about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_graphmatrix.py
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_graphmatrix.py
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-4a52a71956a8d46fcb7294ac71734504bb09bcc2.tar.gz
two version of R2R are here HEAD master
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_graphmatrix.py')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_graphmatrix.py276
1 files changed, 276 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_graphmatrix.py b/.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_graphmatrix.py
new file mode 100644
index 00000000..519198bc
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/linalg/tests/test_graphmatrix.py
@@ -0,0 +1,276 @@
+import pytest
+
+np = pytest.importorskip("numpy")
+pytest.importorskip("scipy")
+
+import networkx as nx
+from networkx.exception import NetworkXError
+from networkx.generators.degree_seq import havel_hakimi_graph
+
+
+def test_incidence_matrix_simple():
+    deg = [3, 2, 2, 1, 0]
+    G = havel_hakimi_graph(deg)
+    deg = [(1, 0), (1, 0), (1, 0), (2, 0), (1, 0), (2, 1), (0, 1), (0, 1)]
+    MG = nx.random_clustered_graph(deg, seed=42)
+
+    I = nx.incidence_matrix(G, dtype=int).todense()
+    # fmt: off
+    expected = np.array(
+        [[1, 1, 1, 0],
+         [0, 1, 0, 1],
+         [1, 0, 0, 1],
+         [0, 0, 1, 0],
+         [0, 0, 0, 0]]
+    )
+    # fmt: on
+    np.testing.assert_equal(I, expected)
+
+    I = nx.incidence_matrix(MG, dtype=int).todense()
+    # fmt: off
+    expected = np.array(
+        [[1, 0, 0, 0, 0, 0, 0],
+         [1, 0, 0, 0, 0, 0, 0],
+         [0, 1, 0, 0, 0, 0, 0],
+         [0, 0, 0, 0, 0, 0, 0],
+         [0, 1, 0, 0, 0, 0, 0],
+         [0, 0, 0, 0, 1, 1, 0],
+         [0, 0, 0, 0, 0, 1, 1],
+         [0, 0, 0, 0, 1, 0, 1]]
+    )
+    # fmt: on
+    np.testing.assert_equal(I, expected)
+
+    with pytest.raises(NetworkXError):
+        nx.incidence_matrix(G, nodelist=[0, 1])
+
+
+class TestGraphMatrix:
+    @classmethod
+    def setup_class(cls):
+        deg = [3, 2, 2, 1, 0]
+        cls.G = havel_hakimi_graph(deg)
+        # fmt: off
+        cls.OI = np.array(
+            [[-1, -1, -1, 0],
+             [1, 0, 0, -1],
+             [0, 1, 0, 1],
+             [0, 0, 1, 0],
+             [0, 0, 0, 0]]
+        )
+        cls.A = np.array(
+            [[0, 1, 1, 1, 0],
+             [1, 0, 1, 0, 0],
+             [1, 1, 0, 0, 0],
+             [1, 0, 0, 0, 0],
+             [0, 0, 0, 0, 0]]
+        )
+        # fmt: on
+        cls.WG = havel_hakimi_graph(deg)
+        cls.WG.add_edges_from(
+            (u, v, {"weight": 0.5, "other": 0.3}) for (u, v) in cls.G.edges()
+        )
+        # fmt: off
+        cls.WA = np.array(
+            [[0, 0.5, 0.5, 0.5, 0],
+             [0.5, 0, 0.5, 0, 0],
+             [0.5, 0.5, 0, 0, 0],
+             [0.5, 0, 0, 0, 0],
+             [0, 0, 0, 0, 0]]
+        )
+        # fmt: on
+        cls.MG = nx.MultiGraph(cls.G)
+        cls.MG2 = cls.MG.copy()
+        cls.MG2.add_edge(0, 1)
+        # fmt: off
+        cls.MG2A = np.array(
+            [[0, 2, 1, 1, 0],
+             [2, 0, 1, 0, 0],
+             [1, 1, 0, 0, 0],
+             [1, 0, 0, 0, 0],
+             [0, 0, 0, 0, 0]]
+        )
+        cls.MGOI = np.array(
+            [[-1, -1, -1, -1, 0],
+             [1, 1, 0, 0, -1],
+             [0, 0, 1, 0, 1],
+             [0, 0, 0, 1, 0],
+             [0, 0, 0, 0, 0]]
+        )
+        # fmt: on
+        cls.no_edges_G = nx.Graph([(1, 2), (3, 2, {"weight": 8})])
+        cls.no_edges_A = np.array([[0, 0], [0, 0]])
+
+    def test_incidence_matrix(self):
+        "Conversion to incidence matrix"
+        I = nx.incidence_matrix(
+            self.G,
+            nodelist=sorted(self.G),
+            edgelist=sorted(self.G.edges()),
+            oriented=True,
+            dtype=int,
+        ).todense()
+        np.testing.assert_equal(I, self.OI)
+
+        I = nx.incidence_matrix(
+            self.G,
+            nodelist=sorted(self.G),
+            edgelist=sorted(self.G.edges()),
+            oriented=False,
+            dtype=int,
+        ).todense()
+        np.testing.assert_equal(I, np.abs(self.OI))
+
+        I = nx.incidence_matrix(
+            self.MG,
+            nodelist=sorted(self.MG),
+            edgelist=sorted(self.MG.edges()),
+            oriented=True,
+            dtype=int,
+        ).todense()
+        np.testing.assert_equal(I, self.OI)
+
+        I = nx.incidence_matrix(
+            self.MG,
+            nodelist=sorted(self.MG),
+            edgelist=sorted(self.MG.edges()),
+            oriented=False,
+            dtype=int,
+        ).todense()
+        np.testing.assert_equal(I, np.abs(self.OI))
+
+        I = nx.incidence_matrix(
+            self.MG2,
+            nodelist=sorted(self.MG2),
+            edgelist=sorted(self.MG2.edges()),
+            oriented=True,
+            dtype=int,
+        ).todense()
+        np.testing.assert_equal(I, self.MGOI)
+
+        I = nx.incidence_matrix(
+            self.MG2,
+            nodelist=sorted(self.MG),
+            edgelist=sorted(self.MG2.edges()),
+            oriented=False,
+            dtype=int,
+        ).todense()
+        np.testing.assert_equal(I, np.abs(self.MGOI))
+
+        I = nx.incidence_matrix(self.G, dtype=np.uint8)
+        assert I.dtype == np.uint8
+
+    def test_weighted_incidence_matrix(self):
+        I = nx.incidence_matrix(
+            self.WG,
+            nodelist=sorted(self.WG),
+            edgelist=sorted(self.WG.edges()),
+            oriented=True,
+            dtype=int,
+        ).todense()
+        np.testing.assert_equal(I, self.OI)
+
+        I = nx.incidence_matrix(
+            self.WG,
+            nodelist=sorted(self.WG),
+            edgelist=sorted(self.WG.edges()),
+            oriented=False,
+            dtype=int,
+        ).todense()
+        np.testing.assert_equal(I, np.abs(self.OI))
+
+        # np.testing.assert_equal(nx.incidence_matrix(self.WG,oriented=True,
+        #                                  weight='weight').todense(),0.5*self.OI)
+        # np.testing.assert_equal(nx.incidence_matrix(self.WG,weight='weight').todense(),
+        #              np.abs(0.5*self.OI))
+        # np.testing.assert_equal(nx.incidence_matrix(self.WG,oriented=True,weight='other').todense(),
+        #              0.3*self.OI)
+
+        I = nx.incidence_matrix(
+            self.WG,
+            nodelist=sorted(self.WG),
+            edgelist=sorted(self.WG.edges()),
+            oriented=True,
+            weight="weight",
+        ).todense()
+        np.testing.assert_equal(I, 0.5 * self.OI)
+
+        I = nx.incidence_matrix(
+            self.WG,
+            nodelist=sorted(self.WG),
+            edgelist=sorted(self.WG.edges()),
+            oriented=False,
+            weight="weight",
+        ).todense()
+        np.testing.assert_equal(I, np.abs(0.5 * self.OI))
+
+        I = nx.incidence_matrix(
+            self.WG,
+            nodelist=sorted(self.WG),
+            edgelist=sorted(self.WG.edges()),
+            oriented=True,
+            weight="other",
+        ).todense()
+        np.testing.assert_equal(I, 0.3 * self.OI)
+
+        # WMG=nx.MultiGraph(self.WG)
+        # WMG.add_edge(0,1,weight=0.5,other=0.3)
+        # np.testing.assert_equal(nx.incidence_matrix(WMG,weight='weight').todense(),
+        #              np.abs(0.5*self.MGOI))
+        # np.testing.assert_equal(nx.incidence_matrix(WMG,weight='weight',oriented=True).todense(),
+        #              0.5*self.MGOI)
+        # np.testing.assert_equal(nx.incidence_matrix(WMG,weight='other',oriented=True).todense(),
+        #              0.3*self.MGOI)
+
+        WMG = nx.MultiGraph(self.WG)
+        WMG.add_edge(0, 1, weight=0.5, other=0.3)
+
+        I = nx.incidence_matrix(
+            WMG,
+            nodelist=sorted(WMG),
+            edgelist=sorted(WMG.edges(keys=True)),
+            oriented=True,
+            weight="weight",
+        ).todense()
+        np.testing.assert_equal(I, 0.5 * self.MGOI)
+
+        I = nx.incidence_matrix(
+            WMG,
+            nodelist=sorted(WMG),
+            edgelist=sorted(WMG.edges(keys=True)),
+            oriented=False,
+            weight="weight",
+        ).todense()
+        np.testing.assert_equal(I, np.abs(0.5 * self.MGOI))
+
+        I = nx.incidence_matrix(
+            WMG,
+            nodelist=sorted(WMG),
+            edgelist=sorted(WMG.edges(keys=True)),
+            oriented=True,
+            weight="other",
+        ).todense()
+        np.testing.assert_equal(I, 0.3 * self.MGOI)
+
+    def test_adjacency_matrix(self):
+        "Conversion to adjacency matrix"
+        np.testing.assert_equal(nx.adjacency_matrix(self.G).todense(), self.A)
+        np.testing.assert_equal(nx.adjacency_matrix(self.MG).todense(), self.A)
+        np.testing.assert_equal(nx.adjacency_matrix(self.MG2).todense(), self.MG2A)
+        np.testing.assert_equal(
+            nx.adjacency_matrix(self.G, nodelist=[0, 1]).todense(), self.A[:2, :2]
+        )
+        np.testing.assert_equal(nx.adjacency_matrix(self.WG).todense(), self.WA)
+        np.testing.assert_equal(
+            nx.adjacency_matrix(self.WG, weight=None).todense(), self.A
+        )
+        np.testing.assert_equal(
+            nx.adjacency_matrix(self.MG2, weight=None).todense(), self.MG2A
+        )
+        np.testing.assert_equal(
+            nx.adjacency_matrix(self.WG, weight="other").todense(), 0.6 * self.WA
+        )
+        np.testing.assert_equal(
+            nx.adjacency_matrix(self.no_edges_G, nodelist=[1, 3]).todense(),
+            self.no_edges_A,
+        )