aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/networkx/linalg/laplacianmatrix.py
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/networkx/linalg/laplacianmatrix.py
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are hereHEADmaster
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/linalg/laplacianmatrix.py')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/linalg/laplacianmatrix.py617
1 files changed, 617 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/linalg/laplacianmatrix.py b/.venv/lib/python3.12/site-packages/networkx/linalg/laplacianmatrix.py
new file mode 100644
index 00000000..d49ae491
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/linalg/laplacianmatrix.py
@@ -0,0 +1,617 @@
+"""Laplacian matrix of graphs.
+
+All calculations here are done using the out-degree. For Laplacians using
+in-degree, use `G.reverse(copy=False)` instead of `G` and take the transpose.
+
+The `laplacian_matrix` function provides an unnormalized matrix,
+while `normalized_laplacian_matrix`, `directed_laplacian_matrix`,
+and `directed_combinatorial_laplacian_matrix` are all normalized.
+"""
+
+import networkx as nx
+from networkx.utils import not_implemented_for
+
+__all__ = [
+ "laplacian_matrix",
+ "normalized_laplacian_matrix",
+ "total_spanning_tree_weight",
+ "directed_laplacian_matrix",
+ "directed_combinatorial_laplacian_matrix",
+]
+
+
+@nx._dispatchable(edge_attrs="weight")
+def laplacian_matrix(G, nodelist=None, weight="weight"):
+ """Returns the Laplacian matrix of G.
+
+ The graph Laplacian is the matrix L = D - A, where
+ A is the adjacency matrix and D is the diagonal matrix of node degrees.
+
+ Parameters
+ ----------
+ G : graph
+ A NetworkX graph
+
+ nodelist : list, optional
+ The rows and columns are ordered according to the nodes in nodelist.
+ If nodelist is None, then the ordering is produced by G.nodes().
+
+ weight : string or None, optional (default='weight')
+ The edge data key used to compute each value in the matrix.
+ If None, then each edge has weight 1.
+
+ Returns
+ -------
+ L : SciPy sparse array
+ The Laplacian matrix of G.
+
+ Notes
+ -----
+ For MultiGraph, the edges weights are summed.
+
+ This returns an unnormalized matrix. For a normalized output,
+ use `normalized_laplacian_matrix`, `directed_laplacian_matrix`,
+ or `directed_combinatorial_laplacian_matrix`.
+
+ This calculation uses the out-degree of the graph `G`. To use the
+ in-degree for calculations instead, use `G.reverse(copy=False)` and
+ take the transpose.
+
+ See Also
+ --------
+ :func:`~networkx.convert_matrix.to_numpy_array`
+ normalized_laplacian_matrix
+ directed_laplacian_matrix
+ directed_combinatorial_laplacian_matrix
+ :func:`~networkx.linalg.spectrum.laplacian_spectrum`
+
+ Examples
+ --------
+ For graphs with multiple connected components, L is permutation-similar
+ to a block diagonal matrix where each block is the respective Laplacian
+ matrix for each component.
+
+ >>> G = nx.Graph([(1, 2), (2, 3), (4, 5)])
+ >>> print(nx.laplacian_matrix(G).toarray())
+ [[ 1 -1 0 0 0]
+ [-1 2 -1 0 0]
+ [ 0 -1 1 0 0]
+ [ 0 0 0 1 -1]
+ [ 0 0 0 -1 1]]
+
+ >>> edges = [
+ ... (1, 2),
+ ... (2, 1),
+ ... (2, 4),
+ ... (4, 3),
+ ... (3, 4),
+ ... ]
+ >>> DiG = nx.DiGraph(edges)
+ >>> print(nx.laplacian_matrix(DiG).toarray())
+ [[ 1 -1 0 0]
+ [-1 2 -1 0]
+ [ 0 0 1 -1]
+ [ 0 0 -1 1]]
+
+ Notice that node 4 is represented by the third column and row. This is because
+ by default the row/column order is the order of `G.nodes` (i.e. the node added
+ order -- in the edgelist, 4 first appears in (2, 4), before node 3 in edge (4, 3).)
+ To control the node order of the matrix, use the `nodelist` argument.
+
+ >>> print(nx.laplacian_matrix(DiG, nodelist=[1, 2, 3, 4]).toarray())
+ [[ 1 -1 0 0]
+ [-1 2 0 -1]
+ [ 0 0 1 -1]
+ [ 0 0 -1 1]]
+
+ This calculation uses the out-degree of the graph `G`. To use the
+ in-degree for calculations instead, use `G.reverse(copy=False)` and
+ take the transpose.
+
+ >>> print(nx.laplacian_matrix(DiG.reverse(copy=False)).toarray().T)
+ [[ 1 -1 0 0]
+ [-1 1 -1 0]
+ [ 0 0 2 -1]
+ [ 0 0 -1 1]]
+
+ References
+ ----------
+ .. [1] Langville, Amy N., and Carl D. Meyer. Google’s PageRank and Beyond:
+ The Science of Search Engine Rankings. Princeton University Press, 2006.
+
+ """
+ import scipy as sp
+
+ if nodelist is None:
+ nodelist = list(G)
+ A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, format="csr")
+ n, m = A.shape
+ # TODO: rm csr_array wrapper when spdiags can produce arrays
+ D = sp.sparse.csr_array(sp.sparse.spdiags(A.sum(axis=1), 0, m, n, format="csr"))
+ return D - A
+
+
+@nx._dispatchable(edge_attrs="weight")
+def normalized_laplacian_matrix(G, nodelist=None, weight="weight"):
+ r"""Returns the normalized Laplacian matrix of G.
+
+ The normalized graph Laplacian is the matrix
+
+ .. math::
+
+ N = D^{-1/2} L D^{-1/2}
+
+ where `L` is the graph Laplacian and `D` is the diagonal matrix of
+ node degrees [1]_.
+
+ Parameters
+ ----------
+ G : graph
+ A NetworkX graph
+
+ nodelist : list, optional
+ The rows and columns are ordered according to the nodes in nodelist.
+ If nodelist is None, then the ordering is produced by G.nodes().
+
+ weight : string or None, optional (default='weight')
+ The edge data key used to compute each value in the matrix.
+ If None, then each edge has weight 1.
+
+ Returns
+ -------
+ N : SciPy sparse array
+ The normalized Laplacian matrix of G.
+
+ Notes
+ -----
+ For MultiGraph, the edges weights are summed.
+ See :func:`to_numpy_array` for other options.
+
+ If the Graph contains selfloops, D is defined as ``diag(sum(A, 1))``, where A is
+ the adjacency matrix [2]_.
+
+ This calculation uses the out-degree of the graph `G`. To use the
+ in-degree for calculations instead, use `G.reverse(copy=False)` and
+ take the transpose.
+
+ For an unnormalized output, use `laplacian_matrix`.
+
+ Examples
+ --------
+
+ >>> import numpy as np
+ >>> edges = [
+ ... (1, 2),
+ ... (2, 1),
+ ... (2, 4),
+ ... (4, 3),
+ ... (3, 4),
+ ... ]
+ >>> DiG = nx.DiGraph(edges)
+ >>> print(nx.normalized_laplacian_matrix(DiG).toarray())
+ [[ 1. -0.70710678 0. 0. ]
+ [-0.70710678 1. -0.70710678 0. ]
+ [ 0. 0. 1. -1. ]
+ [ 0. 0. -1. 1. ]]
+
+ Notice that node 4 is represented by the third column and row. This is because
+ by default the row/column order is the order of `G.nodes` (i.e. the node added
+ order -- in the edgelist, 4 first appears in (2, 4), before node 3 in edge (4, 3).)
+ To control the node order of the matrix, use the `nodelist` argument.
+
+ >>> print(nx.normalized_laplacian_matrix(DiG, nodelist=[1, 2, 3, 4]).toarray())
+ [[ 1. -0.70710678 0. 0. ]
+ [-0.70710678 1. 0. -0.70710678]
+ [ 0. 0. 1. -1. ]
+ [ 0. 0. -1. 1. ]]
+ >>> G = nx.Graph(edges)
+ >>> print(nx.normalized_laplacian_matrix(G).toarray())
+ [[ 1. -0.70710678 0. 0. ]
+ [-0.70710678 1. -0.5 0. ]
+ [ 0. -0.5 1. -0.70710678]
+ [ 0. 0. -0.70710678 1. ]]
+
+ See Also
+ --------
+ laplacian_matrix
+ normalized_laplacian_spectrum
+ directed_laplacian_matrix
+ directed_combinatorial_laplacian_matrix
+
+ References
+ ----------
+ .. [1] Fan Chung-Graham, Spectral Graph Theory,
+ CBMS Regional Conference Series in Mathematics, Number 92, 1997.
+ .. [2] Steve Butler, Interlacing For Weighted Graphs Using The Normalized
+ Laplacian, Electronic Journal of Linear Algebra, Volume 16, pp. 90-98,
+ March 2007.
+ .. [3] Langville, Amy N., and Carl D. Meyer. Google’s PageRank and Beyond:
+ The Science of Search Engine Rankings. Princeton University Press, 2006.
+ """
+ import numpy as np
+ import scipy as sp
+
+ if nodelist is None:
+ nodelist = list(G)
+ A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, format="csr")
+ n, _ = A.shape
+ diags = A.sum(axis=1)
+ # TODO: rm csr_array wrapper when spdiags can produce arrays
+ D = sp.sparse.csr_array(sp.sparse.spdiags(diags, 0, n, n, format="csr"))
+ L = D - A
+ with np.errstate(divide="ignore"):
+ diags_sqrt = 1.0 / np.sqrt(diags)
+ diags_sqrt[np.isinf(diags_sqrt)] = 0
+ # TODO: rm csr_array wrapper when spdiags can produce arrays
+ DH = sp.sparse.csr_array(sp.sparse.spdiags(diags_sqrt, 0, n, n, format="csr"))
+ return DH @ (L @ DH)
+
+
+@nx._dispatchable(edge_attrs="weight")
+def total_spanning_tree_weight(G, weight=None, root=None):
+ """
+ Returns the total weight of all spanning trees of `G`.
+
+ Kirchoff's Tree Matrix Theorem [1]_, [2]_ states that the determinant of any
+ cofactor of the Laplacian matrix of a graph is the number of spanning trees
+ in the graph. For a weighted Laplacian matrix, it is the sum across all
+ spanning trees of the multiplicative weight of each tree. That is, the
+ weight of each tree is the product of its edge weights.
+
+ For unweighted graphs, the total weight equals the number of spanning trees in `G`.
+
+ For directed graphs, the total weight follows by summing over all directed
+ spanning trees in `G` that start in the `root` node [3]_.
+
+ .. deprecated:: 3.3
+
+ ``total_spanning_tree_weight`` is deprecated and will be removed in v3.5.
+ Use ``nx.number_of_spanning_trees(G)`` instead.
+
+ Parameters
+ ----------
+ G : NetworkX Graph
+
+ weight : string or None, optional (default=None)
+ The key for the edge attribute holding the edge weight.
+ If None, then each edge has weight 1.
+
+ root : node (only required for directed graphs)
+ A node in the directed graph `G`.
+
+ Returns
+ -------
+ total_weight : float
+ Undirected graphs:
+ The sum of the total multiplicative weights for all spanning trees in `G`.
+ Directed graphs:
+ The sum of the total multiplicative weights for all spanning trees of `G`,
+ rooted at node `root`.
+
+ Raises
+ ------
+ NetworkXPointlessConcept
+ If `G` does not contain any nodes.
+
+ NetworkXError
+ If the graph `G` is not (weakly) connected,
+ or if `G` is directed and the root node is not specified or not in G.
+
+ Examples
+ --------
+ >>> G = nx.complete_graph(5)
+ >>> round(nx.total_spanning_tree_weight(G))
+ 125
+
+ >>> G = nx.Graph()
+ >>> G.add_edge(1, 2, weight=2)
+ >>> G.add_edge(1, 3, weight=1)
+ >>> G.add_edge(2, 3, weight=1)
+ >>> round(nx.total_spanning_tree_weight(G, "weight"))
+ 5
+
+ Notes
+ -----
+ Self-loops are excluded. Multi-edges are contracted in one edge
+ equal to the sum of the weights.
+
+ References
+ ----------
+ .. [1] Wikipedia
+ "Kirchhoff's theorem."
+ https://en.wikipedia.org/wiki/Kirchhoff%27s_theorem
+ .. [2] Kirchhoff, G. R.
+ Über die Auflösung der Gleichungen, auf welche man
+ bei der Untersuchung der linearen Vertheilung
+ Galvanischer Ströme geführt wird
+ Annalen der Physik und Chemie, vol. 72, pp. 497-508, 1847.
+ .. [3] Margoliash, J.
+ "Matrix-Tree Theorem for Directed Graphs"
+ https://www.math.uchicago.edu/~may/VIGRE/VIGRE2010/REUPapers/Margoliash.pdf
+ """
+ import warnings
+
+ warnings.warn(
+ (
+ "\n\ntotal_spanning_tree_weight is deprecated and will be removed in v3.5.\n"
+ "Use `nx.number_of_spanning_trees(G)` instead."
+ ),
+ category=DeprecationWarning,
+ stacklevel=3,
+ )
+
+ return nx.number_of_spanning_trees(G, weight=weight, root=root)
+
+
+###############################################################################
+# Code based on work from https://github.com/bjedwards
+
+
+@not_implemented_for("undirected")
+@not_implemented_for("multigraph")
+@nx._dispatchable(edge_attrs="weight")
+def directed_laplacian_matrix(
+ G, nodelist=None, weight="weight", walk_type=None, alpha=0.95
+):
+ r"""Returns the directed Laplacian matrix of G.
+
+ The graph directed Laplacian is the matrix
+
+ .. math::
+
+ L = I - \frac{1}{2} \left (\Phi^{1/2} P \Phi^{-1/2} + \Phi^{-1/2} P^T \Phi^{1/2} \right )
+
+ where `I` is the identity matrix, `P` is the transition matrix of the
+ graph, and `\Phi` a matrix with the Perron vector of `P` in the diagonal and
+ zeros elsewhere [1]_.
+
+ Depending on the value of walk_type, `P` can be the transition matrix
+ induced by a random walk, a lazy random walk, or a random walk with
+ teleportation (PageRank).
+
+ Parameters
+ ----------
+ G : DiGraph
+ A NetworkX graph
+
+ nodelist : list, optional
+ The rows and columns are ordered according to the nodes in nodelist.
+ If nodelist is None, then the ordering is produced by G.nodes().
+
+ weight : string or None, optional (default='weight')
+ The edge data key used to compute each value in the matrix.
+ If None, then each edge has weight 1.
+
+ walk_type : string or None, optional (default=None)
+ One of ``"random"``, ``"lazy"``, or ``"pagerank"``. If ``walk_type=None``
+ (the default), then a value is selected according to the properties of `G`:
+ - ``walk_type="random"`` if `G` is strongly connected and aperiodic
+ - ``walk_type="lazy"`` if `G` is strongly connected but not aperiodic
+ - ``walk_type="pagerank"`` for all other cases.
+
+ alpha : real
+ (1 - alpha) is the teleportation probability used with pagerank
+
+ Returns
+ -------
+ L : NumPy matrix
+ Normalized Laplacian of G.
+
+ Notes
+ -----
+ Only implemented for DiGraphs
+
+ The result is always a symmetric matrix.
+
+ This calculation uses the out-degree of the graph `G`. To use the
+ in-degree for calculations instead, use `G.reverse(copy=False)` and
+ take the transpose.
+
+ See Also
+ --------
+ laplacian_matrix
+ normalized_laplacian_matrix
+ directed_combinatorial_laplacian_matrix
+
+ References
+ ----------
+ .. [1] Fan Chung (2005).
+ Laplacians and the Cheeger inequality for directed graphs.
+ Annals of Combinatorics, 9(1), 2005
+ """
+ import numpy as np
+ import scipy as sp
+
+ # NOTE: P has type ndarray if walk_type=="pagerank", else csr_array
+ P = _transition_matrix(
+ G, nodelist=nodelist, weight=weight, walk_type=walk_type, alpha=alpha
+ )
+
+ n, m = P.shape
+
+ evals, evecs = sp.sparse.linalg.eigs(P.T, k=1)
+ v = evecs.flatten().real
+ p = v / v.sum()
+ # p>=0 by Perron-Frobenius Thm. Use abs() to fix roundoff across zero gh-6865
+ sqrtp = np.sqrt(np.abs(p))
+ Q = (
+ # TODO: rm csr_array wrapper when spdiags creates arrays
+ sp.sparse.csr_array(sp.sparse.spdiags(sqrtp, 0, n, n))
+ @ P
+ # TODO: rm csr_array wrapper when spdiags creates arrays
+ @ sp.sparse.csr_array(sp.sparse.spdiags(1.0 / sqrtp, 0, n, n))
+ )
+ # NOTE: This could be sparsified for the non-pagerank cases
+ I = np.identity(len(G))
+
+ return I - (Q + Q.T) / 2.0
+
+
+@not_implemented_for("undirected")
+@not_implemented_for("multigraph")
+@nx._dispatchable(edge_attrs="weight")
+def directed_combinatorial_laplacian_matrix(
+ G, nodelist=None, weight="weight", walk_type=None, alpha=0.95
+):
+ r"""Return the directed combinatorial Laplacian matrix of G.
+
+ The graph directed combinatorial Laplacian is the matrix
+
+ .. math::
+
+ L = \Phi - \frac{1}{2} \left (\Phi P + P^T \Phi \right)
+
+ where `P` is the transition matrix of the graph and `\Phi` a matrix
+ with the Perron vector of `P` in the diagonal and zeros elsewhere [1]_.
+
+ Depending on the value of walk_type, `P` can be the transition matrix
+ induced by a random walk, a lazy random walk, or a random walk with
+ teleportation (PageRank).
+
+ Parameters
+ ----------
+ G : DiGraph
+ A NetworkX graph
+
+ nodelist : list, optional
+ The rows and columns are ordered according to the nodes in nodelist.
+ If nodelist is None, then the ordering is produced by G.nodes().
+
+ weight : string or None, optional (default='weight')
+ The edge data key used to compute each value in the matrix.
+ If None, then each edge has weight 1.
+
+ walk_type : string or None, optional (default=None)
+ One of ``"random"``, ``"lazy"``, or ``"pagerank"``. If ``walk_type=None``
+ (the default), then a value is selected according to the properties of `G`:
+ - ``walk_type="random"`` if `G` is strongly connected and aperiodic
+ - ``walk_type="lazy"`` if `G` is strongly connected but not aperiodic
+ - ``walk_type="pagerank"`` for all other cases.
+
+ alpha : real
+ (1 - alpha) is the teleportation probability used with pagerank
+
+ Returns
+ -------
+ L : NumPy matrix
+ Combinatorial Laplacian of G.
+
+ Notes
+ -----
+ Only implemented for DiGraphs
+
+ The result is always a symmetric matrix.
+
+ This calculation uses the out-degree of the graph `G`. To use the
+ in-degree for calculations instead, use `G.reverse(copy=False)` and
+ take the transpose.
+
+ See Also
+ --------
+ laplacian_matrix
+ normalized_laplacian_matrix
+ directed_laplacian_matrix
+
+ References
+ ----------
+ .. [1] Fan Chung (2005).
+ Laplacians and the Cheeger inequality for directed graphs.
+ Annals of Combinatorics, 9(1), 2005
+ """
+ import scipy as sp
+
+ P = _transition_matrix(
+ G, nodelist=nodelist, weight=weight, walk_type=walk_type, alpha=alpha
+ )
+
+ n, m = P.shape
+
+ evals, evecs = sp.sparse.linalg.eigs(P.T, k=1)
+ v = evecs.flatten().real
+ p = v / v.sum()
+ # NOTE: could be improved by not densifying
+ # TODO: Rm csr_array wrapper when spdiags array creation becomes available
+ Phi = sp.sparse.csr_array(sp.sparse.spdiags(p, 0, n, n)).toarray()
+
+ return Phi - (Phi @ P + P.T @ Phi) / 2.0
+
+
+def _transition_matrix(G, nodelist=None, weight="weight", walk_type=None, alpha=0.95):
+ """Returns the transition matrix of G.
+
+ This is a row stochastic giving the transition probabilities while
+ performing a random walk on the graph. Depending on the value of walk_type,
+ P can be the transition matrix induced by a random walk, a lazy random walk,
+ or a random walk with teleportation (PageRank).
+
+ Parameters
+ ----------
+ G : DiGraph
+ A NetworkX graph
+
+ nodelist : list, optional
+ The rows and columns are ordered according to the nodes in nodelist.
+ If nodelist is None, then the ordering is produced by G.nodes().
+
+ weight : string or None, optional (default='weight')
+ The edge data key used to compute each value in the matrix.
+ If None, then each edge has weight 1.
+
+ walk_type : string or None, optional (default=None)
+ One of ``"random"``, ``"lazy"``, or ``"pagerank"``. If ``walk_type=None``
+ (the default), then a value is selected according to the properties of `G`:
+ - ``walk_type="random"`` if `G` is strongly connected and aperiodic
+ - ``walk_type="lazy"`` if `G` is strongly connected but not aperiodic
+ - ``walk_type="pagerank"`` for all other cases.
+
+ alpha : real
+ (1 - alpha) is the teleportation probability used with pagerank
+
+ Returns
+ -------
+ P : numpy.ndarray
+ transition matrix of G.
+
+ Raises
+ ------
+ NetworkXError
+ If walk_type not specified or alpha not in valid range
+ """
+ import numpy as np
+ import scipy as sp
+
+ if walk_type is None:
+ if nx.is_strongly_connected(G):
+ if nx.is_aperiodic(G):
+ walk_type = "random"
+ else:
+ walk_type = "lazy"
+ else:
+ walk_type = "pagerank"
+
+ A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, dtype=float)
+ n, m = A.shape
+ if walk_type in ["random", "lazy"]:
+ # TODO: Rm csr_array wrapper when spdiags array creation becomes available
+ DI = sp.sparse.csr_array(sp.sparse.spdiags(1.0 / A.sum(axis=1), 0, n, n))
+ if walk_type == "random":
+ P = DI @ A
+ else:
+ # TODO: Rm csr_array wrapper when identity array creation becomes available
+ I = sp.sparse.csr_array(sp.sparse.identity(n))
+ P = (I + DI @ A) / 2.0
+
+ elif walk_type == "pagerank":
+ if not (0 < alpha < 1):
+ raise nx.NetworkXError("alpha must be between 0 and 1")
+ # this is using a dense representation. NOTE: This should be sparsified!
+ A = A.toarray()
+ # add constant to dangling nodes' row
+ A[A.sum(axis=1) == 0, :] = 1 / n
+ # normalize
+ A = A / A.sum(axis=1)[np.newaxis, :].T
+ P = alpha * A + (1 - alpha) / n
+ else:
+ raise nx.NetworkXError("walk_type must be random, lazy, or pagerank")
+
+ return P