diff options
author | S. Solomon Darnell | 2025-03-28 21:52:21 -0500 |
---|---|---|
committer | S. Solomon Darnell | 2025-03-28 21:52:21 -0500 |
commit | 4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch) | |
tree | ee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/networkx/generators/tests/test_classic.py | |
parent | cc961e04ba734dd72309fb548a2f97d67d578813 (diff) | |
download | gn-ai-master.tar.gz |
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/generators/tests/test_classic.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/networkx/generators/tests/test_classic.py | 640 |
1 files changed, 640 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/generators/tests/test_classic.py b/.venv/lib/python3.12/site-packages/networkx/generators/tests/test_classic.py new file mode 100644 index 00000000..9353c7f5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/generators/tests/test_classic.py @@ -0,0 +1,640 @@ +""" +==================== +Generators - Classic +==================== + +Unit tests for various classic graph generators in generators/classic.py +""" + +import itertools +import typing + +import pytest + +import networkx as nx +from networkx.algorithms.isomorphism.isomorph import graph_could_be_isomorphic +from networkx.utils import edges_equal, nodes_equal + +is_isomorphic = graph_could_be_isomorphic + + +class TestGeneratorClassic: + def test_balanced_tree(self): + # balanced_tree(r,h) is a tree with (r**(h+1)-1)/(r-1) edges + for r, h in [(2, 2), (3, 3), (6, 2)]: + t = nx.balanced_tree(r, h) + order = t.order() + assert order == (r ** (h + 1) - 1) / (r - 1) + assert nx.is_connected(t) + assert t.size() == order - 1 + dh = nx.degree_histogram(t) + assert dh[0] == 0 # no nodes of 0 + assert dh[1] == r**h # nodes of degree 1 are leaves + assert dh[r] == 1 # root is degree r + assert dh[r + 1] == order - r**h - 1 # everyone else is degree r+1 + assert len(dh) == r + 2 + + def test_balanced_tree_star(self): + # balanced_tree(r,1) is the r-star + t = nx.balanced_tree(r=2, h=1) + assert is_isomorphic(t, nx.star_graph(2)) + t = nx.balanced_tree(r=5, h=1) + assert is_isomorphic(t, nx.star_graph(5)) + t = nx.balanced_tree(r=10, h=1) + assert is_isomorphic(t, nx.star_graph(10)) + + def test_balanced_tree_path(self): + """Tests that the balanced tree with branching factor one is the + path graph. + + """ + # A tree of height four has five levels. + T = nx.balanced_tree(1, 4) + P = nx.path_graph(5) + assert is_isomorphic(T, P) + + def test_full_rary_tree(self): + r = 2 + n = 9 + t = nx.full_rary_tree(r, n) + assert t.order() == n + assert nx.is_connected(t) + dh = nx.degree_histogram(t) + assert dh[0] == 0 # no nodes of 0 + assert dh[1] == 5 # nodes of degree 1 are leaves + assert dh[r] == 1 # root is degree r + assert dh[r + 1] == 9 - 5 - 1 # everyone else is degree r+1 + assert len(dh) == r + 2 + + def test_full_rary_tree_balanced(self): + t = nx.full_rary_tree(2, 15) + th = nx.balanced_tree(2, 3) + assert is_isomorphic(t, th) + + def test_full_rary_tree_path(self): + t = nx.full_rary_tree(1, 10) + assert is_isomorphic(t, nx.path_graph(10)) + + def test_full_rary_tree_empty(self): + t = nx.full_rary_tree(0, 10) + assert is_isomorphic(t, nx.empty_graph(10)) + t = nx.full_rary_tree(3, 0) + assert is_isomorphic(t, nx.empty_graph(0)) + + def test_full_rary_tree_3_20(self): + t = nx.full_rary_tree(3, 20) + assert t.order() == 20 + + def test_barbell_graph(self): + # number of nodes = 2*m1 + m2 (2 m1-complete graphs + m2-path + 2 edges) + # number of edges = 2*(nx.number_of_edges(m1-complete graph) + m2 + 1 + m1 = 3 + m2 = 5 + b = nx.barbell_graph(m1, m2) + assert nx.number_of_nodes(b) == 2 * m1 + m2 + assert nx.number_of_edges(b) == m1 * (m1 - 1) + m2 + 1 + + m1 = 4 + m2 = 10 + b = nx.barbell_graph(m1, m2) + assert nx.number_of_nodes(b) == 2 * m1 + m2 + assert nx.number_of_edges(b) == m1 * (m1 - 1) + m2 + 1 + + m1 = 3 + m2 = 20 + b = nx.barbell_graph(m1, m2) + assert nx.number_of_nodes(b) == 2 * m1 + m2 + assert nx.number_of_edges(b) == m1 * (m1 - 1) + m2 + 1 + + # Raise NetworkXError if m1<2 + m1 = 1 + m2 = 20 + pytest.raises(nx.NetworkXError, nx.barbell_graph, m1, m2) + + # Raise NetworkXError if m2<0 + m1 = 5 + m2 = -2 + pytest.raises(nx.NetworkXError, nx.barbell_graph, m1, m2) + + # nx.barbell_graph(2,m) = nx.path_graph(m+4) + m1 = 2 + m2 = 5 + b = nx.barbell_graph(m1, m2) + assert is_isomorphic(b, nx.path_graph(m2 + 4)) + + m1 = 2 + m2 = 10 + b = nx.barbell_graph(m1, m2) + assert is_isomorphic(b, nx.path_graph(m2 + 4)) + + m1 = 2 + m2 = 20 + b = nx.barbell_graph(m1, m2) + assert is_isomorphic(b, nx.path_graph(m2 + 4)) + + pytest.raises( + nx.NetworkXError, nx.barbell_graph, m1, m2, create_using=nx.DiGraph() + ) + + mb = nx.barbell_graph(m1, m2, create_using=nx.MultiGraph()) + assert edges_equal(mb.edges(), b.edges()) + + def test_binomial_tree(self): + graphs = (None, nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph) + for create_using in graphs: + for n in range(4): + b = nx.binomial_tree(n, create_using) + assert nx.number_of_nodes(b) == 2**n + assert nx.number_of_edges(b) == (2**n - 1) + + def test_complete_graph(self): + # complete_graph(m) is a connected graph with + # m nodes and m*(m+1)/2 edges + for m in [0, 1, 3, 5]: + g = nx.complete_graph(m) + assert nx.number_of_nodes(g) == m + assert nx.number_of_edges(g) == m * (m - 1) // 2 + + mg = nx.complete_graph(m, create_using=nx.MultiGraph) + assert edges_equal(mg.edges(), g.edges()) + + g = nx.complete_graph("abc") + assert nodes_equal(g.nodes(), ["a", "b", "c"]) + assert g.size() == 3 + + # creates a self-loop... should it? <backward compatible says yes> + g = nx.complete_graph("abcb") + assert nodes_equal(g.nodes(), ["a", "b", "c"]) + assert g.size() == 4 + + g = nx.complete_graph("abcb", create_using=nx.MultiGraph) + assert nodes_equal(g.nodes(), ["a", "b", "c"]) + assert g.size() == 6 + + def test_complete_digraph(self): + # complete_graph(m) is a connected graph with + # m nodes and m*(m+1)/2 edges + for m in [0, 1, 3, 5]: + g = nx.complete_graph(m, create_using=nx.DiGraph) + assert nx.number_of_nodes(g) == m + assert nx.number_of_edges(g) == m * (m - 1) + + g = nx.complete_graph("abc", create_using=nx.DiGraph) + assert len(g) == 3 + assert g.size() == 6 + assert g.is_directed() + + def test_circular_ladder_graph(self): + G = nx.circular_ladder_graph(5) + pytest.raises( + nx.NetworkXError, nx.circular_ladder_graph, 5, create_using=nx.DiGraph + ) + mG = nx.circular_ladder_graph(5, create_using=nx.MultiGraph) + assert edges_equal(mG.edges(), G.edges()) + + def test_circulant_graph(self): + # Ci_n(1) is the cycle graph for all n + Ci6_1 = nx.circulant_graph(6, [1]) + C6 = nx.cycle_graph(6) + assert edges_equal(Ci6_1.edges(), C6.edges()) + + # Ci_n(1, 2, ..., n div 2) is the complete graph for all n + Ci7 = nx.circulant_graph(7, [1, 2, 3]) + K7 = nx.complete_graph(7) + assert edges_equal(Ci7.edges(), K7.edges()) + + # Ci_6(1, 3) is K_3,3 i.e. the utility graph + Ci6_1_3 = nx.circulant_graph(6, [1, 3]) + K3_3 = nx.complete_bipartite_graph(3, 3) + assert is_isomorphic(Ci6_1_3, K3_3) + + def test_cycle_graph(self): + G = nx.cycle_graph(4) + assert edges_equal(G.edges(), [(0, 1), (0, 3), (1, 2), (2, 3)]) + mG = nx.cycle_graph(4, create_using=nx.MultiGraph) + assert edges_equal(mG.edges(), [(0, 1), (0, 3), (1, 2), (2, 3)]) + G = nx.cycle_graph(4, create_using=nx.DiGraph) + assert not G.has_edge(2, 1) + assert G.has_edge(1, 2) + assert G.is_directed() + + G = nx.cycle_graph("abc") + assert len(G) == 3 + assert G.size() == 3 + G = nx.cycle_graph("abcb") + assert len(G) == 3 + assert G.size() == 2 + g = nx.cycle_graph("abc", nx.DiGraph) + assert len(g) == 3 + assert g.size() == 3 + assert g.is_directed() + g = nx.cycle_graph("abcb", nx.DiGraph) + assert len(g) == 3 + assert g.size() == 4 + + def test_dorogovtsev_goltsev_mendes_graph(self): + G = nx.dorogovtsev_goltsev_mendes_graph(0) + assert edges_equal(G.edges(), [(0, 1)]) + assert nodes_equal(list(G), [0, 1]) + G = nx.dorogovtsev_goltsev_mendes_graph(1) + assert edges_equal(G.edges(), [(0, 1), (0, 2), (1, 2)]) + assert nx.average_clustering(G) == 1.0 + assert nx.average_shortest_path_length(G) == 1.0 + assert sorted(nx.triangles(G).values()) == [1, 1, 1] + assert nx.is_planar(G) + G = nx.dorogovtsev_goltsev_mendes_graph(2) + assert nx.number_of_nodes(G) == 6 + assert nx.number_of_edges(G) == 9 + assert nx.average_clustering(G) == 0.75 + assert nx.average_shortest_path_length(G) == 1.4 + assert nx.is_planar(G) + G = nx.dorogovtsev_goltsev_mendes_graph(10) + assert nx.number_of_nodes(G) == 29526 + assert nx.number_of_edges(G) == 59049 + assert G.degree(0) == 1024 + assert G.degree(1) == 1024 + assert G.degree(2) == 1024 + + with pytest.raises(nx.NetworkXError, match=r"n must be greater than"): + nx.dorogovtsev_goltsev_mendes_graph(-1) + with pytest.raises(nx.NetworkXError, match=r"directed graph not supported"): + nx.dorogovtsev_goltsev_mendes_graph(7, create_using=nx.DiGraph) + with pytest.raises(nx.NetworkXError, match=r"multigraph not supported"): + nx.dorogovtsev_goltsev_mendes_graph(7, create_using=nx.MultiGraph) + with pytest.raises(nx.NetworkXError): + nx.dorogovtsev_goltsev_mendes_graph(7, create_using=nx.MultiDiGraph) + + def test_create_using(self): + G = nx.empty_graph() + assert isinstance(G, nx.Graph) + pytest.raises(TypeError, nx.empty_graph, create_using=0.0) + pytest.raises(TypeError, nx.empty_graph, create_using="Graph") + + G = nx.empty_graph(create_using=nx.MultiGraph) + assert isinstance(G, nx.MultiGraph) + G = nx.empty_graph(create_using=nx.DiGraph) + assert isinstance(G, nx.DiGraph) + + G = nx.empty_graph(create_using=nx.DiGraph, default=nx.MultiGraph) + assert isinstance(G, nx.DiGraph) + G = nx.empty_graph(create_using=None, default=nx.MultiGraph) + assert isinstance(G, nx.MultiGraph) + G = nx.empty_graph(default=nx.MultiGraph) + assert isinstance(G, nx.MultiGraph) + + G = nx.path_graph(5) + H = nx.empty_graph(create_using=G) + assert not H.is_multigraph() + assert not H.is_directed() + assert len(H) == 0 + assert G is H + + H = nx.empty_graph(create_using=nx.MultiGraph()) + assert H.is_multigraph() + assert not H.is_directed() + assert G is not H + + # test for subclasses that also use typing.Protocol. See gh-6243 + class Mixin(typing.Protocol): + pass + + class MyGraph(Mixin, nx.DiGraph): + pass + + G = nx.empty_graph(create_using=MyGraph) + + def test_empty_graph(self): + G = nx.empty_graph() + assert nx.number_of_nodes(G) == 0 + G = nx.empty_graph(42) + assert nx.number_of_nodes(G) == 42 + assert nx.number_of_edges(G) == 0 + + G = nx.empty_graph("abc") + assert len(G) == 3 + assert G.size() == 0 + + # create empty digraph + G = nx.empty_graph(42, create_using=nx.DiGraph(name="duh")) + assert nx.number_of_nodes(G) == 42 + assert nx.number_of_edges(G) == 0 + assert isinstance(G, nx.DiGraph) + + # create empty multigraph + G = nx.empty_graph(42, create_using=nx.MultiGraph(name="duh")) + assert nx.number_of_nodes(G) == 42 + assert nx.number_of_edges(G) == 0 + assert isinstance(G, nx.MultiGraph) + + # create empty graph from another + pete = nx.petersen_graph() + G = nx.empty_graph(42, create_using=pete) + assert nx.number_of_nodes(G) == 42 + assert nx.number_of_edges(G) == 0 + assert isinstance(G, nx.Graph) + + def test_ladder_graph(self): + for i, G in [ + (0, nx.empty_graph(0)), + (1, nx.path_graph(2)), + (2, nx.hypercube_graph(2)), + (10, nx.grid_graph([2, 10])), + ]: + assert is_isomorphic(nx.ladder_graph(i), G) + + pytest.raises(nx.NetworkXError, nx.ladder_graph, 2, create_using=nx.DiGraph) + + g = nx.ladder_graph(2) + mg = nx.ladder_graph(2, create_using=nx.MultiGraph) + assert edges_equal(mg.edges(), g.edges()) + + @pytest.mark.parametrize(("m", "n"), [(3, 5), (4, 10), (3, 20)]) + def test_lollipop_graph_right_sizes(self, m, n): + G = nx.lollipop_graph(m, n) + assert nx.number_of_nodes(G) == m + n + assert nx.number_of_edges(G) == m * (m - 1) / 2 + n + + @pytest.mark.parametrize(("m", "n"), [("ab", ""), ("abc", "defg")]) + def test_lollipop_graph_size_node_sequence(self, m, n): + G = nx.lollipop_graph(m, n) + assert nx.number_of_nodes(G) == len(m) + len(n) + assert nx.number_of_edges(G) == len(m) * (len(m) - 1) / 2 + len(n) + + def test_lollipop_graph_exceptions(self): + # Raise NetworkXError if m<2 + pytest.raises(nx.NetworkXError, nx.lollipop_graph, -1, 2) + pytest.raises(nx.NetworkXError, nx.lollipop_graph, 1, 20) + pytest.raises(nx.NetworkXError, nx.lollipop_graph, "", 20) + pytest.raises(nx.NetworkXError, nx.lollipop_graph, "a", 20) + + # Raise NetworkXError if n<0 + pytest.raises(nx.NetworkXError, nx.lollipop_graph, 5, -2) + + # raise NetworkXError if create_using is directed + with pytest.raises(nx.NetworkXError): + nx.lollipop_graph(2, 20, create_using=nx.DiGraph) + with pytest.raises(nx.NetworkXError): + nx.lollipop_graph(2, 20, create_using=nx.MultiDiGraph) + + @pytest.mark.parametrize(("m", "n"), [(2, 0), (2, 5), (2, 10), ("ab", 20)]) + def test_lollipop_graph_same_as_path_when_m1_is_2(self, m, n): + G = nx.lollipop_graph(m, n) + assert is_isomorphic(G, nx.path_graph(n + 2)) + + def test_lollipop_graph_for_multigraph(self): + G = nx.lollipop_graph(5, 20) + MG = nx.lollipop_graph(5, 20, create_using=nx.MultiGraph) + assert edges_equal(MG.edges(), G.edges()) + + @pytest.mark.parametrize( + ("m", "n"), + [(4, "abc"), ("abcd", 3), ([1, 2, 3, 4], "abc"), ("abcd", [1, 2, 3])], + ) + def test_lollipop_graph_mixing_input_types(self, m, n): + expected = nx.compose(nx.complete_graph(4), nx.path_graph(range(100, 103))) + expected.add_edge(0, 100) # Connect complete graph and path graph + assert is_isomorphic(nx.lollipop_graph(m, n), expected) + + def test_lollipop_graph_non_builtin_ints(self): + np = pytest.importorskip("numpy") + G = nx.lollipop_graph(np.int32(4), np.int64(3)) + expected = nx.compose(nx.complete_graph(4), nx.path_graph(range(100, 103))) + expected.add_edge(0, 100) # Connect complete graph and path graph + assert is_isomorphic(G, expected) + + def test_null_graph(self): + assert nx.number_of_nodes(nx.null_graph()) == 0 + + def test_path_graph(self): + p = nx.path_graph(0) + assert is_isomorphic(p, nx.null_graph()) + + p = nx.path_graph(1) + assert is_isomorphic(p, nx.empty_graph(1)) + + p = nx.path_graph(10) + assert nx.is_connected(p) + assert sorted(d for n, d in p.degree()) == [1, 1, 2, 2, 2, 2, 2, 2, 2, 2] + assert p.order() - 1 == p.size() + + dp = nx.path_graph(3, create_using=nx.DiGraph) + assert dp.has_edge(0, 1) + assert not dp.has_edge(1, 0) + + mp = nx.path_graph(10, create_using=nx.MultiGraph) + assert edges_equal(mp.edges(), p.edges()) + + G = nx.path_graph("abc") + assert len(G) == 3 + assert G.size() == 2 + G = nx.path_graph("abcb") + assert len(G) == 3 + assert G.size() == 2 + g = nx.path_graph("abc", nx.DiGraph) + assert len(g) == 3 + assert g.size() == 2 + assert g.is_directed() + g = nx.path_graph("abcb", nx.DiGraph) + assert len(g) == 3 + assert g.size() == 3 + + G = nx.path_graph((1, 2, 3, 2, 4)) + assert G.has_edge(2, 4) + + def test_star_graph(self): + assert is_isomorphic(nx.star_graph(""), nx.empty_graph(0)) + assert is_isomorphic(nx.star_graph([]), nx.empty_graph(0)) + assert is_isomorphic(nx.star_graph(0), nx.empty_graph(1)) + assert is_isomorphic(nx.star_graph(1), nx.path_graph(2)) + assert is_isomorphic(nx.star_graph(2), nx.path_graph(3)) + assert is_isomorphic(nx.star_graph(5), nx.complete_bipartite_graph(1, 5)) + + s = nx.star_graph(10) + assert sorted(d for n, d in s.degree()) == [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10] + + pytest.raises(nx.NetworkXError, nx.star_graph, 10, create_using=nx.DiGraph) + + ms = nx.star_graph(10, create_using=nx.MultiGraph) + assert edges_equal(ms.edges(), s.edges()) + + G = nx.star_graph("abc") + assert len(G) == 3 + assert G.size() == 2 + + G = nx.star_graph("abcb") + assert len(G) == 3 + assert G.size() == 2 + G = nx.star_graph("abcb", create_using=nx.MultiGraph) + assert len(G) == 3 + assert G.size() == 3 + + G = nx.star_graph("abcdefg") + assert len(G) == 7 + assert G.size() == 6 + + def test_non_int_integers_for_star_graph(self): + np = pytest.importorskip("numpy") + G = nx.star_graph(np.int32(3)) + assert len(G) == 4 + assert G.size() == 3 + + @pytest.mark.parametrize(("m", "n"), [(3, 0), (3, 5), (4, 10), (3, 20)]) + def test_tadpole_graph_right_sizes(self, m, n): + G = nx.tadpole_graph(m, n) + assert nx.number_of_nodes(G) == m + n + assert nx.number_of_edges(G) == m + n - (m == 2) + + @pytest.mark.parametrize(("m", "n"), [("ab", ""), ("ab", "c"), ("abc", "defg")]) + def test_tadpole_graph_size_node_sequences(self, m, n): + G = nx.tadpole_graph(m, n) + assert nx.number_of_nodes(G) == len(m) + len(n) + assert nx.number_of_edges(G) == len(m) + len(n) - (len(m) == 2) + + def test_tadpole_graph_exceptions(self): + # Raise NetworkXError if m<2 + pytest.raises(nx.NetworkXError, nx.tadpole_graph, -1, 3) + pytest.raises(nx.NetworkXError, nx.tadpole_graph, 0, 3) + pytest.raises(nx.NetworkXError, nx.tadpole_graph, 1, 3) + + # Raise NetworkXError if n<0 + pytest.raises(nx.NetworkXError, nx.tadpole_graph, 5, -2) + + # Raise NetworkXError for digraphs + with pytest.raises(nx.NetworkXError): + nx.tadpole_graph(2, 20, create_using=nx.DiGraph) + with pytest.raises(nx.NetworkXError): + nx.tadpole_graph(2, 20, create_using=nx.MultiDiGraph) + + @pytest.mark.parametrize(("m", "n"), [(2, 0), (2, 5), (2, 10), ("ab", 20)]) + def test_tadpole_graph_same_as_path_when_m_is_2(self, m, n): + G = nx.tadpole_graph(m, n) + assert is_isomorphic(G, nx.path_graph(n + 2)) + + @pytest.mark.parametrize("m", [4, 7]) + def test_tadpole_graph_same_as_cycle_when_m2_is_0(self, m): + G = nx.tadpole_graph(m, 0) + assert is_isomorphic(G, nx.cycle_graph(m)) + + def test_tadpole_graph_for_multigraph(self): + G = nx.tadpole_graph(5, 20) + MG = nx.tadpole_graph(5, 20, create_using=nx.MultiGraph) + assert edges_equal(MG.edges(), G.edges()) + + @pytest.mark.parametrize( + ("m", "n"), + [(4, "abc"), ("abcd", 3), ([1, 2, 3, 4], "abc"), ("abcd", [1, 2, 3])], + ) + def test_tadpole_graph_mixing_input_types(self, m, n): + expected = nx.compose(nx.cycle_graph(4), nx.path_graph(range(100, 103))) + expected.add_edge(0, 100) # Connect cycle and path + assert is_isomorphic(nx.tadpole_graph(m, n), expected) + + def test_tadpole_graph_non_builtin_integers(self): + np = pytest.importorskip("numpy") + G = nx.tadpole_graph(np.int32(4), np.int64(3)) + expected = nx.compose(nx.cycle_graph(4), nx.path_graph(range(100, 103))) + expected.add_edge(0, 100) # Connect cycle and path + assert is_isomorphic(G, expected) + + def test_trivial_graph(self): + assert nx.number_of_nodes(nx.trivial_graph()) == 1 + + def test_turan_graph(self): + assert nx.number_of_edges(nx.turan_graph(13, 4)) == 63 + assert is_isomorphic( + nx.turan_graph(13, 4), nx.complete_multipartite_graph(3, 4, 3, 3) + ) + + def test_wheel_graph(self): + for n, G in [ + ("", nx.null_graph()), + (0, nx.null_graph()), + (1, nx.empty_graph(1)), + (2, nx.path_graph(2)), + (3, nx.complete_graph(3)), + (4, nx.complete_graph(4)), + ]: + g = nx.wheel_graph(n) + assert is_isomorphic(g, G) + + g = nx.wheel_graph(10) + assert sorted(d for n, d in g.degree()) == [3, 3, 3, 3, 3, 3, 3, 3, 3, 9] + + pytest.raises(nx.NetworkXError, nx.wheel_graph, 10, create_using=nx.DiGraph) + + mg = nx.wheel_graph(10, create_using=nx.MultiGraph()) + assert edges_equal(mg.edges(), g.edges()) + + G = nx.wheel_graph("abc") + assert len(G) == 3 + assert G.size() == 3 + + G = nx.wheel_graph("abcb") + assert len(G) == 3 + assert G.size() == 4 + G = nx.wheel_graph("abcb", nx.MultiGraph) + assert len(G) == 3 + assert G.size() == 6 + + def test_non_int_integers_for_wheel_graph(self): + np = pytest.importorskip("numpy") + G = nx.wheel_graph(np.int32(3)) + assert len(G) == 3 + assert G.size() == 3 + + def test_complete_0_partite_graph(self): + """Tests that the complete 0-partite graph is the null graph.""" + G = nx.complete_multipartite_graph() + H = nx.null_graph() + assert nodes_equal(G, H) + assert edges_equal(G.edges(), H.edges()) + + def test_complete_1_partite_graph(self): + """Tests that the complete 1-partite graph is the empty graph.""" + G = nx.complete_multipartite_graph(3) + H = nx.empty_graph(3) + assert nodes_equal(G, H) + assert edges_equal(G.edges(), H.edges()) + + def test_complete_2_partite_graph(self): + """Tests that the complete 2-partite graph is the complete bipartite + graph. + + """ + G = nx.complete_multipartite_graph(2, 3) + H = nx.complete_bipartite_graph(2, 3) + assert nodes_equal(G, H) + assert edges_equal(G.edges(), H.edges()) + + def test_complete_multipartite_graph(self): + """Tests for generating the complete multipartite graph.""" + G = nx.complete_multipartite_graph(2, 3, 4) + blocks = [(0, 1), (2, 3, 4), (5, 6, 7, 8)] + # Within each block, no two vertices should be adjacent. + for block in blocks: + for u, v in itertools.combinations_with_replacement(block, 2): + assert v not in G[u] + assert G.nodes[u] == G.nodes[v] + # Across blocks, all vertices should be adjacent. + for block1, block2 in itertools.combinations(blocks, 2): + for u, v in itertools.product(block1, block2): + assert v in G[u] + assert G.nodes[u] != G.nodes[v] + with pytest.raises(nx.NetworkXError, match="Negative number of nodes"): + nx.complete_multipartite_graph(2, -3, 4) + + def test_kneser_graph(self): + # the petersen graph is a special case of the kneser graph when n=5 and k=2 + assert is_isomorphic(nx.kneser_graph(5, 2), nx.petersen_graph()) + + # when k is 1, the kneser graph returns a complete graph with n vertices + for i in range(1, 7): + assert is_isomorphic(nx.kneser_graph(i, 1), nx.complete_graph(i)) + + # the kneser graph of n and n-1 is the empty graph with n vertices + for j in range(3, 7): + assert is_isomorphic(nx.kneser_graph(j, j - 1), nx.empty_graph(j)) + + # in general the number of edges of the kneser graph is equal to + # (n choose k) times (n-k choose k) divided by 2 + assert nx.number_of_edges(nx.kneser_graph(8, 3)) == 280 |