg = len(nbr_edges)
+                yield str(s) + delimiter + str(deg)
+                for u, d in nbr_edges:
+                    if d is None:
+                        yield str(u)
+                    else:
+                        yield str(u) + delimiter + str(d)
+        else:  # directed single edges
+            for s, nbrs in G.adjacency():
+                deg = len(nbrs)
+                yield str(s) + delimiter + str(deg)
+                for u, d in nbrs.items():
+                    if d is None:
+                        yield str(u)
+                    else:
+                        yield str(u) + delimiter + str(d)
+    else:  # undirected
+        if G.is_multigraph():
+            seen = set()  # helper dict used to avoid duplicate edges
+            for s, nbrs in G.adjacency():
+                nbr_edges = [
+                    (u, data)
+                    for u, datadict in nbrs.items()
+                    if u not in seen
+                    for key, data in datadict.items()
+                ]
+                deg = len(nbr_edges)
+                yield str(s) + delimiter + str(deg)
+                for u, d in nbr_edges:
+                    if d is None:
+                        yield str(u)
+                    else:
+                        yield str(u) + delimiter + str(d)
+                seen.add(s)
+        else:  # undirected single edges
+            seen = set()  # helper dict used to avoid duplicate edges
+            for s, nbrs in G.adjacency():
+                nbr_edges = [(u, d) for u, d in nbrs.items() if u not in seen]
+                deg = len(nbr_edges)
+                yield str(s) + delimiter + str(deg)
+                for u, d in nbr_edges:
+                    if d is None:
+                        yield str(u)
+                    else:
+                        yield str(u) + delimiter + str(d)
+                seen.add(s)
+
+
+@open_file(1, mode="wb")
+def write_multiline_adjlist(G, path, delimiter=" ", comments="#", encoding="utf-8"):
+    """Write the graph G in multiline adjacency list format to path
+
+    Parameters
+    ----------
+    G : NetworkX graph
+
+    path : string or file
+       Filename or file handle to write to.
+       Filenames ending in .gz or .bz2 will be compressed.
+
+    comments : string, optional
+       Marker for comment lines
+
+    delimiter : string, optional
+       Separator for node labels
+
+    encoding : string, optional
+       Text encoding.
+
+    Examples
+    --------
+    >>> G = nx.path_graph(4)
+    >>> nx.write_multiline_adjlist(G, "test.adjlist")
+
+    The path can be a file handle or a string with the name of the file. If a
+    file handle is provided, it has to be opened in 'wb' mode.
+
+    >>> fh = open("test.adjlist", "wb")
+    >>> nx.write_multiline_adjlist(G, fh)
+
+    Filenames ending in .gz or .bz2 will be compressed.
+
+    >>> nx.write_multiline_adjlist(G, "test.adjlist.gz")
+
+    See Also
+    --------
+    read_multiline_adjlist
+    """
+    import sys
+    import time
+
+    pargs = comments + " ".join(sys.argv)
+    header = (
+        f"{pargs}\n"
+        + comments
+        + f" GMT {time.asctime(time.gmtime())}\n"
+        + comments
+        + f" {G.name}\n"
+    )
+    path.write(header.encode(encoding))
+
+    for multiline in generate_multiline_adjlist(G, delimiter):
+        multiline += "\n"
+        path.write(multiline.encode(encoding))
+
+
+@nx._dispatchable(graphs=None, returns_graph=True)
+def parse_multiline_adjlist(
+    lines, comments="#", delimiter=None, create_using=None, nodetype=None, edgetype=None
+):
+    """Parse lines of a multiline adjacency list representation of a graph.
+
+    Parameters
+    ----------
+    lines : list or iterator of strings
+        Input data in multiline adjlist format
+
+    create_using : NetworkX graph constructor, optional (default=nx.Graph)
+       Graph type to create. If graph instance, then cleared before populated.
+
+    nodetype : Python type, optional
+       Convert nodes to this type.
+
+    edgetype : Python type, optional
+       Convert edges to this type.
+
+    comments : string, optional
+       Marker for comment lines
+
+    delimiter : string, optional
+       Separator for node labels.  The default is whitespace.
+
+    Returns
+    -------
+    G: NetworkX graph
+        The graph corresponding to the lines in multiline adjacency list format.
+
+    Examples
+    --------
+    >>> lines = [
+    ...     "1 2",
+    ...     "2 {'weight':3, 'name': 'Frodo'}",
+    ...     "3 {}",
+    ...     "2 1",
+    ...     "5 {'weight':6, 'name': 'Saruman'}",
+    ... ]
+    >>> G = nx.parse_multiline_adjlist(iter(lines), nodetype=int)
+    >>> list(G)
+    [1, 2, 3, 5]
+
+    """
+    from ast import literal_eval
+
+    G = nx.empty_graph(0, create_using)
+    for line in lines:
+        p = line.find(comments)
+        if p >= 0:
+            line = line[:p]
+        if not line:
+            continue
+        try:
+            (u, deg) = line.rstrip("\n").split(delimiter)
+            deg = int(deg)
+        except BaseException as err:
+            raise TypeError(f"Failed to read node and degree on line ({line})") from err
+        if nodetype is not None:
+            try:
+                u = nodetype(u)
+            except BaseException as err:
+                raise TypeError(
+                    f"Failed to convert node ({u}) to type {nodetype}"
+                ) from err
+        G.add_node(u)
+        for i in range(deg):
+            while True:
+                try:
+                    line = next(lines)
+                except StopIteration as err:
+                    msg = f"Failed to find neighbor for node ({u})"
+                    raise TypeError(msg) from err
+                p = line.find(comments)
+                if p >= 0:
+                    line = line[:p]
+                if line:
+                    break
+            vlist = line.rstrip("\n").split(delimiter)
+            numb = len(vlist)
+            if numb < 1:
+                continue  # isolated node
+            v = vlist.pop(0)
+            data = "".join(vlist)
+            if nodetype is not None:
+                try:
+                    v = nodetype(v)
+                except BaseException as err:
+                    raise TypeError(
+                        f"Failed to convert node ({v}) to type {nodetype}"
+                    ) from err
+            if edgetype is not None:
+                try:
+                    edgedata = {"weight": edgetype(data)}
+                except BaseException as err:
+                    raise TypeError(
+                        f"Failed to convert edge data ({data}) to type {edgetype}"
+                    ) from err
+            else:
+                try:  # try to evaluate
+                    edgedata = literal_eval(data)
+                except:
+                    edgedata = {}
+            G.add_edge(u, v, **edgedata)
+
+    return G
+
+
+@open_file(0, mode="rb")
+@nx._dispatchable(graphs=None, returns_graph=True)
+def read_multiline_adjlist(
+    path,
+    comments="#",
+    delimiter=None,
+    create_using=None,
+    nodetype=None,
+    edgetype=None,
+    encoding="utf-8",
+):
+    """Read graph in multi-line adjacency list format from path.
+
+    Parameters
+    ----------
+    path : string or file
+       Filename or file handle to read.
+       Filenames ending in .gz or .bz2 will be uncompressed.
+
+    create_using : NetworkX graph constructor, optional (default=nx.Graph)
+       Graph type to create. If graph instance, then cleared before populated.
+
+    nodetype : Python type, optional
+       Convert nodes to this type.
+
+    edgetype : Python type, optional
+       Convert edge data to this type.
+
+    comments : string, optional
+       Marker for comment lines
+
+    delimiter : string, optional
+       Separator for node labels.  The default is whitespace.
+
+    Returns
+    -------
+    G: NetworkX graph
+
+    Examples
+    --------
+    >>> G = nx.path_graph(4)
+    >>> nx.write_multiline_adjlist(G, "test.adjlist")
+    >>> G = nx.read_multiline_adjlist("test.adjlist")
+
+    The path can be a file or a string with the name of the file. If a
+    file s provided, it has to be opened in 'rb' mode.
+
+    >>> fh = open("test.adjlist", "rb")
+    >>> G = nx.read_multiline_adjlist(fh)
+
+    Filenames ending in .gz or .bz2 will be compressed.
+
+    >>> nx.write_multiline_adjlist(G, "test.adjlist.gz")
+    >>> G = nx.read_multiline_adjlist("test.adjlist.gz")
+
+    The optional nodetype is a function to convert node strings to nodetype.
+
+    For example
+
+    >>> G = nx.read_multiline_adjlist("test.adjlist", nodetype=int)
+
+    will attempt to convert all nodes to integer type.
+
+    The optional edgetype is a function to convert edge data strings to
+    edgetype.
+
+    >>> G = nx.read_multiline_adjlist("test.adjlist")
+
+    The optional create_using parameter is a NetworkX graph container.
+    The default is Graph(), an undirected graph.  To read the data as
+    a directed graph use
+
+    >>> G = nx.read_multiline_adjlist("test.adjlist", create_using=nx.DiGraph)
+
+    Notes
+    -----
+    This format does not store graph, node, or edge data.
+
+    See Also
+    --------
+    write_multiline_adjlist
+    """
+    lines = (line.decode(encoding) for line in path)
+    return parse_multiline_adjlist(
+        lines,
+        comments=comments,
+        delimiter=delimiter,
+        create_using=create_using,
+        nodetype=nodetype,
+        edgetype=edgetype,
+    )
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/p2g.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/p2g.py
new file mode 100644
index 00000000..804adb23
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/p2g.py
@@ -0,0 +1,105 @@
+"""
+This module provides the following: read and write of p2g format
+used in metabolic pathway studies.
+
+See https://web.archive.org/web/20080626113807/http://www.cs.purdue.edu/homes/koyuturk/pathway/ for a description.
+
+The summary is included here:
+
+A file that describes a uniquely labeled graph (with extension ".gr")
+format looks like the following:
+
+
+name
+3 4
+a
+1 2
+b
+
+c
+0 2
+
+"name" is simply a description of what the graph corresponds to. The
+second line displays the number of nodes and number of edges,
+respectively. This sample graph contains three nodes labeled "a", "b",
+and "c". The rest of the graph contains two lines for each node. The
+first line for a node contains the node label. After the declaration
+of the node label, the out-edges of that node in the graph are
+provided. For instance, "a" is linked to nodes 1 and 2, which are
+labeled "b" and "c", while the node labeled "b" has no outgoing
+edges. Observe that node labeled "c" has an outgoing edge to
+itself. Indeed, self-loops are allowed. Node index starts from 0.
+
+"""
+
+import networkx as nx
+from networkx.utils import open_file
+
+
+@open_file(1, mode="w")
+def write_p2g(G, path, encoding="utf-8"):
+    """Write NetworkX graph in p2g format.
+
+    Notes
+    -----
+    This format is meant to be used with directed graphs with
+    possible self loops.
+    """
+    path.write((f"{G.name}\n").encode(encoding))
+    path.write((f"{G.order()} {G.size()}\n").encode(encoding))
+    nodes = list(G)
+    # make dictionary mapping nodes to integers
+    nodenumber = dict(zip(nodes, range(len(nodes))))
+    for n in nodes:
+        path.write((f"{n}\n").encode(encoding))
+        for nbr in G.neighbors(n):
+            path.write((f"{nodenumber[nbr]} ").encode(encoding))
+        path.write("\n".encode(encoding))
+
+
+@open_file(0, mode="r")
+@nx._dispatchable(graphs=None, returns_graph=True)
+def read_p2g(path, encoding="utf-8"):
+    """Read graph in p2g format from path.
+
+    Returns
+    -------
+    MultiDiGraph
+
+    Notes
+    -----
+    If you want a DiGraph (with no self loops allowed and no edge data)
+    use D=nx.DiGraph(read_p2g(path))
+    """
+    lines = (line.decode(encoding) for line in path)
+    G = parse_p2g(lines)
+    return G
+
+
+@nx._dispatchable(graphs=None, returns_graph=True)
+def parse_p2g(lines):
+    """Parse p2g format graph from string or iterable.
+
+    Returns
+    -------
+    MultiDiGraph
+    """
+    description = next(lines).strip()
+    # are multiedges (parallel edges) allowed?
+    G = nx.MultiDiGraph(name=description, selfloops=True)
+    nnodes, nedges = map(int, next(lines).split())
+    nodelabel = {}
+    nbrs = {}
+    # loop over the nodes keeping track of node labels and out neighbors
+    # defer adding edges until all node labels are known
+    for i in range(nnodes):
+        n = next(lines).strip()
+        nodelabel[i] = n
+        G.add_node(n)
+        nbrs[n] = map(int, next(lines).split())
+    # now we know all of the node labels so we can add the edges
+    # with the correct labels
+    for n in G:
+        for nbr in nbrs[n]:
+            G.add_edge(n, nodelabel[nbr])
+    return G
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/pajek.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/pajek.py
new file mode 100644
index 00000000..f148f162
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/pajek.py
@@ -0,0 +1,286 @@
+"""
+*****
+Pajek
+*****
+Read graphs in Pajek format.
+
+This implementation handles directed and undirected graphs including
+those with self loops and parallel edges.
+
+Format
+------
+See http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm
+for format information.
+
+"""
+
+import warnings
+
+import networkx as nx
+from networkx.utils import open_file
+
+__all__ = ["read_pajek", "parse_pajek", "generate_pajek", "write_pajek"]
+
+
+def generate_pajek(G):
+    """Generate lines in Pajek graph format.
+
+    Parameters
+    ----------
+    G : graph
+       A Networkx graph
+
+    References
+    ----------
+    See http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm
+    for format information.
+    """
+    if G.name == "":
+        name = "NetworkX"
+    else:
+        name = G.name
+    # Apparently many Pajek format readers can't process this line
+    # So we'll leave it out for now.
+    # yield '*network %s'%name
+
+    # write nodes with attributes
+    yield f"*vertices {G.order()}"
+    nodes = list(G)
+    # make dictionary mapping nodes to integers
+    nodenumber = dict(zip(nodes, range(1, len(nodes) + 1)))
+    for n in nodes:
+        # copy node attributes and pop mandatory attributes
+        # to avoid duplication.
+        na = G.nodes.get(n, {}).copy()
+        x = na.pop("x", 0.0)
+        y = na.pop("y", 0.0)
+        try:
+            id = int(na.pop("id", nodenumber[n]))
+        except ValueError as err:
+            err.args += (
+                (
+                    "Pajek format requires 'id' to be an int()."
+                    " Refer to the 'Relabeling nodes' section."
+                ),
+            )
+            raise
+        nodenumber[n] = id
+        shape = na.pop("shape", "ellipse")
+        s = " ".join(map(make_qstr, (id, n, x, y, shape)))
+        # only optional attributes are left in na.
+        for k, v in na.items():
+            if isinstance(v, str) and v.strip() != "":
+                s += f" {make_qstr(k)} {make_qstr(v)}"
+            else:
+                warnings.warn(
+                    f"Node attribute {k} is not processed. {('Empty attribute' if isinstance(v, str) else 'Non-string attribute')}."
+                )
+        yield s
+
+    # write edges with attributes
+    if G.is_directed():
+        yield "*arcs"
+    else:
+        yield "*edges"
+    for u, v, edgedata in G.edges(data=True):
+        d = edgedata.copy()
+        value = d.pop("weight", 1.0)  # use 1 as default edge value
+        s = " ".join(map(make_qstr, (nodenumber[u], nodenumber[v], value)))
+        for k, v in d.items():
+            if isinstance(v, str) and v.strip() != "":
+                s += f" {make_qstr(k)} {make_qstr(v)}"
+            else:
+                warnings.warn(
+                    f"Edge attribute {k} is not processed. {('Empty attribute' if isinstance(v, str) else 'Non-string attribute')}."
+                )
+        yield s
+
+
+@open_file(1, mode="wb")
+def write_pajek(G, path, encoding="UTF-8"):
+    """Write graph in Pajek format to path.
+
+    Parameters
+    ----------
+    G : graph
+       A Networkx graph
+    path : file or string
+       File or filename to write.
+       Filenames ending in .gz or .bz2 will be compressed.
+
+    Examples
+    --------
+    >>> G = nx.path_graph(4)
+    >>> nx.write_pajek(G, "test.net")
+
+    Warnings
+    --------
+    Optional node attributes and edge attributes must be non-empty strings.
+    Otherwise it will not be written into the file. You will need to
+    convert those attributes to strings if you want to keep them.
+
+    References
+    ----------
+    See http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm
+    for format information.
+    """
+    for line in generate_pajek(G):
+        line += "\n"
+        path.write(line.encode(encoding))
+
+
+@open_file(0, mode="rb")
+@nx._dispatchable(graphs=None, returns_graph=True)
+def read_pajek(path, encoding="UTF-8"):
+    """Read graph in Pajek format from path.
+
+    Parameters
+    ----------
+    path : file or string
+       File or filename to write.
+       Filenames ending in .gz or .bz2 will be uncompressed.
+
+    Returns
+    -------
+    G : NetworkX MultiGraph or MultiDiGraph.
+
+    Examples
+    --------
+    >>> G = nx.path_graph(4)
+    >>> nx.write_pajek(G, "test.net")
+    >>> G = nx.read_pajek("test.net")
+
+    To create a Graph instead of a MultiGraph use
+
+    >>> G1 = nx.Graph(G)
+
+    References
+    ----------
+    See http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm
+    for format information.
+    """
+    lines = (line.decode(encoding) for line in path)
+    return parse_pajek(lines)
+
+
+@nx._dispatchable(graphs=None, returns_graph=True)
+def parse_pajek(lines):
+    """Parse Pajek format graph from string or iterable.
+
+    Parameters
+    ----------
+    lines : string or iterable
+       Data in Pajek format.
+
+    Returns
+    -------
+    G : NetworkX graph
+
+    See Also
+    --------
+    read_pajek
+
+    """
+    import shlex
+
+    # multigraph=False
+    if isinstance(lines, str):
+        lines = iter(lines.split("\n"))
+    lines = iter([line.rstrip("\n") for line in lines])
+    G = nx.MultiDiGraph()  # are multiedges allowed in Pajek? assume yes
+    labels = []  # in the order of the file, needed for matrix
+    while lines:
+        try:
+            l = next(lines)
+        except:  # EOF
+            break
+        if l.lower().startswith("*network"):
+            try:
+                label, name = l.split(None, 1)
+            except ValueError:
+                # Line was not of the form:  *network NAME
+                pass
+            else:
+                G.graph["name"] = name
+        elif l.lower().startswith("*vertices"):
+            nodelabels = {}
+            l, nnodes = l.split()
+            for i in range(int(nnodes)):
+                l = next(lines)
+                try:
+                    splitline = [
+                        x.decode("utf-8") for x in shlex.split(str(l).encode("utf-8"))
+                    ]
+                except AttributeError:
+                    splitline = shlex.split(str(l))
+                id, label = splitline[0:2]
+                labels.append(label)
+                G.add_node(label)
+                nodelabels[id] = label
+                G.nodes[label]["id"] = id
+                try:
+                    x, y, shape = splitline[2:5]
+                    G.nodes[label].update(
+                        {"x": float(x), "y": float(y), "shape": shape}
+                    )
+                except:
+                    pass
+                extra_attr = zip(splitline[5::2], splitline[6::2])
+                G.nodes[label].update(extra_attr)
+        elif l.lower().startswith("*edges") or l.lower().startswith("*arcs"):
+            if l.lower().startswith("*edge"):
+                # switch from multidigraph to multigraph
+                G = nx.MultiGraph(G)
+            if l.lower().startswith("*arcs"):
+                # switch to directed with multiple arcs for each existing edge
+                G = G.to_directed()
+            for l in lines:
+                try:
+                    splitline = [
+                        x.decode("utf-8") for x in shlex.split(str(l).encode("utf-8"))
+                    ]
+                except AttributeError:
+                    splitline = shlex.split(str(l))
+
+                if len(splitline) < 2:
+                    continue
+                ui, vi = splitline[0:2]
+                u = nodelabels.get(ui, ui)
+                v = nodelabels.get(vi, vi)
+                # parse the data attached to this edge and put in a dictionary
+                edge_data = {}
+                try:
+                    # there should always be a single value on the edge?
+                    w = splitline[2:3]
+                    edge_data.update({"weight": float(w[0])})
+                except:
+                    pass
+                    # if there isn't, just assign a 1
+                #                    edge_data.update({'value':1})
+                extra_attr = zip(splitline[3::2], splitline[4::2])
+                edge_data.update(extra_attr)
+                # if G.has_edge(u,v):
+                #     multigraph=True
+                G.add_edge(u, v, **edge_data)
+        elif l.lower().startswith("*matrix"):
+            G = nx.DiGraph(G)
+            adj_list = (
+                (labels[row], labels[col], {"weight": int(data)})
+                for (row, line) in enumerate(lines)
+                for (col, data) in enumerate(line.split())
+                if int(data) != 0
+            )
+            G.add_edges_from(adj_list)
+
+    return G
+
+
+def make_qstr(t):
+    """Returns the string representation of t.
+    Add outer double-quotes if the string has a space.
+    """
+    if not isinstance(t, str):
+        t = str(t)
+    if " " in t:
+        t = f'"{t}"'
+    return t
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/sparse6.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/sparse6.py
new file mode 100644
index 00000000..74d16dbc
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/sparse6.py
@@ -0,0 +1,377 @@
+# Original author: D. Eppstein, UC Irvine, August 12, 2003.
+# The original code at https://www.ics.uci.edu/~eppstein/PADS/ is public domain.
+"""Functions for reading and writing graphs in the *sparse6* format.
+
+The *sparse6* file format is a space-efficient format for large sparse
+graphs. For small graphs or large dense graphs, use the *graph6* file
+format.
+
+For more information, see the `sparse6`_ homepage.
+
+.. _sparse6: https://users.cecs.anu.edu.au/~bdm/data/formats.html
+
+"""
+
+import networkx as nx
+from networkx.exception import NetworkXError
+from networkx.readwrite.graph6 import data_to_n, n_to_data
+from networkx.utils import not_implemented_for, open_file
+
+__all__ = ["from_sparse6_bytes", "read_sparse6", "to_sparse6_bytes", "write_sparse6"]
+
+
+def _generate_sparse6_bytes(G, nodes, header):
+    """Yield bytes in the sparse6 encoding of a graph.
+
+    `G` is an undirected simple graph. `nodes` is the list of nodes for
+    which the node-induced subgraph will be encoded; if `nodes` is the
+    list of all nodes in the graph, the entire graph will be
+    encoded. `header` is a Boolean that specifies whether to generate
+    the header ``b'>>sparse6<<'`` before the remaining data.
+
+    This function generates `bytes` objects in the following order:
+
+    1. the header (if requested),
+    2. the encoding of the number of nodes,
+    3. each character, one-at-a-time, in the encoding of the requested
+       node-induced subgraph,
+    4. a newline character.
+
+    This function raises :exc:`ValueError` if the graph is too large for
+    the graph6 format (that is, greater than ``2 ** 36`` nodes).
+
+    """
+    n = len(G)
+    if n >= 2**36:
+        raise ValueError(
+            "sparse6 is only defined if number of nodes is less than 2 ** 36"
+        )
+    if header:
+        yield b">>sparse6<<"
+    yield b":"
+    for d in n_to_data(n):
+        yield str.encode(chr(d + 63))
+
+    k = 1
+    while 1 << k < n:
+        k += 1
+
+    def enc(x):
+        """Big endian k-bit encoding of x"""
+        return [1 if (x & 1 << (k - 1 - i)) else 0 for i in range(k)]
+
+    edges = sorted((max(u, v), min(u, v)) for u, v in G.edges())
+    bits = []
+    curv = 0
+    for v, u in edges:
+        if v == curv:  # current vertex edge
+            bits.append(0)
+            bits.extend(enc(u))
+        elif v == curv + 1:  # next vertex edge
+            curv += 1
+            bits.append(1)
+            bits.extend(enc(u))
+        else:  # skip to vertex v and then add edge to u
+            curv = v
+            bits.append(1)
+            bits.extend(enc(v))
+            bits.append(0)
+            bits.extend(enc(u))
+    if k < 6 and n == (1 << k) and ((-len(bits)) % 6) >= k and curv < (n - 1):
+        # Padding special case: small k, n=2^k,
+        # more than k bits of padding needed,
+        # current vertex is not (n-1) --
+        # appending 1111... would add a loop on (n-1)
+        bits.append(0)
+        bits.extend([1] * ((-len(bits)) % 6))
+    else:
+        bits.extend([1] * ((-len(bits)) % 6))
+
+    data = [
+        (bits[i + 0] << 5)
+        + (bits[i + 1] << 4)
+        + (bits[i + 2] << 3)
+        + (bits[i + 3] << 2)
+        + (bits[i + 4] << 1)
+        + (bits[i + 5] << 0)
+        for i in range(0, len(bits), 6)
+    ]
+
+    for d in data:
+        yield str.encode(chr(d + 63))
+    yield b"\n"
+
+
+@nx._dispatchable(graphs=None, returns_graph=True)
+def from_sparse6_bytes(string):
+    """Read an undirected graph in sparse6 format from string.
+
+    Parameters
+    ----------
+    string : string
+       Data in sparse6 format
+
+    Returns
+    -------
+    G : Graph
+
+    Raises
+    ------
+    NetworkXError
+        If the string is unable to be parsed in sparse6 format
+
+    Examples
+    --------
+    >>> G = nx.from_sparse6_bytes(b":A_")
+    >>> sorted(G.edges())
+    [(0, 1), (0, 1), (0, 1)]
+
+    See Also
+    --------
+    read_sparse6, write_sparse6
+
+    References
+    ----------
+    .. [1] Sparse6 specification
+           <https://users.cecs.anu.edu.au/~bdm/data/formats.html>
+
+    """
+    if string.startswith(b">>sparse6<<"):
+        string = string[11:]
+    if not string.startswith(b":"):
+        raise NetworkXError("Expected leading colon in sparse6")
+
+    chars = [c - 63 for c in string[1:]]
+    n, data = data_to_n(chars)
+    k = 1
+    while 1 << k < n:
+        k += 1
+
+    def parseData():
+        """Returns stream of pairs b[i], x[i] for sparse6 format."""
+        chunks = iter(data)
+        d = None  # partial data word
+        dLen = 0  # how many unparsed bits are left in d
+
+        while 1:
+            if dLen < 1:
+                try:
+                    d = next(chunks)
+                except StopIteration:
+                    return
+                dLen = 6
+            dLen -= 1
+            b = (d >> dLen) & 1  # grab top remaining bit
+
+            x = d & ((1 << dLen) - 1)  # partially built up value of x
+            xLen = dLen  # how many bits included so far in x
+            while xLen < k:  # now grab full chunks until we have enough
+                try:
+                    d = next(chunks)
+                except StopIteration:
+                    return
+                dLen = 6
+                x = (x << 6) + d
+                xLen += 6
+            x = x >> (xLen - k)  # shift back the extra bits
+            dLen = xLen - k
+            yield b, x
+
+    v = 0
+
+    G = nx.MultiGraph()
+    G.add_nodes_from(range(n))
+
+    multigraph = False
+    for b, x in parseData():
+        if b == 1:
+            v += 1
+        # padding with ones can cause overlarge number here
+        if x >= n or v >= n:
+            break
+        elif x > v:
+            v = x
+        else:
+            if G.has_edge(x, v):
+                multigraph = True
+            G.add_edge(x, v)
+    if not multigraph:
+        G = nx.Graph(G)
+    return G
+
+
+def to_sparse6_bytes(G, nodes=None, header=True):
+    """Convert an undirected graph to bytes in sparse6 format.
+
+    Parameters
+    ----------
+    G : Graph (undirected)
+
+    nodes: list or iterable
+       Nodes are labeled 0...n-1 in the order provided.  If None the ordering
+       given by ``G.nodes()`` is used.
+
+    header: bool
+       If True add '>>sparse6<<' bytes to head of data.
+
+    Raises
+    ------
+    NetworkXNotImplemented
+        If the graph is directed.
+
+    ValueError
+        If the graph has at least ``2 ** 36`` nodes; the sparse6 format
+        is only defined for graphs of order less than ``2 ** 36``.
+
+    Examples
+    --------
+    >>> nx.to_sparse6_bytes(nx.path_graph(2))
+    b'>>sparse6<<:An\\n'
+
+    See Also
+    --------
+    to_sparse6_bytes, read_sparse6, write_sparse6_bytes
+
+    Notes
+    -----
+    The returned bytes end with a newline character.
+
+    The format does not support edge or node labels.
+
+    References
+    ----------
+    .. [1] Graph6 specification
+           <https://users.cecs.anu.edu.au/~bdm/data/formats.html>
+
+    """
+    if nodes is not None:
+        G = G.subgraph(nodes)
+    G = nx.convert_node_labels_to_integers(G, ordering="sorted")
+    return b"".join(_generate_sparse6_bytes(G, nodes, header))
+
+
+@open_file(0, mode="rb")
+@nx._dispatchable(graphs=None, returns_graph=True)
+def read_sparse6(path):
+    """Read an undirected graph in sparse6 format from path.
+
+    Parameters
+    ----------
+    path : file or string
+       File or filename to write.
+
+    Returns
+    -------
+    G : Graph/Multigraph or list of Graphs/MultiGraphs
+       If the file contains multiple lines then a list of graphs is returned
+
+    Raises
+    ------
+    NetworkXError
+        If the string is unable to be parsed in sparse6 format
+
+    Examples
+    --------
+    You can read a sparse6 file by giving the path to the file::
+
+        >>> import tempfile
+        >>> with tempfile.NamedTemporaryFile(delete=False) as f:
+        ...     _ = f.write(b">>sparse6<<:An\\n")
+        ...     _ = f.seek(0)
+        ...     G = nx.read_sparse6(f.name)
+        >>> list(G.edges())
+        [(0, 1)]
+
+    You can also read a sparse6 file by giving an open file-like object::
+
+        >>> import tempfile
+        >>> with tempfile.NamedTemporaryFile() as f:
+        ...     _ = f.write(b">>sparse6<<:An\\n")
+        ...     _ = f.seek(0)
+        ...     G = nx.read_sparse6(f)
+        >>> list(G.edges())
+        [(0, 1)]
+
+    See Also
+    --------
+    read_sparse6, from_sparse6_bytes
+
+    References
+    ----------
+    .. [1] Sparse6 specification
+           <https://users.cecs.anu.edu.au/~bdm/data/formats.html>
+
+    """
+    glist = []
+    for line in path:
+        line = line.strip()
+        if not len(line):
+            continue
+        glist.append(from_sparse6_bytes(line))
+    if len(glist) == 1:
+        return glist[0]
+    else:
+        return glist
+
+
+@not_implemented_for("directed")
+@open_file(1, mode="wb")
+def write_sparse6(G, path, nodes=None, header=True):
+    """Write graph G to given path in sparse6 format.
+
+    Parameters
+    ----------
+    G : Graph (undirected)
+
+    path : file or string
+       File or filename to write
+
+    nodes: list or iterable
+       Nodes are labeled 0...n-1 in the order provided.  If None the ordering
+       given by G.nodes() is used.
+
+    header: bool
+       If True add '>>sparse6<<' string to head of data
+
+    Raises
+    ------
+    NetworkXError
+        If the graph is directed
+
+    Examples
+    --------
+    You can write a sparse6 file by giving the path to the file::
+
+        >>> import tempfile
+        >>> with tempfile.NamedTemporaryFile(delete=False) as f:
+        ...     nx.write_sparse6(nx.path_graph(2), f.name)
+        ...     print(f.read())
+        b'>>sparse6<<:An\\n'
+
+    You can also write a sparse6 file by giving an open file-like object::
+
+        >>> with tempfile.NamedTemporaryFile() as f:
+        ...     nx.write_sparse6(nx.path_graph(2), f)
+        ...     _ = f.seek(0)
+        ...     print(f.read())
+        b'>>sparse6<<:An\\n'
+
+    See Also
+    --------
+    read_sparse6, from_sparse6_bytes
+
+    Notes
+    -----
+    The format does not support edge or node labels.
+
+    References
+    ----------
+    .. [1] Sparse6 specification
+           <https://users.cecs.anu.edu.au/~bdm/data/formats.html>
+
+    """
+    if nodes is not None:
+        G = G.subgraph(nodes)
+    G = nx.convert_node_labels_to_integers(G, ordering="sorted")
+    for b in _generate_sparse6_bytes(G, nodes, header):
+        path.write(b)
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/__init__.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/__init__.py
new file mode 100644
index 00000000..e69de29b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/__init__.py
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_adjlist.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_adjlist.py
new file mode 100644
index 00000000..f2218eba
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_adjlist.py
@@ -0,0 +1,262 @@
+"""
+Unit tests for adjlist.
+"""
+
+import io
+
+import pytest
+
+import networkx as nx
+from networkx.utils import edges_equal, graphs_equal, nodes_equal
+
+
+class TestAdjlist:
+    @classmethod
+    def setup_class(cls):
+        cls.G = nx.Graph(name="test")
+        e = [("a", "b"), ("b", "c"), ("c", "d"), ("d", "e"), ("e", "f"), ("a", "f")]
+        cls.G.add_edges_from(e)
+        cls.G.add_node("g")
+        cls.DG = nx.DiGraph(cls.G)
+        cls.XG = nx.MultiGraph()
+        cls.XG.add_weighted_edges_from([(1, 2, 5), (1, 2, 5), (1, 2, 1), (3, 3, 42)])
+        cls.XDG = nx.MultiDiGraph(cls.XG)
+
+    def test_read_multiline_adjlist_1(self):
+        # Unit test for https://networkx.lanl.gov/trac/ticket/252
+        s = b"""# comment line
+1 2
+# comment line
+2
+3
+"""
+        bytesIO = io.BytesIO(s)
+        G = nx.read_multiline_adjlist(bytesIO)
+        adj = {"1": {"3": {}, "2": {}}, "3": {"1": {}}, "2": {"1": {}}}
+        assert graphs_equal(G, nx.Graph(adj))
+
+    def test_unicode(self, tmp_path):
+        G = nx.Graph()
+        name1 = chr(2344) + chr(123) + chr(6543)
+        name2 = chr(5543) + chr(1543) + chr(324)
+        G.add_edge(name1, "Radiohead", **{name2: 3})
+
+        fname = tmp_path / "adjlist.txt"
+        nx.write_multiline_adjlist(G, fname)
+        H = nx.read_multiline_adjlist(fname)
+        assert graphs_equal(G, H)
+
+    def test_latin1_err(self, tmp_path):
+        G = nx.Graph()
+        name1 = chr(2344) + chr(123) + chr(6543)
+        name2 = chr(5543) + chr(1543) + chr(324)
+        G.add_edge(name1, "Radiohead", **{name2: 3})
+        fname = tmp_path / "adjlist.txt"
+        with pytest.raises(UnicodeEncodeError):
+            nx.write_multiline_adjlist(G, fname, encoding="latin-1")
+
+    def test_latin1(self, tmp_path):
+        G = nx.Graph()
+        name1 = "Bj" + chr(246) + "rk"
+        name2 = chr(220) + "ber"
+        G.add_edge(name1, "Radiohead", **{name2: 3})
+        fname = tmp_path / "adjlist.txt"
+        nx.write_multiline_adjlist(G, fname, encoding="latin-1")
+        H = nx.read_multiline_adjlist(fname, encoding="latin-1")
+        assert graphs_equal(G, H)
+
+    def test_parse_adjlist(self):
+        lines = ["1 2 5", "2 3 4", "3 5", "4", "5"]
+        nx.parse_adjlist(lines, nodetype=int)  # smoke test
+        with pytest.raises(TypeError):
+            nx.parse_adjlist(lines, nodetype="int")
+        lines = ["1 2 5", "2 b", "c"]
+        with pytest.raises(TypeError):
+            nx.parse_adjlist(lines, nodetype=int)
+
+    def test_adjlist_graph(self, tmp_path):
+        G = self.G
+        fname = tmp_path / "adjlist.txt"
+        nx.write_adjlist(G, fname)
+        H = nx.read_adjlist(fname)
+        H2 = nx.read_adjlist(fname)
+        assert H is not H2  # they should be different graphs
+        assert nodes_equal(list(H), list(G))
+        assert edges_equal(list(H.edges()), list(G.edges()))
+
+    def test_adjlist_digraph(self, tmp_path):
+        G = self.DG
+        fname = tmp_path / "adjlist.txt"
+        nx.write_adjlist(G, fname)
+        H = nx.read_adjlist(fname, create_using=nx.DiGraph())
+        H2 = nx.read_adjlist(fname, create_using=nx.DiGraph())
+        assert H is not H2  # they should be different graphs
+        assert nodes_equal(list(H), list(G))
+        assert edges_equal(list(H.edges()), list(G.edges()))
+
+    def test_adjlist_integers(self, tmp_path):
+        fname = tmp_path / "adjlist.txt"
+        G = nx.convert_node_labels_to_integers(self.G)
+        nx.write_adjlist(G, fname)
+        H = nx.read_adjlist(fname, nodetype=int)
+        H2 = nx.read_adjlist(fname, nodetype=int)
+        assert H is not H2  # they should be different graphs
+        assert nodes_equal(list(H), list(G))
+        assert edges_equal(list(H.edges()), list(G.edges()))
+
+    def test_adjlist_multigraph(self, tmp_path):
+        G = self.XG
+        fname = tmp_path / "adjlist.txt"
+        nx.write_adjlist(G, fname)
+        H = nx.read_adjlist(fname, nodetype=int, create_using=nx.MultiGraph())
+        H2 = nx.read_adjlist(fname, nodetype=int, create_using=nx.MultiGraph())
+        assert H is not H2  # they should be different graphs
+        assert nodes_equal(list(H), list(G))
+        assert edges_equal(list(H.edges()), list(G.edges()))
+
+    def test_adjlist_multidigraph(self, tmp_path):
+        G = self.XDG
+        fname = tmp_path / "adjlist.txt"
+        nx.write_adjlist(G, fname)
+        H = nx.read_adjlist(fname, nodetype=int, create_using=nx.MultiDiGraph())
+        H2 = nx.read_adjlist(fname, nodetype=int, create_using=nx.MultiDiGraph())
+        assert H is not H2  # they should be different graphs
+        assert nodes_equal(list(H), list(G))
+        assert edges_equal(list(H.edges()), list(G.edges()))
+
+    def test_adjlist_delimiter(self):
+        fh = io.BytesIO()
+        G = nx.path_graph(3)
+        nx.write_adjlist(G, fh, delimiter=":")
+        fh.seek(0)
+        H = nx.read_adjlist(fh, nodetype=int, delimiter=":")
+        assert nodes_equal(list(H), list(G))
+        assert edges_equal(list(H.edges()), list(G.edges()))
+
+
+class TestMultilineAdjlist:
+    @classmethod
+    def setup_class(cls):
+        cls.G = nx.Graph(name="test")
+        e = [("a", "b"), ("b", "c"), ("c", "d"), ("d", "e"), ("e", "f"), ("a", "f")]
+        cls.G.add_edges_from(e)
+        cls.G.add_node("g")
+        cls.DG = nx.DiGraph(cls.G)
+        cls.DG.remove_edge("b", "a")
+        cls.DG.remove_edge("b", "c")
+        cls.XG = nx.MultiGraph()
+        cls.XG.add_weighted_edges_from([(1, 2, 5), (1, 2, 5), (1, 2, 1), (3, 3, 42)])
+        cls.XDG = nx.MultiDiGraph(cls.XG)
+
+    def test_parse_multiline_adjlist(self):
+        lines = [
+            "1 2",
+            "b {'weight':3, 'name': 'Frodo'}",
+            "c {}",
+            "d 1",
+            "e {'weight':6, 'name': 'Saruman'}",
+        ]
+        nx.parse_multiline_adjlist(iter(lines))  # smoke test
+        with pytest.raises(TypeError):
+            nx.parse_multiline_adjlist(iter(lines), nodetype=int)
+        nx.parse_multiline_adjlist(iter(lines), edgetype=str)  # smoke test
+        with pytest.raises(TypeError):
+            nx.parse_multiline_adjlist(iter(lines), nodetype=int)
+        lines = ["1 a"]
+        with pytest.raises(TypeError):
+            nx.parse_multiline_adjlist(iter(lines))
+        lines = ["a 2"]
+        with pytest.raises(TypeError):
+            nx.parse_multiline_adjlist(iter(lines), nodetype=int)
+        lines = ["1 2"]
+        with pytest.raises(TypeError):
+            nx.parse_multiline_adjlist(iter(lines))
+        lines = ["1 2", "2 {}"]
+        with pytest.raises(TypeError):
+            nx.parse_multiline_adjlist(iter(lines))
+
+    def test_multiline_adjlist_graph(self, tmp_path):
+        G = self.G
+        fname = tmp_path / "adjlist.txt"
+        nx.write_multiline_adjlist(G, fname)
+        H = nx.read_multiline_adjlist(fname)
+        H2 = nx.read_multiline_adjlist(fname)
+        assert H is not H2  # they should be different graphs
+        assert nodes_equal(list(H), list(G))
+        assert edges_equal(list(H.edges()), list(G.edges()))
+
+    def test_multiline_adjlist_digraph(self, tmp_path):
+        G = self.DG
+        fname = tmp_path / "adjlist.txt"
+        nx.write_multiline_adjlist(G, fname)
+        H = nx.read_multiline_adjlist(fname, create_using=nx.DiGraph())
+        H2 = nx.read_multiline_adjlist(fname, create_using=nx.DiGraph())
+        assert H is not H2  # they should be different graphs
+        assert nodes_equal(list(H), list(G))
+        assert edges_equal(list(H.edges()), list(G.edges()))
+
+    def test_multiline_adjlist_integers(self, tmp_path):
+        fname = tmp_path / "adjlist.txt"
+        G = nx.convert_node_labels_to_integers(self.G)
+        nx.write_multiline_adjlist(G, fname)
+        H = nx.read_multiline_adjlist(fname, nodetype=int)
+        H2 = nx.read_multiline_adjlist(fname, nodetype=int)
+        assert H is not H2  # they should be different graphs
+        assert nodes_equal(list(H), list(G))
+        assert edges_equal(list(H.edges()), list(G.edges()))
+
+    def test_multiline_adjlist_multigraph(self, tmp_path):
+        G = self.XG
+        fname = tmp_path / "adjlist.txt"
+        nx.write_multiline_adjlist(G, fname)
+        H = nx.read_multiline_adjlist(fname, nodetype=int, create_using=nx.MultiGraph())
+        H2 = nx.read_multiline_adjlist(
+            fname, nodetype=int, create_using=nx.MultiGraph()
+        )
+        assert H is not H2  # they should be different graphs
+        assert nodes_equal(list(H), list(G))
+        assert edges_equal(list(H.edges()), list(G.edges()))
+
+    def test_multiline_adjlist_multidigraph(self, tmp_path):
+        G = self.XDG
+        fname = tmp_path / "adjlist.txt"
+        nx.write_multiline_adjlist(G, fname)
+        H = nx.read_multiline_adjlist(
+            fname, nodetype=int, create_using=nx.MultiDiGraph()
+        )
+        H2 = nx.read_multiline_adjlist(
+            fname, nodetype=int, create_using=nx.MultiDiGraph()
+        )
+        assert H is not H2  # they should be different graphs
+        assert nodes_equal(list(H), list(G))
+        assert edges_equal(list(H.edges()), list(G.edges()))
+
+    def test_multiline_adjlist_delimiter(self):
+        fh = io.BytesIO()
+        G = nx.path_graph(3)
+        nx.write_multiline_adjlist(G, fh, delimiter=":")
+        fh.seek(0)
+        H = nx.read_multiline_adjlist(fh, nodetype=int, delimiter=":")
+        assert nodes_equal(list(H), list(G))
+        assert edges_equal(list(H.edges()), list(G.edges()))
+
+
+@pytest.mark.parametrize(
+    ("lines", "delim"),
+    (
+        (["1 2 5", "2 3 4", "3 5", "4", "5"], None),  # No extra whitespace
+        (["1\t2\t5", "2\t3\t4", "3\t5", "4", "5"], "\t"),  # tab-delimited
+        (
+            ["1\t2\t5", "2\t3\t4", "3\t5\t", "4\t", "5"],
+            "\t",
+        ),  # tab-delimited, extra delims
+        (
+            ["1\t2\t5", "2\t3\t4", "3\t5\t\t\n", "4\t", "5"],
+            "\t",
+        ),  # extra delim+newlines
+    ),
+)
+def test_adjlist_rstrip_parsing(lines, delim):
+    """Regression test related to gh-7465"""
+    expected = nx.Graph([(1, 2), (1, 5), (2, 3), (2, 4), (3, 5)])
+    nx.utils.graphs_equal(nx.parse_adjlist(lines, delimiter=delim), expected)
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_edgelist.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_edgelist.py
new file mode 100644
index 00000000..fe58b3b7
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_edgelist.py
@@ -0,0 +1,314 @@
+"""
+Unit tests for edgelists.
+"""
+
+import io
+import textwrap
+
+import pytest
+
+import networkx as nx
+from networkx.utils import edges_equal, graphs_equal, nodes_equal
+
+edges_no_data = textwrap.dedent(
+    """
+    # comment line
+    1 2
+    # comment line
+    2 3
+    """
+)
+
+
+edges_with_values = textwrap.dedent(
+    """
+    # comment line
+    1 2 2.0
+    # comment line
+    2 3 3.0
+    """
+)
+
+
+edges_with_weight = textwrap.dedent(
+    """
+    # comment line
+    1 2 {'weight':2.0}
+    # comment line
+    2 3 {'weight':3.0}
+    """
+)
+
+
+edges_with_multiple_attrs = textwrap.dedent(
+    """
+    # comment line
+    1 2 {'weight':2.0, 'color':'green'}
+    # comment line
+    2 3 {'weight':3.0, 'color':'red'}
+    """
+)
+
+
+edges_with_multiple_attrs_csv = textwrap.dedent(
+    """
+    # comment line
+    1, 2, {'weight':2.0, 'color':'green'}
+    # comment line
+    2, 3, {'weight':3.0, 'color':'red'}
+    """
+)
+
+
+_expected_edges_weights = [(1, 2, {"weight": 2.0}), (2, 3, {"weight": 3.0})]
+_expected_edges_multiattr = [
+    (1, 2, {"weight": 2.0, "color": "green"}),
+    (2, 3, {"weight": 3.0, "color": "red"}),
+]
+
+
+@pytest.mark.parametrize(
+    ("data", "extra_kwargs"),
+    (
+        (edges_no_data, {}),
+        (edges_with_values, {}),
+        (edges_with_weight, {}),
+        (edges_with_multiple_attrs, {}),
+        (edges_with_multiple_attrs_csv, {"delimiter": ","}),
+    ),
+)
+def test_read_edgelist_no_data(data, extra_kwargs):
+    bytesIO = io.BytesIO(data.encode("utf-8"))
+    G = nx.read_edgelist(bytesIO, nodetype=int, data=False, **extra_kwargs)
+    assert edges_equal(G.edges(), [(1, 2), (2, 3)])
+
+
+def test_read_weighted_edgelist():
+    bytesIO = io.BytesIO(edges_with_values.encode("utf-8"))
+    G = nx.read_weighted_edgelist(bytesIO, nodetype=int)
+    assert edges_equal(G.edges(data=True), _expected_edges_weights)
+
+
+@pytest.mark.parametrize(
+    ("data", "extra_kwargs", "expected"),
+    (
+        (edges_with_weight, {}, _expected_edges_weights),
+        (edges_with_multiple_attrs, {}, _expected_edges_multiattr),
+        (edges_with_multiple_attrs_csv, {"delimiter": ","}, _expected_edges_multiattr),
+    ),
+)
+def test_read_edgelist_with_data(data, extra_kwargs, expected):
+    bytesIO = io.BytesIO(data.encode("utf-8"))
+    G = nx.read_edgelist(bytesIO, nodetype=int, **extra_kwargs)
+    assert edges_equal(G.edges(data=True), expected)
+
+
+@pytest.fixture
+def example_graph():
+    G = nx.Graph()
+    G.add_weighted_edges_from([(1, 2, 3.0), (2, 3, 27.0), (3, 4, 3.0)])
+    return G
+
+
+def test_parse_edgelist_no_data(example_graph):
+    G = example_graph
+    H = nx.parse_edgelist(["1 2", "2 3", "3 4"], nodetype=int)
+    assert nodes_equal(G.nodes, H.nodes)
+    assert edges_equal(G.edges, H.edges)
+
+
+def test_parse_edgelist_with_data_dict(example_graph):
+    G = example_graph
+    H = nx.parse_edgelist(
+        ["1 2 {'weight': 3}", "2 3 {'weight': 27}", "3 4 {'weight': 3.0}"], nodetype=int
+    )
+    assert nodes_equal(G.nodes, H.nodes)
+    assert edges_equal(G.edges(data=True), H.edges(data=True))
+
+
+def test_parse_edgelist_with_data_list(example_graph):
+    G = example_graph
+    H = nx.parse_edgelist(
+        ["1 2 3", "2 3 27", "3 4 3.0"], nodetype=int, data=(("weight", float),)
+    )
+    assert nodes_equal(G.nodes, H.nodes)
+    assert edges_equal(G.edges(data=True), H.edges(data=True))
+
+
+def test_parse_edgelist():
+    # ignore lines with less than 2 nodes
+    lines = ["1;2", "2 3", "3 4"]
+    G = nx.parse_edgelist(lines, nodetype=int)
+    assert list(G.edges()) == [(2, 3), (3, 4)]
+    # unknown nodetype
+    with pytest.raises(TypeError, match="Failed to convert nodes"):
+        lines = ["1 2", "2 3", "3 4"]
+        nx.parse_edgelist(lines, nodetype="nope")
+    # lines have invalid edge format
+    with pytest.raises(TypeError, match="Failed to convert edge data"):
+        lines = ["1 2 3", "2 3", "3 4"]
+        nx.parse_edgelist(lines, nodetype=int)
+    # edge data and data_keys not the same length
+    with pytest.raises(IndexError, match="not the same length"):
+        lines = ["1 2 3", "2 3 27", "3 4 3.0"]
+        nx.parse_edgelist(
+            lines, nodetype=int, data=(("weight", float), ("capacity", int))
+        )
+    # edge data can't be converted to edge type
+    with pytest.raises(TypeError, match="Failed to convert"):
+        lines = ["1 2 't1'", "2 3 't3'", "3 4 't3'"]
+        nx.parse_edgelist(lines, nodetype=int, data=(("weight", float),))
+
+
+def test_comments_None():
+    edgelist = ["node#1 node#2", "node#2 node#3"]
+    # comments=None supported to ignore all comment characters
+    G = nx.parse_edgelist(edgelist, comments=None)
+    H = nx.Graph([e.split(" ") for e in edgelist])
+    assert edges_equal(G.edges, H.edges)
+
+
+class TestEdgelist:
+    @classmethod
+    def setup_class(cls):
+        cls.G = nx.Graph(name="test")
+        e = [("a", "b"), ("b", "c"), ("c", "d"), ("d", "e"), ("e", "f"), ("a", "f")]
+        cls.G.add_edges_from(e)
+        cls.G.add_node("g")
+        cls.DG = nx.DiGraph(cls.G)
+        cls.XG = nx.MultiGraph()
+        cls.XG.add_weighted_edges_from([(1, 2, 5), (1, 2, 5), (1, 2, 1), (3, 3, 42)])
+        cls.XDG = nx.MultiDiGraph(cls.XG)
+
+    def test_write_edgelist_1(self):
+        fh = io.BytesIO()
+        G = nx.Graph()
+        G.add_edges_from([(1, 2), (2, 3)])
+        nx.write_edgelist(G, fh, data=False)
+        fh.seek(0)
+        assert fh.read() == b"1 2\n2 3\n"
+
+    def test_write_edgelist_2(self):
+        fh = io.BytesIO()
+        G = nx.Graph()
+        G.add_edges_from([(1, 2), (2, 3)])
+        nx.write_edgelist(G, fh, data=True)
+        fh.seek(0)
+        assert fh.read() == b"1 2 {}\n2 3 {}\n"
+
+    def test_write_edgelist_3(self):
+        fh = io.BytesIO()
+        G = nx.Graph()
+        G.add_edge(1, 2, weight=2.0)
+        G.add_edge(2, 3, weight=3.0)
+        nx.write_edgelist(G, fh, data=True)
+        fh.seek(0)
+        assert fh.read() == b"1 2 {'weight': 2.0}\n2 3 {'weight': 3.0}\n"
+
+    def test_write_edgelist_4(self):
+        fh = io.BytesIO()
+        G = nx.Graph()
+        G.add_edge(1, 2, weight=2.0)
+        G.add_edge(2, 3, weight=3.0)
+        nx.write_edgelist(G, fh, data=[("weight")])
+        fh.seek(0)
+        assert fh.read() == b"1 2 2.0\n2 3 3.0\n"
+
+    def test_unicode(self, tmp_path):
+        G = nx.Graph()
+        name1 = chr(2344) + chr(123) + chr(6543)
+        name2 = chr(5543) + chr(1543) + chr(324)
+        G.add_edge(name1, "Radiohead", **{name2: 3})
+        fname = tmp_path / "el.txt"
+        nx.write_edgelist(G, fname)
+        H = nx.read_edgelist(fname)
+        assert graphs_equal(G, H)
+
+    def test_latin1_issue(self, tmp_path):
+        G = nx.Graph()
+        name1 = chr(2344) + chr(123) + chr(6543)
+        name2 = chr(5543) + chr(1543) + chr(324)
+        G.add_edge(name1, "Radiohead", **{name2: 3})
+        fname = tmp_path / "el.txt"
+        with pytest.raises(UnicodeEncodeError):
+            nx.write_edgelist(G, fname, encoding="latin-1")
+
+    def test_latin1(self, tmp_path):
+        G = nx.Graph()
+        name1 = "Bj" + chr(246) + "rk"
+        name2 = chr(220) + "ber"
+        G.add_edge(name1, "Radiohead", **{name2: 3})
+        fname = tmp_path / "el.txt"
+
+        nx.write_edgelist(G, fname, encoding="latin-1")
+        H = nx.read_edgelist(fname, encoding="latin-1")
+        assert graphs_equal(G, H)
+
+    def test_edgelist_graph(self, tmp_path):
+        G = self.G
+        fname = tmp_path / "el.txt"
+        nx.write_edgelist(G, fname)
+        H = nx.read_edgelist(fname)
+        H2 = nx.read_edgelist(fname)
+        assert H is not H2  # they should be different graphs
+        G.remove_node("g")  # isolated nodes are not written in edgelist
+        assert nodes_equal(list(H), list(G))
+        assert edges_equal(list(H.edges()), list(G.edges()))
+
+    def test_edgelist_digraph(self, tmp_path):
+        G = self.DG
+        fname = tmp_path / "el.txt"
+        nx.write_edgelist(G, fname)
+        H = nx.read_edgelist(fname, create_using=nx.DiGraph())
+        H2 = nx.read_edgelist(fname, create_using=nx.DiGraph())
+        assert H is not H2  # they should be different graphs
+        G.remove_node("g")  # isolated nodes are not written in edgelist
+        assert nodes_equal(list(H), list(G))
+        assert edges_equal(list(H.edges()), list(G.edges()))
+
+    def test_edgelist_integers(self, tmp_path):
+        G = nx.convert_node_labels_to_integers(self.G)
+        fname = tmp_path / "el.txt"
+        nx.write_edgelist(G, fname)
+        H = nx.read_edgelist(fname, nodetype=int)
+        # isolated nodes are not written in edgelist
+        G.remove_nodes_from(list(nx.isolates(G)))
+        assert nodes_equal(list(H), list(G))
+        assert edges_equal(list(H.edges()), list(G.edges()))
+
+    def test_edgelist_multigraph(self, tmp_path):
+        G = self.XG
+        fname = tmp_path / "el.txt"
+        nx.write_edgelist(G, fname)
+        H = nx.read_edgelist(fname, nodetype=int, create_using=nx.MultiGraph())
+        H2 = nx.read_edgelist(fname, nodetype=int, create_using=nx.MultiGraph())
+        assert H is not H2  # they should be different graphs
+        assert nodes_equal(list(H), list(G))
+        assert edges_equal(list(H.edges()), list(G.edges()))
+
+    def test_edgelist_multidigraph(self, tmp_path):
+        G = self.XDG
+        fname = tmp_path / "el.txt"
+        nx.write_edgelist(G, fname)
+        H = nx.read_edgelist(fname, nodetype=int, create_using=nx.MultiDiGraph())
+        H2 = nx.read_edgelist(fname, nodetype=int, create_using=nx.MultiDiGraph())
+        assert H is not H2  # they should be different graphs
+        assert nodes_equal(list(H), list(G))
+        assert edges_equal(list(H.edges()), list(G.edges()))
+
+
+def test_edgelist_consistent_strip_handling():
+    """See gh-7462
+
+    Input when printed looks like::
+
+        1       2       3
+        2       3
+        3       4       3.0
+
+    Note the trailing \\t after the `3` in the second row, indicating an empty
+    data value.
+    """
+    s = io.StringIO("1\t2\t3\n2\t3\t\n3\t4\t3.0")
+    G = nx.parse_edgelist(s, delimiter="\t", nodetype=int, data=[("value", str)])
+    assert sorted(G.edges(data="value")) == [(1, 2, "3"), (2, 3, ""), (3, 4, "3.0")]
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_gexf.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_gexf.py
new file mode 100644
index 00000000..6ff14c99
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_gexf.py
@@ -0,0 +1,557 @@
+import io
+import time
+
+import pytest
+
+import networkx as nx
+
+
+class TestGEXF:
+    @classmethod
+    def setup_class(cls):
+        cls.simple_directed_data = """<?xml version="1.0" encoding="UTF-8"?>
+<gexf xmlns="http://www.gexf.net/1.2draft" version="1.2">
+    <graph mode="static" defaultedgetype="directed">
+        <nodes>
+            <node id="0" label="Hello" />
+            <node id="1" label="Word" />
+        </nodes>
+        <edges>
+            <edge id="0" source="0" target="1" />
+        </edges>
+    </graph>
+</gexf>
+"""
+        cls.simple_directed_graph = nx.DiGraph()
+        cls.simple_directed_graph.add_node("0", label="Hello")
+        cls.simple_directed_graph.add_node("1", label="World")
+        cls.simple_directed_graph.add_edge("0", "1", id="0")
+
+        cls.simple_directed_fh = io.BytesIO(cls.simple_directed_data.encode("UTF-8"))
+
+        cls.attribute_data = """<?xml version="1.0" encoding="UTF-8"?>\
+<gexf xmlns="http://www.gexf.net/1.2draft" xmlns:xsi="http://www.w3.\
+org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.gexf.net/\
+1.2draft http://www.gexf.net/1.2draft/gexf.xsd" version="1.2">
+  <meta lastmodifieddate="2009-03-20">
+    <creator>Gephi.org</creator>
+    <description>A Web network</description>
+  </meta>
+  <graph defaultedgetype="directed">
+    <attributes class="node">
+      <attribute id="0" title="url" type="string"/>
+      <attribute id="1" title="indegree" type="integer"/>
+      <attribute id="2" title="frog" type="boolean">
+        <default>true</default>
+      </attribute>
+    </attributes>
+    <nodes>
+      <node id="0" label="Gephi">
+        <attvalues>
+          <attvalue for="0" value="https://gephi.org"/>
+          <attvalue for="1" value="1"/>
+          <attvalue for="2" value="false"/>
+        </attvalues>
+      </node>
+      <node id="1" label="Webatlas">
+        <attvalues>
+          <attvalue for="0" value="http://webatlas.fr"/>
+          <attvalue for="1" value="2"/>
+          <attvalue for="2" value="false"/>
+        </attvalues>
+      </node>
+      <node id="2" label="RTGI">
+        <attvalues>
+          <attvalue for="0" value="http://rtgi.fr"/>
+          <attvalue for="1" value="1"/>
+          <attvalue for="2" value="true"/>
+        </attvalues>
+      </node>
+      <node id="3" label="BarabasiLab">
+        <attvalues>
+          <attvalue for="0" value="http://barabasilab.com"/>
+          <attvalue for="1" value="1"/>
+          <attvalue for="2" value="true"/>
+        </attvalues>
+      </node>
+    </nodes>
+    <edges>
+      <edge id="0" source="0" target="1" label="foo"/>
+      <edge id="1" source="0" target="2"/>
+      <edge id="2" source="1" target="0"/>
+      <edge id="3" source="2" target="1"/>
+      <edge id="4" source="0" target="3"/>
+    </edges>
+  </graph>
+</gexf>
+"""
+        cls.attribute_graph = nx.DiGraph()
+        cls.attribute_graph.graph["node_default"] = {"frog": True}
+        cls.attribute_graph.add_node(
+            "0", label="Gephi", url="https://gephi.org", indegree=1, frog=False
+        )
+        cls.attribute_graph.add_node(
+            "1", label="Webatlas", url="http://webatlas.fr", indegree=2, frog=False
+        )
+        cls.attribute_graph.add_node(
+            "2", label="RTGI", url="http://rtgi.fr", indegree=1, frog=True
+        )
+        cls.attribute_graph.add_node(
+            "3",
+            label="BarabasiLab",
+            url="http://barabasilab.com",
+            indegree=1,
+            frog=True,
+        )
+        cls.attribute_graph.add_edge("0", "1", id="0", label="foo")
+        cls.attribute_graph.add_edge("0", "2", id="1")
+        cls.attribute_graph.add_edge("1", "0", id="2")
+        cls.attribute_graph.add_edge("2", "1", id="3")
+        cls.attribute_graph.add_edge("0", "3", id="4")
+        cls.attribute_fh = io.BytesIO(cls.attribute_data.encode("UTF-8"))
+
+        cls.simple_undirected_data = """<?xml version="1.0" encoding="UTF-8"?>
+<gexf xmlns="http://www.gexf.net/1.2draft" version="1.2">
+    <graph mode="static" defaultedgetype="undirected">
+        <nodes>
+            <node id="0" label="Hello" />
+            <node id="1" label="Word" />
+        </nodes>
+        <edges>
+            <edge id="0" source="0" target="1" />
+        </edges>
+    </graph>
+</gexf>
+"""
+        cls.simple_undirected_graph = nx.Graph()
+        cls.simple_undirected_graph.add_node("0", label="Hello")
+        cls.simple_undirected_graph.add_node("1", label="World")
+        cls.simple_undirected_graph.add_edge("0", "1", id="0")
+
+        cls.simple_undirected_fh = io.BytesIO(
+            cls.simple_undirected_data.encode("UTF-8")
+        )
+
+    def test_read_simple_directed_graphml(self):
+        G = self.simple_directed_graph
+        H = nx.read_gexf(self.simple_directed_fh)
+        assert sorted(G.nodes()) == sorted(H.nodes())
+        assert sorted(G.edges()) == sorted(H.edges())
+        assert sorted(G.edges(data=True)) == sorted(H.edges(data=True))
+        self.simple_directed_fh.seek(0)
+
+    def test_write_read_simple_directed_graphml(self):
+        G = self.simple_directed_graph
+        fh = io.BytesIO()
+        nx.write_gexf(G, fh)
+        fh.seek(0)
+        H = nx.read_gexf(fh)
+        assert sorted(G.nodes()) == sorted(H.nodes())
+        assert sorted(G.edges()) == sorted(H.edges())
+        assert sorted(G.edges(data=True)) == sorted(H.edges(data=True))
+        self.simple_directed_fh.seek(0)
+
+    def test_read_simple_undirected_graphml(self):
+        G = self.simple_undirected_graph
+        H = nx.read_gexf(self.simple_undirected_fh)
+        assert sorted(G.nodes()) == sorted(H.nodes())
+        assert sorted(sorted(e) for e in G.edges()) == sorted(
+            sorted(e) for e in H.edges()
+        )
+        self.simple_undirected_fh.seek(0)
+
+    def test_read_attribute_graphml(self):
+        G = self.attribute_graph
+        H = nx.read_gexf(self.attribute_fh)
+        assert sorted(G.nodes(True)) == sorted(H.nodes(data=True))
+        ge = sorted(G.edges(data=True))
+        he = sorted(H.edges(data=True))
+        for a, b in zip(ge, he):
+            assert a == b
+        self.attribute_fh.seek(0)
+
+    def test_directed_edge_in_undirected(self):
+        s = """<?xml version="1.0" encoding="UTF-8"?>
+<gexf xmlns="http://www.gexf.net/1.2draft" version='1.2'>
+    <graph mode="static" defaultedgetype="undirected" name="">
+        <nodes>
+            <node id="0" label="Hello" />
+            <node id="1" label="Word" />
+        </nodes>
+        <edges>
+            <edge id="0" source="0" target="1" type="directed"/>
+        </edges>
+    </graph>
+</gexf>
+"""
+        fh = io.BytesIO(s.encode("UTF-8"))
+        pytest.raises(nx.NetworkXError, nx.read_gexf, fh)
+
+    def test_undirected_edge_in_directed(self):
+        s = """<?xml version="1.0" encoding="UTF-8"?>
+<gexf xmlns="http://www.gexf.net/1.2draft" version='1.2'>
+    <graph mode="static" defaultedgetype="directed" name="">
+        <nodes>
+            <node id="0" label="Hello" />
+            <node id="1" label="Word" />
+        </nodes>
+        <edges>
+            <edge id="0" source="0" target="1" type="undirected"/>
+        </edges>
+    </graph>
+</gexf>
+"""
+        fh = io.BytesIO(s.encode("UTF-8"))
+        pytest.raises(nx.NetworkXError, nx.read_gexf, fh)
+
+    def test_key_raises(self):
+        s = """<?xml version="1.0" encoding="UTF-8"?>
+<gexf xmlns="http://www.gexf.net/1.2draft" version='1.2'>
+    <graph mode="static" defaultedgetype="directed" name="">
+        <nodes>
+            <node id="0" label="Hello">
+              <attvalues>
+                <attvalue for='0' value='1'/>
+              </attvalues>
+            </node>
+            <node id="1" label="Word" />
+        </nodes>
+        <edges>
+            <edge id="0" source="0" target="1" type="undirected"/>
+        </edges>
+    </graph>
+</gexf>
+"""
+        fh = io.BytesIO(s.encode("UTF-8"))
+        pytest.raises(nx.NetworkXError, nx.read_gexf, fh)
+
+    def test_relabel(self):
+        s = """<?xml version="1.0" encoding="UTF-8"?>
+<gexf xmlns="http://www.gexf.net/1.2draft" version='1.2'>
+    <graph mode="static" defaultedgetype="directed" name="">
+        <nodes>
+            <node id="0" label="Hello" />
+            <node id="1" label="Word" />
+        </nodes>
+        <edges>
+            <edge id="0" source="0" target="1"/>
+        </edges>
+    </graph>
+</gexf>
+"""
+        fh = io.BytesIO(s.encode("UTF-8"))
+        G = nx.read_gexf(fh, relabel=True)
+        assert sorted(G.nodes()) == ["Hello", "Word"]
+
+    def test_default_attribute(self):
+        G = nx.Graph()
+        G.add_node(1, label="1", color="green")
+        nx.add_path(G, [0, 1, 2, 3])
+        G.add_edge(1, 2, foo=3)
+        G.graph["node_default"] = {"color": "yellow"}
+        G.graph["edge_default"] = {"foo": 7}
+        fh = io.BytesIO()
+        nx.write_gexf(G, fh)
+        fh.seek(0)
+        H = nx.read_gexf(fh, node_type=int)
+        assert sorted(G.nodes()) == sorted(H.nodes())
+        assert sorted(sorted(e) for e in G.edges()) == sorted(
+            sorted(e) for e in H.edges()
+        )
+        # Reading a gexf graph always sets mode attribute to either
+        # 'static' or 'dynamic'. Remove the mode attribute from the
+        # read graph for the sake of comparing remaining attributes.
+        del H.graph["mode"]
+        assert G.graph == H.graph
+
+    def test_serialize_ints_to_strings(self):
+        G = nx.Graph()
+        G.add_node(1, id=7, label=77)
+        fh = io.BytesIO()
+        nx.write_gexf(G, fh)
+        fh.seek(0)
+        H = nx.read_gexf(fh, node_type=int)
+        assert list(H) == [7]
+        assert H.nodes[7]["label"] == "77"
+
+    def test_write_with_node_attributes(self):
+        # Addresses #673.
+        G = nx.Graph()
+        G.add_edges_from([(0, 1), (1, 2), (2, 3)])
+        for i in range(4):
+            G.nodes[i]["id"] = i
+            G.nodes[i]["label"] = i
+            G.nodes[i]["pid"] = i
+            G.nodes[i]["start"] = i
+            G.nodes[i]["end"] = i + 1
+
+        expected = f"""<gexf xmlns="http://www.gexf.net/1.2draft" xmlns:xsi\
+="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation=\
+"http://www.gexf.net/1.2draft http://www.gexf.net/1.2draft/\
+gexf.xsd" version="1.2">
+  <meta lastmodifieddate="{time.strftime('%Y-%m-%d')}">
+    <creator>NetworkX {nx.__version__}</creator>
+  </meta>
+  <graph defaultedgetype="undirected" mode="dynamic" name="" timeformat="long">
+    <nodes>
+      <node id="0" label="0" pid="0" start="0" end="1" />
+      <node id="1" label="1" pid="1" start="1" end="2" />
+      <node id="2" label="2" pid="2" start="2" end="3" />
+      <node id="3" label="3" pid="3" start="3" end="4" />
+    </nodes>
+    <edges>
+      <edge source="0" target="1" id="0" />
+      <edge source="1" target="2" id="1" />
+      <edge source="2" target="3" id="2" />
+    </edges>
+  </graph>
+</gexf>"""
+        obtained = "\n".join(nx.generate_gexf(G))
+        assert expected == obtained
+
+    def test_edge_id_construct(self):
+        G = nx.Graph()
+        G.add_edges_from([(0, 1, {"id": 0}), (1, 2, {"id": 2}), (2, 3)])
+
+        expected = f"""<gexf xmlns="http://www.gexf.net/1.2draft" xmlns:xsi\
+="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.\
+gexf.net/1.2draft http://www.gexf.net/1.2draft/gexf.xsd" version="1.2">
+  <meta lastmodifieddate="{time.strftime('%Y-%m-%d')}">
+    <creator>NetworkX {nx.__version__}</creator>
+  </meta>
+  <graph defaultedgetype="undirected" mode="static" name="">
+    <nodes>
+      <node id="0" label="0" />
+      <node id="1" label="1" />
+      <node id="2" label="2" />
+      <node id="3" label="3" />
+    </nodes>
+    <edges>
+      <edge source="0" target="1" id="0" />
+      <edge source="1" target="2" id="2" />
+      <edge source="2" target="3" id="1" />
+    </edges>
+  </graph>
+</gexf>"""
+
+        obtained = "\n".join(nx.generate_gexf(G))
+        assert expected == obtained
+
+    def test_numpy_type(self):
+        np = pytest.importorskip("numpy")
+        G = nx.path_graph(4)
+        nx.set_node_attributes(G, {n: n for n in np.arange(4)}, "number")
+        G[0][1]["edge-number"] = np.float64(1.1)
+
+        expected = f"""<gexf xmlns="http://www.gexf.net/1.2draft"\
+ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation\
+="http://www.gexf.net/1.2draft http://www.gexf.net/1.2draft/gexf.xsd"\
+ version="1.2">
+  <meta lastmodifieddate="{time.strftime('%Y-%m-%d')}">
+    <creator>NetworkX {nx.__version__}</creator>
+  </meta>
+  <graph defaultedgetype="undirected" mode="static" name="">
+    <attributes mode="static" class="edge">
+      <attribute id="1" title="edge-number" type="float" />
+    </attributes>
+    <attributes mode="static" class="node">
+      <attribute id="0" title="number" type="int" />
+    </attributes>
+    <nodes>
+      <node id="0" label="0">
+        <attvalues>
+          <attvalue for="0" value="0" />
+        </attvalues>
+      </node>
+      <node id="1" label="1">
+        <attvalues>
+          <attvalue for="0" value="1" />
+        </attvalues>
+      </node>
+      <node id="2" label="2">
+        <attvalues>
+          <attvalue for="0" value="2" />
+        </attvalues>
+      </node>
+      <node id="3" label="3">
+        <attvalues>
+          <attvalue for="0" value="3" />
+        </attvalues>
+      </node>
+    </nodes>
+    <edges>
+      <edge source="0" target="1" id="0">
+        <attvalues>
+          <attvalue for="1" value="1.1" />
+        </attvalues>
+      </edge>
+      <edge source="1" target="2" id="1" />
+      <edge source="2" target="3" id="2" />
+    </edges>
+  </graph>
+</gexf>"""
+        obtained = "\n".join(nx.generate_gexf(G))
+        assert expected == obtained
+
+    def test_bool(self):
+        G = nx.Graph()
+        G.add_node(1, testattr=True)
+        fh = io.BytesIO()
+        nx.write_gexf(G, fh)
+        fh.seek(0)
+        H = nx.read_gexf(fh, node_type=int)
+        assert H.nodes[1]["testattr"]
+
+    # Test for NaN, INF and -INF
+    def test_specials(self):
+        from math import isnan
+
+        inf, nan = float("inf"), float("nan")
+        G = nx.Graph()
+        G.add_node(1, testattr=inf, strdata="inf", key="a")
+        G.add_node(2, testattr=nan, strdata="nan", key="b")
+        G.add_node(3, testattr=-inf, strdata="-inf", key="c")
+
+        fh = io.BytesIO()
+        nx.write_gexf(G, fh)
+        fh.seek(0)
+        filetext = fh.read()
+        fh.seek(0)
+        H = nx.read_gexf(fh, node_type=int)
+
+        assert b"INF" in filetext
+        assert b"NaN" in filetext
+        assert b"-INF" in filetext
+
+        assert H.nodes[1]["testattr"] == inf
+        assert isnan(H.nodes[2]["testattr"])
+        assert H.nodes[3]["testattr"] == -inf
+
+        assert H.nodes[1]["strdata"] == "inf"
+        assert H.nodes[2]["strdata"] == "nan"
+        assert H.nodes[3]["strdata"] == "-inf"
+
+        assert H.nodes[1]["networkx_key"] == "a"
+        assert H.nodes[2]["networkx_key"] == "b"
+        assert H.nodes[3]["networkx_key"] == "c"
+
+    def test_simple_list(self):
+        G = nx.Graph()
+        list_value = [(1, 2, 3), (9, 1, 2)]
+        G.add_node(1, key=list_value)
+        fh = io.BytesIO()
+        nx.write_gexf(G, fh)
+        fh.seek(0)
+        H = nx.read_gexf(fh, node_type=int)
+        assert H.nodes[1]["networkx_key"] == list_value
+
+    def test_dynamic_mode(self):
+        G = nx.Graph()
+        G.add_node(1, label="1", color="green")
+        G.graph["mode"] = "dynamic"
+        fh = io.BytesIO()
+        nx.write_gexf(G, fh)
+        fh.seek(0)
+        H = nx.read_gexf(fh, node_type=int)
+        assert sorted(G.nodes()) == sorted(H.nodes())
+        assert sorted(sorted(e) for e in G.edges()) == sorted(
+            sorted(e) for e in H.edges()
+        )
+
+    def test_multigraph_with_missing_attributes(self):
+        G = nx.MultiGraph()
+        G.add_node(0, label="1", color="green")
+        G.add_node(1, label="2", color="green")
+        G.add_edge(0, 1, id="0", weight=3, type="undirected", start=0, end=1)
+        G.add_edge(0, 1, id="1", label="foo", start=0, end=1)
+        G.add_edge(0, 1)
+        fh = io.BytesIO()
+        nx.write_gexf(G, fh)
+        fh.seek(0)
+        H = nx.read_gexf(fh, node_type=int)
+        assert sorted(G.nodes()) == sorted(H.nodes())
+        assert sorted(sorted(e) for e in G.edges()) == sorted(
+            sorted(e) for e in H.edges()
+        )
+
+    def test_missing_viz_attributes(self):
+        G = nx.Graph()
+        G.add_node(0, label="1", color="green")
+        G.nodes[0]["viz"] = {"size": 54}
+        G.nodes[0]["viz"]["position"] = {"x": 0, "y": 1, "z": 0}
+        G.nodes[0]["viz"]["color"] = {"r": 0, "g": 0, "b": 256}
+        G.nodes[0]["viz"]["shape"] = "http://random.url"
+        G.nodes[0]["viz"]["thickness"] = 2
+        fh = io.BytesIO()
+        nx.write_gexf(G, fh, version="1.1draft")
+        fh.seek(0)
+        H = nx.read_gexf(fh, node_type=int)
+        assert sorted(G.nodes()) == sorted(H.nodes())
+        assert sorted(sorted(e) for e in G.edges()) == sorted(
+            sorted(e) for e in H.edges()
+        )
+
+        # Test missing alpha value for version >draft1.1 - set default alpha value
+        # to 1.0 instead of `None` when writing for better general compatibility
+        fh = io.BytesIO()
+        # G.nodes[0]["viz"]["color"] does not have an alpha value explicitly defined
+        # so the default is used instead
+        nx.write_gexf(G, fh, version="1.2draft")
+        fh.seek(0)
+        H = nx.read_gexf(fh, node_type=int)
+        assert H.nodes[0]["viz"]["color"]["a"] == 1.0
+
+        # Second graph for the other branch
+        G = nx.Graph()
+        G.add_node(0, label="1", color="green")
+        G.nodes[0]["viz"] = {"size": 54}
+        G.nodes[0]["viz"]["position"] = {"x": 0, "y": 1, "z": 0}
+        G.nodes[0]["viz"]["color"] = {"r": 0, "g": 0, "b": 256, "a": 0.5}
+        G.nodes[0]["viz"]["shape"] = "ftp://random.url"
+        G.nodes[0]["viz"]["thickness"] = 2
+        fh = io.BytesIO()
+        nx.write_gexf(G, fh)
+        fh.seek(0)
+        H = nx.read_gexf(fh, node_type=int)
+        assert sorted(G.nodes()) == sorted(H.nodes())
+        assert sorted(sorted(e) for e in G.edges()) == sorted(
+            sorted(e) for e in H.edges()
+        )
+
+    def test_slice_and_spell(self):
+        # Test spell first, so version = 1.2
+        G = nx.Graph()
+        G.add_node(0, label="1", color="green")
+        G.nodes[0]["spells"] = [(1, 2)]
+        fh = io.BytesIO()
+        nx.write_gexf(G, fh)
+        fh.seek(0)
+        H = nx.read_gexf(fh, node_type=int)
+        assert sorted(G.nodes()) == sorted(H.nodes())
+        assert sorted(sorted(e) for e in G.edges()) == sorted(
+            sorted(e) for e in H.edges()
+        )
+
+        G = nx.Graph()
+        G.add_node(0, label="1", color="green")
+        G.nodes[0]["slices"] = [(1, 2)]
+        fh = io.BytesIO()
+        nx.write_gexf(G, fh, version="1.1draft")
+        fh.seek(0)
+        H = nx.read_gexf(fh, node_type=int)
+        assert sorted(G.nodes()) == sorted(H.nodes())
+        assert sorted(sorted(e) for e in G.edges()) == sorted(
+            sorted(e) for e in H.edges()
+        )
+
+    def test_add_parent(self):
+        G = nx.Graph()
+        G.add_node(0, label="1", color="green", parents=[1, 2])
+        fh = io.BytesIO()
+        nx.write_gexf(G, fh)
+        fh.seek(0)
+        H = nx.read_gexf(fh, node_type=int)
+        assert sorted(G.nodes()) == sorted(H.nodes())
+        assert sorted(sorted(e) for e in G.edges()) == sorted(
+            sorted(e) for e in H.edges()
+        )
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_gml.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_gml.py
new file mode 100644
index 00000000..f575ad26
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_gml.py
@@ -0,0 +1,744 @@
+import codecs
+import io
+import math
+from ast import literal_eval
+from contextlib import contextmanager
+from textwrap import dedent
+
+import pytest
+
+import networkx as nx
+from networkx.readwrite.gml import literal_destringizer, literal_stringizer
+
+
+class TestGraph:
+    @classmethod
+    def setup_class(cls):
+        cls.simple_data = """Creator "me"
+Version "xx"
+graph [
+ comment "This is a sample graph"
+ directed 1
+ IsPlanar 1
+ pos  [ x 0 y 1 ]
+ node [
+   id 1
+   label "Node 1"
+   pos [ x 1 y 1 ]
+ ]
+ node [
+    id 2
+    pos [ x 1 y 2 ]
+    label "Node 2"
+    ]
+  node [
+    id 3
+    label "Node 3"
+    pos [ x 1 y 3 ]
+  ]
+  edge [
+    source 1
+    target 2
+    label "Edge from node 1 to node 2"
+    color [line "blue" thickness 3]
+
+  ]
+  edge [
+    source 2
+    target 3
+    label "Edge from node 2 to node 3"
+  ]
+  edge [
+    source 3
+    target 1
+    label "Edge from node 3 to node 1"
+  ]
+]
+"""
+
+    def test_parse_gml_cytoscape_bug(self):
+        # example from issue #321, originally #324 in trac
+        cytoscape_example = """
+Creator "Cytoscape"
+Version 1.0
+graph   [
+    node    [
+        root_index  -3
+        id  -3
+        graphics    [
+            x   -96.0
+            y   -67.0
+            w   40.0
+            h   40.0
+            fill    "#ff9999"
+            type    "ellipse"
+            outline "#666666"
+            outline_width   1.5
+        ]
+        label   "node2"
+    ]
+    node    [
+        root_index  -2
+        id  -2
+        graphics    [
+            x   63.0
+            y   37.0
+            w   40.0
+            h   40.0
+            fill    "#ff9999"
+            type    "ellipse"
+            outline "#666666"
+            outline_width   1.5
+        ]
+        label   "node1"
+    ]
+    node    [
+        root_index  -1
+        id  -1
+        graphics    [
+            x   -31.0
+            y   -17.0
+            w   40.0
+            h   40.0
+            fill    "#ff9999"
+            type    "ellipse"
+            outline "#666666"
+            outline_width   1.5
+        ]
+        label   "node0"
+    ]
+    edge    [
+        root_index  -2
+        target  -2
+        source  -1
+        graphics    [
+            width   1.5
+            fill    "#0000ff"
+            type    "line"
+            Line    [
+            ]
+            source_arrow    0
+            target_arrow    3
+        ]
+        label   "DirectedEdge"
+    ]
+    edge    [
+        root_index  -1
+        target  -1
+        source  -3
+        graphics    [
+            width   1.5
+            fill    "#0000ff"
+            type    "line"
+            Line    [
+            ]
+            source_arrow    0
+            target_arrow    3
+        ]
+        label   "DirectedEdge"
+    ]
+]
+"""
+        nx.parse_gml(cytoscape_example)
+
+    def test_parse_gml(self):
+        G = nx.parse_gml(self.simple_data, label="label")
+        assert sorted(G.nodes()) == ["Node 1", "Node 2", "Node 3"]
+        assert sorted(G.edges()) == [
+            ("Node 1", "Node 2"),
+            ("Node 2", "Node 3"),
+            ("Node 3", "Node 1"),
+        ]
+
+        assert sorted(G.edges(data=True)) == [
+            (
+                "Node 1",
+                "Node 2",
+                {
+                    "color": {"line": "blue", "thickness": 3},
+                    "label": "Edge from node 1 to node 2",
+                },
+            ),
+            ("Node 2", "Node 3", {"label": "Edge from node 2 to node 3"}),
+            ("Node 3", "Node 1", {"label": "Edge from node 3 to node 1"}),
+        ]
+
+    def test_read_gml(self, tmp_path):
+        fname = tmp_path / "test.gml"
+        with open(fname, "w") as fh:
+            fh.write(self.simple_data)
+        Gin = nx.read_gml(fname, label="label")
+        G = nx.parse_gml(self.simple_data, label="label")
+        assert sorted(G.nodes(data=True)) == sorted(Gin.nodes(data=True))
+        assert sorted(G.edges(data=True)) == sorted(Gin.edges(data=True))
+
+    def test_labels_are_strings(self):
+        # GML requires labels to be strings (i.e., in quotes)
+        answer = """graph [
+  node [
+    id 0
+    label "1203"
+  ]
+]"""
+        G = nx.Graph()
+        G.add_node(1203)
+        data = "\n".join(nx.generate_gml(G, stringizer=literal_stringizer))
+        assert data == answer
+
+    def test_relabel_duplicate(self):
+        data = """
+graph
+[
+        label   ""
+        directed        1
+        node
+        [
+                id      0
+                label   "same"
+        ]
+        node
+        [
+                id      1
+                label   "same"
+        ]
+]
+"""
+        fh = io.BytesIO(data.encode("UTF-8"))
+        fh.seek(0)
+        pytest.raises(nx.NetworkXError, nx.read_gml, fh, label="label")
+
+    @pytest.mark.parametrize("stringizer", (None, literal_stringizer))
+    def test_tuplelabels(self, stringizer):
+        # https://github.com/networkx/networkx/pull/1048
+        # Writing tuple labels to GML failed.
+        G = nx.Graph()
+        G.add_edge((0, 1), (1, 0))
+        data = "\n".join(nx.generate_gml(G, stringizer=stringizer))
+        answer = """graph [
+  node [
+    id 0
+    label "(0,1)"
+  ]
+  node [
+    id 1
+    label "(1,0)"
+  ]
+  edge [
+    source 0
+    target 1
+  ]
+]"""
+        assert data == answer
+
+    def test_quotes(self, tmp_path):
+        # https://github.com/networkx/networkx/issues/1061
+        # Encoding quotes as HTML entities.
+        G = nx.path_graph(1)
+        G.name = "path_graph(1)"
+        attr = 'This is "quoted" and this is a copyright: ' + chr(169)
+        G.nodes[0]["demo"] = attr
+        with open(tmp_path / "test.gml", "w+b") as fobj:
+            nx.write_gml(G, fobj)
+            fobj.seek(0)
+            # Should be bytes in 2.x and 3.x
+            data = fobj.read().strip().decode("ascii")
+        answer = """graph [
+  name "path_graph(1)"
+  node [
+    id 0
+    label "0"
+    demo "This is &#34;quoted&#34; and this is a copyright: &#169;"
+  ]
+]"""
+        assert data == answer
+
+    def test_unicode_node(self, tmp_path):
+        node = "node" + chr(169)
+        G = nx.Graph()
+        G.add_node(node)
+        with open(tmp_path / "test.gml", "w+b") as fobj:
+            nx.write_gml(G, fobj)
+            fobj.seek(0)
+            # Should be bytes in 2.x and 3.x
+            data = fobj.read().strip().decode("ascii")
+        answer = """graph [
+  node [
+    id 0
+    label "node&#169;"
+  ]
+]"""
+        assert data == answer
+
+    def test_float_label(self, tmp_path):
+        node = 1.0
+        G = nx.Graph()
+        G.add_node(node)
+        with open(tmp_path / "test.gml", "w+b") as fobj:
+            nx.write_gml(G, fobj)
+            fobj.seek(0)
+            # Should be bytes in 2.x and 3.x
+            data = fobj.read().strip().decode("ascii")
+        answer = """graph [
+  node [
+    id 0
+    label "1.0"
+  ]
+]"""
+        assert data == answer
+
+    def test_special_float_label(self, tmp_path):
+        special_floats = [float("nan"), float("+inf"), float("-inf")]
+        try:
+            import numpy as np
+
+            special_floats += [np.nan, np.inf, np.inf * -1]
+        except ImportError:
+            special_floats += special_floats
+
+        G = nx.cycle_graph(len(special_floats))
+        attrs = dict(enumerate(special_floats))
+        nx.set_node_attributes(G, attrs, "nodefloat")
+        edges = list(G.edges)
+        attrs = {edges[i]: value for i, value in enumerate(special_floats)}
+        nx.set_edge_attributes(G, attrs, "edgefloat")
+
+        with open(tmp_path / "test.gml", "w+b") as fobj:
+            nx.write_gml(G, fobj)
+            fobj.seek(0)
+            # Should be bytes in 2.x and 3.x
+            data = fobj.read().strip().decode("ascii")
+            answer = """graph [
+  node [
+    id 0
+    label "0"
+    nodefloat NAN
+  ]
+  node [
+    id 1
+    label "1"
+    nodefloat +INF
+  ]
+  node [
+    id 2
+    label "2"
+    nodefloat -INF
+  ]
+  node [
+    id 3
+    label "3"
+    nodefloat NAN
+  ]
+  node [
+    id 4
+    label "4"
+    nodefloat +INF
+  ]
+  node [
+    id 5
+    label "5"
+    nodefloat -INF
+  ]
+  edge [
+    source 0
+    target 1
+    edgefloat NAN
+  ]
+  edge [
+    source 0
+    target 5
+    edgefloat +INF
+  ]
+  edge [
+    source 1
+    target 2
+    edgefloat -INF
+  ]
+  edge [
+    source 2
+    target 3
+    edgefloat NAN
+  ]
+  edge [
+    source 3
+    target 4
+    edgefloat +INF
+  ]
+  edge [
+    source 4
+    target 5
+    edgefloat -INF
+  ]
+]"""
+            assert data == answer
+
+            fobj.seek(0)
+            graph = nx.read_gml(fobj)
+            for indx, value in enumerate(special_floats):
+                node_value = graph.nodes[str(indx)]["nodefloat"]
+                if math.isnan(value):
+                    assert math.isnan(node_value)
+                else:
+                    assert node_value == value
+
+                edge = edges[indx]
+                string_edge = (str(edge[0]), str(edge[1]))
+                edge_value = graph.edges[string_edge]["edgefloat"]
+                if math.isnan(value):
+                    assert math.isnan(edge_value)
+                else:
+                    assert edge_value == value
+
+    def test_name(self):
+        G = nx.parse_gml('graph [ name "x" node [ id 0 label "x" ] ]')
+        assert "x" == G.graph["name"]
+        G = nx.parse_gml('graph [ node [ id 0 label "x" ] ]')
+        assert "" == G.name
+        assert "name" not in G.graph
+
+    def test_graph_types(self):
+        for directed in [None, False, True]:
+            for multigraph in [None, False, True]:
+                gml = "graph ["
+                if directed is not None:
+                    gml += " directed " + str(int(directed))
+                if multigraph is not None:
+                    gml += " multigraph " + str(int(multigraph))
+                gml += ' node [ id 0 label "0" ]'
+                gml += " edge [ source 0 target 0 ]"
+                gml += " ]"
+                G = nx.parse_gml(gml)
+                assert bool(directed) == G.is_directed()
+                assert bool(multigraph) == G.is_multigraph()
+                gml = "graph [\n"
+                if directed is True:
+                    gml += "  directed 1\n"
+                if multigraph is True:
+                    gml += "  multigraph 1\n"
+                gml += """  node [
+    id 0
+    label "0"
+  ]
+  edge [
+    source 0
+    target 0
+"""
+                if multigraph:
+                    gml += "    key 0\n"
+                gml += "  ]\n]"
+                assert gml == "\n".join(nx.generate_gml(G))
+
+    def test_data_types(self):
+        data = [
+            True,
+            False,
+            10**20,
+            -2e33,
+            "'",
+            '"&&amp;&&#34;"',
+            [{(b"\xfd",): "\x7f", chr(0x4444): (1, 2)}, (2, "3")],
+        ]
+        data.append(chr(0x14444))
+        data.append(literal_eval("{2.3j, 1 - 2.3j, ()}"))
+        G = nx.Graph()
+        G.name = data
+        G.graph["data"] = data
+        G.add_node(0, int=-1, data={"data": data})
+        G.add_edge(0, 0, float=-2.5, data=data)
+        gml = "\n".join(nx.generate_gml(G, stringizer=literal_stringizer))
+        G = nx.parse_gml(gml, destringizer=literal_destringizer)
+        assert data == G.name
+        assert {"name": data, "data": data} == G.graph
+        assert list(G.nodes(data=True)) == [(0, {"int": -1, "data": {"data": data}})]
+        assert list(G.edges(data=True)) == [(0, 0, {"float": -2.5, "data": data})]
+        G = nx.Graph()
+        G.graph["data"] = "frozenset([1, 2, 3])"
+        G = nx.parse_gml(nx.generate_gml(G), destringizer=literal_eval)
+        assert G.graph["data"] == "frozenset([1, 2, 3])"
+
+    def test_escape_unescape(self):
+        gml = """graph [
+  name "&amp;&#34;&#xf;&#x4444;&#1234567890;&#x1234567890abcdef;&unknown;"
+]"""
+        G = nx.parse_gml(gml)
+        assert (
+            '&"\x0f' + chr(0x4444) + "&#1234567890;&#x1234567890abcdef;&unknown;"
+            == G.name
+        )
+        gml = "\n".join(nx.generate_gml(G))
+        alnu = "#1234567890;&#38;#x1234567890abcdef"
+        answer = (
+            """graph [
+  name "&#38;&#34;&#15;&#17476;&#38;"""
+            + alnu
+            + """;&#38;unknown;"
+]"""
+        )
+        assert answer == gml
+
+    def test_exceptions(self, tmp_path):
+        pytest.raises(ValueError, literal_destringizer, "(")
+        pytest.raises(ValueError, literal_destringizer, "frozenset([1, 2, 3])")
+        pytest.raises(ValueError, literal_destringizer, literal_destringizer)
+        pytest.raises(ValueError, literal_stringizer, frozenset([1, 2, 3]))
+        pytest.raises(ValueError, literal_stringizer, literal_stringizer)
+        with open(tmp_path / "test.gml", "w+b") as f:
+            f.write(codecs.BOM_UTF8 + b"graph[]")
+            f.seek(0)
+            pytest.raises(nx.NetworkXError, nx.read_gml, f)
+
+        def assert_parse_error(gml):
+            pytest.raises(nx.NetworkXError, nx.parse_gml, gml)
+
+        assert_parse_error(["graph [\n\n", "]"])
+        assert_parse_error("")
+        assert_parse_error('Creator ""')
+        assert_parse_error("0")
+        assert_parse_error("graph ]")
+        assert_parse_error("graph [ 1 ]")
+        assert_parse_error("graph [ 1.E+2 ]")
+        assert_parse_error('graph [ "A" ]')
+        assert_parse_error("graph [ ] graph ]")
+        assert_parse_error("graph [ ] graph [ ]")
+        assert_parse_error("graph [ data [1, 2, 3] ]")
+        assert_parse_error("graph [ node [ ] ]")
+        assert_parse_error("graph [ node [ id 0 ] ]")
+        nx.parse_gml('graph [ node [ id "a" ] ]', label="id")
+        assert_parse_error("graph [ node [ id 0 label 0 ] node [ id 0 label 1 ] ]")
+        assert_parse_error("graph [ node [ id 0 label 0 ] node [ id 1 label 0 ] ]")
+        assert_parse_error("graph [ node [ id 0 label 0 ] edge [ ] ]")
+        assert_parse_error("graph [ node [ id 0 label 0 ] edge [ source 0 ] ]")
+        nx.parse_gml("graph [edge [ source 0 target 0 ] node [ id 0 label 0 ] ]")
+        assert_parse_error("graph [ node [ id 0 label 0 ] edge [ source 1 target 0 ] ]")
+        assert_parse_error("graph [ node [ id 0 label 0 ] edge [ source 0 target 1 ] ]")
+        assert_parse_error(
+            "graph [ node [ id 0 label 0 ] node [ id 1 label 1 ] "
+            "edge [ source 0 target 1 ] edge [ source 1 target 0 ] ]"
+        )
+        nx.parse_gml(
+            "graph [ node [ id 0 label 0 ] node [ id 1 label 1 ] "
+            "edge [ source 0 target 1 ] edge [ source 1 target 0 ] "
+            "directed 1 ]"
+        )
+        nx.parse_gml(
+            "graph [ node [ id 0 label 0 ] node [ id 1 label 1 ] "
+            "edge [ source 0 target 1 ] edge [ source 0 target 1 ]"
+            "multigraph 1 ]"
+        )
+        nx.parse_gml(
+            "graph [ node [ id 0 label 0 ] node [ id 1 label 1 ] "
+            "edge [ source 0 target 1 key 0 ] edge [ source 0 target 1 ]"
+            "multigraph 1 ]"
+        )
+        assert_parse_error(
+            "graph [ node [ id 0 label 0 ] node [ id 1 label 1 ] "
+            "edge [ source 0 target 1 key 0 ] edge [ source 0 target 1 key 0 ]"
+            "multigraph 1 ]"
+        )
+        nx.parse_gml(
+            "graph [ node [ id 0 label 0 ] node [ id 1 label 1 ] "
+            "edge [ source 0 target 1 key 0 ] edge [ source 1 target 0 key 0 ]"
+            "directed 1 multigraph 1 ]"
+        )
+
+        # Tests for string convertible alphanumeric id and label values
+        nx.parse_gml("graph [edge [ source a target a ] node [ id a label b ] ]")
+        nx.parse_gml(
+            "graph [ node [ id n42 label 0 ] node [ id x43 label 1 ]"
+            "edge [ source n42 target x43 key 0 ]"
+            "edge [ source x43 target n42 key 0 ]"
+            "directed 1 multigraph 1 ]"
+        )
+        assert_parse_error(
+            "graph [edge [ source '\u4200' target '\u4200' ] "
+            + "node [ id '\u4200' label b ] ]"
+        )
+
+        def assert_generate_error(*args, **kwargs):
+            pytest.raises(
+                nx.NetworkXError, lambda: list(nx.generate_gml(*args, **kwargs))
+            )
+
+        G = nx.Graph()
+        G.graph[3] = 3
+        assert_generate_error(G)
+        G = nx.Graph()
+        G.graph["3"] = 3
+        assert_generate_error(G)
+        G = nx.Graph()
+        G.graph["data"] = frozenset([1, 2, 3])
+        assert_generate_error(G, stringizer=literal_stringizer)
+
+    def test_label_kwarg(self):
+        G = nx.parse_gml(self.simple_data, label="id")
+        assert sorted(G.nodes) == [1, 2, 3]
+        labels = [G.nodes[n]["label"] for n in sorted(G.nodes)]
+        assert labels == ["Node 1", "Node 2", "Node 3"]
+
+        G = nx.parse_gml(self.simple_data, label=None)
+        assert sorted(G.nodes) == [1, 2, 3]
+        labels = [G.nodes[n]["label"] for n in sorted(G.nodes)]
+        assert labels == ["Node 1", "Node 2", "Node 3"]
+
+    def test_outofrange_integers(self, tmp_path):
+        # GML restricts integers to 32 signed bits.
+        # Check that we honor this restriction on export
+        G = nx.Graph()
+        # Test export for numbers that barely fit or don't fit into 32 bits,
+        # and 3 numbers in the middle
+        numbers = {
+            "toosmall": (-(2**31)) - 1,
+            "small": -(2**31),
+            "med1": -4,
+            "med2": 0,
+            "med3": 17,
+            "big": (2**31) - 1,
+            "toobig": 2**31,
+        }
+        G.add_node("Node", **numbers)
+
+        fname = tmp_path / "test.gml"
+        nx.write_gml(G, fname)
+        # Check that the export wrote the nonfitting numbers as strings
+        G2 = nx.read_gml(fname)
+        for attr, value in G2.nodes["Node"].items():
+            if attr == "toosmall" or attr == "toobig":
+                assert type(value) == str
+            else:
+                assert type(value) == int
+
+    def test_multiline(self):
+        # example from issue #6836
+        multiline_example = """
+graph
+[
+    node
+    [
+	    id 0
+	    label "multiline node"
+	    label2 "multiline1
+    multiline2
+    multiline3"
+	    alt_name "id 0"
+    ]
+]
+"""
+        G = nx.parse_gml(multiline_example)
+        assert G.nodes["multiline node"] == {
+            "label2": "multiline1 multiline2 multiline3",
+            "alt_name": "id 0",
+        }
+
+
+@contextmanager
+def byte_file():
+    _file_handle = io.BytesIO()
+    yield _file_handle
+    _file_handle.seek(0)
+
+
+class TestPropertyLists:
+    def test_writing_graph_with_multi_element_property_list(self):
+        g = nx.Graph()
+        g.add_node("n1", properties=["element", 0, 1, 2.5, True, False])
+        with byte_file() as f:
+            nx.write_gml(g, f)
+        result = f.read().decode()
+
+        assert result == dedent(
+            """\
+            graph [
+              node [
+                id 0
+                label "n1"
+                properties "element"
+                properties 0
+                properties 1
+                properties 2.5
+                properties 1
+                properties 0
+              ]
+            ]
+        """
+        )
+
+    def test_writing_graph_with_one_element_property_list(self):
+        g = nx.Graph()
+        g.add_node("n1", properties=["element"])
+        with byte_file() as f:
+            nx.write_gml(g, f)
+        result = f.read().decode()
+
+        assert result == dedent(
+            """\
+            graph [
+              node [
+                id 0
+                label "n1"
+                properties "_networkx_list_start"
+                properties "element"
+              ]
+            ]
+        """
+        )
+
+    def test_reading_graph_with_list_property(self):
+        with byte_file() as f:
+            f.write(
+                dedent(
+                    """
+              graph [
+                node [
+                  id 0
+                  label "n1"
+                  properties "element"
+                  properties 0
+                  properties 1
+                  properties 2.5
+                ]
+              ]
+            """
+                ).encode("ascii")
+            )
+            f.seek(0)
+            graph = nx.read_gml(f)
+        assert graph.nodes(data=True)["n1"] == {"properties": ["element", 0, 1, 2.5]}
+
+    def test_reading_graph_with_single_element_list_property(self):
+        with byte_file() as f:
+            f.write(
+                dedent(
+                    """
+              graph [
+                node [
+                  id 0
+                  label "n1"
+                  properties "_networkx_list_start"
+                  properties "element"
+                ]
+              ]
+            """
+                ).encode("ascii")
+            )
+            f.seek(0)
+            graph = nx.read_gml(f)
+        assert graph.nodes(data=True)["n1"] == {"properties": ["element"]}
+
+
+@pytest.mark.parametrize("coll", ([], ()))
+def test_stringize_empty_list_tuple(coll):
+    G = nx.path_graph(2)
+    G.nodes[0]["test"] = coll  # test serializing an empty collection
+    f = io.BytesIO()
+    nx.write_gml(G, f)  # Smoke test - should not raise
+    f.seek(0)
+    H = nx.read_gml(f)
+    assert H.nodes["0"]["test"] == coll  # Check empty list round-trips properly
+    # Check full round-tripping. Note that nodes are loaded as strings by
+    # default, so there needs to be some remapping prior to comparison
+    H = nx.relabel_nodes(H, {"0": 0, "1": 1})
+    assert nx.utils.graphs_equal(G, H)
+    # Same as above, but use destringizer for node remapping. Should have no
+    # effect on node attr
+    f.seek(0)
+    H = nx.read_gml(f, destringizer=int)
+    assert nx.utils.graphs_equal(G, H)
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_graph6.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_graph6.py
new file mode 100644
index 00000000..a8032694
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_graph6.py
@@ -0,0 +1,168 @@
+from io import BytesIO
+
+import pytest
+
+import networkx as nx
+import networkx.readwrite.graph6 as g6
+from networkx.utils import edges_equal, nodes_equal
+
+
+class TestGraph6Utils:
+    def test_n_data_n_conversion(self):
+        for i in [0, 1, 42, 62, 63, 64, 258047, 258048, 7744773, 68719476735]:
+            assert g6.data_to_n(g6.n_to_data(i))[0] == i
+            assert g6.data_to_n(g6.n_to_data(i))[1] == []
+            assert g6.data_to_n(g6.n_to_data(i) + [42, 43])[1] == [42, 43]
+
+
+class TestFromGraph6Bytes:
+    def test_from_graph6_bytes(self):
+        data = b"DF{"
+        G = nx.from_graph6_bytes(data)
+        assert nodes_equal(G.nodes(), [0, 1, 2, 3, 4])
+        assert edges_equal(
+            G.edges(), [(0, 3), (0, 4), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
+        )
+
+    def test_read_equals_from_bytes(self):
+        data = b"DF{"
+        G = nx.from_graph6_bytes(data)
+        fh = BytesIO(data)
+        Gin = nx.read_graph6(fh)
+        assert nodes_equal(G.nodes(), Gin.nodes())
+        assert edges_equal(G.edges(), Gin.edges())
+
+
+class TestReadGraph6:
+    def test_read_many_graph6(self):
+        """Test for reading many graphs from a file into a list."""
+        data = b"DF{\nD`{\nDqK\nD~{\n"
+        fh = BytesIO(data)
+        glist = nx.read_graph6(fh)
+        assert len(glist) == 4
+        for G in glist:
+            assert sorted(G) == list(range(5))
+
+
+class TestWriteGraph6:
+    """Unit tests for writing a graph to a file in graph6 format."""
+
+    def test_null_graph(self):
+        result = BytesIO()
+        nx.write_graph6(nx.null_graph(), result)
+        assert result.getvalue() == b">>graph6<<?\n"
+
+    def test_trivial_graph(self):
+        result = BytesIO()
+        nx.write_graph6(nx.trivial_graph(), result)
+        assert result.getvalue() == b">>graph6<<@\n"
+
+    def test_complete_graph(self):
+        result = BytesIO()
+        nx.write_graph6(nx.complete_graph(4), result)
+        assert result.getvalue() == b">>graph6<<C~\n"
+
+    def test_large_complete_graph(self):
+        result = BytesIO()
+        nx.write_graph6(nx.complete_graph(67), result, header=False)
+        assert result.getvalue() == b"~?@B" + b"~" * 368 + b"w\n"
+
+    def test_no_header(self):
+        result = BytesIO()
+        nx.write_graph6(nx.complete_graph(4), result, header=False)
+        assert result.getvalue() == b"C~\n"
+
+    def test_complete_bipartite_graph(self):
+        result = BytesIO()
+        G = nx.complete_bipartite_graph(6, 9)
+        nx.write_graph6(G, result, header=False)
+        # The expected encoding here was verified by Sage.
+        assert result.getvalue() == b"N??F~z{~Fw^_~?~?^_?\n"
+
+    @pytest.mark.parametrize("G", (nx.MultiGraph(), nx.DiGraph()))
+    def test_no_directed_or_multi_graphs(self, G):
+        with pytest.raises(nx.NetworkXNotImplemented):
+            nx.write_graph6(G, BytesIO())
+
+    def test_length(self):
+        for i in list(range(13)) + [31, 47, 62, 63, 64, 72]:
+            g = nx.random_graphs.gnm_random_graph(i, i * i // 4, seed=i)
+            gstr = BytesIO()
+            nx.write_graph6(g, gstr, header=False)
+            # Strip the trailing newline.
+            gstr = gstr.getvalue().rstrip()
+            assert len(gstr) == ((i - 1) * i // 2 + 5) // 6 + (1 if i < 63 else 4)
+
+    def test_roundtrip(self):
+        for i in list(range(13)) + [31, 47, 62, 63, 64, 72]:
+            G = nx.random_graphs.gnm_random_graph(i, i * i // 4, seed=i)
+            f = BytesIO()
+            nx.write_graph6(G, f)
+            f.seek(0)
+            H = nx.read_graph6(f)
+            assert nodes_equal(G.nodes(), H.nodes())
+            assert edges_equal(G.edges(), H.edges())
+
+    def test_write_path(self, tmp_path):
+        with open(tmp_path / "test.g6", "w+b") as f:
+            g6.write_graph6_file(nx.null_graph(), f)
+            f.seek(0)
+            assert f.read() == b">>graph6<<?\n"
+
+    @pytest.mark.parametrize("edge", ((0, 1), (1, 2), (1, 42)))
+    def test_relabeling(self, edge):
+        G = nx.Graph([edge])
+        f = BytesIO()
+        nx.write_graph6(G, f)
+        f.seek(0)
+        assert f.read() == b">>graph6<<A_\n"
+
+
+class TestToGraph6Bytes:
+    def test_null_graph(self):
+        G = nx.null_graph()
+        assert g6.to_graph6_bytes(G) == b">>graph6<<?\n"
+
+    def test_trivial_graph(self):
+        G = nx.trivial_graph()
+        assert g6.to_graph6_bytes(G) == b">>graph6<<@\n"
+
+    def test_complete_graph(self):
+        assert g6.to_graph6_bytes(nx.complete_graph(4)) == b">>graph6<<C~\n"
+
+    def test_large_complete_graph(self):
+        G = nx.complete_graph(67)
+        assert g6.to_graph6_bytes(G, header=False) == b"~?@B" + b"~" * 368 + b"w\n"
+
+    def test_no_header(self):
+        G = nx.complete_graph(4)
+        assert g6.to_graph6_bytes(G, header=False) == b"C~\n"
+
+    def test_complete_bipartite_graph(self):
+        G = nx.complete_bipartite_graph(6, 9)
+        assert g6.to_graph6_bytes(G, header=False) == b"N??F~z{~Fw^_~?~?^_?\n"
+
+    @pytest.mark.parametrize("G", (nx.MultiGraph(), nx.DiGraph()))
+    def test_no_directed_or_multi_graphs(self, G):
+        with pytest.raises(nx.NetworkXNotImplemented):
+            g6.to_graph6_bytes(G)
+
+    def test_length(self):
+        for i in list(range(13)) + [31, 47, 62, 63, 64, 72]:
+            G = nx.random_graphs.gnm_random_graph(i, i * i // 4, seed=i)
+            # Strip the trailing newline.
+            gstr = g6.to_graph6_bytes(G, header=False).rstrip()
+            assert len(gstr) == ((i - 1) * i // 2 + 5) // 6 + (1 if i < 63 else 4)
+
+    def test_roundtrip(self):
+        for i in list(range(13)) + [31, 47, 62, 63, 64, 72]:
+            G = nx.random_graphs.gnm_random_graph(i, i * i // 4, seed=i)
+            data = g6.to_graph6_bytes(G)
+            H = nx.from_graph6_bytes(data.rstrip())
+            assert nodes_equal(G.nodes(), H.nodes())
+            assert edges_equal(G.edges(), H.edges())
+
+    @pytest.mark.parametrize("edge", ((0, 1), (1, 2), (1, 42)))
+    def test_relabeling(self, edge):
+        G = nx.Graph([edge])
+        assert g6.to_graph6_bytes(G) == b">>graph6<<A_\n"
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_graphml.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_graphml.py
new file mode 100644
index 00000000..5ffa837e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_graphml.py
@@ -0,0 +1,1531 @@
+import io
+
+import pytest
+
+import networkx as nx
+from networkx.readwrite.graphml import GraphMLWriter
+from networkx.utils import edges_equal, nodes_equal
+
+
+class BaseGraphML:
+    @classmethod
+    def setup_class(cls):
+        cls.simple_directed_data = """<?xml version="1.0" encoding="UTF-8"?>
+<!-- This file was written by the JAVA GraphML Library.-->
+<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
+         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
+         xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
+         http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
+  <graph id="G" edgedefault="directed">
+    <node id="n0"/>
+    <node id="n1"/>
+    <node id="n2"/>
+    <node id="n3"/>
+    <node id="n4"/>
+    <node id="n5"/>
+    <node id="n6"/>
+    <node id="n7"/>
+    <node id="n8"/>
+    <node id="n9"/>
+    <node id="n10"/>
+    <edge id="foo" source="n0" target="n2"/>
+    <edge source="n1" target="n2"/>
+    <edge source="n2" target="n3"/>
+    <edge source="n3" target="n5"/>
+    <edge source="n3" target="n4"/>
+    <edge source="n4" target="n6"/>
+    <edge source="n6" target="n5"/>
+    <edge source="n5" target="n7"/>
+    <edge source="n6" target="n8"/>
+    <edge source="n8" target="n7"/>
+    <edge source="n8" target="n9"/>
+  </graph>
+</graphml>"""
+        cls.simple_directed_graph = nx.DiGraph()
+        cls.simple_directed_graph.add_node("n10")
+        cls.simple_directed_graph.add_edge("n0", "n2", id="foo")
+        cls.simple_directed_graph.add_edge("n0", "n2")
+        cls.simple_directed_graph.add_edges_from(
+            [
+                ("n1", "n2"),
+                ("n2", "n3"),
+                ("n3", "n5"),
+                ("n3", "n4"),
+                ("n4", "n6"),
+                ("n6", "n5"),
+                ("n5", "n7"),
+                ("n6", "n8"),
+                ("n8", "n7"),
+                ("n8", "n9"),
+            ]
+        )
+        cls.simple_directed_fh = io.BytesIO(cls.simple_directed_data.encode("UTF-8"))
+
+        cls.attribute_data = """<?xml version="1.0" encoding="UTF-8"?>
+<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
+      xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
+      xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
+        http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
+  <key id="d0" for="node" attr.name="color" attr.type="string">
+    <default>yellow</default>
+  </key>
+  <key id="d1" for="edge" attr.name="weight" attr.type="double"/>
+  <graph id="G" edgedefault="directed">
+    <node id="n0">
+      <data key="d0">green</data>
+    </node>
+    <node id="n1"/>
+    <node id="n2">
+      <data key="d0">blue</data>
+    </node>
+    <node id="n3">
+      <data key="d0">red</data>
+    </node>
+    <node id="n4"/>
+    <node id="n5">
+      <data key="d0">turquoise</data>
+    </node>
+    <edge id="e0" source="n0" target="n2">
+      <data key="d1">1.0</data>
+    </edge>
+    <edge id="e1" source="n0" target="n1">
+      <data key="d1">1.0</data>
+    </edge>
+    <edge id="e2" source="n1" target="n3">
+      <data key="d1">2.0</data>
+    </edge>
+    <edge id="e3" source="n3" target="n2"/>
+    <edge id="e4" source="n2" target="n4"/>
+    <edge id="e5" source="n3" target="n5"/>
+    <edge id="e6" source="n5" target="n4">
+      <data key="d1">1.1</data>
+    </edge>
+  </graph>
+</graphml>
+"""
+        cls.attribute_graph = nx.DiGraph(id="G")
+        cls.attribute_graph.graph["node_default"] = {"color": "yellow"}
+        cls.attribute_graph.add_node("n0", color="green")
+        cls.attribute_graph.add_node("n2", color="blue")
+        cls.attribute_graph.add_node("n3", color="red")
+        cls.attribute_graph.add_node("n4")
+        cls.attribute_graph.add_node("n5", color="turquoise")
+        cls.attribute_graph.add_edge("n0", "n2", id="e0", weight=1.0)
+        cls.attribute_graph.add_edge("n0", "n1", id="e1", weight=1.0)
+        cls.attribute_graph.add_edge("n1", "n3", id="e2", weight=2.0)
+        cls.attribute_graph.add_edge("n3", "n2", id="e3")
+        cls.attribute_graph.add_edge("n2", "n4", id="e4")
+        cls.attribute_graph.add_edge("n3", "n5", id="e5")
+        cls.attribute_graph.add_edge("n5", "n4", id="e6", weight=1.1)
+        cls.attribute_fh = io.BytesIO(cls.attribute_data.encode("UTF-8"))
+
+        cls.node_attribute_default_data = """<?xml version="1.0" encoding="UTF-8"?>
+        <graphml xmlns="http://graphml.graphdrawing.org/xmlns"
+              xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
+              xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
+                http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
+          <key id="d0" for="node" attr.name="boolean_attribute" attr.type="boolean"><default>false</default></key>
+          <key id="d1" for="node" attr.name="int_attribute" attr.type="int"><default>0</default></key>
+          <key id="d2" for="node" attr.name="long_attribute" attr.type="long"><default>0</default></key>
+          <key id="d3" for="node" attr.name="float_attribute" attr.type="float"><default>0.0</default></key>
+          <key id="d4" for="node" attr.name="double_attribute" attr.type="double"><default>0.0</default></key>
+          <key id="d5" for="node" attr.name="string_attribute" attr.type="string"><default>Foo</default></key>
+          <graph id="G" edgedefault="directed">
+            <node id="n0"/>
+            <node id="n1"/>
+            <edge id="e0" source="n0" target="n1"/>
+          </graph>
+        </graphml>
+        """
+        cls.node_attribute_default_graph = nx.DiGraph(id="G")
+        cls.node_attribute_default_graph.graph["node_default"] = {
+            "boolean_attribute": False,
+            "int_attribute": 0,
+            "long_attribute": 0,
+            "float_attribute": 0.0,
+            "double_attribute": 0.0,
+            "string_attribute": "Foo",
+        }
+        cls.node_attribute_default_graph.add_node("n0")
+        cls.node_attribute_default_graph.add_node("n1")
+        cls.node_attribute_default_graph.add_edge("n0", "n1", id="e0")
+        cls.node_attribute_default_fh = io.BytesIO(
+            cls.node_attribute_default_data.encode("UTF-8")
+        )
+
+        cls.attribute_named_key_ids_data = """<?xml version='1.0' encoding='utf-8'?>
+<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
+         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
+         xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
+         http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
+  <key id="edge_prop" for="edge" attr.name="edge_prop" attr.type="string"/>
+  <key id="prop2" for="node" attr.name="prop2" attr.type="string"/>
+  <key id="prop1" for="node" attr.name="prop1" attr.type="string"/>
+  <graph edgedefault="directed">
+    <node id="0">
+      <data key="prop1">val1</data>
+      <data key="prop2">val2</data>
+    </node>
+    <node id="1">
+      <data key="prop1">val_one</data>
+      <data key="prop2">val2</data>
+    </node>
+    <edge source="0" target="1">
+      <data key="edge_prop">edge_value</data>
+    </edge>
+  </graph>
+</graphml>
+"""
+        cls.attribute_named_key_ids_graph = nx.DiGraph()
+        cls.attribute_named_key_ids_graph.add_node("0", prop1="val1", prop2="val2")
+        cls.attribute_named_key_ids_graph.add_node("1", prop1="val_one", prop2="val2")
+        cls.attribute_named_key_ids_graph.add_edge("0", "1", edge_prop="edge_value")
+        fh = io.BytesIO(cls.attribute_named_key_ids_data.encode("UTF-8"))
+        cls.attribute_named_key_ids_fh = fh
+
+        cls.attribute_numeric_type_data = """<?xml version='1.0' encoding='utf-8'?>
+<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
+         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
+         xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
+         http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
+  <key attr.name="weight" attr.type="double" for="node" id="d1" />
+  <key attr.name="weight" attr.type="double" for="edge" id="d0" />
+  <graph edgedefault="directed">
+    <node id="n0">
+      <data key="d1">1</data>
+    </node>
+    <node id="n1">
+      <data key="d1">2.0</data>
+    </node>
+    <edge source="n0" target="n1">
+      <data key="d0">1</data>
+    </edge>
+    <edge source="n1" target="n0">
+      <data key="d0">k</data>
+    </edge>
+    <edge source="n1" target="n1">
+      <data key="d0">1.0</data>
+    </edge>
+  </graph>
+</graphml>
+"""
+        cls.attribute_numeric_type_graph = nx.DiGraph()
+        cls.attribute_numeric_type_graph.add_node("n0", weight=1)
+        cls.attribute_numeric_type_graph.add_node("n1", weight=2.0)
+        cls.attribute_numeric_type_graph.add_edge("n0", "n1", weight=1)
+        cls.attribute_numeric_type_graph.add_edge("n1", "n1", weight=1.0)
+        fh = io.BytesIO(cls.attribute_numeric_type_data.encode("UTF-8"))
+        cls.attribute_numeric_type_fh = fh
+
+        cls.simple_undirected_data = """<?xml version="1.0" encoding="UTF-8"?>
+<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
+         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
+         xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
+         http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
+  <graph id="G">
+    <node id="n0"/>
+    <node id="n1"/>
+    <node id="n2"/>
+    <node id="n10"/>
+    <edge id="foo" source="n0" target="n2"/>
+    <edge source="n1" target="n2"/>
+    <edge source="n2" target="n3"/>
+  </graph>
+</graphml>"""
+        #    <edge source="n8" target="n10" directed="false"/>
+        cls.simple_undirected_graph = nx.Graph()
+        cls.simple_undirected_graph.add_node("n10")
+        cls.simple_undirected_graph.add_edge("n0", "n2", id="foo")
+        cls.simple_undirected_graph.add_edges_from([("n1", "n2"), ("n2", "n3")])
+        fh = io.BytesIO(cls.simple_undirected_data.encode("UTF-8"))
+        cls.simple_undirected_fh = fh
+
+        cls.undirected_multigraph_data = """<?xml version="1.0" encoding="UTF-8"?>
+<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
+         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
+         xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
+         http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
+  <graph id="G">
+    <node id="n0"/>
+    <node id="n1"/>
+    <node id="n2"/>
+    <node id="n10"/>
+    <edge id="e0" source="n0" target="n2"/>
+    <edge id="e1" source="n1" target="n2"/>
+    <edge id="e2" source="n2" target="n1"/>
+  </graph>
+</graphml>"""
+        cls.undirected_multigraph = nx.MultiGraph()
+        cls.undirected_multigraph.add_node("n10")
+        cls.undirected_multigraph.add_edge("n0", "n2", id="e0")
+        cls.undirected_multigraph.add_edge("n1", "n2", id="e1")
+        cls.undirected_multigraph.add_edge("n2", "n1", id="e2")
+        fh = io.BytesIO(cls.undirected_multigraph_data.encode("UTF-8"))
+        cls.undirected_multigraph_fh = fh
+
+        cls.undirected_multigraph_no_multiedge_data = """<?xml version="1.0" encoding="UTF-8"?>
+<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
+         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
+         xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
+         http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
+  <graph id="G">
+    <node id="n0"/>
+    <node id="n1"/>
+    <node id="n2"/>
+    <node id="n10"/>
+    <edge id="e0" source="n0" target="n2"/>
+    <edge id="e1" source="n1" target="n2"/>
+    <edge id="e2" source="n2" target="n3"/>
+  </graph>
+</graphml>"""
+        cls.undirected_multigraph_no_multiedge = nx.MultiGraph()
+        cls.undirected_multigraph_no_multiedge.add_node("n10")
+        cls.undirected_multigraph_no_multiedge.add_edge("n0", "n2", id="e0")
+        cls.undirected_multigraph_no_multiedge.add_edge("n1", "n2", id="e1")
+        cls.undirected_multigraph_no_multiedge.add_edge("n2", "n3", id="e2")
+        fh = io.BytesIO(cls.undirected_multigraph_no_multiedge_data.encode("UTF-8"))
+        cls.undirected_multigraph_no_multiedge_fh = fh
+
+        cls.multigraph_only_ids_for_multiedges_data = """<?xml version="1.0" encoding="UTF-8"?>
+<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
+         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
+         xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
+         http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
+  <graph id="G">
+    <node id="n0"/>
+    <node id="n1"/>
+    <node id="n2"/>
+    <node id="n10"/>
+    <edge source="n0" target="n2"/>
+    <edge id="e1" source="n1" target="n2"/>
+    <edge id="e2" source="n2" target="n1"/>
+  </graph>
+</graphml>"""
+        cls.multigraph_only_ids_for_multiedges = nx.MultiGraph()
+        cls.multigraph_only_ids_for_multiedges.add_node("n10")
+        cls.multigraph_only_ids_for_multiedges.add_edge("n0", "n2")
+        cls.multigraph_only_ids_for_multiedges.add_edge("n1", "n2", id="e1")
+        cls.multigraph_only_ids_for_multiedges.add_edge("n2", "n1", id="e2")
+        fh = io.BytesIO(cls.multigraph_only_ids_for_multiedges_data.encode("UTF-8"))
+        cls.multigraph_only_ids_for_multiedges_fh = fh
+
+
+class TestReadGraphML(BaseGraphML):
+    def test_read_simple_directed_graphml(self):
+        G = self.simple_directed_graph
+        H = nx.read_graphml(self.simple_directed_fh)
+        assert sorted(G.nodes()) == sorted(H.nodes())
+        assert sorted(G.edges()) == sorted(H.edges())
+        assert sorted(G.edges(data=True)) == sorted(H.edges(data=True))
+        self.simple_directed_fh.seek(0)
+
+        PG = nx.parse_graphml(self.simple_directed_data)
+        assert sorted(G.nodes()) == sorted(PG.nodes())
+        assert sorted(G.edges()) == sorted(PG.edges())
+        assert sorted(G.edges(data=True)) == sorted(PG.edges(data=True))
+
+    def test_read_simple_undirected_graphml(self):
+        G = self.simple_undirected_graph
+        H = nx.read_graphml(self.simple_undirected_fh)
+        assert nodes_equal(G.nodes(), H.nodes())
+        assert edges_equal(G.edges(), H.edges())
+        self.simple_undirected_fh.seek(0)
+
+        PG = nx.parse_graphml(self.simple_undirected_data)
+        assert nodes_equal(G.nodes(), PG.nodes())
+        assert edges_equal(G.edges(), PG.edges())
+
+    def test_read_undirected_multigraph_graphml(self):
+        G = self.undirected_multigraph
+        H = nx.read_graphml(self.undirected_multigraph_fh)
+        assert nodes_equal(G.nodes(), H.nodes())
+        assert edges_equal(G.edges(), H.edges())
+        self.undirected_multigraph_fh.seek(0)
+
+        PG = nx.parse_graphml(self.undirected_multigraph_data)
+        assert nodes_equal(G.nodes(), PG.nodes())
+        assert edges_equal(G.edges(), PG.edges())
+
+    def test_read_undirected_multigraph_no_multiedge_graphml(self):
+        G = self.undirected_multigraph_no_multiedge
+        H = nx.read_graphml(self.undirected_multigraph_no_multiedge_fh)
+        assert nodes_equal(G.nodes(), H.nodes())
+        assert edges_equal(G.edges(), H.edges())
+        self.undirected_multigraph_no_multiedge_fh.seek(0)
+
+        PG = nx.parse_graphml(self.undirected_multigraph_no_multiedge_data)
+        assert nodes_equal(G.nodes(), PG.nodes())
+        assert edges_equal(G.edges(), PG.edges())
+
+    def test_read_undirected_multigraph_only_ids_for_multiedges_graphml(self):
+        G = self.multigraph_only_ids_for_multiedges
+        H = nx.read_graphml(self.multigraph_only_ids_for_multiedges_fh)
+        assert nodes_equal(G.nodes(), H.nodes())
+        assert edges_equal(G.edges(), H.edges())
+        self.multigraph_only_ids_for_multiedges_fh.seek(0)
+
+        PG = nx.parse_graphml(self.multigraph_only_ids_for_multiedges_data)
+        assert nodes_equal(G.nodes(), PG.nodes())
+        assert edges_equal(G.edges(), PG.edges())
+
+    def test_read_attribute_graphml(self):
+        G = self.attribute_graph
+        H = nx.read_graphml(self.attribute_fh)
+        assert nodes_equal(G.nodes(True), sorted(H.nodes(data=True)))
+        ge = sorted(G.edges(data=True))
+        he = sorted(H.edges(data=True))
+        for a, b in zip(ge, he):
+            assert a == b
+        self.attribute_fh.seek(0)
+
+        PG = nx.parse_graphml(self.attribute_data)
+        assert sorted(G.nodes(True)) == sorted(PG.nodes(data=True))
+        ge = sorted(G.edges(data=True))
+        he = sorted(PG.edges(data=True))
+        for a, b in zip(ge, he):
+            assert a == b
+
+    def test_node_default_attribute_graphml(self):
+        G = self.node_attribute_default_graph
+        H = nx.read_graphml(self.node_attribute_default_fh)
+        assert G.graph["node_default"] == H.graph["node_default"]
+
+    def test_directed_edge_in_undirected(self):
+        s = """<?xml version="1.0" encoding="UTF-8"?>
+<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
+         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
+         xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
+         http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
+  <graph id="G">
+    <node id="n0"/>
+    <node id="n1"/>
+    <node id="n2"/>
+    <edge source="n0" target="n1"/>
+    <edge source="n1" target="n2" directed='true'/>
+  </graph>
+</graphml>"""
+        fh = io.BytesIO(s.encode("UTF-8"))
+        pytest.raises(nx.NetworkXError, nx.read_graphml, fh)
+        pytest.raises(nx.NetworkXError, nx.parse_graphml, s)
+
+    def test_undirected_edge_in_directed(self):
+        s = """<?xml version="1.0" encoding="UTF-8"?>
+<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
+         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
+         xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
+         http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
+  <graph id="G" edgedefault='directed'>
+    <node id="n0"/>
+    <node id="n1"/>
+    <node id="n2"/>
+    <edge source="n0" target="n1"/>
+    <edge source="n1" target="n2" directed='false'/>
+  </graph>
+</graphml>"""
+        fh = io.BytesIO(s.encode("UTF-8"))
+        pytest.raises(nx.NetworkXError, nx.read_graphml, fh)
+        pytest.raises(nx.NetworkXError, nx.parse_graphml, s)
+
+    def test_key_raise(self):
+        s = """<?xml version="1.0" encoding="UTF-8"?>
+<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
+         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
+         xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
+         http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
+  <key id="d0" for="node" attr.name="color" attr.type="string">
+    <default>yellow</default>
+  </key>
+  <key id="d1" for="edge" attr.name="weight" attr.type="double"/>
+  <graph id="G" edgedefault="directed">
+    <node id="n0">
+      <data key="d0">green</data>
+    </node>
+    <node id="n1"/>
+    <node id="n2">
+      <data key="d0">blue</data>
+    </node>
+    <edge id="e0" source="n0" target="n2">
+      <data key="d2">1.0</data>
+    </edge>
+  </graph>
+</graphml>
+"""
+        fh = io.BytesIO(s.encode("UTF-8"))
+        pytest.raises(nx.NetworkXError, nx.read_graphml, fh)
+        pytest.raises(nx.NetworkXError, nx.parse_graphml, s)
+
+    def test_hyperedge_raise(self):
+        s = """<?xml version="1.0" encoding="UTF-8"?>
+<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
+         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
+         xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
+         http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
+  <key id="d0" for="node" attr.name="color" attr.type="string">
+    <default>yellow</default>
+  </key>
+  <key id="d1" for="edge" attr.name="weight" attr.type="double"/>
+  <graph id="G" edgedefault="directed">
+    <node id="n0">
+      <data key="d0">green</data>
+    </node>
+    <node id="n1"/>
+    <node id="n2">
+      <data key="d0">blue</data>
+    </node>
+    <hyperedge id="e0" source="n0" target="n2">
+       <endpoint node="n0"/>
+       <endpoint node="n1"/>
+       <endpoint node="n2"/>
+    </hyperedge>
+  </graph>
+</graphml>
+"""
+        fh = io.BytesIO(s.encode("UTF-8"))
+        pytest.raises(nx.NetworkXError, nx.read_graphml, fh)
+        pytest.raises(nx.NetworkXError, nx.parse_graphml, s)
+
+    def test_multigraph_keys(self):
+        # Test that reading multigraphs uses edge id attributes as keys
+        s = """<?xml version="1.0" encoding="UTF-8"?>
+<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
+         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
+         xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
+         http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
+  <graph id="G" edgedefault="directed">
+    <node id="n0"/>
+    <node id="n1"/>
+    <edge id="e0" source="n0" target="n1"/>
+    <edge id="e1" source="n0" target="n1"/>
+  </graph>
+</graphml>
+"""
+        fh = io.BytesIO(s.encode("UTF-8"))
+        G = nx.read_graphml(fh)
+        expected = [("n0", "n1", "e0"), ("n0", "n1", "e1")]
+        assert sorted(G.edges(keys=True)) == expected
+        fh.seek(0)
+        H = nx.parse_graphml(s)
+        assert sorted(H.edges(keys=True)) == expected
+
+    def test_preserve_multi_edge_data(self):
+        """
+        Test that data and keys of edges are preserved on consequent
+        write and reads
+        """
+        G = nx.MultiGraph()
+        G.add_node(1)
+        G.add_node(2)
+        G.add_edges_from(
+            [
+                # edges with no data, no keys:
+                (1, 2),
+                # edges with only data:
+                (1, 2, {"key": "data_key1"}),
+                (1, 2, {"id": "data_id2"}),
+                (1, 2, {"key": "data_key3", "id": "data_id3"}),
+                # edges with both data and keys:
+                (1, 2, 103, {"key": "data_key4"}),
+                (1, 2, 104, {"id": "data_id5"}),
+                (1, 2, 105, {"key": "data_key6", "id": "data_id7"}),
+            ]
+        )
+        fh = io.BytesIO()
+        nx.write_graphml(G, fh)
+        fh.seek(0)
+        H = nx.read_graphml(fh, node_type=int)
+        assert edges_equal(G.edges(data=True, keys=True), H.edges(data=True, keys=True))
+        assert G._adj == H._adj
+
+        Gadj = {
+            str(node): {
+                str(nbr): {str(ekey): dd for ekey, dd in key_dict.items()}
+                for nbr, key_dict in nbr_dict.items()
+            }
+            for node, nbr_dict in G._adj.items()
+        }
+        fh.seek(0)
+        HH = nx.read_graphml(fh, node_type=str, edge_key_type=str)
+        assert Gadj == HH._adj
+
+        fh.seek(0)
+        string_fh = fh.read()
+        HH = nx.parse_graphml(string_fh, node_type=str, edge_key_type=str)
+        assert Gadj == HH._adj
+
+    def test_yfiles_extension(self):
+        data = """<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
+         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
+         xmlns:y="http://www.yworks.com/xml/graphml"
+         xmlns:yed="http://www.yworks.com/xml/yed/3"
+         xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
+         http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
+  <!--Created by yFiles for Java 2.7-->
+  <key for="graphml" id="d0" yfiles.type="resources"/>
+  <key attr.name="url" attr.type="string" for="node" id="d1"/>
+  <key attr.name="description" attr.type="string" for="node" id="d2"/>
+  <key for="node" id="d3" yfiles.type="nodegraphics"/>
+  <key attr.name="Description" attr.type="string" for="graph" id="d4">
+    <default/>
+  </key>
+  <key attr.name="url" attr.type="string" for="edge" id="d5"/>
+  <key attr.name="description" attr.type="string" for="edge" id="d6"/>
+  <key for="edge" id="d7" yfiles.type="edgegraphics"/>
+  <graph edgedefault="directed" id="G">
+    <node id="n0">
+      <data key="d3">
+        <y:ShapeNode>
+          <y:Geometry height="30.0" width="30.0" x="125.0" y="100.0"/>
+          <y:Fill color="#FFCC00" transparent="false"/>
+          <y:BorderStyle color="#000000" type="line" width="1.0"/>
+          <y:NodeLabel alignment="center" autoSizePolicy="content"
+           borderDistance="0.0" fontFamily="Dialog" fontSize="13"
+           fontStyle="plain" hasBackgroundColor="false" hasLineColor="false"
+           height="19.1328125" modelName="internal" modelPosition="c"
+           textColor="#000000" visible="true" width="12.27099609375"
+           x="8.864501953125" y="5.43359375">1</y:NodeLabel>
+          <y:Shape type="rectangle"/>
+        </y:ShapeNode>
+      </data>
+    </node>
+    <node id="n1">
+      <data key="d3">
+        <y:ShapeNode>
+          <y:Geometry height="30.0" width="30.0" x="183.0" y="205.0"/>
+          <y:Fill color="#FFCC00" transparent="false"/>
+          <y:BorderStyle color="#000000" type="line" width="1.0"/>
+          <y:NodeLabel alignment="center" autoSizePolicy="content"
+          borderDistance="0.0" fontFamily="Dialog" fontSize="13"
+          fontStyle="plain" hasBackgroundColor="false" hasLineColor="false"
+          height="19.1328125" modelName="internal" modelPosition="c"
+          textColor="#000000" visible="true" width="12.27099609375"
+          x="8.864501953125" y="5.43359375">2</y:NodeLabel>
+          <y:Shape type="rectangle"/>
+        </y:ShapeNode>
+      </data>
+    </node>
+    <node id="n2">
+      <data key="d6" xml:space="preserve"><![CDATA[description
+line1
+line2]]></data>
+      <data key="d3">
+        <y:GenericNode configuration="com.yworks.flowchart.terminator">
+          <y:Geometry height="40.0" width="80.0" x="950.0" y="286.0"/>
+          <y:Fill color="#E8EEF7" color2="#B7C9E3" transparent="false"/>
+          <y:BorderStyle color="#000000" type="line" width="1.0"/>
+          <y:NodeLabel alignment="center" autoSizePolicy="content"
+          fontFamily="Dialog" fontSize="12" fontStyle="plain"
+          hasBackgroundColor="false" hasLineColor="false" height="17.96875"
+          horizontalTextPosition="center" iconTextGap="4" modelName="custom"
+          textColor="#000000" verticalTextPosition="bottom" visible="true"
+          width="67.984375" x="6.0078125" xml:space="preserve"
+          y="11.015625">3<y:LabelModel>
+          <y:SmartNodeLabelModel distance="4.0"/></y:LabelModel>
+          <y:ModelParameter><y:SmartNodeLabelModelParameter labelRatioX="0.0"
+          labelRatioY="0.0" nodeRatioX="0.0" nodeRatioY="0.0" offsetX="0.0"
+          offsetY="0.0" upX="0.0" upY="-1.0"/></y:ModelParameter></y:NodeLabel>
+        </y:GenericNode>
+      </data>
+    </node>
+    <edge id="e0" source="n0" target="n1">
+      <data key="d7">
+        <y:PolyLineEdge>
+          <y:Path sx="0.0" sy="0.0" tx="0.0" ty="0.0"/>
+          <y:LineStyle color="#000000" type="line" width="1.0"/>
+          <y:Arrows source="none" target="standard"/>
+          <y:BendStyle smoothed="false"/>
+        </y:PolyLineEdge>
+      </data>
+    </edge>
+  </graph>
+  <data key="d0">
+    <y:Resources/>
+  </data>
+</graphml>
+"""
+        fh = io.BytesIO(data.encode("UTF-8"))
+        G = nx.read_graphml(fh, force_multigraph=True)
+        assert list(G.edges()) == [("n0", "n1")]
+        assert G.has_edge("n0", "n1", key="e0")
+        assert G.nodes["n0"]["label"] == "1"
+        assert G.nodes["n1"]["label"] == "2"
+        assert G.nodes["n2"]["label"] == "3"
+        assert G.nodes["n0"]["shape_type"] == "rectangle"
+        assert G.nodes["n1"]["shape_type"] == "rectangle"
+        assert G.nodes["n2"]["shape_type"] == "com.yworks.flowchart.terminator"
+        assert G.nodes["n2"]["description"] == "description\nline1\nline2"
+        fh.seek(0)
+        G = nx.read_graphml(fh)
+        assert list(G.edges()) == [("n0", "n1")]
+        assert G["n0"]["n1"]["id"] == "e0"
+        assert G.nodes["n0"]["label"] == "1"
+        assert G.nodes["n1"]["label"] == "2"
+        assert G.nodes["n2"]["label"] == "3"
+        assert G.nodes["n0"]["shape_type"] == "rectangle"
+        assert G.nodes["n1"]["shape_type"] == "rectangle"
+        assert G.nodes["n2"]["shape_type"] == "com.yworks.flowchart.terminator"
+        assert G.nodes["n2"]["description"] == "description\nline1\nline2"
+
+        H = nx.parse_graphml(data, force_multigraph=True)
+        assert list(H.edges()) == [("n0", "n1")]
+        assert H.has_edge("n0", "n1", key="e0")
+        assert H.nodes["n0"]["label"] == "1"
+        assert H.nodes["n1"]["label"] == "2"
+        assert H.nodes["n2"]["label"] == "3"
+
+        H = nx.parse_graphml(data)
+        assert list(H.edges()) == [("n0", "n1")]
+        assert H["n0"]["n1"]["id"] == "e0"
+        assert H.nodes["n0"]["label"] == "1"
+        assert H.nodes["n1"]["label"] == "2"
+        assert H.nodes["n2"]["label"] == "3"
+
+    def test_bool(self):
+        s = """<?xml version="1.0" encoding="UTF-8"?>
+<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
+         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
+         xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
+         http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
+  <key id="d0" for="node" attr.name="test" attr.type="boolean">
+    <default>false</default>
+  </key>
+  <graph id="G" edgedefault="directed">
+    <node id="n0">
+      <data key="d0">true</data>
+    </node>
+    <node id="n1"/>
+    <node id="n2">
+      <data key="d0">false</data>
+    </node>
+    <node id="n3">
+      <data key="d0">FaLsE</data>
+    </node>
+    <node id="n4">
+      <data key="d0">True</data>
+    </node>
+    <node id="n5">
+      <data key="d0">0</data>
+    </node>
+    <node id="n6">
+      <data key="d0">1</data>
+    </node>
+  </graph>
+</graphml>
+"""
+        fh = io.BytesIO(s.encode("UTF-8"))
+        G = nx.read_graphml(fh)
+        H = nx.parse_graphml(s)
+        for graph in [G, H]:
+            assert graph.nodes["n0"]["test"]
+            assert not graph.nodes["n2"]["test"]
+            assert not graph.nodes["n3"]["test"]
+            assert graph.nodes["n4"]["test"]
+            assert not graph.nodes["n5"]["test"]
+            assert graph.nodes["n6"]["test"]
+
+    def test_graphml_header_line(self):
+        good = """<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
+         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
+         xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
+         http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
+  <key id="d0" for="node" attr.name="test" attr.type="boolean">
+    <default>false</default>
+  </key>
+  <graph id="G">
+    <node id="n0">
+      <data key="d0">true</data>
+    </node>
+  </graph>
+</graphml>
+"""
+        bad = """<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<graphml>
+  <key id="d0" for="node" attr.name="test" attr.type="boolean">
+    <default>false</default>
+  </key>
+  <graph id="G">
+    <node id="n0">
+      <data key="d0">true</data>
+    </node>
+  </graph>
+</graphml>
+"""
+        ugly = """<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<graphml xmlns="https://ghghgh">
+  <key id="d0" for="node" attr.name="test" attr.type="boolean">
+    <default>false</default>
+  </key>
+  <graph id="G">
+    <node id="n0">
+      <data key="d0">true</data>
+    </node>
+  </graph>
+</graphml>
+"""
+        for s in (good, bad):
+            fh = io.BytesIO(s.encode("UTF-8"))
+            G = nx.read_graphml(fh)
+            H = nx.parse_graphml(s)
+            for graph in [G, H]:
+                assert graph.nodes["n0"]["test"]
+
+        fh = io.BytesIO(ugly.encode("UTF-8"))
+        pytest.raises(nx.NetworkXError, nx.read_graphml, fh)
+        pytest.raises(nx.NetworkXError, nx.parse_graphml, ugly)
+
+    def test_read_attributes_with_groups(self):
+        data = """\
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<graphml xmlns="http://graphml.graphdrawing.org/xmlns" xmlns:java="http://www.yworks.com/xml/yfiles-common/1.0/java" xmlns:sys="http://www.yworks.com/xml/yfiles-common/markup/primitives/2.0" xmlns:x="http://www.yworks.com/xml/yfiles-common/markup/2.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:y="http://www.yworks.com/xml/graphml" xmlns:yed="http://www.yworks.com/xml/yed/3" xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns http://www.yworks.com/xml/schema/graphml/1.1/ygraphml.xsd">
+  <!--Created by yEd 3.17-->
+  <key attr.name="Description" attr.type="string" for="graph" id="d0"/>
+  <key for="port" id="d1" yfiles.type="portgraphics"/>
+  <key for="port" id="d2" yfiles.type="portgeometry"/>
+  <key for="port" id="d3" yfiles.type="portuserdata"/>
+  <key attr.name="CustomProperty" attr.type="string" for="node" id="d4">
+    <default/>
+  </key>
+  <key attr.name="url" attr.type="string" for="node" id="d5"/>
+  <key attr.name="description" attr.type="string" for="node" id="d6"/>
+  <key for="node" id="d7" yfiles.type="nodegraphics"/>
+  <key for="graphml" id="d8" yfiles.type="resources"/>
+  <key attr.name="url" attr.type="string" for="edge" id="d9"/>
+  <key attr.name="description" attr.type="string" for="edge" id="d10"/>
+  <key for="edge" id="d11" yfiles.type="edgegraphics"/>
+  <graph edgedefault="directed" id="G">
+    <data key="d0"/>
+    <node id="n0">
+      <data key="d4"><![CDATA[CustomPropertyValue]]></data>
+      <data key="d6"/>
+      <data key="d7">
+        <y:ShapeNode>
+          <y:Geometry height="30.0" width="30.0" x="125.0" y="-255.4611111111111"/>
+          <y:Fill color="#FFCC00" transparent="false"/>
+          <y:BorderStyle color="#000000" raised="false" type="line" width="1.0"/>
+          <y:NodeLabel alignment="center" autoSizePolicy="content" fontFamily="Dialog" fontSize="12" fontStyle="plain" hasBackgroundColor="false" hasLineColor="false" height="17.96875" horizontalTextPosition="center" iconTextGap="4" modelName="custom" textColor="#000000" verticalTextPosition="bottom" visible="true" width="11.634765625" x="9.1826171875" y="6.015625">2<y:LabelModel>
+              <y:SmartNodeLabelModel distance="4.0"/>
+            </y:LabelModel>
+            <y:ModelParameter>
+              <y:SmartNodeLabelModelParameter labelRatioX="0.0" labelRatioY="0.0" nodeRatioX="0.0" nodeRatioY="0.0" offsetX="0.0" offsetY="0.0" upX="0.0" upY="-1.0"/>
+            </y:ModelParameter>
+          </y:NodeLabel>
+          <y:Shape type="rectangle"/>
+        </y:ShapeNode>
+      </data>
+    </node>
+    <node id="n1" yfiles.foldertype="group">
+      <data key="d4"><![CDATA[CustomPropertyValue]]></data>
+      <data key="d5"/>
+      <data key="d6"/>
+      <data key="d7">
+        <y:ProxyAutoBoundsNode>
+          <y:Realizers active="0">
+            <y:GroupNode>
+              <y:Geometry height="250.38333333333333" width="140.0" x="-30.0" y="-330.3833333333333"/>
+              <y:Fill color="#F5F5F5" transparent="false"/>
+              <y:BorderStyle color="#000000" type="dashed" width="1.0"/>
+              <y:NodeLabel alignment="right" autoSizePolicy="node_width" backgroundColor="#EBEBEB" borderDistance="0.0" fontFamily="Dialog" fontSize="15" fontStyle="plain" hasLineColor="false" height="21.4609375" horizontalTextPosition="center" iconTextGap="4" modelName="internal" modelPosition="t" textColor="#000000" verticalTextPosition="bottom" visible="true" width="140.0" x="0.0" y="0.0">Group 3</y:NodeLabel>
+              <y:Shape type="roundrectangle"/>
+              <y:State closed="false" closedHeight="50.0" closedWidth="50.0" innerGraphDisplayEnabled="false"/>
+              <y:Insets bottom="15" bottomF="15.0" left="15" leftF="15.0" right="15" rightF="15.0" top="15" topF="15.0"/>
+              <y:BorderInsets bottom="1" bottomF="1.0" left="0" leftF="0.0" right="0" rightF="0.0" top="1" topF="1.0001736111111086"/>
+            </y:GroupNode>
+            <y:GroupNode>
+              <y:Geometry height="50.0" width="50.0" x="0.0" y="60.0"/>
+              <y:Fill color="#F5F5F5" transparent="false"/>
+              <y:BorderStyle color="#000000" type="dashed" width="1.0"/>
+              <y:NodeLabel alignment="right" autoSizePolicy="node_width" backgroundColor="#EBEBEB" borderDistance="0.0" fontFamily="Dialog" fontSize="15" fontStyle="plain" hasLineColor="false" height="21.4609375" horizontalTextPosition="center" iconTextGap="4" modelName="internal" modelPosition="t" textColor="#000000" verticalTextPosition="bottom" visible="true" width="65.201171875" x="-7.6005859375" y="0.0">Folder 3</y:NodeLabel>
+              <y:Shape type="roundrectangle"/>
+              <y:State closed="true" closedHeight="50.0" closedWidth="50.0" innerGraphDisplayEnabled="false"/>
+              <y:Insets bottom="5" bottomF="5.0" left="5" leftF="5.0" right="5" rightF="5.0" top="5" topF="5.0"/>
+              <y:BorderInsets bottom="0" bottomF="0.0" left="0" leftF="0.0" right="0" rightF="0.0" top="0" topF="0.0"/>
+            </y:GroupNode>
+          </y:Realizers>
+        </y:ProxyAutoBoundsNode>
+      </data>
+      <graph edgedefault="directed" id="n1:">
+        <node id="n1::n0" yfiles.foldertype="group">
+          <data key="d4"><![CDATA[CustomPropertyValue]]></data>
+          <data key="d5"/>
+          <data key="d6"/>
+          <data key="d7">
+            <y:ProxyAutoBoundsNode>
+              <y:Realizers active="0">
+                <y:GroupNode>
+                  <y:Geometry height="83.46111111111111" width="110.0" x="-15.0" y="-292.9222222222222"/>
+                  <y:Fill color="#F5F5F5" transparent="false"/>
+                  <y:BorderStyle color="#000000" type="dashed" width="1.0"/>
+                  <y:NodeLabel alignment="right" autoSizePolicy="node_width" backgroundColor="#EBEBEB" borderDistance="0.0" fontFamily="Dialog" fontSize="15" fontStyle="plain" hasLineColor="false" height="21.4609375" horizontalTextPosition="center" iconTextGap="4" modelName="internal" modelPosition="t" textColor="#000000" verticalTextPosition="bottom" visible="true" width="110.0" x="0.0" y="0.0">Group 1</y:NodeLabel>
+                  <y:Shape type="roundrectangle"/>
+                  <y:State closed="false" closedHeight="50.0" closedWidth="50.0" innerGraphDisplayEnabled="false"/>
+                  <y:Insets bottom="15" bottomF="15.0" left="15" leftF="15.0" right="15" rightF="15.0" top="15" topF="15.0"/>
+                  <y:BorderInsets bottom="1" bottomF="1.0" left="0" leftF="0.0" right="0" rightF="0.0" top="1" topF="1.0001736111111086"/>
+                </y:GroupNode>
+                <y:GroupNode>
+                  <y:Geometry height="50.0" width="50.0" x="0.0" y="60.0"/>
+                  <y:Fill color="#F5F5F5" transparent="false"/>
+                  <y:BorderStyle color="#000000" type="dashed" width="1.0"/>
+                  <y:NodeLabel alignment="right" autoSizePolicy="node_width" backgroundColor="#EBEBEB" borderDistance="0.0" fontFamily="Dialog" fontSize="15" fontStyle="plain" hasLineColor="false" height="21.4609375" horizontalTextPosition="center" iconTextGap="4" modelName="internal" modelPosition="t" textColor="#000000" verticalTextPosition="bottom" visible="true" width="65.201171875" x="-7.6005859375" y="0.0">Folder 1</y:NodeLabel>
+                  <y:Shape type="roundrectangle"/>
+                  <y:State closed="true" closedHeight="50.0" closedWidth="50.0" innerGraphDisplayEnabled="false"/>
+                  <y:Insets bottom="5" bottomF="5.0" left="5" leftF="5.0" right="5" rightF="5.0" top="5" topF="5.0"/>
+                  <y:BorderInsets bottom="0" bottomF="0.0" left="0" leftF="0.0" right="0" rightF="0.0" top="0" topF="0.0"/>
+                </y:GroupNode>
+              </y:Realizers>
+            </y:ProxyAutoBoundsNode>
+          </data>
+          <graph edgedefault="directed" id="n1::n0:">
+            <node id="n1::n0::n0">
+              <data key="d4"><![CDATA[CustomPropertyValue]]></data>
+              <data key="d6"/>
+              <data key="d7">
+                <y:ShapeNode>
+                  <y:Geometry height="30.0" width="30.0" x="50.0" y="-255.4611111111111"/>
+                  <y:Fill color="#FFCC00" transparent="false"/>
+                  <y:BorderStyle color="#000000" raised="false" type="line" width="1.0"/>
+                  <y:NodeLabel alignment="center" autoSizePolicy="content" fontFamily="Dialog" fontSize="12" fontStyle="plain" hasBackgroundColor="false" hasLineColor="false" height="17.96875" horizontalTextPosition="center" iconTextGap="4" modelName="custom" textColor="#000000" verticalTextPosition="bottom" visible="true" width="11.634765625" x="9.1826171875" y="6.015625">1<y:LabelModel>
+                      <y:SmartNodeLabelModel distance="4.0"/>
+                    </y:LabelModel>
+                    <y:ModelParameter>
+                      <y:SmartNodeLabelModelParameter labelRatioX="0.0" labelRatioY="0.0" nodeRatioX="0.0" nodeRatioY="0.0" offsetX="0.0" offsetY="0.0" upX="0.0" upY="-1.0"/>
+                    </y:ModelParameter>
+                  </y:NodeLabel>
+                  <y:Shape type="rectangle"/>
+                </y:ShapeNode>
+              </data>
+            </node>
+            <node id="n1::n0::n1">
+              <data key="d4"><![CDATA[CustomPropertyValue]]></data>
+              <data key="d6"/>
+              <data key="d7">
+                <y:ShapeNode>
+                  <y:Geometry height="30.0" width="30.0" x="0.0" y="-255.4611111111111"/>
+                  <y:Fill color="#FFCC00" transparent="false"/>
+                  <y:BorderStyle color="#000000" raised="false" type="line" width="1.0"/>
+                  <y:NodeLabel alignment="center" autoSizePolicy="content" fontFamily="Dialog" fontSize="12" fontStyle="plain" hasBackgroundColor="false" hasLineColor="false" height="17.96875" horizontalTextPosition="center" iconTextGap="4" modelName="custom" textColor="#000000" verticalTextPosition="bottom" visible="true" width="11.634765625" x="9.1826171875" y="6.015625">3<y:LabelModel>
+                      <y:SmartNodeLabelModel distance="4.0"/>
+                    </y:LabelModel>
+                    <y:ModelParameter>
+                      <y:SmartNodeLabelModelParameter labelRatioX="0.0" labelRatioY="0.0" nodeRatioX="0.0" nodeRatioY="0.0" offsetX="0.0" offsetY="0.0" upX="0.0" upY="-1.0"/>
+                    </y:ModelParameter>
+                  </y:NodeLabel>
+                  <y:Shape type="rectangle"/>
+                </y:ShapeNode>
+              </data>
+            </node>
+          </graph>
+        </node>
+        <node id="n1::n1" yfiles.foldertype="group">
+          <data key="d4"><![CDATA[CustomPropertyValue]]></data>
+          <data key="d5"/>
+          <data key="d6"/>
+          <data key="d7">
+            <y:ProxyAutoBoundsNode>
+              <y:Realizers active="0">
+                <y:GroupNode>
+                  <y:Geometry height="83.46111111111111" width="110.0" x="-15.0" y="-179.4611111111111"/>
+                  <y:Fill color="#F5F5F5" transparent="false"/>
+                  <y:BorderStyle color="#000000" type="dashed" width="1.0"/>
+                  <y:NodeLabel alignment="right" autoSizePolicy="node_width" backgroundColor="#EBEBEB" borderDistance="0.0" fontFamily="Dialog" fontSize="15" fontStyle="plain" hasLineColor="false" height="21.4609375" horizontalTextPosition="center" iconTextGap="4" modelName="internal" modelPosition="t" textColor="#000000" verticalTextPosition="bottom" visible="true" width="110.0" x="0.0" y="0.0">Group 2</y:NodeLabel>
+                  <y:Shape type="roundrectangle"/>
+                  <y:State closed="false" closedHeight="50.0" closedWidth="50.0" innerGraphDisplayEnabled="false"/>
+                  <y:Insets bottom="15" bottomF="15.0" left="15" leftF="15.0" right="15" rightF="15.0" top="15" topF="15.0"/>
+                  <y:BorderInsets bottom="1" bottomF="1.0" left="0" leftF="0.0" right="0" rightF="0.0" top="1" topF="1.0001736111111086"/>
+                </y:GroupNode>
+                <y:GroupNode>
+                  <y:Geometry height="50.0" width="50.0" x="0.0" y="60.0"/>
+                  <y:Fill color="#F5F5F5" transparent="false"/>
+                  <y:BorderStyle color="#000000" type="dashed" width="1.0"/>
+                  <y:NodeLabel alignment="right" autoSizePolicy="node_width" backgroundColor="#EBEBEB" borderDistance="0.0" fontFamily="Dialog" fontSize="15" fontStyle="plain" hasLineColor="false" height="21.4609375" horizontalTextPosition="center" iconTextGap="4" modelName="internal" modelPosition="t" textColor="#000000" verticalTextPosition="bottom" visible="true" width="65.201171875" x="-7.6005859375" y="0.0">Folder 2</y:NodeLabel>
+                  <y:Shape type="roundrectangle"/>
+                  <y:State closed="true" closedHeight="50.0" closedWidth="50.0" innerGraphDisplayEnabled="false"/>
+                  <y:Insets bottom="5" bottomF="5.0" left="5" leftF="5.0" right="5" rightF="5.0" top="5" topF="5.0"/>
+                  <y:BorderInsets bottom="0" bottomF="0.0" left="0" leftF="0.0" right="0" rightF="0.0" top="0" topF="0.0"/>
+                </y:GroupNode>
+              </y:Realizers>
+            </y:ProxyAutoBoundsNode>
+          </data>
+          <graph edgedefault="directed" id="n1::n1:">
+            <node id="n1::n1::n0">
+              <data key="d4"><![CDATA[CustomPropertyValue]]></data>
+              <data key="d6"/>
+              <data key="d7">
+                <y:ShapeNode>
+                  <y:Geometry height="30.0" width="30.0" x="0.0" y="-142.0"/>
+                  <y:Fill color="#FFCC00" transparent="false"/>
+                  <y:BorderStyle color="#000000" raised="false" type="line" width="1.0"/>
+                  <y:NodeLabel alignment="center" autoSizePolicy="content" fontFamily="Dialog" fontSize="12" fontStyle="plain" hasBackgroundColor="false" hasLineColor="false" height="17.96875" horizontalTextPosition="center" iconTextGap="4" modelName="custom" textColor="#000000" verticalTextPosition="bottom" visible="true" width="11.634765625" x="9.1826171875" y="6.015625">5<y:LabelModel>
+                      <y:SmartNodeLabelModel distance="4.0"/>
+                    </y:LabelModel>
+                    <y:ModelParameter>
+                      <y:SmartNodeLabelModelParameter labelRatioX="0.0" labelRatioY="0.0" nodeRatioX="0.0" nodeRatioY="0.0" offsetX="0.0" offsetY="0.0" upX="0.0" upY="-1.0"/>
+                    </y:ModelParameter>
+                  </y:NodeLabel>
+                  <y:Shape type="rectangle"/>
+                </y:ShapeNode>
+              </data>
+            </node>
+            <node id="n1::n1::n1">
+              <data key="d4"><![CDATA[CustomPropertyValue]]></data>
+              <data key="d6"/>
+              <data key="d7">
+                <y:ShapeNode>
+                  <y:Geometry height="30.0" width="30.0" x="50.0" y="-142.0"/>
+                  <y:Fill color="#FFCC00" transparent="false"/>
+                  <y:BorderStyle color="#000000" raised="false" type="line" width="1.0"/>
+                  <y:NodeLabel alignment="center" autoSizePolicy="content" fontFamily="Dialog" fontSize="12" fontStyle="plain" hasBackgroundColor="false" hasLineColor="false" height="17.96875" horizontalTextPosition="center" iconTextGap="4" modelName="custom" textColor="#000000" verticalTextPosition="bottom" visible="true" width="11.634765625" x="9.1826171875" y="6.015625">6<y:LabelModel>
+                      <y:SmartNodeLabelModel distance="4.0"/>
+                    </y:LabelModel>
+                    <y:ModelParameter>
+                      <y:SmartNodeLabelModelParameter labelRatioX="0.0" labelRatioY="0.0" nodeRatioX="0.0" nodeRatioY="0.0" offsetX="0.0" offsetY="0.0" upX="0.0" upY="-1.0"/>
+                    </y:ModelParameter>
+                  </y:NodeLabel>
+                  <y:Shape type="rectangle"/>
+                </y:ShapeNode>
+              </data>
+            </node>
+          </graph>
+        </node>
+      </graph>
+    </node>
+    <node id="n2">
+      <data key="d4"><![CDATA[CustomPropertyValue]]></data>
+      <data key="d6"/>
+      <data key="d7">
+        <y:ShapeNode>
+          <y:Geometry height="30.0" width="30.0" x="125.0" y="-142.0"/>
+          <y:Fill color="#FFCC00" transparent="false"/>
+          <y:BorderStyle color="#000000" raised="false" type="line" width="1.0"/>
+          <y:NodeLabel alignment="center" autoSizePolicy="content" fontFamily="Dialog" fontSize="12" fontStyle="plain" hasBackgroundColor="false" hasLineColor="false" height="17.96875" horizontalTextPosition="center" iconTextGap="4" modelName="custom" textColor="#000000" verticalTextPosition="bottom" visible="true" width="11.634765625" x="9.1826171875" y="6.015625">9<y:LabelModel>
+              <y:SmartNodeLabelModel distance="4.0"/>
+            </y:LabelModel>
+            <y:ModelParameter>
+              <y:SmartNodeLabelModelParameter labelRatioX="0.0" labelRatioY="0.0" nodeRatioX="0.0" nodeRatioY="0.0" offsetX="0.0" offsetY="0.0" upX="0.0" upY="-1.0"/>
+            </y:ModelParameter>
+          </y:NodeLabel>
+          <y:Shape type="rectangle"/>
+        </y:ShapeNode>
+      </data>
+    </node>
+    <edge id="n1::n1::e0" source="n1::n1::n0" target="n1::n1::n1">
+      <data key="d10"/>
+      <data key="d11">
+        <y:PolyLineEdge>
+          <y:Path sx="15.0" sy="-0.0" tx="-15.0" ty="-0.0"/>
+          <y:LineStyle color="#000000" type="line" width="1.0"/>
+          <y:Arrows source="none" target="standard"/>
+          <y:BendStyle smoothed="false"/>
+        </y:PolyLineEdge>
+      </data>
+    </edge>
+    <edge id="n1::n0::e0" source="n1::n0::n1" target="n1::n0::n0">
+      <data key="d10"/>
+      <data key="d11">
+        <y:PolyLineEdge>
+          <y:Path sx="15.0" sy="-0.0" tx="-15.0" ty="-0.0"/>
+          <y:LineStyle color="#000000" type="line" width="1.0"/>
+          <y:Arrows source="none" target="standard"/>
+          <y:BendStyle smoothed="false"/>
+        </y:PolyLineEdge>
+      </data>
+    </edge>
+    <edge id="e0" source="n1::n0::n0" target="n0">
+      <data key="d10"/>
+      <data key="d11">
+        <y:PolyLineEdge>
+          <y:Path sx="15.0" sy="-0.0" tx="-15.0" ty="-0.0"/>
+          <y:LineStyle color="#000000" type="line" width="1.0"/>
+          <y:Arrows source="none" target="standard"/>
+          <y:BendStyle smoothed="false"/>
+        </y:PolyLineEdge>
+      </data>
+    </edge>
+    <edge id="e1" source="n1::n1::n1" target="n2">
+      <data key="d10"/>
+      <data key="d11">
+        <y:PolyLineEdge>
+          <y:Path sx="15.0" sy="-0.0" tx="-15.0" ty="-0.0"/>
+          <y:LineStyle color="#000000" type="line" width="1.0"/>
+          <y:Arrows source="none" target="standard"/>
+          <y:BendStyle smoothed="false"/>
+        </y:PolyLineEdge>
+      </data>
+    </edge>
+  </graph>
+  <data key="d8">
+    <y:Resources/>
+  </data>
+</graphml>
+"""
+        # verify that nodes / attributes are correctly read when part of a group
+        fh = io.BytesIO(data.encode("UTF-8"))
+        G = nx.read_graphml(fh)
+        data = [x for _, x in G.nodes(data=True)]
+        assert len(data) == 9
+        for node_data in data:
+            assert node_data["CustomProperty"] != ""
+
+    def test_long_attribute_type(self):
+        # test that graphs with attr.type="long" (as produced by botch and
+        # dose3) can be parsed
+        s = """<?xml version='1.0' encoding='utf-8'?>
+<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
+         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
+         xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
+         http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
+  <key attr.name="cudfversion" attr.type="long" for="node" id="d6" />
+  <graph edgedefault="directed">
+    <node id="n1">
+      <data key="d6">4284</data>
+    </node>
+  </graph>
+</graphml>"""
+        fh = io.BytesIO(s.encode("UTF-8"))
+        G = nx.read_graphml(fh)
+        expected = [("n1", {"cudfversion": 4284})]
+        assert sorted(G.nodes(data=True)) == expected
+        fh.seek(0)
+        H = nx.parse_graphml(s)
+        assert sorted(H.nodes(data=True)) == expected
+
+
+class TestWriteGraphML(BaseGraphML):
+    writer = staticmethod(nx.write_graphml_lxml)
+
+    @classmethod
+    def setup_class(cls):
+        BaseGraphML.setup_class()
+        _ = pytest.importorskip("lxml.etree")
+
+    def test_write_interface(self):
+        try:
+            import lxml.etree
+
+            assert nx.write_graphml == nx.write_graphml_lxml
+        except ImportError:
+            assert nx.write_graphml == nx.write_graphml_xml
+
+    def test_write_read_simple_directed_graphml(self):
+        G = self.simple_directed_graph
+        G.graph["hi"] = "there"
+        fh = io.BytesIO()
+        self.writer(G, fh)
+        fh.seek(0)
+        H = nx.read_graphml(fh)
+        assert sorted(G.nodes()) == sorted(H.nodes())
+        assert sorted(G.edges()) == sorted(H.edges())
+        assert sorted(G.edges(data=True)) == sorted(H.edges(data=True))
+        self.simple_directed_fh.seek(0)
+
+    def test_GraphMLWriter_add_graphs(self):
+        gmlw = GraphMLWriter()
+        G = self.simple_directed_graph
+        H = G.copy()
+        gmlw.add_graphs([G, H])
+
+    def test_write_read_simple_no_prettyprint(self):
+        G = self.simple_directed_graph
+        G.graph["hi"] = "there"
+        G.graph["id"] = "1"
+        fh = io.BytesIO()
+        self.writer(G, fh, prettyprint=False)
+        fh.seek(0)
+        H = nx.read_graphml(fh)
+        assert sorted(G.nodes()) == sorted(H.nodes())
+        assert sorted(G.edges()) == sorted(H.edges())
+        assert sorted(G.edges(data=True)) == sorted(H.edges(data=True))
+        self.simple_directed_fh.seek(0)
+
+    def test_write_read_attribute_named_key_ids_graphml(self):
+        from xml.etree.ElementTree import parse
+
+        G = self.attribute_named_key_ids_graph
+        fh = io.BytesIO()
+        self.writer(G, fh, named_key_ids=True)
+        fh.seek(0)
+        H = nx.read_graphml(fh)
+        fh.seek(0)
+
+        assert nodes_equal(G.nodes(), H.nodes())
+        assert edges_equal(G.edges(), H.edges())
+        assert edges_equal(G.edges(data=True), H.edges(data=True))
+        self.attribute_named_key_ids_fh.seek(0)
+
+        xml = parse(fh)
+        # Children are the key elements, and the graph element
+        children = list(xml.getroot())
+        assert len(children) == 4
+
+        keys = [child.items() for child in children[:3]]
+
+        assert len(keys) == 3
+        assert ("id", "edge_prop") in keys[0]
+        assert ("attr.name", "edge_prop") in keys[0]
+        assert ("id", "prop2") in keys[1]
+        assert ("attr.name", "prop2") in keys[1]
+        assert ("id", "prop1") in keys[2]
+        assert ("attr.name", "prop1") in keys[2]
+
+        # Confirm the read graph nodes/edge are identical when compared to
+        # default writing behavior.
+        default_behavior_fh = io.BytesIO()
+        nx.write_graphml(G, default_behavior_fh)
+        default_behavior_fh.seek(0)
+        H = nx.read_graphml(default_behavior_fh)
+
+        named_key_ids_behavior_fh = io.BytesIO()
+        nx.write_graphml(G, named_key_ids_behavior_fh, named_key_ids=True)
+        named_key_ids_behavior_fh.seek(0)
+        J = nx.read_graphml(named_key_ids_behavior_fh)
+
+        assert all(n1 == n2 for (n1, n2) in zip(H.nodes, J.nodes))
+        assert all(e1 == e2 for (e1, e2) in zip(H.edges, J.edges))
+
+    def test_write_read_attribute_numeric_type_graphml(self):
+        from xml.etree.ElementTree import parse
+
+        G = self.attribute_numeric_type_graph
+        fh = io.BytesIO()
+        self.writer(G, fh, infer_numeric_types=True)
+        fh.seek(0)
+        H = nx.read_graphml(fh)
+        fh.seek(0)
+
+        assert nodes_equal(G.nodes(), H.nodes())
+        assert edges_equal(G.edges(), H.edges())
+        assert edges_equal(G.edges(data=True), H.edges(data=True))
+        self.attribute_numeric_type_fh.seek(0)
+
+        xml = parse(fh)
+        # Children are the key elements, and the graph element
+        children = list(xml.getroot())
+        assert len(children) == 3
+
+        keys = [child.items() for child in children[:2]]
+
+        assert len(keys) == 2
+        assert ("attr.type", "double") in keys[0]
+        assert ("attr.type", "double") in keys[1]
+
+    def test_more_multigraph_keys(self, tmp_path):
+        """Writing keys as edge id attributes means keys become strings.
+        The original keys are stored as data, so read them back in
+        if `str(key) == edge_id`
+        This allows the adjacency to remain the same.
+        """
+        G = nx.MultiGraph()
+        G.add_edges_from([("a", "b", 2), ("a", "b", 3)])
+        fname = tmp_path / "test.graphml"
+        self.writer(G, fname)
+        H = nx.read_graphml(fname)
+        assert H.is_multigraph()
+        assert edges_equal(G.edges(keys=True), H.edges(keys=True))
+        assert G._adj == H._adj
+
+    def test_default_attribute(self):
+        G = nx.Graph(name="Fred")
+        G.add_node(1, label=1, color="green")
+        nx.add_path(G, [0, 1, 2, 3])
+        G.add_edge(1, 2, weight=3)
+        G.graph["node_default"] = {"color": "yellow"}
+        G.graph["edge_default"] = {"weight": 7}
+        fh = io.BytesIO()
+        self.writer(G, fh)
+        fh.seek(0)
+        H = nx.read_graphml(fh, node_type=int)
+        assert nodes_equal(G.nodes(), H.nodes())
+        assert edges_equal(G.edges(), H.edges())
+        assert G.graph == H.graph
+
+    def test_mixed_type_attributes(self):
+        G = nx.MultiGraph()
+        G.add_node("n0", special=False)
+        G.add_node("n1", special=0)
+        G.add_edge("n0", "n1", special=False)
+        G.add_edge("n0", "n1", special=0)
+        fh = io.BytesIO()
+        self.writer(G, fh)
+        fh.seek(0)
+        H = nx.read_graphml(fh)
+        assert not H.nodes["n0"]["special"]
+        assert H.nodes["n1"]["special"] == 0
+        assert not H.edges["n0", "n1", 0]["special"]
+        assert H.edges["n0", "n1", 1]["special"] == 0
+
+    def test_str_number_mixed_type_attributes(self):
+        G = nx.MultiGraph()
+        G.add_node("n0", special="hello")
+        G.add_node("n1", special=0)
+        G.add_edge("n0", "n1", special="hello")
+        G.add_edge("n0", "n1", special=0)
+        fh = io.BytesIO()
+        self.writer(G, fh)
+        fh.seek(0)
+        H = nx.read_graphml(fh)
+        assert H.nodes["n0"]["special"] == "hello"
+        assert H.nodes["n1"]["special"] == 0
+        assert H.edges["n0", "n1", 0]["special"] == "hello"
+        assert H.edges["n0", "n1", 1]["special"] == 0
+
+    def test_mixed_int_type_number_attributes(self):
+        np = pytest.importorskip("numpy")
+        G = nx.MultiGraph()
+        G.add_node("n0", special=np.int64(0))
+        G.add_node("n1", special=1)
+        G.add_edge("n0", "n1", special=np.int64(2))
+        G.add_edge("n0", "n1", special=3)
+        fh = io.BytesIO()
+        self.writer(G, fh)
+        fh.seek(0)
+        H = nx.read_graphml(fh)
+        assert H.nodes["n0"]["special"] == 0
+        assert H.nodes["n1"]["special"] == 1
+        assert H.edges["n0", "n1", 0]["special"] == 2
+        assert H.edges["n0", "n1", 1]["special"] == 3
+
+    def test_multigraph_to_graph(self, tmp_path):
+        # test converting multigraph to graph if no parallel edges found
+        G = nx.MultiGraph()
+        G.add_edges_from([("a", "b", 2), ("b", "c", 3)])  # no multiedges
+        fname = tmp_path / "test.graphml"
+        self.writer(G, fname)
+        H = nx.read_graphml(fname)
+        assert not H.is_multigraph()
+        H = nx.read_graphml(fname, force_multigraph=True)
+        assert H.is_multigraph()
+
+        # add a multiedge
+        G.add_edge("a", "b", "e-id")
+        fname = tmp_path / "test.graphml"
+        self.writer(G, fname)
+        H = nx.read_graphml(fname)
+        assert H.is_multigraph()
+        H = nx.read_graphml(fname, force_multigraph=True)
+        assert H.is_multigraph()
+
+    def test_write_generate_edge_id_from_attribute(self, tmp_path):
+        from xml.etree.ElementTree import parse
+
+        G = nx.Graph()
+        G.add_edges_from([("a", "b"), ("b", "c"), ("a", "c")])
+        edge_attributes = {e: str(e) for e in G.edges}
+        nx.set_edge_attributes(G, edge_attributes, "eid")
+        fname = tmp_path / "test.graphml"
+        # set edge_id_from_attribute e.g. "eid" for write_graphml()
+        self.writer(G, fname, edge_id_from_attribute="eid")
+        # set edge_id_from_attribute e.g. "eid" for generate_graphml()
+        generator = nx.generate_graphml(G, edge_id_from_attribute="eid")
+
+        H = nx.read_graphml(fname)
+        assert nodes_equal(G.nodes(), H.nodes())
+        assert edges_equal(G.edges(), H.edges())
+        # NetworkX adds explicit edge "id" from file as attribute
+        nx.set_edge_attributes(G, edge_attributes, "id")
+        assert edges_equal(G.edges(data=True), H.edges(data=True))
+
+        tree = parse(fname)
+        children = list(tree.getroot())
+        assert len(children) == 2
+        edge_ids = [
+            edge.attrib["id"]
+            for edge in tree.getroot().findall(
+                ".//{http://graphml.graphdrawing.org/xmlns}edge"
+            )
+        ]
+        # verify edge id value is equal to specified attribute value
+        assert sorted(edge_ids) == sorted(edge_attributes.values())
+
+        # check graphml generated from generate_graphml()
+        data = "".join(generator)
+        J = nx.parse_graphml(data)
+        assert sorted(G.nodes()) == sorted(J.nodes())
+        assert sorted(G.edges()) == sorted(J.edges())
+        # NetworkX adds explicit edge "id" from file as attribute
+        nx.set_edge_attributes(G, edge_attributes, "id")
+        assert edges_equal(G.edges(data=True), J.edges(data=True))
+
+    def test_multigraph_write_generate_edge_id_from_attribute(self, tmp_path):
+        from xml.etree.ElementTree import parse
+
+        G = nx.MultiGraph()
+        G.add_edges_from([("a", "b"), ("b", "c"), ("a", "c"), ("a", "b")])
+        edge_attributes = {e: str(e) for e in G.edges}
+        nx.set_edge_attributes(G, edge_attributes, "eid")
+        fname = tmp_path / "test.graphml"
+        # set edge_id_from_attribute e.g. "eid" for write_graphml()
+        self.writer(G, fname, edge_id_from_attribute="eid")
+        # set edge_id_from_attribute e.g. "eid" for generate_graphml()
+        generator = nx.generate_graphml(G, edge_id_from_attribute="eid")
+
+        H = nx.read_graphml(fname)
+        assert H.is_multigraph()
+        H = nx.read_graphml(fname, force_multigraph=True)
+        assert H.is_multigraph()
+
+        assert nodes_equal(G.nodes(), H.nodes())
+        assert edges_equal(G.edges(), H.edges())
+        assert sorted(data.get("eid") for u, v, data in H.edges(data=True)) == sorted(
+            edge_attributes.values()
+        )
+        # NetworkX uses edge_ids as keys in multigraphs if no key
+        assert sorted(key for u, v, key in H.edges(keys=True)) == sorted(
+            edge_attributes.values()
+        )
+
+        tree = parse(fname)
+        children = list(tree.getroot())
+        assert len(children) == 2
+        edge_ids = [
+            edge.attrib["id"]
+            for edge in tree.getroot().findall(
+                ".//{http://graphml.graphdrawing.org/xmlns}edge"
+            )
+        ]
+        # verify edge id value is equal to specified attribute value
+        assert sorted(edge_ids) == sorted(edge_attributes.values())
+
+        # check graphml generated from generate_graphml()
+        graphml_data = "".join(generator)
+        J = nx.parse_graphml(graphml_data)
+        assert J.is_multigraph()
+
+        assert nodes_equal(G.nodes(), J.nodes())
+        assert edges_equal(G.edges(), J.edges())
+        assert sorted(data.get("eid") for u, v, data in J.edges(data=True)) == sorted(
+            edge_attributes.values()
+        )
+        # NetworkX uses edge_ids as keys in multigraphs if no key
+        assert sorted(key for u, v, key in J.edges(keys=True)) == sorted(
+            edge_attributes.values()
+        )
+
+    def test_numpy_float64(self, tmp_path):
+        np = pytest.importorskip("numpy")
+        wt = np.float64(3.4)
+        G = nx.Graph([(1, 2, {"weight": wt})])
+        fname = tmp_path / "test.graphml"
+        self.writer(G, fname)
+        H = nx.read_graphml(fname, node_type=int)
+        assert G.edges == H.edges
+        wtG = G[1][2]["weight"]
+        wtH = H[1][2]["weight"]
+        assert wtG == pytest.approx(wtH, abs=1e-6)
+        assert type(wtG) == np.float64
+        assert type(wtH) == float
+
+    def test_numpy_float32(self, tmp_path):
+        np = pytest.importorskip("numpy")
+        wt = np.float32(3.4)
+        G = nx.Graph([(1, 2, {"weight": wt})])
+        fname = tmp_path / "test.graphml"
+        self.writer(G, fname)
+        H = nx.read_graphml(fname, node_type=int)
+        assert G.edges == H.edges
+        wtG = G[1][2]["weight"]
+        wtH = H[1][2]["weight"]
+        assert wtG == pytest.approx(wtH, abs=1e-6)
+        assert type(wtG) == np.float32
+        assert type(wtH) == float
+
+    def test_numpy_float64_inference(self, tmp_path):
+        np = pytest.importorskip("numpy")
+        G = self.attribute_numeric_type_graph
+        G.edges[("n1", "n1")]["weight"] = np.float64(1.1)
+        fname = tmp_path / "test.graphml"
+        self.writer(G, fname, infer_numeric_types=True)
+        H = nx.read_graphml(fname)
+        assert G._adj == H._adj
+
+    def test_unicode_attributes(self, tmp_path):
+        G = nx.Graph()
+        name1 = chr(2344) + chr(123) + chr(6543)
+        name2 = chr(5543) + chr(1543) + chr(324)
+        node_type = str
+        G.add_edge(name1, "Radiohead", foo=name2)
+        fname = tmp_path / "test.graphml"
+        self.writer(G, fname)
+        H = nx.read_graphml(fname, node_type=node_type)
+        assert G._adj == H._adj
+
+    def test_unicode_escape(self):
+        # test for handling json escaped strings in python 2 Issue #1880
+        import json
+
+        a = {"a": '{"a": "123"}'}  # an object with many chars to escape
+        sa = json.dumps(a)
+        G = nx.Graph()
+        G.graph["test"] = sa
+        fh = io.BytesIO()
+        self.writer(G, fh)
+        fh.seek(0)
+        H = nx.read_graphml(fh)
+        assert G.graph["test"] == H.graph["test"]
+
+
+class TestXMLGraphML(TestWriteGraphML):
+    writer = staticmethod(nx.write_graphml_xml)
+
+    @classmethod
+    def setup_class(cls):
+        TestWriteGraphML.setup_class()
+
+
+def test_exception_for_unsupported_datatype_node_attr():
+    """Test that a detailed exception is raised when an attribute is of a type
+    not supported by GraphML, e.g. a list"""
+    pytest.importorskip("lxml.etree")
+    # node attribute
+    G = nx.Graph()
+    G.add_node(0, my_list_attribute=[0, 1, 2])
+    fh = io.BytesIO()
+    with pytest.raises(TypeError, match="GraphML does not support"):
+        nx.write_graphml(G, fh)
+
+
+def test_exception_for_unsupported_datatype_edge_attr():
+    """Test that a detailed exception is raised when an attribute is of a type
+    not supported by GraphML, e.g. a list"""
+    pytest.importorskip("lxml.etree")
+    # edge attribute
+    G = nx.Graph()
+    G.add_edge(0, 1, my_list_attribute=[0, 1, 2])
+    fh = io.BytesIO()
+    with pytest.raises(TypeError, match="GraphML does not support"):
+        nx.write_graphml(G, fh)
+
+
+def test_exception_for_unsupported_datatype_graph_attr():
+    """Test that a detailed exception is raised when an attribute is of a type
+    not supported by GraphML, e.g. a list"""
+    pytest.importorskip("lxml.etree")
+    # graph attribute
+    G = nx.Graph()
+    G.graph["my_list_attribute"] = [0, 1, 2]
+    fh = io.BytesIO()
+    with pytest.raises(TypeError, match="GraphML does not support"):
+        nx.write_graphml(G, fh)
+
+
+def test_empty_attribute():
+    """Tests that a GraphML string with an empty attribute can be parsed
+    correctly."""
+    s = """<?xml version='1.0' encoding='utf-8'?>
+    <graphml>
+      <key id="d1" for="node" attr.name="foo" attr.type="string"/>
+      <key id="d2" for="node" attr.name="bar" attr.type="string"/>
+      <graph>
+        <node id="0">
+          <data key="d1">aaa</data>
+          <data key="d2">bbb</data>
+        </node>
+        <node id="1">
+          <data key="d1">ccc</data>
+          <data key="d2"></data>
+        </node>
+      </graph>
+    </graphml>"""
+    fh = io.BytesIO(s.encode("UTF-8"))
+    G = nx.read_graphml(fh)
+    assert G.nodes["0"] == {"foo": "aaa", "bar": "bbb"}
+    assert G.nodes["1"] == {"foo": "ccc", "bar": ""}
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_leda.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_leda.py
new file mode 100644
index 00000000..8ac5ecc3
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_leda.py
@@ -0,0 +1,30 @@
+import io
+
+import networkx as nx
+
+
+class TestLEDA:
+    def test_parse_leda(self):
+        data = """#header section         \nLEDA.GRAPH \nstring\nint\n-1\n#nodes section\n5 \n|{v1}| \n|{v2}| \n|{v3}| \n|{v4}| \n|{v5}| \n\n#edges section\n7 \n1 2 0 |{4}| \n1 3 0 |{3}| \n2 3 0 |{2}| \n3 4 0 |{3}| \n3 5 0 |{7}| \n4 5 0 |{6}| \n5 1 0 |{foo}|"""
+        G = nx.parse_leda(data)
+        G = nx.parse_leda(data.split("\n"))
+        assert sorted(G.nodes()) == ["v1", "v2", "v3", "v4", "v5"]
+        assert sorted(G.edges(data=True)) == [
+            ("v1", "v2", {"label": "4"}),
+            ("v1", "v3", {"label": "3"}),
+            ("v2", "v3", {"label": "2"}),
+            ("v3", "v4", {"label": "3"}),
+            ("v3", "v5", {"label": "7"}),
+            ("v4", "v5", {"label": "6"}),
+            ("v5", "v1", {"label": "foo"}),
+        ]
+
+    def test_read_LEDA(self):
+        fh = io.BytesIO()
+        data = """#header section         \nLEDA.GRAPH \nstring\nint\n-1\n#nodes section\n5 \n|{v1}| \n|{v2}| \n|{v3}| \n|{v4}| \n|{v5}| \n\n#edges section\n7 \n1 2 0 |{4}| \n1 3 0 |{3}| \n2 3 0 |{2}| \n3 4 0 |{3}| \n3 5 0 |{7}| \n4 5 0 |{6}| \n5 1 0 |{foo}|"""
+        G = nx.parse_leda(data)
+        fh.write(data.encode("UTF-8"))
+        fh.seek(0)
+        Gin = nx.read_leda(fh)
+        assert sorted(G.nodes()) == sorted(Gin.nodes())
+        assert sorted(G.edges()) == sorted(Gin.edges())
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_p2g.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_p2g.py
new file mode 100644
index 00000000..e4c50de7
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_p2g.py
@@ -0,0 +1,62 @@
+import io
+
+import networkx as nx
+from networkx.readwrite.p2g import read_p2g, write_p2g
+from networkx.utils import edges_equal
+
+
+class TestP2G:
+    @classmethod
+    def setup_class(cls):
+        cls.G = nx.Graph(name="test")
+        e = [("a", "b"), ("b", "c"), ("c", "d"), ("d", "e"), ("e", "f"), ("a", "f")]
+        cls.G.add_edges_from(e)
+        cls.G.add_node("g")
+        cls.DG = nx.DiGraph(cls.G)
+
+    def test_read_p2g(self):
+        s = b"""\
+name
+3 4
+a
+1 2
+b
+
+c
+0 2
+"""
+        bytesIO = io.BytesIO(s)
+        G = read_p2g(bytesIO)
+        assert G.name == "name"
+        assert sorted(G) == ["a", "b", "c"]
+        edges = [(str(u), str(v)) for u, v in G.edges()]
+        assert edges_equal(G.edges(), [("a", "c"), ("a", "b"), ("c", "a"), ("c", "c")])
+
+    def test_write_p2g(self):
+        s = b"""foo
+3 2
+1
+1 
+2
+2 
+3
+
+"""
+        fh = io.BytesIO()
+        G = nx.DiGraph()
+        G.name = "foo"
+        G.add_edges_from([(1, 2), (2, 3)])
+        write_p2g(G, fh)
+        fh.seek(0)
+        r = fh.read()
+        assert r == s
+
+    def test_write_read_p2g(self):
+        fh = io.BytesIO()
+        G = nx.DiGraph()
+        G.name = "foo"
+        G.add_edges_from([("a", "b"), ("b", "c")])
+        write_p2g(G, fh)
+        fh.seek(0)
+        H = read_p2g(fh)
+        assert edges_equal(G.edges(), H.edges())
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_pajek.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_pajek.py
new file mode 100644
index 00000000..317ebe8e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_pajek.py
@@ -0,0 +1,126 @@
+"""
+Pajek tests
+"""
+
+import networkx as nx
+from networkx.utils import edges_equal, nodes_equal
+
+
+class TestPajek:
+    @classmethod
+    def setup_class(cls):
+        cls.data = """*network Tralala\n*vertices 4\n   1 "A1"         0.0938 0.0896   ellipse x_fact 1 y_fact 1\n   2 "Bb"         0.8188 0.2458   ellipse x_fact 1 y_fact 1\n   3 "C"          0.3688 0.7792   ellipse x_fact 1\n   4 "D2"         0.9583 0.8563   ellipse x_fact 1\n*arcs\n1 1 1  h2 0 w 3 c Blue s 3 a1 -130 k1 0.6 a2 -130 k2 0.6 ap 0.5 l "Bezier loop" lc BlueViolet fos 20 lr 58 lp 0.3 la 360\n2 1 1  h2 0 a1 120 k1 1.3 a2 -120 k2 0.3 ap 25 l "Bezier arc" lphi 270 la 180 lr 19 lp 0.5\n1 2 1  h2 0 a1 40 k1 2.8 a2 30 k2 0.8 ap 25 l "Bezier arc" lphi 90 la 0 lp 0.65\n4 2 -1  h2 0 w 1 k1 -2 k2 250 ap 25 l "Circular arc" c Red lc OrangeRed\n3 4 1  p Dashed h2 0 w 2 c OliveGreen ap 25 l "Straight arc" lc PineGreen\n1 3 1  p Dashed h2 0 w 5 k1 -1 k2 -20 ap 25 l "Oval arc" c Brown lc Black\n3 3 -1  h1 6 w 1 h2 12 k1 -2 k2 -15 ap 0.5 l "Circular loop" c Red lc OrangeRed lphi 270 la 180"""
+        cls.G = nx.MultiDiGraph()
+        cls.G.add_nodes_from(["A1", "Bb", "C", "D2"])
+        cls.G.add_edges_from(
+            [
+                ("A1", "A1"),
+                ("A1", "Bb"),
+                ("A1", "C"),
+                ("Bb", "A1"),
+                ("C", "C"),
+                ("C", "D2"),
+                ("D2", "Bb"),
+            ]
+        )
+
+        cls.G.graph["name"] = "Tralala"
+
+    def test_parse_pajek_simple(self):
+        # Example without node positions or shape
+        data = """*Vertices 2\n1 "1"\n2 "2"\n*Edges\n1 2\n2 1"""
+        G = nx.parse_pajek(data)
+        assert sorted(G.nodes()) == ["1", "2"]
+        assert edges_equal(G.edges(), [("1", "2"), ("1", "2")])
+
+    def test_parse_pajek(self):
+        G = nx.parse_pajek(self.data)
+        assert sorted(G.nodes()) == ["A1", "Bb", "C", "D2"]
+        assert edges_equal(
+            G.edges(),
+            [
+                ("A1", "A1"),
+                ("A1", "Bb"),
+                ("A1", "C"),
+                ("Bb", "A1"),
+                ("C", "C"),
+                ("C", "D2"),
+                ("D2", "Bb"),
+            ],
+        )
+
+    def test_parse_pajet_mat(self):
+        data = """*Vertices 3\n1 "one"\n2 "two"\n3 "three"\n*Matrix\n1 1 0\n0 1 0\n0 1 0\n"""
+        G = nx.parse_pajek(data)
+        assert set(G.nodes()) == {"one", "two", "three"}
+        assert G.nodes["two"] == {"id": "2"}
+        assert edges_equal(
+            set(G.edges()),
+            {("one", "one"), ("two", "one"), ("two", "two"), ("two", "three")},
+        )
+
+    def test_read_pajek(self, tmp_path):
+        G = nx.parse_pajek(self.data)
+        # Read data from file
+        fname = tmp_path / "test.pjk"
+        with open(fname, "wb") as fh:
+            fh.write(self.data.encode("UTF-8"))
+
+        Gin = nx.read_pajek(fname)
+        assert sorted(G.nodes()) == sorted(Gin.nodes())
+        assert edges_equal(G.edges(), Gin.edges())
+        assert self.G.graph == Gin.graph
+        for n in G:
+            assert G.nodes[n] == Gin.nodes[n]
+
+    def test_write_pajek(self):
+        import io
+
+        G = nx.parse_pajek(self.data)
+        fh = io.BytesIO()
+        nx.write_pajek(G, fh)
+        fh.seek(0)
+        H = nx.read_pajek(fh)
+        assert nodes_equal(list(G), list(H))
+        assert edges_equal(list(G.edges()), list(H.edges()))
+        # Graph name is left out for now, therefore it is not tested.
+        # assert_equal(G.graph, H.graph)
+
+    def test_ignored_attribute(self):
+        import io
+
+        G = nx.Graph()
+        fh = io.BytesIO()
+        G.add_node(1, int_attr=1)
+        G.add_node(2, empty_attr="  ")
+        G.add_edge(1, 2, int_attr=2)
+        G.add_edge(2, 3, empty_attr="  ")
+
+        import warnings
+
+        with warnings.catch_warnings(record=True) as w:
+            nx.write_pajek(G, fh)
+            assert len(w) == 4
+
+    def test_noname(self):
+        # Make sure we can parse a line such as:  *network
+        # Issue #952
+        line = "*network\n"
+        other_lines = self.data.split("\n")[1:]
+        data = line + "\n".join(other_lines)
+        G = nx.parse_pajek(data)
+
+    def test_unicode(self):
+        import io
+
+        G = nx.Graph()
+        name1 = chr(2344) + chr(123) + chr(6543)
+        name2 = chr(5543) + chr(1543) + chr(324)
+        G.add_edge(name1, "Radiohead", foo=name2)
+        fh = io.BytesIO()
+        nx.write_pajek(G, fh)
+        fh.seek(0)
+        H = nx.read_pajek(fh)
+        assert nodes_equal(list(G), list(H))
+        assert edges_equal(list(G.edges()), list(H.edges()))
+        assert G.graph == H.graph
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_sparse6.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_sparse6.py
new file mode 100644
index 00000000..344ad0e4
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_sparse6.py
@@ -0,0 +1,166 @@
+from io import BytesIO
+
+import pytest
+
+import networkx as nx
+from networkx.utils import edges_equal, nodes_equal
+
+
+class TestSparseGraph6:
+    def test_from_sparse6_bytes(self):
+        data = b":Q___eDcdFcDeFcE`GaJ`IaHbKNbLM"
+        G = nx.from_sparse6_bytes(data)
+        assert nodes_equal(
+            sorted(G.nodes()),
+            [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17],
+        )
+        assert edges_equal(
+            G.edges(),
+            [
+                (0, 1),
+                (0, 2),
+                (0, 3),
+                (1, 12),
+                (1, 14),
+                (2, 13),
+                (2, 15),
+                (3, 16),
+                (3, 17),
+                (4, 7),
+                (4, 9),
+                (4, 11),
+                (5, 6),
+                (5, 8),
+                (5, 9),
+                (6, 10),
+                (6, 11),
+                (7, 8),
+                (7, 10),
+                (8, 12),
+                (9, 15),
+                (10, 14),
+                (11, 13),
+                (12, 16),
+                (13, 17),
+                (14, 17),
+                (15, 16),
+            ],
+        )
+
+    def test_from_bytes_multigraph_graph(self):
+        graph_data = b":An"
+        G = nx.from_sparse6_bytes(graph_data)
+        assert type(G) == nx.Graph
+        multigraph_data = b":Ab"
+        M = nx.from_sparse6_bytes(multigraph_data)
+        assert type(M) == nx.MultiGraph
+
+    def test_read_sparse6(self):
+        data = b":Q___eDcdFcDeFcE`GaJ`IaHbKNbLM"
+        G = nx.from_sparse6_bytes(data)
+        fh = BytesIO(data)
+        Gin = nx.read_sparse6(fh)
+        assert nodes_equal(G.nodes(), Gin.nodes())
+        assert edges_equal(G.edges(), Gin.edges())
+
+    def test_read_many_graph6(self):
+        # Read many graphs into list
+        data = b":Q___eDcdFcDeFcE`GaJ`IaHbKNbLM\n" b":Q___dCfDEdcEgcbEGbFIaJ`JaHN`IM"
+        fh = BytesIO(data)
+        glist = nx.read_sparse6(fh)
+        assert len(glist) == 2
+        for G in glist:
+            assert nodes_equal(
+                G.nodes(),
+                [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17],
+            )
+
+
+class TestWriteSparse6:
+    """Unit tests for writing graphs in the sparse6 format.
+
+    Most of the test cases were checked against the sparse6 encoder in Sage.
+
+    """
+
+    def test_null_graph(self):
+        G = nx.null_graph()
+        result = BytesIO()
+        nx.write_sparse6(G, result)
+        assert result.getvalue() == b">>sparse6<<:?\n"
+
+    def test_trivial_graph(self):
+        G = nx.trivial_graph()
+        result = BytesIO()
+        nx.write_sparse6(G, result)
+        assert result.getvalue() == b">>sparse6<<:@\n"
+
+    def test_empty_graph(self):
+        G = nx.empty_graph(5)
+        result = BytesIO()
+        nx.write_sparse6(G, result)
+        assert result.getvalue() == b">>sparse6<<:D\n"
+
+    def test_large_empty_graph(self):
+        G = nx.empty_graph(68)
+        result = BytesIO()
+        nx.write_sparse6(G, result)
+        assert result.getvalue() == b">>sparse6<<:~?@C\n"
+
+    def test_very_large_empty_graph(self):
+        G = nx.empty_graph(258049)
+        result = BytesIO()
+        nx.write_sparse6(G, result)
+        assert result.getvalue() == b">>sparse6<<:~~???~?@\n"
+
+    def test_complete_graph(self):
+        G = nx.complete_graph(4)
+        result = BytesIO()
+        nx.write_sparse6(G, result)
+        assert result.getvalue() == b">>sparse6<<:CcKI\n"
+
+    def test_no_header(self):
+        G = nx.complete_graph(4)
+        result = BytesIO()
+        nx.write_sparse6(G, result, header=False)
+        assert result.getvalue() == b":CcKI\n"
+
+    def test_padding(self):
+        codes = (b":Cdv", b":DaYn", b":EaYnN", b":FaYnL", b":GaYnLz")
+        for n, code in enumerate(codes, start=4):
+            G = nx.path_graph(n)
+            result = BytesIO()
+            nx.write_sparse6(G, result, header=False)
+            assert result.getvalue() == code + b"\n"
+
+    def test_complete_bipartite(self):
+        G = nx.complete_bipartite_graph(6, 9)
+        result = BytesIO()
+        nx.write_sparse6(G, result)
+        # Compared with sage
+        expected = b">>sparse6<<:Nk" + b"?G`cJ" * 9 + b"\n"
+        assert result.getvalue() == expected
+
+    def test_read_write_inverse(self):
+        for i in list(range(13)) + [31, 47, 62, 63, 64, 72]:
+            m = min(2 * i, i * i // 2)
+            g = nx.random_graphs.gnm_random_graph(i, m, seed=i)
+            gstr = BytesIO()
+            nx.write_sparse6(g, gstr, header=False)
+            # Strip the trailing newline.
+            gstr = gstr.getvalue().rstrip()
+            g2 = nx.from_sparse6_bytes(gstr)
+            assert g2.order() == g.order()
+            assert edges_equal(g2.edges(), g.edges())
+
+    def test_no_directed_graphs(self):
+        with pytest.raises(nx.NetworkXNotImplemented):
+            nx.write_sparse6(nx.DiGraph(), BytesIO())
+
+    def test_write_path(self, tmp_path):
+        # Get a valid temporary file name
+        fullfilename = str(tmp_path / "test.s6")
+        # file should be closed now, so write_sparse6 can open it
+        nx.write_sparse6(nx.null_graph(), fullfilename)
+        with open(fullfilename, mode="rb") as fh:
+            assert fh.read() == b">>sparse6<<:?\n"
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_text.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_text.py
new file mode 100644
index 00000000..b2b74482
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/tests/test_text.py
@@ -0,0 +1,1742 @@
+import random
+from itertools import product
+from textwrap import dedent
+
+import pytest
+
+import networkx as nx
+
+
+def test_generate_network_text_forest_directed():
+    # Create a directed forest with labels
+    graph = nx.balanced_tree(r=2, h=2, create_using=nx.DiGraph)
+    for node in graph.nodes:
+        graph.nodes[node]["label"] = "node_" + chr(ord("a") + node)
+
+    node_target = dedent(
+        """
+        ╙── 0
+            ├─╼ 1
+            │   ├─╼ 3
+            │   └─╼ 4
+            └─╼ 2
+                ├─╼ 5
+                └─╼ 6
+        """
+    ).strip()
+
+    label_target = dedent(
+        """
+        ╙── node_a
+            ├─╼ node_b
+            │   ├─╼ node_d
+            │   └─╼ node_e
+            └─╼ node_c
+                ├─╼ node_f
+                └─╼ node_g
+        """
+    ).strip()
+
+    # Basic node case
+    ret = nx.generate_network_text(graph, with_labels=False)
+    assert "\n".join(ret) == node_target
+
+    # Basic label case
+    ret = nx.generate_network_text(graph, with_labels=True)
+    assert "\n".join(ret) == label_target
+
+
+def test_write_network_text_empty_graph():
+    def _graph_str(g, **kw):
+        printbuf = []
+        nx.write_network_text(g, printbuf.append, end="", **kw)
+        return "\n".join(printbuf)
+
+    assert _graph_str(nx.DiGraph()) == "╙"
+    assert _graph_str(nx.Graph()) == "╙"
+    assert _graph_str(nx.DiGraph(), ascii_only=True) == "+"
+    assert _graph_str(nx.Graph(), ascii_only=True) == "+"
+
+
+def test_write_network_text_within_forest_glyph():
+    g = nx.DiGraph()
+    g.add_nodes_from([1, 2, 3, 4])
+    g.add_edge(2, 4)
+    lines = []
+    write = lines.append
+    nx.write_network_text(g, path=write, end="")
+    nx.write_network_text(g, path=write, ascii_only=True, end="")
+    text = "\n".join(lines)
+    target = dedent(
+        """
+        ╟── 1
+        ╟── 2
+        ╎   └─╼ 4
+        ╙── 3
+        +-- 1
+        +-- 2
+        :   L-> 4
+        +-- 3
+        """
+    ).strip()
+    assert text == target
+
+
+def test_generate_network_text_directed_multi_tree():
+    tree1 = nx.balanced_tree(r=2, h=2, create_using=nx.DiGraph)
+    tree2 = nx.balanced_tree(r=2, h=2, create_using=nx.DiGraph)
+    forest = nx.disjoint_union_all([tree1, tree2])
+    ret = "\n".join(nx.generate_network_text(forest))
+
+    target = dedent(
+        """
+        ╟── 0
+        ╎   ├─╼ 1
+        ╎   │   ├─╼ 3
+        ╎   │   └─╼ 4
+        ╎   └─╼ 2
+        ╎       ├─╼ 5
+        ╎       └─╼ 6
+        ╙── 7
+            ├─╼ 8
+            │   ├─╼ 10
+            │   └─╼ 11
+            └─╼ 9
+                ├─╼ 12
+                └─╼ 13
+        """
+    ).strip()
+    assert ret == target
+
+    tree3 = nx.balanced_tree(r=2, h=2, create_using=nx.DiGraph)
+    forest = nx.disjoint_union_all([tree1, tree2, tree3])
+    ret = "\n".join(nx.generate_network_text(forest, sources=[0, 14, 7]))
+
+    target = dedent(
+        """
+        ╟── 0
+        ╎   ├─╼ 1
+        ╎   │   ├─╼ 3
+        ╎   │   └─╼ 4
+        ╎   └─╼ 2
+        ╎       ├─╼ 5
+        ╎       └─╼ 6
+        ╟── 14
+        ╎   ├─╼ 15
+        ╎   │   ├─╼ 17
+        ╎   │   └─╼ 18
+        ╎   └─╼ 16
+        ╎       ├─╼ 19
+        ╎       └─╼ 20
+        ╙── 7
+            ├─╼ 8
+            │   ├─╼ 10
+            │   └─╼ 11
+            └─╼ 9
+                ├─╼ 12
+                └─╼ 13
+        """
+    ).strip()
+    assert ret == target
+
+    ret = "\n".join(
+        nx.generate_network_text(forest, sources=[0, 14, 7], ascii_only=True)
+    )
+
+    target = dedent(
+        """
+        +-- 0
+        :   |-> 1
+        :   |   |-> 3
+        :   |   L-> 4
+        :   L-> 2
+        :       |-> 5
+        :       L-> 6
+        +-- 14
+        :   |-> 15
+        :   |   |-> 17
+        :   |   L-> 18
+        :   L-> 16
+        :       |-> 19
+        :       L-> 20
+        +-- 7
+            |-> 8
+            |   |-> 10
+            |   L-> 11
+            L-> 9
+                |-> 12
+                L-> 13
+        """
+    ).strip()
+    assert ret == target
+
+
+def test_generate_network_text_undirected_multi_tree():
+    tree1 = nx.balanced_tree(r=2, h=2, create_using=nx.Graph)
+    tree2 = nx.balanced_tree(r=2, h=2, create_using=nx.Graph)
+    tree2 = nx.relabel_nodes(tree2, {n: n + len(tree1) for n in tree2.nodes})
+    forest = nx.union(tree1, tree2)
+    ret = "\n".join(nx.generate_network_text(forest, sources=[0, 7]))
+
+    target = dedent(
+        """
+        ╟── 0
+        ╎   ├── 1
+        ╎   │   ├── 3
+        ╎   │   └── 4
+        ╎   └── 2
+        ╎       ├── 5
+        ╎       └── 6
+        ╙── 7
+            ├── 8
+            │   ├── 10
+            │   └── 11
+            └── 9
+                ├── 12
+                └── 13
+        """
+    ).strip()
+    assert ret == target
+
+    ret = "\n".join(nx.generate_network_text(forest, sources=[0, 7], ascii_only=True))
+
+    target = dedent(
+        """
+        +-- 0
+        :   |-- 1
+        :   |   |-- 3
+        :   |   L-- 4
+        :   L-- 2
+        :       |-- 5
+        :       L-- 6
+        +-- 7
+            |-- 8
+            |   |-- 10
+            |   L-- 11
+            L-- 9
+                |-- 12
+                L-- 13
+        """
+    ).strip()
+    assert ret == target
+
+
+def test_generate_network_text_forest_undirected():
+    # Create a directed forest
+    graph = nx.balanced_tree(r=2, h=2, create_using=nx.Graph)
+
+    node_target0 = dedent(
+        """
+        ╙── 0
+            ├── 1
+            │   ├── 3
+            │   └── 4
+            └── 2
+                ├── 5
+                └── 6
+        """
+    ).strip()
+
+    # defined starting point
+    ret = "\n".join(nx.generate_network_text(graph, sources=[0]))
+    assert ret == node_target0
+
+    # defined starting point
+    node_target2 = dedent(
+        """
+        ╙── 2
+            ├── 0
+            │   └── 1
+            │       ├── 3
+            │       └── 4
+            ├── 5
+            └── 6
+        """
+    ).strip()
+    ret = "\n".join(nx.generate_network_text(graph, sources=[2]))
+    assert ret == node_target2
+
+
+def test_generate_network_text_overspecified_sources():
+    """
+    When sources are directly specified, we won't be able to determine when we
+    are in the last component, so there will always be a trailing, leftmost
+    pipe.
+    """
+    graph = nx.disjoint_union_all(
+        [
+            nx.balanced_tree(r=2, h=1, create_using=nx.DiGraph),
+            nx.balanced_tree(r=1, h=2, create_using=nx.DiGraph),
+            nx.balanced_tree(r=2, h=1, create_using=nx.DiGraph),
+        ]
+    )
+
+    # defined starting point
+    target1 = dedent(
+        """
+        ╟── 0
+        ╎   ├─╼ 1
+        ╎   └─╼ 2
+        ╟── 3
+        ╎   └─╼ 4
+        ╎       └─╼ 5
+        ╟── 6
+        ╎   ├─╼ 7
+        ╎   └─╼ 8
+        """
+    ).strip()
+
+    target2 = dedent(
+        """
+        ╟── 0
+        ╎   ├─╼ 1
+        ╎   └─╼ 2
+        ╟── 3
+        ╎   └─╼ 4
+        ╎       └─╼ 5
+        ╙── 6
+            ├─╼ 7
+            └─╼ 8
+        """
+    ).strip()
+
+    got1 = "\n".join(nx.generate_network_text(graph, sources=graph.nodes))
+    got2 = "\n".join(nx.generate_network_text(graph))
+    assert got1 == target1
+    assert got2 == target2
+
+
+def test_write_network_text_iterative_add_directed_edges():
+    """
+    Walk through the cases going from a disconnected to fully connected graph
+    """
+    graph = nx.DiGraph()
+    graph.add_nodes_from([1, 2, 3, 4])
+    lines = []
+    write = lines.append
+    write("--- initial state ---")
+    nx.write_network_text(graph, path=write, end="")
+    for i, j in product(graph.nodes, graph.nodes):
+        write(f"--- add_edge({i}, {j}) ---")
+        graph.add_edge(i, j)
+        nx.write_network_text(graph, path=write, end="")
+    text = "\n".join(lines)
+    # defined starting point
+    target = dedent(
+        """
+        --- initial state ---
+        ╟── 1
+        ╟── 2
+        ╟── 3
+        ╙── 4
+        --- add_edge(1, 1) ---
+        ╟── 1 ╾ 1
+        ╎   └─╼  ...
+        ╟── 2
+        ╟── 3
+        ╙── 4
+        --- add_edge(1, 2) ---
+        ╟── 1 ╾ 1
+        ╎   ├─╼ 2
+        ╎   └─╼  ...
+        ╟── 3
+        ╙── 4
+        --- add_edge(1, 3) ---
+        ╟── 1 ╾ 1
+        ╎   ├─╼ 2
+        ╎   ├─╼ 3
+        ╎   └─╼  ...
+        ╙── 4
+        --- add_edge(1, 4) ---
+        ╙── 1 ╾ 1
+            ├─╼ 2
+            ├─╼ 3
+            ├─╼ 4
+            └─╼  ...
+        --- add_edge(2, 1) ---
+        ╙── 2 ╾ 1
+            └─╼ 1 ╾ 1
+                ├─╼ 3
+                ├─╼ 4
+                └─╼  ...
+        --- add_edge(2, 2) ---
+        ╙── 1 ╾ 1, 2
+            ├─╼ 2 ╾ 2
+            │   └─╼  ...
+            ├─╼ 3
+            ├─╼ 4
+            └─╼  ...
+        --- add_edge(2, 3) ---
+        ╙── 1 ╾ 1, 2
+            ├─╼ 2 ╾ 2
+            │   ├─╼ 3 ╾ 1
+            │   └─╼  ...
+            ├─╼ 4
+            └─╼  ...
+        --- add_edge(2, 4) ---
+        ╙── 1 ╾ 1, 2
+            ├─╼ 2 ╾ 2
+            │   ├─╼ 3 ╾ 1
+            │   ├─╼ 4 ╾ 1
+            │   └─╼  ...
+            └─╼  ...
+        --- add_edge(3, 1) ---
+        ╙── 2 ╾ 1, 2
+            ├─╼ 1 ╾ 1, 3
+            │   ├─╼ 3 ╾ 2
+            │   │   └─╼  ...
+            │   ├─╼ 4 ╾ 2
+            │   └─╼  ...
+            └─╼  ...
+        --- add_edge(3, 2) ---
+        ╙── 3 ╾ 1, 2
+            ├─╼ 1 ╾ 1, 2
+            │   ├─╼ 2 ╾ 2, 3
+            │   │   ├─╼ 4 ╾ 1
+            │   │   └─╼  ...
+            │   └─╼  ...
+            └─╼  ...
+        --- add_edge(3, 3) ---
+        ╙── 1 ╾ 1, 2, 3
+            ├─╼ 2 ╾ 2, 3
+            │   ├─╼ 3 ╾ 1, 3
+            │   │   └─╼  ...
+            │   ├─╼ 4 ╾ 1
+            │   └─╼  ...
+            └─╼  ...
+        --- add_edge(3, 4) ---
+        ╙── 1 ╾ 1, 2, 3
+            ├─╼ 2 ╾ 2, 3
+            │   ├─╼ 3 ╾ 1, 3
+            │   │   ├─╼ 4 ╾ 1, 2
+            │   │   └─╼  ...
+            │   └─╼  ...
+            └─╼  ...
+        --- add_edge(4, 1) ---
+        ╙── 2 ╾ 1, 2, 3
+            ├─╼ 1 ╾ 1, 3, 4
+            │   ├─╼ 3 ╾ 2, 3
+            │   │   ├─╼ 4 ╾ 1, 2
+            │   │   │   └─╼  ...
+            │   │   └─╼  ...
+            │   └─╼  ...
+            └─╼  ...
+        --- add_edge(4, 2) ---
+        ╙── 3 ╾ 1, 2, 3
+            ├─╼ 1 ╾ 1, 2, 4
+            │   ├─╼ 2 ╾ 2, 3, 4
+            │   │   ├─╼ 4 ╾ 1, 3
+            │   │   │   └─╼  ...
+            │   │   └─╼  ...
+            │   └─╼  ...
+            └─╼  ...
+        --- add_edge(4, 3) ---
+        ╙── 4 ╾ 1, 2, 3
+            ├─╼ 1 ╾ 1, 2, 3
+            │   ├─╼ 2 ╾ 2, 3, 4
+            │   │   ├─╼ 3 ╾ 1, 3, 4
+            │   │   │   └─╼  ...
+            │   │   └─╼  ...
+            │   └─╼  ...
+            └─╼  ...
+        --- add_edge(4, 4) ---
+        ╙── 1 ╾ 1, 2, 3, 4
+            ├─╼ 2 ╾ 2, 3, 4
+            │   ├─╼ 3 ╾ 1, 3, 4
+            │   │   ├─╼ 4 ╾ 1, 2, 4
+            │   │   │   └─╼  ...
+            │   │   └─╼  ...
+            │   └─╼  ...
+            └─╼  ...
+        """
+    ).strip()
+    assert target == text
+
+
+def test_write_network_text_iterative_add_undirected_edges():
+    """
+    Walk through the cases going from a disconnected to fully connected graph
+    """
+    graph = nx.Graph()
+    graph.add_nodes_from([1, 2, 3, 4])
+    lines = []
+    write = lines.append
+    write("--- initial state ---")
+    nx.write_network_text(graph, path=write, end="")
+    for i, j in product(graph.nodes, graph.nodes):
+        if i == j:
+            continue
+        write(f"--- add_edge({i}, {j}) ---")
+        graph.add_edge(i, j)
+        nx.write_network_text(graph, path=write, end="")
+    text = "\n".join(lines)
+    target = dedent(
+        """
+        --- initial state ---
+        ╟── 1
+        ╟── 2
+        ╟── 3
+        ╙── 4
+        --- add_edge(1, 2) ---
+        ╟── 3
+        ╟── 4
+        ╙── 1
+            └── 2
+        --- add_edge(1, 3) ---
+        ╟── 4
+        ╙── 2
+            └── 1
+                └── 3
+        --- add_edge(1, 4) ---
+        ╙── 2
+            └── 1
+                ├── 3
+                └── 4
+        --- add_edge(2, 1) ---
+        ╙── 2
+            └── 1
+                ├── 3
+                └── 4
+        --- add_edge(2, 3) ---
+        ╙── 4
+            └── 1
+                ├── 2
+                │   └── 3 ─ 1
+                └──  ...
+        --- add_edge(2, 4) ---
+        ╙── 3
+            ├── 1
+            │   ├── 2 ─ 3
+            │   │   └── 4 ─ 1
+            │   └──  ...
+            └──  ...
+        --- add_edge(3, 1) ---
+        ╙── 3
+            ├── 1
+            │   ├── 2 ─ 3
+            │   │   └── 4 ─ 1
+            │   └──  ...
+            └──  ...
+        --- add_edge(3, 2) ---
+        ╙── 3
+            ├── 1
+            │   ├── 2 ─ 3
+            │   │   └── 4 ─ 1
+            │   └──  ...
+            └──  ...
+        --- add_edge(3, 4) ---
+        ╙── 1
+            ├── 2
+            │   ├── 3 ─ 1
+            │   │   └── 4 ─ 1, 2
+            │   └──  ...
+            └──  ...
+        --- add_edge(4, 1) ---
+        ╙── 1
+            ├── 2
+            │   ├── 3 ─ 1
+            │   │   └── 4 ─ 1, 2
+            │   └──  ...
+            └──  ...
+        --- add_edge(4, 2) ---
+        ╙── 1
+            ├── 2
+            │   ├── 3 ─ 1
+            │   │   └── 4 ─ 1, 2
+            │   └──  ...
+            └──  ...
+        --- add_edge(4, 3) ---
+        ╙── 1
+            ├── 2
+            │   ├── 3 ─ 1
+            │   │   └── 4 ─ 1, 2
+            │   └──  ...
+            └──  ...
+        """
+    ).strip()
+    assert target == text
+
+
+def test_write_network_text_iterative_add_random_directed_edges():
+    """
+    Walk through the cases going from a disconnected to fully connected graph
+    """
+
+    rng = random.Random(724466096)
+    graph = nx.DiGraph()
+    graph.add_nodes_from([1, 2, 3, 4, 5])
+    possible_edges = list(product(graph.nodes, graph.nodes))
+    rng.shuffle(possible_edges)
+    graph.add_edges_from(possible_edges[0:8])
+    lines = []
+    write = lines.append
+    write("--- initial state ---")
+    nx.write_network_text(graph, path=write, end="")
+    for i, j in possible_edges[8:12]:
+        write(f"--- add_edge({i}, {j}) ---")
+        graph.add_edge(i, j)
+        nx.write_network_text(graph, path=write, end="")
+    text = "\n".join(lines)
+    target = dedent(
+        """
+        --- initial state ---
+        ╙── 3 ╾ 5
+            └─╼ 2 ╾ 2
+                ├─╼ 4 ╾ 4
+                │   ├─╼ 5
+                │   │   ├─╼ 1 ╾ 1
+                │   │   │   └─╼  ...
+                │   │   └─╼  ...
+                │   └─╼  ...
+                └─╼  ...
+        --- add_edge(4, 1) ---
+        ╙── 3 ╾ 5
+            └─╼ 2 ╾ 2
+                ├─╼ 4 ╾ 4
+                │   ├─╼ 5
+                │   │   ├─╼ 1 ╾ 1, 4
+                │   │   │   └─╼  ...
+                │   │   └─╼  ...
+                │   └─╼  ...
+                └─╼  ...
+        --- add_edge(2, 1) ---
+        ╙── 3 ╾ 5
+            └─╼ 2 ╾ 2
+                ├─╼ 4 ╾ 4
+                │   ├─╼ 5
+                │   │   ├─╼ 1 ╾ 1, 4, 2
+                │   │   │   └─╼  ...
+                │   │   └─╼  ...
+                │   └─╼  ...
+                └─╼  ...
+        --- add_edge(5, 2) ---
+        ╙── 3 ╾ 5
+            └─╼ 2 ╾ 2, 5
+                ├─╼ 4 ╾ 4
+                │   ├─╼ 5
+                │   │   ├─╼ 1 ╾ 1, 4, 2
+                │   │   │   └─╼  ...
+                │   │   └─╼  ...
+                │   └─╼  ...
+                └─╼  ...
+        --- add_edge(1, 5) ---
+        ╙── 3 ╾ 5
+            └─╼ 2 ╾ 2, 5
+                ├─╼ 4 ╾ 4
+                │   ├─╼ 5 ╾ 1
+                │   │   ├─╼ 1 ╾ 1, 4, 2
+                │   │   │   └─╼  ...
+                │   │   └─╼  ...
+                │   └─╼  ...
+                └─╼  ...
+
+        """
+    ).strip()
+    assert target == text
+
+
+def test_write_network_text_nearly_forest():
+    g = nx.DiGraph()
+    g.add_edge(1, 2)
+    g.add_edge(1, 5)
+    g.add_edge(2, 3)
+    g.add_edge(3, 4)
+    g.add_edge(5, 6)
+    g.add_edge(6, 7)
+    g.add_edge(6, 8)
+    orig = g.copy()
+    g.add_edge(1, 8)  # forward edge
+    g.add_edge(4, 2)  # back edge
+    g.add_edge(6, 3)  # cross edge
+    lines = []
+    write = lines.append
+    write("--- directed case ---")
+    nx.write_network_text(orig, path=write, end="")
+    write("--- add (1, 8), (4, 2), (6, 3) ---")
+    nx.write_network_text(g, path=write, end="")
+    write("--- undirected case ---")
+    nx.write_network_text(orig.to_undirected(), path=write, sources=[1], end="")
+    write("--- add (1, 8), (4, 2), (6, 3) ---")
+    nx.write_network_text(g.to_undirected(), path=write, sources=[1], end="")
+    text = "\n".join(lines)
+    target = dedent(
+        """
+        --- directed case ---
+        ╙── 1
+            ├─╼ 2
+            │   └─╼ 3
+            │       └─╼ 4
+            └─╼ 5
+                └─╼ 6
+                    ├─╼ 7
+                    └─╼ 8
+        --- add (1, 8), (4, 2), (6, 3) ---
+        ╙── 1
+            ├─╼ 2 ╾ 4
+            │   └─╼ 3 ╾ 6
+            │       └─╼ 4
+            │           └─╼  ...
+            ├─╼ 5
+            │   └─╼ 6
+            │       ├─╼ 7
+            │       ├─╼ 8 ╾ 1
+            │       └─╼  ...
+            └─╼  ...
+        --- undirected case ---
+        ╙── 1
+            ├── 2
+            │   └── 3
+            │       └── 4
+            └── 5
+                └── 6
+                    ├── 7
+                    └── 8
+        --- add (1, 8), (4, 2), (6, 3) ---
+        ╙── 1
+            ├── 2
+            │   ├── 3
+            │   │   ├── 4 ─ 2
+            │   │   └── 6
+            │   │       ├── 5 ─ 1
+            │   │       ├── 7
+            │   │       └── 8 ─ 1
+            │   └──  ...
+            └──  ...
+        """
+    ).strip()
+    assert target == text
+
+
+def test_write_network_text_complete_graph_ascii_only():
+    graph = nx.generators.complete_graph(5, create_using=nx.DiGraph)
+    lines = []
+    write = lines.append
+    write("--- directed case ---")
+    nx.write_network_text(graph, path=write, ascii_only=True, end="")
+    write("--- undirected case ---")
+    nx.write_network_text(graph.to_undirected(), path=write, ascii_only=True, end="")
+    text = "\n".join(lines)
+    target = dedent(
+        """
+        --- directed case ---
+        +-- 0 <- 1, 2, 3, 4
+            |-> 1 <- 2, 3, 4
+            |   |-> 2 <- 0, 3, 4
+            |   |   |-> 3 <- 0, 1, 4
+            |   |   |   |-> 4 <- 0, 1, 2
+            |   |   |   |   L->  ...
+            |   |   |   L->  ...
+            |   |   L->  ...
+            |   L->  ...
+            L->  ...
+        --- undirected case ---
+        +-- 0
+            |-- 1
+            |   |-- 2 - 0
+            |   |   |-- 3 - 0, 1
+            |   |   |   L-- 4 - 0, 1, 2
+            |   |   L--  ...
+            |   L--  ...
+            L--  ...
+        """
+    ).strip()
+    assert target == text
+
+
+def test_write_network_text_with_labels():
+    graph = nx.generators.complete_graph(5, create_using=nx.DiGraph)
+    for n in graph.nodes:
+        graph.nodes[n]["label"] = f"Node(n={n})"
+    lines = []
+    write = lines.append
+    nx.write_network_text(graph, path=write, with_labels=True, ascii_only=False, end="")
+    text = "\n".join(lines)
+    # Non trees with labels can get somewhat out of hand with network text
+    # because we need to immediately show every non-tree edge to the right
+    target = dedent(
+        """
+        ╙── Node(n=0) ╾ Node(n=1), Node(n=2), Node(n=3), Node(n=4)
+            ├─╼ Node(n=1) ╾ Node(n=2), Node(n=3), Node(n=4)
+            │   ├─╼ Node(n=2) ╾ Node(n=0), Node(n=3), Node(n=4)
+            │   │   ├─╼ Node(n=3) ╾ Node(n=0), Node(n=1), Node(n=4)
+            │   │   │   ├─╼ Node(n=4) ╾ Node(n=0), Node(n=1), Node(n=2)
+            │   │   │   │   └─╼  ...
+            │   │   │   └─╼  ...
+            │   │   └─╼  ...
+            │   └─╼  ...
+            └─╼  ...
+        """
+    ).strip()
+    assert target == text
+
+
+def test_write_network_text_complete_graphs():
+    lines = []
+    write = lines.append
+    for k in [0, 1, 2, 3, 4, 5]:
+        g = nx.generators.complete_graph(k)
+        write(f"--- undirected k={k} ---")
+        nx.write_network_text(g, path=write, end="")
+
+    for k in [0, 1, 2, 3, 4, 5]:
+        g = nx.generators.complete_graph(k, nx.DiGraph)
+        write(f"--- directed k={k} ---")
+        nx.write_network_text(g, path=write, end="")
+    text = "\n".join(lines)
+    target = dedent(
+        """
+        --- undirected k=0 ---
+        ╙
+        --- undirected k=1 ---
+        ╙── 0
+        --- undirected k=2 ---
+        ╙── 0
+            └── 1
+        --- undirected k=3 ---
+        ╙── 0
+            ├── 1
+            │   └── 2 ─ 0
+            └──  ...
+        --- undirected k=4 ---
+        ╙── 0
+            ├── 1
+            │   ├── 2 ─ 0
+            │   │   └── 3 ─ 0, 1
+            │   └──  ...
+            └──  ...
+        --- undirected k=5 ---
+        ╙── 0
+            ├── 1
+            │   ├── 2 ─ 0
+            │   │   ├── 3 ─ 0, 1
+            │   │   │   └── 4 ─ 0, 1, 2
+            │   │   └──  ...
+            │   └──  ...
+            └──  ...
+        --- directed k=0 ---
+        ╙
+        --- directed k=1 ---
+        ╙── 0
+        --- directed k=2 ---
+        ╙── 0 ╾ 1
+            └─╼ 1
+                └─╼  ...
+        --- directed k=3 ---
+        ╙── 0 ╾ 1, 2
+            ├─╼ 1 ╾ 2
+            │   ├─╼ 2 ╾ 0
+            │   │   └─╼  ...
+            │   └─╼  ...
+            └─╼  ...
+        --- directed k=4 ---
+        ╙── 0 ╾ 1, 2, 3
+            ├─╼ 1 ╾ 2, 3
+            │   ├─╼ 2 ╾ 0, 3
+            │   │   ├─╼ 3 ╾ 0, 1
+            │   │   │   └─╼  ...
+            │   │   └─╼  ...
+            │   └─╼  ...
+            └─╼  ...
+        --- directed k=5 ---
+        ╙── 0 ╾ 1, 2, 3, 4
+            ├─╼ 1 ╾ 2, 3, 4
+            │   ├─╼ 2 ╾ 0, 3, 4
+            │   │   ├─╼ 3 ╾ 0, 1, 4
+            │   │   │   ├─╼ 4 ╾ 0, 1, 2
+            │   │   │   │   └─╼  ...
+            │   │   │   └─╼  ...
+            │   │   └─╼  ...
+            │   └─╼  ...
+            └─╼  ...
+        """
+    ).strip()
+    assert target == text
+
+
+def test_write_network_text_multiple_sources():
+    g = nx.DiGraph()
+    g.add_edge(1, 2)
+    g.add_edge(1, 3)
+    g.add_edge(2, 4)
+    g.add_edge(3, 5)
+    g.add_edge(3, 6)
+    g.add_edge(5, 4)
+    g.add_edge(4, 1)
+    g.add_edge(1, 5)
+    lines = []
+    write = lines.append
+    # Use each node as the starting point to demonstrate how the representation
+    # changes.
+    nodes = sorted(g.nodes())
+    for n in nodes:
+        write(f"--- source node: {n} ---")
+        nx.write_network_text(g, path=write, sources=[n], end="")
+    text = "\n".join(lines)
+    target = dedent(
+        """
+        --- source node: 1 ---
+        ╙── 1 ╾ 4
+            ├─╼ 2
+            │   └─╼ 4 ╾ 5
+            │       └─╼  ...
+            ├─╼ 3
+            │   ├─╼ 5 ╾ 1
+            │   │   └─╼  ...
+            │   └─╼ 6
+            └─╼  ...
+        --- source node: 2 ---
+        ╙── 2 ╾ 1
+            └─╼ 4 ╾ 5
+                └─╼ 1
+                    ├─╼ 3
+                    │   ├─╼ 5 ╾ 1
+                    │   │   └─╼  ...
+                    │   └─╼ 6
+                    └─╼  ...
+        --- source node: 3 ---
+        ╙── 3 ╾ 1
+            ├─╼ 5 ╾ 1
+            │   └─╼ 4 ╾ 2
+            │       └─╼ 1
+            │           ├─╼ 2
+            │           │   └─╼  ...
+            │           └─╼  ...
+            └─╼ 6
+        --- source node: 4 ---
+        ╙── 4 ╾ 2, 5
+            └─╼ 1
+                ├─╼ 2
+                │   └─╼  ...
+                ├─╼ 3
+                │   ├─╼ 5 ╾ 1
+                │   │   └─╼  ...
+                │   └─╼ 6
+                └─╼  ...
+        --- source node: 5 ---
+        ╙── 5 ╾ 3, 1
+            └─╼ 4 ╾ 2
+                └─╼ 1
+                    ├─╼ 2
+                    │   └─╼  ...
+                    ├─╼ 3
+                    │   ├─╼ 6
+                    │   └─╼  ...
+                    └─╼  ...
+        --- source node: 6 ---
+        ╙── 6 ╾ 3
+        """
+    ).strip()
+    assert target == text
+
+
+def test_write_network_text_star_graph():
+    graph = nx.star_graph(5, create_using=nx.Graph)
+    lines = []
+    write = lines.append
+    nx.write_network_text(graph, path=write, end="")
+    text = "\n".join(lines)
+    target = dedent(
+        """
+        ╙── 1
+            └── 0
+                ├── 2
+                ├── 3
+                ├── 4
+                └── 5
+        """
+    ).strip()
+    assert target == text
+
+
+def test_write_network_text_path_graph():
+    graph = nx.path_graph(3, create_using=nx.Graph)
+    lines = []
+    write = lines.append
+    nx.write_network_text(graph, path=write, end="")
+    text = "\n".join(lines)
+    target = dedent(
+        """
+        ╙── 0
+            └── 1
+                └── 2
+        """
+    ).strip()
+    assert target == text
+
+
+def test_write_network_text_lollipop_graph():
+    graph = nx.lollipop_graph(4, 2, create_using=nx.Graph)
+    lines = []
+    write = lines.append
+    nx.write_network_text(graph, path=write, end="")
+    text = "\n".join(lines)
+    target = dedent(
+        """
+        ╙── 5
+            └── 4
+                └── 3
+                    ├── 0
+                    │   ├── 1 ─ 3
+                    │   │   └── 2 ─ 0, 3
+                    │   └──  ...
+                    └──  ...
+        """
+    ).strip()
+    assert target == text
+
+
+def test_write_network_text_wheel_graph():
+    graph = nx.wheel_graph(7, create_using=nx.Graph)
+    lines = []
+    write = lines.append
+    nx.write_network_text(graph, path=write, end="")
+    text = "\n".join(lines)
+    target = dedent(
+        """
+        ╙── 1
+            ├── 0
+            │   ├── 2 ─ 1
+            │   │   └── 3 ─ 0
+            │   │       └── 4 ─ 0
+            │   │           └── 5 ─ 0
+            │   │               └── 6 ─ 0, 1
+            │   └──  ...
+            └──  ...
+        """
+    ).strip()
+    assert target == text
+
+
+def test_write_network_text_circular_ladder_graph():
+    graph = nx.circular_ladder_graph(4, create_using=nx.Graph)
+    lines = []
+    write = lines.append
+    nx.write_network_text(graph, path=write, end="")
+    text = "\n".join(lines)
+    target = dedent(
+        """
+        ╙── 0
+            ├── 1
+            │   ├── 2
+            │   │   ├── 3 ─ 0
+            │   │   │   └── 7
+            │   │   │       ├── 6 ─ 2
+            │   │   │       │   └── 5 ─ 1
+            │   │   │       │       └── 4 ─ 0, 7
+            │   │   │       └──  ...
+            │   │   └──  ...
+            │   └──  ...
+            └──  ...
+        """
+    ).strip()
+    assert target == text
+
+
+def test_write_network_text_dorogovtsev_goltsev_mendes_graph():
+    graph = nx.dorogovtsev_goltsev_mendes_graph(4, create_using=nx.Graph)
+    lines = []
+    write = lines.append
+    nx.write_network_text(graph, path=write, end="")
+    text = "\n".join(lines)
+    target = dedent(
+        """
+        ╙── 15
+            ├── 0
+            │   ├── 1 ─ 15
+            │   │   ├── 2 ─ 0
+            │   │   │   ├── 4 ─ 0
+            │   │   │   │   ├── 9 ─ 0
+            │   │   │   │   │   ├── 22 ─ 0
+            │   │   │   │   │   └── 38 ─ 4
+            │   │   │   │   ├── 13 ─ 2
+            │   │   │   │   │   ├── 34 ─ 2
+            │   │   │   │   │   └── 39 ─ 4
+            │   │   │   │   ├── 18 ─ 0
+            │   │   │   │   ├── 30 ─ 2
+            │   │   │   │   └──  ...
+            │   │   │   ├── 5 ─ 1
+            │   │   │   │   ├── 12 ─ 1
+            │   │   │   │   │   ├── 29 ─ 1
+            │   │   │   │   │   └── 40 ─ 5
+            │   │   │   │   ├── 14 ─ 2
+            │   │   │   │   │   ├── 35 ─ 2
+            │   │   │   │   │   └── 41 ─ 5
+            │   │   │   │   ├── 25 ─ 1
+            │   │   │   │   ├── 31 ─ 2
+            │   │   │   │   └──  ...
+            │   │   │   ├── 7 ─ 0
+            │   │   │   │   ├── 20 ─ 0
+            │   │   │   │   └── 32 ─ 2
+            │   │   │   ├── 10 ─ 1
+            │   │   │   │   ├── 27 ─ 1
+            │   │   │   │   └── 33 ─ 2
+            │   │   │   ├── 16 ─ 0
+            │   │   │   ├── 23 ─ 1
+            │   │   │   └──  ...
+            │   │   ├── 3 ─ 0
+            │   │   │   ├── 8 ─ 0
+            │   │   │   │   ├── 21 ─ 0
+            │   │   │   │   └── 36 ─ 3
+            │   │   │   ├── 11 ─ 1
+            │   │   │   │   ├── 28 ─ 1
+            │   │   │   │   └── 37 ─ 3
+            │   │   │   ├── 17 ─ 0
+            │   │   │   ├── 24 ─ 1
+            │   │   │   └──  ...
+            │   │   ├── 6 ─ 0
+            │   │   │   ├── 19 ─ 0
+            │   │   │   └── 26 ─ 1
+            │   │   └──  ...
+            │   └──  ...
+            └──  ...
+        """
+    ).strip()
+    assert target == text
+
+
+def test_write_network_text_tree_max_depth():
+    orig = nx.balanced_tree(r=1, h=3, create_using=nx.DiGraph)
+    lines = []
+    write = lines.append
+    write("--- directed case, max_depth=0 ---")
+    nx.write_network_text(orig, path=write, end="", max_depth=0)
+    write("--- directed case, max_depth=1 ---")
+    nx.write_network_text(orig, path=write, end="", max_depth=1)
+    write("--- directed case, max_depth=2 ---")
+    nx.write_network_text(orig, path=write, end="", max_depth=2)
+    write("--- directed case, max_depth=3 ---")
+    nx.write_network_text(orig, path=write, end="", max_depth=3)
+    write("--- directed case, max_depth=4 ---")
+    nx.write_network_text(orig, path=write, end="", max_depth=4)
+    write("--- undirected case, max_depth=0 ---")
+    nx.write_network_text(orig.to_undirected(), path=write, end="", max_depth=0)
+    write("--- undirected case, max_depth=1 ---")
+    nx.write_network_text(orig.to_undirected(), path=write, end="", max_depth=1)
+    write("--- undirected case, max_depth=2 ---")
+    nx.write_network_text(orig.to_undirected(), path=write, end="", max_depth=2)
+    write("--- undirected case, max_depth=3 ---")
+    nx.write_network_text(orig.to_undirected(), path=write, end="", max_depth=3)
+    write("--- undirected case, max_depth=4 ---")
+    nx.write_network_text(orig.to_undirected(), path=write, end="", max_depth=4)
+    text = "\n".join(lines)
+    target = dedent(
+        """
+        --- directed case, max_depth=0 ---
+        ╙ ...
+        --- directed case, max_depth=1 ---
+        ╙── 0
+            └─╼  ...
+        --- directed case, max_depth=2 ---
+        ╙── 0
+            └─╼ 1
+                └─╼  ...
+        --- directed case, max_depth=3 ---
+        ╙── 0
+            └─╼ 1
+                └─╼ 2
+                    └─╼  ...
+        --- directed case, max_depth=4 ---
+        ╙── 0
+            └─╼ 1
+                └─╼ 2
+                    └─╼ 3
+        --- undirected case, max_depth=0 ---
+        ╙ ...
+        --- undirected case, max_depth=1 ---
+        ╙── 0 ─ 1
+            └──  ...
+        --- undirected case, max_depth=2 ---
+        ╙── 0
+            └── 1 ─ 2
+                └──  ...
+        --- undirected case, max_depth=3 ---
+        ╙── 0
+            └── 1
+                └── 2 ─ 3
+                    └──  ...
+        --- undirected case, max_depth=4 ---
+        ╙── 0
+            └── 1
+                └── 2
+                    └── 3
+        """
+    ).strip()
+    assert target == text
+
+
+def test_write_network_text_graph_max_depth():
+    orig = nx.erdos_renyi_graph(10, 0.15, directed=True, seed=40392)
+    lines = []
+    write = lines.append
+    write("--- directed case, max_depth=None ---")
+    nx.write_network_text(orig, path=write, end="", max_depth=None)
+    write("--- directed case, max_depth=0 ---")
+    nx.write_network_text(orig, path=write, end="", max_depth=0)
+    write("--- directed case, max_depth=1 ---")
+    nx.write_network_text(orig, path=write, end="", max_depth=1)
+    write("--- directed case, max_depth=2 ---")
+    nx.write_network_text(orig, path=write, end="", max_depth=2)
+    write("--- directed case, max_depth=3 ---")
+    nx.write_network_text(orig, path=write, end="", max_depth=3)
+    write("--- undirected case, max_depth=None ---")
+    nx.write_network_text(orig.to_undirected(), path=write, end="", max_depth=None)
+    write("--- undirected case, max_depth=0 ---")
+    nx.write_network_text(orig.to_undirected(), path=write, end="", max_depth=0)
+    write("--- undirected case, max_depth=1 ---")
+    nx.write_network_text(orig.to_undirected(), path=write, end="", max_depth=1)
+    write("--- undirected case, max_depth=2 ---")
+    nx.write_network_text(orig.to_undirected(), path=write, end="", max_depth=2)
+    write("--- undirected case, max_depth=3 ---")
+    nx.write_network_text(orig.to_undirected(), path=write, end="", max_depth=3)
+    text = "\n".join(lines)
+    target = dedent(
+        """
+        --- directed case, max_depth=None ---
+        ╟── 4
+        ╎   ├─╼ 0 ╾ 3
+        ╎   ├─╼ 5 ╾ 7
+        ╎   │   └─╼ 3
+        ╎   │       ├─╼ 1 ╾ 9
+        ╎   │       │   └─╼ 9 ╾ 6
+        ╎   │       │       ├─╼ 6
+        ╎   │       │       │   └─╼  ...
+        ╎   │       │       ├─╼ 7 ╾ 4
+        ╎   │       │       │   ├─╼ 2
+        ╎   │       │       │   └─╼  ...
+        ╎   │       │       └─╼  ...
+        ╎   │       └─╼  ...
+        ╎   └─╼  ...
+        ╙── 8
+        --- directed case, max_depth=0 ---
+        ╙ ...
+        --- directed case, max_depth=1 ---
+        ╟── 4
+        ╎   └─╼  ...
+        ╙── 8
+        --- directed case, max_depth=2 ---
+        ╟── 4
+        ╎   ├─╼ 0 ╾ 3
+        ╎   ├─╼ 5 ╾ 7
+        ╎   │   └─╼  ...
+        ╎   └─╼ 7 ╾ 9
+        ╎       └─╼  ...
+        ╙── 8
+        --- directed case, max_depth=3 ---
+        ╟── 4
+        ╎   ├─╼ 0 ╾ 3
+        ╎   ├─╼ 5 ╾ 7
+        ╎   │   └─╼ 3
+        ╎   │       └─╼  ...
+        ╎   └─╼ 7 ╾ 9
+        ╎       ├─╼ 2
+        ╎       └─╼  ...
+        ╙── 8
+        --- undirected case, max_depth=None ---
+        ╟── 8
+        ╙── 2
+            └── 7
+                ├── 4
+                │   ├── 0
+                │   │   └── 3
+                │   │       ├── 1
+                │   │       │   └── 9 ─ 7
+                │   │       │       └── 6
+                │   │       └── 5 ─ 4, 7
+                │   └──  ...
+                └──  ...
+        --- undirected case, max_depth=0 ---
+        ╙ ...
+        --- undirected case, max_depth=1 ---
+        ╟── 8
+        ╙── 2 ─ 7
+            └──  ...
+        --- undirected case, max_depth=2 ---
+        ╟── 8
+        ╙── 2
+            └── 7 ─ 4, 5, 9
+                └──  ...
+        --- undirected case, max_depth=3 ---
+        ╟── 8
+        ╙── 2
+            └── 7
+                ├── 4 ─ 0, 5
+                │   └──  ...
+                ├── 5 ─ 4, 3
+                │   └──  ...
+                └── 9 ─ 1, 6
+                    └──  ...
+        """
+    ).strip()
+    assert target == text
+
+
+def test_write_network_text_clique_max_depth():
+    orig = nx.complete_graph(5, nx.DiGraph)
+    lines = []
+    write = lines.append
+    write("--- directed case, max_depth=None ---")
+    nx.write_network_text(orig, path=write, end="", max_depth=None)
+    write("--- directed case, max_depth=0 ---")
+    nx.write_network_text(orig, path=write, end="", max_depth=0)
+    write("--- directed case, max_depth=1 ---")
+    nx.write_network_text(orig, path=write, end="", max_depth=1)
+    write("--- directed case, max_depth=2 ---")
+    nx.write_network_text(orig, path=write, end="", max_depth=2)
+    write("--- directed case, max_depth=3 ---")
+    nx.write_network_text(orig, path=write, end="", max_depth=3)
+    write("--- undirected case, max_depth=None ---")
+    nx.write_network_text(orig.to_undirected(), path=write, end="", max_depth=None)
+    write("--- undirected case, max_depth=0 ---")
+    nx.write_network_text(orig.to_undirected(), path=write, end="", max_depth=0)
+    write("--- undirected case, max_depth=1 ---")
+    nx.write_network_text(orig.to_undirected(), path=write, end="", max_depth=1)
+    write("--- undirected case, max_depth=2 ---")
+    nx.write_network_text(orig.to_undirected(), path=write, end="", max_depth=2)
+    write("--- undirected case, max_depth=3 ---")
+    nx.write_network_text(orig.to_undirected(), path=write, end="", max_depth=3)
+    text = "\n".join(lines)
+    target = dedent(
+        """
+        --- directed case, max_depth=None ---
+        ╙── 0 ╾ 1, 2, 3, 4
+            ├─╼ 1 ╾ 2, 3, 4
+            │   ├─╼ 2 ╾ 0, 3, 4
+            │   │   ├─╼ 3 ╾ 0, 1, 4
+            │   │   │   ├─╼ 4 ╾ 0, 1, 2
+            │   │   │   │   └─╼  ...
+            │   │   │   └─╼  ...
+            │   │   └─╼  ...
+            │   └─╼  ...
+            └─╼  ...
+        --- directed case, max_depth=0 ---
+        ╙ ...
+        --- directed case, max_depth=1 ---
+        ╙── 0 ╾ 1, 2, 3, 4
+            └─╼  ...
+        --- directed case, max_depth=2 ---
+        ╙── 0 ╾ 1, 2, 3, 4
+            ├─╼ 1 ╾ 2, 3, 4
+            │   └─╼  ...
+            ├─╼ 2 ╾ 1, 3, 4
+            │   └─╼  ...
+            ├─╼ 3 ╾ 1, 2, 4
+            │   └─╼  ...
+            └─╼ 4 ╾ 1, 2, 3
+                └─╼  ...
+        --- directed case, max_depth=3 ---
+        ╙── 0 ╾ 1, 2, 3, 4
+            ├─╼ 1 ╾ 2, 3, 4
+            │   ├─╼ 2 ╾ 0, 3, 4
+            │   │   └─╼  ...
+            │   ├─╼ 3 ╾ 0, 2, 4
+            │   │   └─╼  ...
+            │   ├─╼ 4 ╾ 0, 2, 3
+            │   │   └─╼  ...
+            │   └─╼  ...
+            └─╼  ...
+        --- undirected case, max_depth=None ---
+        ╙── 0
+            ├── 1
+            │   ├── 2 ─ 0
+            │   │   ├── 3 ─ 0, 1
+            │   │   │   └── 4 ─ 0, 1, 2
+            │   │   └──  ...
+            │   └──  ...
+            └──  ...
+        --- undirected case, max_depth=0 ---
+        ╙ ...
+        --- undirected case, max_depth=1 ---
+        ╙── 0 ─ 1, 2, 3, 4
+            └──  ...
+        --- undirected case, max_depth=2 ---
+        ╙── 0
+            ├── 1 ─ 2, 3, 4
+            │   └──  ...
+            ├── 2 ─ 1, 3, 4
+            │   └──  ...
+            ├── 3 ─ 1, 2, 4
+            │   └──  ...
+            └── 4 ─ 1, 2, 3
+        --- undirected case, max_depth=3 ---
+        ╙── 0
+            ├── 1
+            │   ├── 2 ─ 0, 3, 4
+            │   │   └──  ...
+            │   ├── 3 ─ 0, 2, 4
+            │   │   └──  ...
+            │   └── 4 ─ 0, 2, 3
+            └──  ...
+        """
+    ).strip()
+    assert target == text
+
+
+def test_write_network_text_custom_label():
+    # Create a directed forest with labels
+    graph = nx.erdos_renyi_graph(5, 0.4, directed=True, seed=359222358)
+    for node in graph.nodes:
+        graph.nodes[node]["label"] = f"Node({node})"
+        graph.nodes[node]["chr"] = chr(node + ord("a") - 1)
+        if node % 2 == 0:
+            graph.nodes[node]["part"] = chr(node + ord("a"))
+
+    lines = []
+    write = lines.append
+    write("--- when with_labels=True, uses the 'label' attr ---")
+    nx.write_network_text(graph, path=write, with_labels=True, end="", max_depth=None)
+    write("--- when with_labels=False, uses str(node) value ---")
+    nx.write_network_text(graph, path=write, with_labels=False, end="", max_depth=None)
+    write("--- when with_labels is a string, use that attr ---")
+    nx.write_network_text(graph, path=write, with_labels="chr", end="", max_depth=None)
+    write("--- fallback to str(node) when the attr does not exist ---")
+    nx.write_network_text(graph, path=write, with_labels="part", end="", max_depth=None)
+
+    text = "\n".join(lines)
+    target = dedent(
+        """
+        --- when with_labels=True, uses the 'label' attr ---
+        ╙── Node(1)
+            └─╼ Node(3) ╾ Node(2)
+                ├─╼ Node(0)
+                │   ├─╼ Node(2) ╾ Node(3), Node(4)
+                │   │   └─╼  ...
+                │   └─╼ Node(4)
+                │       └─╼  ...
+                └─╼  ...
+        --- when with_labels=False, uses str(node) value ---
+        ╙── 1
+            └─╼ 3 ╾ 2
+                ├─╼ 0
+                │   ├─╼ 2 ╾ 3, 4
+                │   │   └─╼  ...
+                │   └─╼ 4
+                │       └─╼  ...
+                └─╼  ...
+        --- when with_labels is a string, use that attr ---
+        ╙── a
+            └─╼ c ╾ b
+                ├─╼ `
+                │   ├─╼ b ╾ c, d
+                │   │   └─╼  ...
+                │   └─╼ d
+                │       └─╼  ...
+                └─╼  ...
+        --- fallback to str(node) when the attr does not exist ---
+        ╙── 1
+            └─╼ 3 ╾ c
+                ├─╼ a
+                │   ├─╼ c ╾ 3, e
+                │   │   └─╼  ...
+                │   └─╼ e
+                │       └─╼  ...
+                └─╼  ...
+        """
+    ).strip()
+    assert target == text
+
+
+def test_write_network_text_vertical_chains():
+    graph1 = nx.lollipop_graph(4, 2, create_using=nx.Graph)
+    graph1.add_edge(0, -1)
+    graph1.add_edge(-1, -2)
+    graph1.add_edge(-2, -3)
+
+    graph2 = graph1.to_directed()
+    graph2.remove_edges_from([(u, v) for u, v in graph2.edges if v > u])
+
+    lines = []
+    write = lines.append
+    write("--- Undirected UTF ---")
+    nx.write_network_text(graph1, path=write, end="", vertical_chains=True)
+    write("--- Undirected ASCI ---")
+    nx.write_network_text(
+        graph1, path=write, end="", vertical_chains=True, ascii_only=True
+    )
+    write("--- Directed UTF ---")
+    nx.write_network_text(graph2, path=write, end="", vertical_chains=True)
+    write("--- Directed ASCI ---")
+    nx.write_network_text(
+        graph2, path=write, end="", vertical_chains=True, ascii_only=True
+    )
+
+    text = "\n".join(lines)
+    target = dedent(
+        """
+        --- Undirected UTF ---
+        ╙── 5
+            │
+            4
+            │
+            3
+            ├── 0
+            │   ├── 1 ─ 3
+            │   │   │
+            │   │   2 ─ 0, 3
+            │   ├── -1
+            │   │   │
+            │   │   -2
+            │   │   │
+            │   │   -3
+            │   └──  ...
+            └──  ...
+        --- Undirected ASCI ---
+        +-- 5
+            |
+            4
+            |
+            3
+            |-- 0
+            |   |-- 1 - 3
+            |   |   |
+            |   |   2 - 0, 3
+            |   |-- -1
+            |   |   |
+            |   |   -2
+            |   |   |
+            |   |   -3
+            |   L--  ...
+            L--  ...
+        --- Directed UTF ---
+        ╙── 5
+            ╽
+            4
+            ╽
+            3
+            ├─╼ 0 ╾ 1, 2
+            │   ╽
+            │   -1
+            │   ╽
+            │   -2
+            │   ╽
+            │   -3
+            ├─╼ 1 ╾ 2
+            │   └─╼  ...
+            └─╼ 2
+                └─╼  ...
+        --- Directed ASCI ---
+        +-- 5
+            !
+            4
+            !
+            3
+            |-> 0 <- 1, 2
+            |   !
+            |   -1
+            |   !
+            |   -2
+            |   !
+            |   -3
+            |-> 1 <- 2
+            |   L->  ...
+            L-> 2
+                L->  ...
+        """
+    ).strip()
+    assert target == text
+
+
+def test_collapse_directed():
+    graph = nx.balanced_tree(r=2, h=3, create_using=nx.DiGraph)
+    lines = []
+    write = lines.append
+    write("--- Original ---")
+    nx.write_network_text(graph, path=write, end="")
+    graph.nodes[1]["collapse"] = True
+    write("--- Collapse Node 1 ---")
+    nx.write_network_text(graph, path=write, end="")
+    write("--- Add alternate path (5, 3) to collapsed zone")
+    graph.add_edge(5, 3)
+    nx.write_network_text(graph, path=write, end="")
+    write("--- Collapse Node 0 ---")
+    graph.nodes[0]["collapse"] = True
+    nx.write_network_text(graph, path=write, end="")
+    text = "\n".join(lines)
+    target = dedent(
+        """
+        --- Original ---
+        ╙── 0
+            ├─╼ 1
+            │   ├─╼ 3
+            │   │   ├─╼ 7
+            │   │   └─╼ 8
+            │   └─╼ 4
+            │       ├─╼ 9
+            │       └─╼ 10
+            └─╼ 2
+                ├─╼ 5
+                │   ├─╼ 11
+                │   └─╼ 12
+                └─╼ 6
+                    ├─╼ 13
+                    └─╼ 14
+        --- Collapse Node 1 ---
+        ╙── 0
+            ├─╼ 1
+            │   └─╼  ...
+            └─╼ 2
+                ├─╼ 5
+                │   ├─╼ 11
+                │   └─╼ 12
+                └─╼ 6
+                    ├─╼ 13
+                    └─╼ 14
+        --- Add alternate path (5, 3) to collapsed zone
+        ╙── 0
+            ├─╼ 1
+            │   └─╼  ...
+            └─╼ 2
+                ├─╼ 5
+                │   ├─╼ 11
+                │   ├─╼ 12
+                │   └─╼ 3 ╾ 1
+                │       ├─╼ 7
+                │       └─╼ 8
+                └─╼ 6
+                    ├─╼ 13
+                    └─╼ 14
+        --- Collapse Node 0 ---
+        ╙── 0
+            └─╼  ...
+        """
+    ).strip()
+    assert target == text
+
+
+def test_collapse_undirected():
+    graph = nx.balanced_tree(r=2, h=3, create_using=nx.Graph)
+    lines = []
+    write = lines.append
+    write("--- Original ---")
+    nx.write_network_text(graph, path=write, end="", sources=[0])
+    graph.nodes[1]["collapse"] = True
+    write("--- Collapse Node 1 ---")
+    nx.write_network_text(graph, path=write, end="", sources=[0])
+    write("--- Add alternate path (5, 3) to collapsed zone")
+    graph.add_edge(5, 3)
+    nx.write_network_text(graph, path=write, end="", sources=[0])
+    write("--- Collapse Node 0 ---")
+    graph.nodes[0]["collapse"] = True
+    nx.write_network_text(graph, path=write, end="", sources=[0])
+    text = "\n".join(lines)
+    target = dedent(
+        """
+        --- Original ---
+        ╙── 0
+            ├── 1
+            │   ├── 3
+            │   │   ├── 7
+            │   │   └── 8
+            │   └── 4
+            │       ├── 9
+            │       └── 10
+            └── 2
+                ├── 5
+                │   ├── 11
+                │   └── 12
+                └── 6
+                    ├── 13
+                    └── 14
+        --- Collapse Node 1 ---
+        ╙── 0
+            ├── 1 ─ 3, 4
+            │   └──  ...
+            └── 2
+                ├── 5
+                │   ├── 11
+                │   └── 12
+                └── 6
+                    ├── 13
+                    └── 14
+        --- Add alternate path (5, 3) to collapsed zone
+        ╙── 0
+            ├── 1 ─ 3, 4
+            │   └──  ...
+            └── 2
+                ├── 5
+                │   ├── 11
+                │   ├── 12
+                │   └── 3 ─ 1
+                │       ├── 7
+                │       └── 8
+                └── 6
+                    ├── 13
+                    └── 14
+        --- Collapse Node 0 ---
+        ╙── 0 ─ 1, 2
+            └──  ...
+        """
+    ).strip()
+    assert target == text
+
+
+def generate_test_graphs():
+    """
+    Generate a gauntlet of different test graphs with different properties
+    """
+    import random
+
+    rng = random.Random(976689776)
+    num_randomized = 3
+
+    for directed in [0, 1]:
+        cls = nx.DiGraph if directed else nx.Graph
+
+        for num_nodes in range(17):
+            # Disconnected graph
+            graph = cls()
+            graph.add_nodes_from(range(num_nodes))
+            yield graph
+
+            # Randomize graphs
+            if num_nodes > 0:
+                for p in [0.1, 0.3, 0.5, 0.7, 0.9]:
+                    for seed in range(num_randomized):
+                        graph = nx.erdos_renyi_graph(
+                            num_nodes, p, directed=directed, seed=rng
+                        )
+                        yield graph
+
+                yield nx.complete_graph(num_nodes, cls)
+
+        yield nx.path_graph(3, create_using=cls)
+        yield nx.balanced_tree(r=1, h=3, create_using=cls)
+        if not directed:
+            yield nx.circular_ladder_graph(4, create_using=cls)
+            yield nx.star_graph(5, create_using=cls)
+            yield nx.lollipop_graph(4, 2, create_using=cls)
+            yield nx.wheel_graph(7, create_using=cls)
+            yield nx.dorogovtsev_goltsev_mendes_graph(4, create_using=cls)
+
+
+@pytest.mark.parametrize(
+    ("vertical_chains", "ascii_only"),
+    tuple(
+        [
+            (vertical_chains, ascii_only)
+            for vertical_chains in [0, 1]
+            for ascii_only in [0, 1]
+        ]
+    ),
+)
+def test_network_text_round_trip(vertical_chains, ascii_only):
+    """
+    Write the graph to network text format, then parse it back in, assert it is
+    the same as the original graph. Passing this test is strong validation of
+    both the format generator and parser.
+    """
+    from networkx.readwrite.text import _parse_network_text
+
+    for graph in generate_test_graphs():
+        graph = nx.relabel_nodes(graph, {n: str(n) for n in graph.nodes})
+        lines = list(
+            nx.generate_network_text(
+                graph, vertical_chains=vertical_chains, ascii_only=ascii_only
+            )
+        )
+        new = _parse_network_text(lines)
+        try:
+            assert new.nodes == graph.nodes
+            assert new.edges == graph.edges
+        except Exception:
+            nx.write_network_text(graph)
+            raise
diff --git a/.venv/lib/python3.12/site-packages/networkx/readwrite/text.py b/.venv/lib/python3.12/site-packages/networkx/readwrite/text.py
new file mode 100644
index 00000000..c54901d1
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/readwrite/text.py
@@ -0,0 +1,852 @@
+"""
+Text-based visual representations of graphs
+"""
+
+import sys
+import warnings
+from collections import defaultdict
+
+import networkx as nx
+from networkx.utils import open_file
+
+__all__ = ["generate_network_text", "write_network_text"]
+
+
+class BaseGlyphs:
+    @classmethod
+    def as_dict(cls):
+        return {
+            a: getattr(cls, a)
+            for a in dir(cls)
+            if not a.startswith("_") and a != "as_dict"
+        }
+
+
+class AsciiBaseGlyphs(BaseGlyphs):
+    empty: str = "+"
+    newtree_last: str = "+-- "
+    newtree_mid: str = "+-- "
+    endof_forest: str = "    "
+    within_forest: str = ":   "
+    within_tree: str = "|   "
+
+
+class AsciiDirectedGlyphs(AsciiBaseGlyphs):
+    last: str = "L-> "
+    mid: str = "|-> "
+    backedge: str = "<-"
+    vertical_edge: str = "!"
+
+
+class AsciiUndirectedGlyphs(AsciiBaseGlyphs):
+    last: str = "L-- "
+    mid: str = "|-- "
+    backedge: str = "-"
+    vertical_edge: str = "|"
+
+
+class UtfBaseGlyphs(BaseGlyphs):
+    # Notes on available box and arrow characters
+    # https://en.wikipedia.org/wiki/Box-drawing_character
+    # https://stackoverflow.com/questions/2701192/triangle-arrow
+    empty: str = "╙"
+    newtree_last: str = "╙── "
+    newtree_mid: str = "╟── "
+    endof_forest: str = "    "
+    within_forest: str = "╎   "
+    within_tree: str = "│   "
+
+
+class UtfDirectedGlyphs(UtfBaseGlyphs):
+    last: str = "└─╼ "
+    mid: str = "├─╼ "
+    backedge: str = "╾"
+    vertical_edge: str = "╽"
+
+
+class UtfUndirectedGlyphs(UtfBaseGlyphs):
+    last: str = "└── "
+    mid: str = "├── "
+    backedge: str = "─"
+    vertical_edge: str = "│"
+
+
+def generate_network_text(
+    graph,
+    with_labels=True,
+    sources=None,
+    max_depth=None,
+    ascii_only=False,
+    vertical_chains=False,
+):
+    """Generate lines in the "network text" format
+
+    This works via a depth-first traversal of the graph and writing a line for
+    each unique node encountered. Non-tree edges are written to the right of
+    each node, and connection to a non-tree edge is indicated with an ellipsis.
+    This representation works best when the input graph is a forest, but any
+    graph can be represented.
+
+    This notation is original to networkx, although it is simple enough that it
+    may be known in existing literature. See #5602 for details. The procedure
+    is summarized as follows:
+
+    1. Given a set of source nodes (which can be specified, or automatically
+    discovered via finding the (strongly) connected components and choosing one
+    node with minimum degree from each), we traverse the graph in depth first
+    order.
+
+    2. Each reachable node will be printed exactly once on it's own line.
+
+    3. Edges are indicated in one of four ways:
+
+        a. a parent "L-style" connection on the upper left. This corresponds to
+        a traversal in the directed DFS tree.
+
+        b. a backref "<-style" connection shown directly on the right. For
+        directed graphs, these are drawn for any incoming edges to a node that
+        is not a parent edge. For undirected graphs, these are drawn for only
+        the non-parent edges that have already been represented (The edges that
+        have not been represented will be handled in the recursive case).
+
+        c. a child "L-style" connection on the lower right. Drawing of the
+        children are handled recursively.
+
+        d. if ``vertical_chains`` is true, and a parent node only has one child
+        a "vertical-style" edge is drawn between them.
+
+    4. The children of each node (wrt the directed DFS tree) are drawn
+    underneath and to the right of it. In the case that a child node has already
+    been drawn the connection is replaced with an ellipsis ("...") to indicate
+    that there is one or more connections represented elsewhere.
+
+    5. If a maximum depth is specified, an edge to nodes past this maximum
+    depth will be represented by an ellipsis.
+
+    6. If a node has a truthy "collapse" value, then we do not traverse past
+    that node.
+
+    Parameters
+    ----------
+    graph : nx.DiGraph | nx.Graph
+        Graph to represent
+
+    with_labels : bool | str
+        If True will use the "label" attribute of a node to display if it
+        exists otherwise it will use the node value itself. If given as a
+        string, then that attribute name will be used instead of "label".
+        Defaults to True.
+
+    sources : List
+        Specifies which nodes to start traversal from. Note: nodes that are not
+        reachable from one of these sources may not be shown. If unspecified,
+        the minimal set of nodes needed to reach all others will be used.
+
+    max_depth : int | None
+        The maximum depth to traverse before stopping. Defaults to None.
+
+    ascii_only : Boolean
+        If True only ASCII characters are used to construct the visualization
+
+    vertical_chains : Boolean
+        If True, chains of nodes will be drawn vertically when possible.
+
+    Yields
+    ------
+    str : a line of generated text
+
+    Examples
+    --------
+    >>> graph = nx.path_graph(10)
+    >>> graph.add_node("A")
+    >>> graph.add_node("B")
+    >>> graph.add_node("C")
+    >>> graph.add_node("D")
+    >>> graph.add_edge(9, "A")
+    >>> graph.add_edge(9, "B")
+    >>> graph.add_edge(9, "C")
+    >>> graph.add_edge("C", "D")
+    >>> graph.add_edge("C", "E")
+    >>> graph.add_edge("C", "F")
+    >>> nx.write_network_text(graph)
+    ╙── 0
+        └── 1
+            └── 2
+                └── 3
+                    └── 4
+                        └── 5
+                            └── 6
+                                └── 7
+                                    └── 8
+                                        └── 9
+                                            ├── A
+                                            ├── B
+                                            └── C
+                                                ├── D
+                                                ├── E
+                                                └── F
+    >>> nx.write_network_text(graph, vertical_chains=True)
+    ╙── 0
+        │
+        1
+        │
+        2
+        │
+        3
+        │
+        4
+        │
+        5
+        │
+        6
+        │
+        7
+        │
+        8
+        │
+        9
+        ├── A
+        ├── B
+        └── C
+            ├── D
+            ├── E
+            └── F
+    """
+    from typing import Any, NamedTuple
+
+    class StackFrame(NamedTuple):
+        parent: Any
+        node: Any
+        indents: list
+        this_islast: bool
+        this_vertical: bool
+
+    collapse_attr = "collapse"
+
+    is_directed = graph.is_directed()
+
+    if is_directed:
+        glyphs = AsciiDirectedGlyphs if ascii_only else UtfDirectedGlyphs
+        succ = graph.succ
+        pred = graph.pred
+    else:
+        glyphs = AsciiUndirectedGlyphs if ascii_only else UtfUndirectedGlyphs
+        succ = graph.adj
+        pred = graph.adj
+
+    if isinstance(with_labels, str):
+        label_attr = with_labels
+    elif with_labels:
+        label_attr = "label"
+    else:
+        label_attr = None
+
+    if max_depth == 0:
+        yield glyphs.empty + " ..."
+    elif len(graph.nodes) == 0:
+        yield glyphs.empty
+    else:
+        # If the nodes to traverse are unspecified, find the minimal set of
+        # nodes that will reach the entire graph
+        if sources is None:
+            sources = _find_sources(graph)
+
+        # Populate the stack with each:
+        # 1. parent node in the DFS tree (or None for root nodes),
+        # 2. the current node in the DFS tree
+        # 2. a list of indentations indicating depth
+        # 3. a flag indicating if the node is the final one to be written.
+        # Reverse the stack so sources are popped in the correct order.
+        last_idx = len(sources) - 1
+        stack = [
+            StackFrame(None, node, [], (idx == last_idx), False)
+            for idx, node in enumerate(sources)
+        ][::-1]
+
+        num_skipped_children = defaultdict(lambda: 0)
+        seen_nodes = set()
+        while stack:
+            parent, node, indents, this_islast, this_vertical = stack.pop()
+
+            if node is not Ellipsis:
+                skip = node in seen_nodes
+                if skip:
+                    # Mark that we skipped a parent's child
+                    num_skipped_children[parent] += 1
+
+                if this_islast:
+                    # If we reached the last child of a parent, and we skipped
+                    # any of that parents children, then we should emit an
+                    # ellipsis at the end after this.
+                    if num_skipped_children[parent] and parent is not None:
+                        # Append the ellipsis to be emitted last
+                        next_islast = True
+                        try_frame = StackFrame(
+                            node, Ellipsis, indents, next_islast, False
+                        )
+                        stack.append(try_frame)
+
+                        # Redo this frame, but not as a last object
+                        next_islast = False
+                        try_frame = StackFrame(
+                            parent, node, indents, next_islast, this_vertical
+                        )
+                        stack.append(try_frame)
+                        continue
+
+                if skip:
+                    continue
+                seen_nodes.add(node)
+
+            if not indents:
+                # Top level items (i.e. trees in the forest) get different
+                # glyphs to indicate they are not actually connected
+                if this_islast:
+                    this_vertical = False
+                    this_prefix = indents + [glyphs.newtree_last]
+                    next_prefix = indents + [glyphs.endof_forest]
+                else:
+                    this_prefix = indents + [glyphs.newtree_mid]
+                    next_prefix = indents + [glyphs.within_forest]
+
+            else:
+                # Non-top-level items
+                if this_vertical:
+                    this_prefix = indents
+                    next_prefix = indents
+                else:
+                    if this_islast:
+                        this_prefix = indents + [glyphs.last]
+                        next_prefix = indents + [glyphs.endof_forest]
+                    else:
+                        this_prefix = indents + [glyphs.mid]
+                        next_prefix = indents + [glyphs.within_tree]
+
+            if node is Ellipsis:
+                label = " ..."
+                suffix = ""
+                children = []
+            else:
+                if label_attr is not None:
+                    label = str(graph.nodes[node].get(label_attr, node))
+                else:
+                    label = str(node)
+
+                # Determine if we want to show the children of this node.
+                if collapse_attr is not None:
+                    collapse = graph.nodes[node].get(collapse_attr, False)
+                else:
+                    collapse = False
+
+                # Determine:
+                # (1) children to traverse into after showing this node.
+                # (2) parents to immediately show to the right of this node.
+                if is_directed:
+                    # In the directed case we must show every successor node
+                    # note: it may be skipped later, but we don't have that
+                    # information here.
+                    children = list(succ[node])
+                    # In the directed case we must show every predecessor
+                    # except for parent we directly traversed from.
+                    handled_parents = {parent}
+                else:
+                    # Showing only the unseen children results in a more
+                    # concise representation for the undirected case.
+                    children = [
+                        child for child in succ[node] if child not in seen_nodes
+                    ]
+
+                    # In the undirected case, parents are also children, so we
+                    # only need to immediately show the ones we can no longer
+                    # traverse
+                    handled_parents = {*children, parent}
+
+                if max_depth is not None and len(indents) == max_depth - 1:
+                    # Use ellipsis to indicate we have reached maximum depth
+                    if children:
+                        children = [Ellipsis]
+                    handled_parents = {parent}
+
+                if collapse:
+                    # Collapsing a node is the same as reaching maximum depth
+                    if children:
+                        children = [Ellipsis]
+                    handled_parents = {parent}
+
+                # The other parents are other predecessors of this node that
+                # are not handled elsewhere.
+                other_parents = [p for p in pred[node] if p not in handled_parents]
+                if other_parents:
+                    if label_attr is not None:
+                        other_parents_labels = ", ".join(
+                            [
+                                str(graph.nodes[p].get(label_attr, p))
+                                for p in other_parents
+                            ]
+                        )
+                    else:
+                        other_parents_labels = ", ".join(
+                            [str(p) for p in other_parents]
+                        )
+                    suffix = " ".join(["", glyphs.backedge, other_parents_labels])
+                else:
+                    suffix = ""
+
+            # Emit the line for this node, this will be called for each node
+            # exactly once.
+            if this_vertical:
+                yield "".join(this_prefix + [glyphs.vertical_edge])
+
+            yield "".join(this_prefix + [label, suffix])
+
+            if vertical_chains:
+                if is_directed:
+                    num_children = len(set(children))
+                else:
+                    num_children = len(set(children) - {parent})
+                # The next node can be drawn vertically if it is the only
+                # remaining child of this node.
+                next_is_vertical = num_children == 1
+            else:
+                next_is_vertical = False
+
+            # Push children on the stack in reverse order so they are popped in
+            # the original order.
+            for idx, child in enumerate(children[::-1]):
+                next_islast = idx == 0
+                try_frame = StackFrame(
+                    node, child, next_prefix, next_islast, next_is_vertical
+                )
+                stack.append(try_frame)
+
+
+@open_file(1, "w")
+def write_network_text(
+    graph,
+    path=None,
+    with_labels=True,
+    sources=None,
+    max_depth=None,
+    ascii_only=False,
+    end="\n",
+    vertical_chains=False,
+):
+    """Creates a nice text representation of a graph
+
+    This works via a depth-first traversal of the graph and writing a line for
+    each unique node encountered. Non-tree edges are written to the right of
+    each node, and connection to a non-tree edge is indicated with an ellipsis.
+    This representation works best when the input graph is a forest, but any
+    graph can be represented.
+
+    Parameters
+    ----------
+    graph : nx.DiGraph | nx.Graph
+        Graph to represent
+
+    path : string or file or callable or None
+       Filename or file handle for data output.
+       if a function, then it will be called for each generated line.
+       if None, this will default to "sys.stdout.write"
+
+    with_labels : bool | str
+        If True will use the "label" attribute of a node to display if it
+        exists otherwise it will use the node value itself. If given as a
+        string, then that attribute name will be used instead of "label".
+        Defaults to True.
+
+    sources : List
+        Specifies which nodes to start traversal from. Note: nodes that are not
+        reachable from one of these sources may not be shown. If unspecified,
+        the minimal set of nodes needed to reach all others will be used.
+
+    max_depth : int | None
+        The maximum depth to traverse before stopping. Defaults to None.
+
+    ascii_only : Boolean
+        If True only ASCII characters are used to construct the visualization
+
+    end : string
+        The line ending character
+
+    vertical_chains : Boolean
+        If True, chains of nodes will be drawn vertically when possible.
+
+    Examples
+    --------
+    >>> graph = nx.balanced_tree(r=2, h=2, create_using=nx.DiGraph)
+    >>> nx.write_network_text(graph)
+    ╙── 0
+        ├─╼ 1
+        │   ├─╼ 3
+        │   └─╼ 4
+        └─╼ 2
+            ├─╼ 5
+            └─╼ 6
+
+    >>> # A near tree with one non-tree edge
+    >>> graph.add_edge(5, 1)
+    >>> nx.write_network_text(graph)
+    ╙── 0
+        ├─╼ 1 ╾ 5
+        │   ├─╼ 3
+        │   └─╼ 4
+        └─╼ 2
+            ├─╼ 5
+            │   └─╼  ...
+            └─╼ 6
+
+    >>> graph = nx.cycle_graph(5)
+    >>> nx.write_network_text(graph)
+    ╙── 0
+        ├── 1
+        │   └── 2
+        │       └── 3
+        │           └── 4 ─ 0
+        └──  ...
+
+    >>> graph = nx.cycle_graph(5, nx.DiGraph)
+    >>> nx.write_network_text(graph, vertical_chains=True)
+    ╙── 0 ╾ 4
+        ╽
+        1
+        ╽
+        2
+        ╽
+        3
+        ╽
+        4
+        └─╼  ...
+
+    >>> nx.write_network_text(graph, vertical_chains=True, ascii_only=True)
+    +-- 0 <- 4
+        !
+        1
+        !
+        2
+        !
+        3
+        !
+        4
+        L->  ...
+
+    >>> graph = nx.generators.barbell_graph(4, 2)
+    >>> nx.write_network_text(graph, vertical_chains=False)
+    ╙── 4
+        ├── 5
+        │   └── 6
+        │       ├── 7
+        │       │   ├── 8 ─ 6
+        │       │   │   └── 9 ─ 6, 7
+        │       │   └──  ...
+        │       └──  ...
+        └── 3
+            ├── 0
+            │   ├── 1 ─ 3
+            │   │   └── 2 ─ 0, 3
+            │   └──  ...
+            └──  ...
+    >>> nx.write_network_text(graph, vertical_chains=True)
+    ╙── 4
+        ├── 5
+        │   │
+        │   6
+        │   ├── 7
+        │   │   ├── 8 ─ 6
+        │   │   │   │
+        │   │   │   9 ─ 6, 7
+        │   │   └──  ...
+        │   └──  ...
+        └── 3
+            ├── 0
+            │   ├── 1 ─ 3
+            │   │   │
+            │   │   2 ─ 0, 3
+            │   └──  ...
+            └──  ...
+
+    >>> graph = nx.complete_graph(5, create_using=nx.Graph)
+    >>> nx.write_network_text(graph)
+    ╙── 0
+        ├── 1
+        │   ├── 2 ─ 0
+        │   │   ├── 3 ─ 0, 1
+        │   │   │   └── 4 ─ 0, 1, 2
+        │   │   └──  ...
+        │   └──  ...
+        └──  ...
+
+    >>> graph = nx.complete_graph(3, create_using=nx.DiGraph)
+    >>> nx.write_network_text(graph)
+    ╙── 0 ╾ 1, 2
+        ├─╼ 1 ╾ 2
+        │   ├─╼ 2 ╾ 0
+        │   │   └─╼  ...
+        │   └─╼  ...
+        └─╼  ...
+    """
+    if path is None:
+        # The path is unspecified, write to stdout
+        _write = sys.stdout.write
+    elif hasattr(path, "write"):
+        # The path is already an open file
+        _write = path.write
+    elif callable(path):
+        # The path is a custom callable
+        _write = path
+    else:
+        raise TypeError(type(path))
+
+    for line in generate_network_text(
+        graph,
+        with_labels=with_labels,
+        sources=sources,
+        max_depth=max_depth,
+        ascii_only=ascii_only,
+        vertical_chains=vertical_chains,
+    ):
+        _write(line + end)
+
+
+def _find_sources(graph):
+    """
+    Determine a minimal set of nodes such that the entire graph is reachable
+    """
+    # For each connected part of the graph, choose at least
+    # one node as a starting point, preferably without a parent
+    if graph.is_directed():
+        # Choose one node from each SCC with minimum in_degree
+        sccs = list(nx.strongly_connected_components(graph))
+        # condensing the SCCs forms a dag, the nodes in this graph with
+        # 0 in-degree correspond to the SCCs from which the minimum set
+        # of nodes from which all other nodes can be reached.
+        scc_graph = nx.condensation(graph, sccs)
+        supernode_to_nodes = {sn: [] for sn in scc_graph.nodes()}
+        # Note: the order of mapping differs between pypy and cpython
+        # so we have to loop over graph nodes for consistency
+        mapping = scc_graph.graph["mapping"]
+        for n in graph.nodes:
+            sn = mapping[n]
+            supernode_to_nodes[sn].append(n)
+        sources = []
+        for sn in scc_graph.nodes():
+            if scc_graph.in_degree[sn] == 0:
+                scc = supernode_to_nodes[sn]
+                node = min(scc, key=lambda n: graph.in_degree[n])
+                sources.append(node)
+    else:
+        # For undirected graph, the entire graph will be reachable as
+        # long as we consider one node from every connected component
+        sources = [
+            min(cc, key=lambda n: graph.degree[n])
+            for cc in nx.connected_components(graph)
+        ]
+        sources = sorted(sources, key=lambda n: graph.degree[n])
+    return sources
+
+
+def _parse_network_text(lines):
+    """Reconstructs a graph from a network text representation.
+
+    This is mainly used for testing.  Network text is for display, not
+    serialization, as such this cannot parse all network text representations
+    because node labels can be ambiguous with the glyphs and indentation used
+    to represent edge structure. Additionally, there is no way to determine if
+    disconnected graphs were originally directed or undirected.
+
+    Parameters
+    ----------
+    lines : list or iterator of strings
+        Input data in network text format
+
+    Returns
+    -------
+    G: NetworkX graph
+        The graph corresponding to the lines in network text format.
+    """
+    from itertools import chain
+    from typing import Any, NamedTuple, Union
+
+    class ParseStackFrame(NamedTuple):
+        node: Any
+        indent: int
+        has_vertical_child: int | None
+
+    initial_line_iter = iter(lines)
+
+    is_ascii = None
+    is_directed = None
+
+    ##############
+    # Initial Pass
+    ##############
+
+    # Do an initial pass over the lines to determine what type of graph it is.
+    # Remember what these lines were, so we can reiterate over them in the
+    # parsing pass.
+    initial_lines = []
+    try:
+        first_line = next(initial_line_iter)
+    except StopIteration:
+        ...
+    else:
+        initial_lines.append(first_line)
+        # The first character indicates if it is an ASCII or UTF graph
+        first_char = first_line[0]
+        if first_char in {
+            UtfBaseGlyphs.empty,
+            UtfBaseGlyphs.newtree_mid[0],
+            UtfBaseGlyphs.newtree_last[0],
+        }:
+            is_ascii = False
+        elif first_char in {
+            AsciiBaseGlyphs.empty,
+            AsciiBaseGlyphs.newtree_mid[0],
+            AsciiBaseGlyphs.newtree_last[0],
+        }:
+            is_ascii = True
+        else:
+            raise AssertionError(f"Unexpected first character: {first_char}")
+
+    if is_ascii:
+        directed_glyphs = AsciiDirectedGlyphs.as_dict()
+        undirected_glyphs = AsciiUndirectedGlyphs.as_dict()
+    else:
+        directed_glyphs = UtfDirectedGlyphs.as_dict()
+        undirected_glyphs = UtfUndirectedGlyphs.as_dict()
+
+    # For both directed / undirected glyphs, determine which glyphs never
+    # appear as substrings in the other undirected / directed glyphs.  Glyphs
+    # with this property unambiguously indicates if a graph is directed /
+    # undirected.
+    directed_items = set(directed_glyphs.values())
+    undirected_items = set(undirected_glyphs.values())
+    unambiguous_directed_items = []
+    for item in directed_items:
+        other_items = undirected_items
+        other_supersets = [other for other in other_items if item in other]
+        if not other_supersets:
+            unambiguous_directed_items.append(item)
+    unambiguous_undirected_items = []
+    for item in undirected_items:
+        other_items = directed_items
+        other_supersets = [other for other in other_items if item in other]
+        if not other_supersets:
+            unambiguous_undirected_items.append(item)
+
+    for line in initial_line_iter:
+        initial_lines.append(line)
+        if any(item in line for item in unambiguous_undirected_items):
+            is_directed = False
+            break
+        elif any(item in line for item in unambiguous_directed_items):
+            is_directed = True
+            break
+
+    if is_directed is None:
+        # Not enough information to determine, choose undirected by default
+        is_directed = False
+
+    glyphs = directed_glyphs if is_directed else undirected_glyphs
+
+    # the backedge symbol by itself can be ambiguous, but with spaces around it
+    # becomes unambiguous.
+    backedge_symbol = " " + glyphs["backedge"] + " "
+
+    # Reconstruct an iterator over all of the lines.
+    parsing_line_iter = chain(initial_lines, initial_line_iter)
+
+    ##############
+    # Parsing Pass
+    ##############
+
+    edges = []
+    nodes = []
+    is_empty = None
+
+    noparent = object()  # sentinel value
+
+    # keep a stack of previous nodes that could be parents of subsequent nodes
+    stack = [ParseStackFrame(noparent, -1, None)]
+
+    for line in parsing_line_iter:
+        if line == glyphs["empty"]:
+            # If the line is the empty glyph, we are done.
+            # There shouldn't be anything else after this.
+            is_empty = True
+            continue
+
+        if backedge_symbol in line:
+            # This line has one or more backedges, separate those out
+            node_part, backedge_part = line.split(backedge_symbol)
+            backedge_nodes = [u.strip() for u in backedge_part.split(", ")]
+            # Now the node can be parsed
+            node_part = node_part.rstrip()
+            prefix, node = node_part.rsplit(" ", 1)
+            node = node.strip()
+            # Add the backedges to the edge list
+            edges.extend([(u, node) for u in backedge_nodes])
+        else:
+            # No backedge, the tail of this line is the node
+            prefix, node = line.rsplit(" ", 1)
+            node = node.strip()
+
+        prev = stack.pop()
+
+        if node in glyphs["vertical_edge"]:
+            # Previous node is still the previous node, but we know it will
+            # have exactly one child, which will need to have its nesting level
+            # adjusted.
+            modified_prev = ParseStackFrame(
+                prev.node,
+                prev.indent,
+                True,
+            )
+            stack.append(modified_prev)
+            continue
+
+        # The length of the string before the node characters give us a hint
+        # about our nesting level. The only case where this doesn't work is
+        # when there are vertical chains, which is handled explicitly.
+        indent = len(prefix)
+        curr = ParseStackFrame(node, indent, None)
+
+        if prev.has_vertical_child:
+            # In this case we know prev must be the parent of our current line,
+            # so we don't have to search the stack. (which is good because the
+            # indentation check wouldn't work in this case).
+            ...
+        else:
+            # If the previous node nesting-level is greater than the current
+            # nodes nesting-level than the previous node was the end of a path,
+            # and is not our parent. We can safely pop nodes off the stack
+            # until we find one with a comparable nesting-level, which is our
+            # parent.
+            while curr.indent <= prev.indent:
+                prev = stack.pop()
+
+        if node == "...":
+            # The current previous node is no longer a valid parent,
+            # keep it popped from the stack.
+            stack.append(prev)
+        else:
+            # The previous and current nodes may still be parents, so add them
+            # back onto the stack.
+            stack.append(prev)
+            stack.append(curr)
+
+            # Add the node and the edge to its parent to the node / edge lists.
+            nodes.append(curr.node)
+            if prev.node is not noparent:
+                edges.append((prev.node, curr.node))
+
+    if is_empty:
+        # Sanity check
+        assert len(nodes) == 0
+
+    # Reconstruct the graph
+    cls = nx.DiGraph if is_directed else nx.Graph
+    new = cls()
+    new.add_nodes_from(nodes)
+    new.add_edges_from(edges)
+    return new