about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/networkx/linalg/spectrum.py
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/networkx/linalg/spectrum.py
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-4a52a71956a8d46fcb7294ac71734504bb09bcc2.tar.gz
two version of R2R are here HEAD master
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/linalg/spectrum.py')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/linalg/spectrum.py186
1 files changed, 186 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/linalg/spectrum.py b/.venv/lib/python3.12/site-packages/networkx/linalg/spectrum.py
new file mode 100644
index 00000000..079b1855
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/linalg/spectrum.py
@@ -0,0 +1,186 @@
+"""
+Eigenvalue spectrum of graphs.
+"""
+
+import networkx as nx
+
+__all__ = [
+    "laplacian_spectrum",
+    "adjacency_spectrum",
+    "modularity_spectrum",
+    "normalized_laplacian_spectrum",
+    "bethe_hessian_spectrum",
+]
+
+
+@nx._dispatchable(edge_attrs="weight")
+def laplacian_spectrum(G, weight="weight"):
+    """Returns eigenvalues of the Laplacian of G
+
+    Parameters
+    ----------
+    G : graph
+       A NetworkX graph
+
+    weight : string or None, optional (default='weight')
+       The edge data key used to compute each value in the matrix.
+       If None, then each edge has weight 1.
+
+    Returns
+    -------
+    evals : NumPy array
+      Eigenvalues
+
+    Notes
+    -----
+    For MultiGraph/MultiDiGraph, the edges weights are summed.
+    See :func:`~networkx.convert_matrix.to_numpy_array` for other options.
+
+    See Also
+    --------
+    laplacian_matrix
+
+    Examples
+    --------
+    The multiplicity of 0 as an eigenvalue of the laplacian matrix is equal
+    to the number of connected components of G.
+
+    >>> G = nx.Graph()  # Create a graph with 5 nodes and 3 connected components
+    >>> G.add_nodes_from(range(5))
+    >>> G.add_edges_from([(0, 2), (3, 4)])
+    >>> nx.laplacian_spectrum(G)
+    array([0., 0., 0., 2., 2.])
+
+    """
+    import scipy as sp
+
+    return sp.linalg.eigvalsh(nx.laplacian_matrix(G, weight=weight).todense())
+
+
+@nx._dispatchable(edge_attrs="weight")
+def normalized_laplacian_spectrum(G, weight="weight"):
+    """Return eigenvalues of the normalized Laplacian of G
+
+    Parameters
+    ----------
+    G : graph
+       A NetworkX graph
+
+    weight : string or None, optional (default='weight')
+       The edge data key used to compute each value in the matrix.
+       If None, then each edge has weight 1.
+
+    Returns
+    -------
+    evals : NumPy array
+      Eigenvalues
+
+    Notes
+    -----
+    For MultiGraph/MultiDiGraph, the edges weights are summed.
+    See to_numpy_array for other options.
+
+    See Also
+    --------
+    normalized_laplacian_matrix
+    """
+    import scipy as sp
+
+    return sp.linalg.eigvalsh(
+        nx.normalized_laplacian_matrix(G, weight=weight).todense()
+    )
+
+
+@nx._dispatchable(edge_attrs="weight")
+def adjacency_spectrum(G, weight="weight"):
+    """Returns eigenvalues of the adjacency matrix of G.
+
+    Parameters
+    ----------
+    G : graph
+       A NetworkX graph
+
+    weight : string or None, optional (default='weight')
+       The edge data key used to compute each value in the matrix.
+       If None, then each edge has weight 1.
+
+    Returns
+    -------
+    evals : NumPy array
+      Eigenvalues
+
+    Notes
+    -----
+    For MultiGraph/MultiDiGraph, the edges weights are summed.
+    See to_numpy_array for other options.
+
+    See Also
+    --------
+    adjacency_matrix
+    """
+    import scipy as sp
+
+    return sp.linalg.eigvals(nx.adjacency_matrix(G, weight=weight).todense())
+
+
+@nx._dispatchable
+def modularity_spectrum(G):
+    """Returns eigenvalues of the modularity matrix of G.
+
+    Parameters
+    ----------
+    G : Graph
+       A NetworkX Graph or DiGraph
+
+    Returns
+    -------
+    evals : NumPy array
+      Eigenvalues
+
+    See Also
+    --------
+    modularity_matrix
+
+    References
+    ----------
+    .. [1] M. E. J. Newman, "Modularity and community structure in networks",
+       Proc. Natl. Acad. Sci. USA, vol. 103, pp. 8577-8582, 2006.
+    """
+    import scipy as sp
+
+    if G.is_directed():
+        return sp.linalg.eigvals(nx.directed_modularity_matrix(G))
+    else:
+        return sp.linalg.eigvals(nx.modularity_matrix(G))
+
+
+@nx._dispatchable
+def bethe_hessian_spectrum(G, r=None):
+    """Returns eigenvalues of the Bethe Hessian matrix of G.
+
+    Parameters
+    ----------
+    G : Graph
+       A NetworkX Graph or DiGraph
+
+    r : float
+       Regularizer parameter
+
+    Returns
+    -------
+    evals : NumPy array
+      Eigenvalues
+
+    See Also
+    --------
+    bethe_hessian_matrix
+
+    References
+    ----------
+    .. [1] A. Saade, F. Krzakala and L. Zdeborová
+       "Spectral clustering of graphs with the bethe hessian",
+       Advances in Neural Information Processing Systems. 2014.
+    """
+    import scipy as sp
+
+    return sp.linalg.eigvalsh(nx.bethe_hessian_matrix(G, r).todense())