aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/networkx/generators/tests/test_classic.py
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/networkx/generators/tests/test_classic.py
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are hereHEADmaster
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/generators/tests/test_classic.py')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/generators/tests/test_classic.py640
1 files changed, 640 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/generators/tests/test_classic.py b/.venv/lib/python3.12/site-packages/networkx/generators/tests/test_classic.py
new file mode 100644
index 00000000..9353c7f5
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/generators/tests/test_classic.py
@@ -0,0 +1,640 @@
+"""
+====================
+Generators - Classic
+====================
+
+Unit tests for various classic graph generators in generators/classic.py
+"""
+
+import itertools
+import typing
+
+import pytest
+
+import networkx as nx
+from networkx.algorithms.isomorphism.isomorph import graph_could_be_isomorphic
+from networkx.utils import edges_equal, nodes_equal
+
+is_isomorphic = graph_could_be_isomorphic
+
+
+class TestGeneratorClassic:
+ def test_balanced_tree(self):
+ # balanced_tree(r,h) is a tree with (r**(h+1)-1)/(r-1) edges
+ for r, h in [(2, 2), (3, 3), (6, 2)]:
+ t = nx.balanced_tree(r, h)
+ order = t.order()
+ assert order == (r ** (h + 1) - 1) / (r - 1)
+ assert nx.is_connected(t)
+ assert t.size() == order - 1
+ dh = nx.degree_histogram(t)
+ assert dh[0] == 0 # no nodes of 0
+ assert dh[1] == r**h # nodes of degree 1 are leaves
+ assert dh[r] == 1 # root is degree r
+ assert dh[r + 1] == order - r**h - 1 # everyone else is degree r+1
+ assert len(dh) == r + 2
+
+ def test_balanced_tree_star(self):
+ # balanced_tree(r,1) is the r-star
+ t = nx.balanced_tree(r=2, h=1)
+ assert is_isomorphic(t, nx.star_graph(2))
+ t = nx.balanced_tree(r=5, h=1)
+ assert is_isomorphic(t, nx.star_graph(5))
+ t = nx.balanced_tree(r=10, h=1)
+ assert is_isomorphic(t, nx.star_graph(10))
+
+ def test_balanced_tree_path(self):
+ """Tests that the balanced tree with branching factor one is the
+ path graph.
+
+ """
+ # A tree of height four has five levels.
+ T = nx.balanced_tree(1, 4)
+ P = nx.path_graph(5)
+ assert is_isomorphic(T, P)
+
+ def test_full_rary_tree(self):
+ r = 2
+ n = 9
+ t = nx.full_rary_tree(r, n)
+ assert t.order() == n
+ assert nx.is_connected(t)
+ dh = nx.degree_histogram(t)
+ assert dh[0] == 0 # no nodes of 0
+ assert dh[1] == 5 # nodes of degree 1 are leaves
+ assert dh[r] == 1 # root is degree r
+ assert dh[r + 1] == 9 - 5 - 1 # everyone else is degree r+1
+ assert len(dh) == r + 2
+
+ def test_full_rary_tree_balanced(self):
+ t = nx.full_rary_tree(2, 15)
+ th = nx.balanced_tree(2, 3)
+ assert is_isomorphic(t, th)
+
+ def test_full_rary_tree_path(self):
+ t = nx.full_rary_tree(1, 10)
+ assert is_isomorphic(t, nx.path_graph(10))
+
+ def test_full_rary_tree_empty(self):
+ t = nx.full_rary_tree(0, 10)
+ assert is_isomorphic(t, nx.empty_graph(10))
+ t = nx.full_rary_tree(3, 0)
+ assert is_isomorphic(t, nx.empty_graph(0))
+
+ def test_full_rary_tree_3_20(self):
+ t = nx.full_rary_tree(3, 20)
+ assert t.order() == 20
+
+ def test_barbell_graph(self):
+ # number of nodes = 2*m1 + m2 (2 m1-complete graphs + m2-path + 2 edges)
+ # number of edges = 2*(nx.number_of_edges(m1-complete graph) + m2 + 1
+ m1 = 3
+ m2 = 5
+ b = nx.barbell_graph(m1, m2)
+ assert nx.number_of_nodes(b) == 2 * m1 + m2
+ assert nx.number_of_edges(b) == m1 * (m1 - 1) + m2 + 1
+
+ m1 = 4
+ m2 = 10
+ b = nx.barbell_graph(m1, m2)
+ assert nx.number_of_nodes(b) == 2 * m1 + m2
+ assert nx.number_of_edges(b) == m1 * (m1 - 1) + m2 + 1
+
+ m1 = 3
+ m2 = 20
+ b = nx.barbell_graph(m1, m2)
+ assert nx.number_of_nodes(b) == 2 * m1 + m2
+ assert nx.number_of_edges(b) == m1 * (m1 - 1) + m2 + 1
+
+ # Raise NetworkXError if m1<2
+ m1 = 1
+ m2 = 20
+ pytest.raises(nx.NetworkXError, nx.barbell_graph, m1, m2)
+
+ # Raise NetworkXError if m2<0
+ m1 = 5
+ m2 = -2
+ pytest.raises(nx.NetworkXError, nx.barbell_graph, m1, m2)
+
+ # nx.barbell_graph(2,m) = nx.path_graph(m+4)
+ m1 = 2
+ m2 = 5
+ b = nx.barbell_graph(m1, m2)
+ assert is_isomorphic(b, nx.path_graph(m2 + 4))
+
+ m1 = 2
+ m2 = 10
+ b = nx.barbell_graph(m1, m2)
+ assert is_isomorphic(b, nx.path_graph(m2 + 4))
+
+ m1 = 2
+ m2 = 20
+ b = nx.barbell_graph(m1, m2)
+ assert is_isomorphic(b, nx.path_graph(m2 + 4))
+
+ pytest.raises(
+ nx.NetworkXError, nx.barbell_graph, m1, m2, create_using=nx.DiGraph()
+ )
+
+ mb = nx.barbell_graph(m1, m2, create_using=nx.MultiGraph())
+ assert edges_equal(mb.edges(), b.edges())
+
+ def test_binomial_tree(self):
+ graphs = (None, nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph)
+ for create_using in graphs:
+ for n in range(4):
+ b = nx.binomial_tree(n, create_using)
+ assert nx.number_of_nodes(b) == 2**n
+ assert nx.number_of_edges(b) == (2**n - 1)
+
+ def test_complete_graph(self):
+ # complete_graph(m) is a connected graph with
+ # m nodes and m*(m+1)/2 edges
+ for m in [0, 1, 3, 5]:
+ g = nx.complete_graph(m)
+ assert nx.number_of_nodes(g) == m
+ assert nx.number_of_edges(g) == m * (m - 1) // 2
+
+ mg = nx.complete_graph(m, create_using=nx.MultiGraph)
+ assert edges_equal(mg.edges(), g.edges())
+
+ g = nx.complete_graph("abc")
+ assert nodes_equal(g.nodes(), ["a", "b", "c"])
+ assert g.size() == 3
+
+ # creates a self-loop... should it? <backward compatible says yes>
+ g = nx.complete_graph("abcb")
+ assert nodes_equal(g.nodes(), ["a", "b", "c"])
+ assert g.size() == 4
+
+ g = nx.complete_graph("abcb", create_using=nx.MultiGraph)
+ assert nodes_equal(g.nodes(), ["a", "b", "c"])
+ assert g.size() == 6
+
+ def test_complete_digraph(self):
+ # complete_graph(m) is a connected graph with
+ # m nodes and m*(m+1)/2 edges
+ for m in [0, 1, 3, 5]:
+ g = nx.complete_graph(m, create_using=nx.DiGraph)
+ assert nx.number_of_nodes(g) == m
+ assert nx.number_of_edges(g) == m * (m - 1)
+
+ g = nx.complete_graph("abc", create_using=nx.DiGraph)
+ assert len(g) == 3
+ assert g.size() == 6
+ assert g.is_directed()
+
+ def test_circular_ladder_graph(self):
+ G = nx.circular_ladder_graph(5)
+ pytest.raises(
+ nx.NetworkXError, nx.circular_ladder_graph, 5, create_using=nx.DiGraph
+ )
+ mG = nx.circular_ladder_graph(5, create_using=nx.MultiGraph)
+ assert edges_equal(mG.edges(), G.edges())
+
+ def test_circulant_graph(self):
+ # Ci_n(1) is the cycle graph for all n
+ Ci6_1 = nx.circulant_graph(6, [1])
+ C6 = nx.cycle_graph(6)
+ assert edges_equal(Ci6_1.edges(), C6.edges())
+
+ # Ci_n(1, 2, ..., n div 2) is the complete graph for all n
+ Ci7 = nx.circulant_graph(7, [1, 2, 3])
+ K7 = nx.complete_graph(7)
+ assert edges_equal(Ci7.edges(), K7.edges())
+
+ # Ci_6(1, 3) is K_3,3 i.e. the utility graph
+ Ci6_1_3 = nx.circulant_graph(6, [1, 3])
+ K3_3 = nx.complete_bipartite_graph(3, 3)
+ assert is_isomorphic(Ci6_1_3, K3_3)
+
+ def test_cycle_graph(self):
+ G = nx.cycle_graph(4)
+ assert edges_equal(G.edges(), [(0, 1), (0, 3), (1, 2), (2, 3)])
+ mG = nx.cycle_graph(4, create_using=nx.MultiGraph)
+ assert edges_equal(mG.edges(), [(0, 1), (0, 3), (1, 2), (2, 3)])
+ G = nx.cycle_graph(4, create_using=nx.DiGraph)
+ assert not G.has_edge(2, 1)
+ assert G.has_edge(1, 2)
+ assert G.is_directed()
+
+ G = nx.cycle_graph("abc")
+ assert len(G) == 3
+ assert G.size() == 3
+ G = nx.cycle_graph("abcb")
+ assert len(G) == 3
+ assert G.size() == 2
+ g = nx.cycle_graph("abc", nx.DiGraph)
+ assert len(g) == 3
+ assert g.size() == 3
+ assert g.is_directed()
+ g = nx.cycle_graph("abcb", nx.DiGraph)
+ assert len(g) == 3
+ assert g.size() == 4
+
+ def test_dorogovtsev_goltsev_mendes_graph(self):
+ G = nx.dorogovtsev_goltsev_mendes_graph(0)
+ assert edges_equal(G.edges(), [(0, 1)])
+ assert nodes_equal(list(G), [0, 1])
+ G = nx.dorogovtsev_goltsev_mendes_graph(1)
+ assert edges_equal(G.edges(), [(0, 1), (0, 2), (1, 2)])
+ assert nx.average_clustering(G) == 1.0
+ assert nx.average_shortest_path_length(G) == 1.0
+ assert sorted(nx.triangles(G).values()) == [1, 1, 1]
+ assert nx.is_planar(G)
+ G = nx.dorogovtsev_goltsev_mendes_graph(2)
+ assert nx.number_of_nodes(G) == 6
+ assert nx.number_of_edges(G) == 9
+ assert nx.average_clustering(G) == 0.75
+ assert nx.average_shortest_path_length(G) == 1.4
+ assert nx.is_planar(G)
+ G = nx.dorogovtsev_goltsev_mendes_graph(10)
+ assert nx.number_of_nodes(G) == 29526
+ assert nx.number_of_edges(G) == 59049
+ assert G.degree(0) == 1024
+ assert G.degree(1) == 1024
+ assert G.degree(2) == 1024
+
+ with pytest.raises(nx.NetworkXError, match=r"n must be greater than"):
+ nx.dorogovtsev_goltsev_mendes_graph(-1)
+ with pytest.raises(nx.NetworkXError, match=r"directed graph not supported"):
+ nx.dorogovtsev_goltsev_mendes_graph(7, create_using=nx.DiGraph)
+ with pytest.raises(nx.NetworkXError, match=r"multigraph not supported"):
+ nx.dorogovtsev_goltsev_mendes_graph(7, create_using=nx.MultiGraph)
+ with pytest.raises(nx.NetworkXError):
+ nx.dorogovtsev_goltsev_mendes_graph(7, create_using=nx.MultiDiGraph)
+
+ def test_create_using(self):
+ G = nx.empty_graph()
+ assert isinstance(G, nx.Graph)
+ pytest.raises(TypeError, nx.empty_graph, create_using=0.0)
+ pytest.raises(TypeError, nx.empty_graph, create_using="Graph")
+
+ G = nx.empty_graph(create_using=nx.MultiGraph)
+ assert isinstance(G, nx.MultiGraph)
+ G = nx.empty_graph(create_using=nx.DiGraph)
+ assert isinstance(G, nx.DiGraph)
+
+ G = nx.empty_graph(create_using=nx.DiGraph, default=nx.MultiGraph)
+ assert isinstance(G, nx.DiGraph)
+ G = nx.empty_graph(create_using=None, default=nx.MultiGraph)
+ assert isinstance(G, nx.MultiGraph)
+ G = nx.empty_graph(default=nx.MultiGraph)
+ assert isinstance(G, nx.MultiGraph)
+
+ G = nx.path_graph(5)
+ H = nx.empty_graph(create_using=G)
+ assert not H.is_multigraph()
+ assert not H.is_directed()
+ assert len(H) == 0
+ assert G is H
+
+ H = nx.empty_graph(create_using=nx.MultiGraph())
+ assert H.is_multigraph()
+ assert not H.is_directed()
+ assert G is not H
+
+ # test for subclasses that also use typing.Protocol. See gh-6243
+ class Mixin(typing.Protocol):
+ pass
+
+ class MyGraph(Mixin, nx.DiGraph):
+ pass
+
+ G = nx.empty_graph(create_using=MyGraph)
+
+ def test_empty_graph(self):
+ G = nx.empty_graph()
+ assert nx.number_of_nodes(G) == 0
+ G = nx.empty_graph(42)
+ assert nx.number_of_nodes(G) == 42
+ assert nx.number_of_edges(G) == 0
+
+ G = nx.empty_graph("abc")
+ assert len(G) == 3
+ assert G.size() == 0
+
+ # create empty digraph
+ G = nx.empty_graph(42, create_using=nx.DiGraph(name="duh"))
+ assert nx.number_of_nodes(G) == 42
+ assert nx.number_of_edges(G) == 0
+ assert isinstance(G, nx.DiGraph)
+
+ # create empty multigraph
+ G = nx.empty_graph(42, create_using=nx.MultiGraph(name="duh"))
+ assert nx.number_of_nodes(G) == 42
+ assert nx.number_of_edges(G) == 0
+ assert isinstance(G, nx.MultiGraph)
+
+ # create empty graph from another
+ pete = nx.petersen_graph()
+ G = nx.empty_graph(42, create_using=pete)
+ assert nx.number_of_nodes(G) == 42
+ assert nx.number_of_edges(G) == 0
+ assert isinstance(G, nx.Graph)
+
+ def test_ladder_graph(self):
+ for i, G in [
+ (0, nx.empty_graph(0)),
+ (1, nx.path_graph(2)),
+ (2, nx.hypercube_graph(2)),
+ (10, nx.grid_graph([2, 10])),
+ ]:
+ assert is_isomorphic(nx.ladder_graph(i), G)
+
+ pytest.raises(nx.NetworkXError, nx.ladder_graph, 2, create_using=nx.DiGraph)
+
+ g = nx.ladder_graph(2)
+ mg = nx.ladder_graph(2, create_using=nx.MultiGraph)
+ assert edges_equal(mg.edges(), g.edges())
+
+ @pytest.mark.parametrize(("m", "n"), [(3, 5), (4, 10), (3, 20)])
+ def test_lollipop_graph_right_sizes(self, m, n):
+ G = nx.lollipop_graph(m, n)
+ assert nx.number_of_nodes(G) == m + n
+ assert nx.number_of_edges(G) == m * (m - 1) / 2 + n
+
+ @pytest.mark.parametrize(("m", "n"), [("ab", ""), ("abc", "defg")])
+ def test_lollipop_graph_size_node_sequence(self, m, n):
+ G = nx.lollipop_graph(m, n)
+ assert nx.number_of_nodes(G) == len(m) + len(n)
+ assert nx.number_of_edges(G) == len(m) * (len(m) - 1) / 2 + len(n)
+
+ def test_lollipop_graph_exceptions(self):
+ # Raise NetworkXError if m<2
+ pytest.raises(nx.NetworkXError, nx.lollipop_graph, -1, 2)
+ pytest.raises(nx.NetworkXError, nx.lollipop_graph, 1, 20)
+ pytest.raises(nx.NetworkXError, nx.lollipop_graph, "", 20)
+ pytest.raises(nx.NetworkXError, nx.lollipop_graph, "a", 20)
+
+ # Raise NetworkXError if n<0
+ pytest.raises(nx.NetworkXError, nx.lollipop_graph, 5, -2)
+
+ # raise NetworkXError if create_using is directed
+ with pytest.raises(nx.NetworkXError):
+ nx.lollipop_graph(2, 20, create_using=nx.DiGraph)
+ with pytest.raises(nx.NetworkXError):
+ nx.lollipop_graph(2, 20, create_using=nx.MultiDiGraph)
+
+ @pytest.mark.parametrize(("m", "n"), [(2, 0), (2, 5), (2, 10), ("ab", 20)])
+ def test_lollipop_graph_same_as_path_when_m1_is_2(self, m, n):
+ G = nx.lollipop_graph(m, n)
+ assert is_isomorphic(G, nx.path_graph(n + 2))
+
+ def test_lollipop_graph_for_multigraph(self):
+ G = nx.lollipop_graph(5, 20)
+ MG = nx.lollipop_graph(5, 20, create_using=nx.MultiGraph)
+ assert edges_equal(MG.edges(), G.edges())
+
+ @pytest.mark.parametrize(
+ ("m", "n"),
+ [(4, "abc"), ("abcd", 3), ([1, 2, 3, 4], "abc"), ("abcd", [1, 2, 3])],
+ )
+ def test_lollipop_graph_mixing_input_types(self, m, n):
+ expected = nx.compose(nx.complete_graph(4), nx.path_graph(range(100, 103)))
+ expected.add_edge(0, 100) # Connect complete graph and path graph
+ assert is_isomorphic(nx.lollipop_graph(m, n), expected)
+
+ def test_lollipop_graph_non_builtin_ints(self):
+ np = pytest.importorskip("numpy")
+ G = nx.lollipop_graph(np.int32(4), np.int64(3))
+ expected = nx.compose(nx.complete_graph(4), nx.path_graph(range(100, 103)))
+ expected.add_edge(0, 100) # Connect complete graph and path graph
+ assert is_isomorphic(G, expected)
+
+ def test_null_graph(self):
+ assert nx.number_of_nodes(nx.null_graph()) == 0
+
+ def test_path_graph(self):
+ p = nx.path_graph(0)
+ assert is_isomorphic(p, nx.null_graph())
+
+ p = nx.path_graph(1)
+ assert is_isomorphic(p, nx.empty_graph(1))
+
+ p = nx.path_graph(10)
+ assert nx.is_connected(p)
+ assert sorted(d for n, d in p.degree()) == [1, 1, 2, 2, 2, 2, 2, 2, 2, 2]
+ assert p.order() - 1 == p.size()
+
+ dp = nx.path_graph(3, create_using=nx.DiGraph)
+ assert dp.has_edge(0, 1)
+ assert not dp.has_edge(1, 0)
+
+ mp = nx.path_graph(10, create_using=nx.MultiGraph)
+ assert edges_equal(mp.edges(), p.edges())
+
+ G = nx.path_graph("abc")
+ assert len(G) == 3
+ assert G.size() == 2
+ G = nx.path_graph("abcb")
+ assert len(G) == 3
+ assert G.size() == 2
+ g = nx.path_graph("abc", nx.DiGraph)
+ assert len(g) == 3
+ assert g.size() == 2
+ assert g.is_directed()
+ g = nx.path_graph("abcb", nx.DiGraph)
+ assert len(g) == 3
+ assert g.size() == 3
+
+ G = nx.path_graph((1, 2, 3, 2, 4))
+ assert G.has_edge(2, 4)
+
+ def test_star_graph(self):
+ assert is_isomorphic(nx.star_graph(""), nx.empty_graph(0))
+ assert is_isomorphic(nx.star_graph([]), nx.empty_graph(0))
+ assert is_isomorphic(nx.star_graph(0), nx.empty_graph(1))
+ assert is_isomorphic(nx.star_graph(1), nx.path_graph(2))
+ assert is_isomorphic(nx.star_graph(2), nx.path_graph(3))
+ assert is_isomorphic(nx.star_graph(5), nx.complete_bipartite_graph(1, 5))
+
+ s = nx.star_graph(10)
+ assert sorted(d for n, d in s.degree()) == [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10]
+
+ pytest.raises(nx.NetworkXError, nx.star_graph, 10, create_using=nx.DiGraph)
+
+ ms = nx.star_graph(10, create_using=nx.MultiGraph)
+ assert edges_equal(ms.edges(), s.edges())
+
+ G = nx.star_graph("abc")
+ assert len(G) == 3
+ assert G.size() == 2
+
+ G = nx.star_graph("abcb")
+ assert len(G) == 3
+ assert G.size() == 2
+ G = nx.star_graph("abcb", create_using=nx.MultiGraph)
+ assert len(G) == 3
+ assert G.size() == 3
+
+ G = nx.star_graph("abcdefg")
+ assert len(G) == 7
+ assert G.size() == 6
+
+ def test_non_int_integers_for_star_graph(self):
+ np = pytest.importorskip("numpy")
+ G = nx.star_graph(np.int32(3))
+ assert len(G) == 4
+ assert G.size() == 3
+
+ @pytest.mark.parametrize(("m", "n"), [(3, 0), (3, 5), (4, 10), (3, 20)])
+ def test_tadpole_graph_right_sizes(self, m, n):
+ G = nx.tadpole_graph(m, n)
+ assert nx.number_of_nodes(G) == m + n
+ assert nx.number_of_edges(G) == m + n - (m == 2)
+
+ @pytest.mark.parametrize(("m", "n"), [("ab", ""), ("ab", "c"), ("abc", "defg")])
+ def test_tadpole_graph_size_node_sequences(self, m, n):
+ G = nx.tadpole_graph(m, n)
+ assert nx.number_of_nodes(G) == len(m) + len(n)
+ assert nx.number_of_edges(G) == len(m) + len(n) - (len(m) == 2)
+
+ def test_tadpole_graph_exceptions(self):
+ # Raise NetworkXError if m<2
+ pytest.raises(nx.NetworkXError, nx.tadpole_graph, -1, 3)
+ pytest.raises(nx.NetworkXError, nx.tadpole_graph, 0, 3)
+ pytest.raises(nx.NetworkXError, nx.tadpole_graph, 1, 3)
+
+ # Raise NetworkXError if n<0
+ pytest.raises(nx.NetworkXError, nx.tadpole_graph, 5, -2)
+
+ # Raise NetworkXError for digraphs
+ with pytest.raises(nx.NetworkXError):
+ nx.tadpole_graph(2, 20, create_using=nx.DiGraph)
+ with pytest.raises(nx.NetworkXError):
+ nx.tadpole_graph(2, 20, create_using=nx.MultiDiGraph)
+
+ @pytest.mark.parametrize(("m", "n"), [(2, 0), (2, 5), (2, 10), ("ab", 20)])
+ def test_tadpole_graph_same_as_path_when_m_is_2(self, m, n):
+ G = nx.tadpole_graph(m, n)
+ assert is_isomorphic(G, nx.path_graph(n + 2))
+
+ @pytest.mark.parametrize("m", [4, 7])
+ def test_tadpole_graph_same_as_cycle_when_m2_is_0(self, m):
+ G = nx.tadpole_graph(m, 0)
+ assert is_isomorphic(G, nx.cycle_graph(m))
+
+ def test_tadpole_graph_for_multigraph(self):
+ G = nx.tadpole_graph(5, 20)
+ MG = nx.tadpole_graph(5, 20, create_using=nx.MultiGraph)
+ assert edges_equal(MG.edges(), G.edges())
+
+ @pytest.mark.parametrize(
+ ("m", "n"),
+ [(4, "abc"), ("abcd", 3), ([1, 2, 3, 4], "abc"), ("abcd", [1, 2, 3])],
+ )
+ def test_tadpole_graph_mixing_input_types(self, m, n):
+ expected = nx.compose(nx.cycle_graph(4), nx.path_graph(range(100, 103)))
+ expected.add_edge(0, 100) # Connect cycle and path
+ assert is_isomorphic(nx.tadpole_graph(m, n), expected)
+
+ def test_tadpole_graph_non_builtin_integers(self):
+ np = pytest.importorskip("numpy")
+ G = nx.tadpole_graph(np.int32(4), np.int64(3))
+ expected = nx.compose(nx.cycle_graph(4), nx.path_graph(range(100, 103)))
+ expected.add_edge(0, 100) # Connect cycle and path
+ assert is_isomorphic(G, expected)
+
+ def test_trivial_graph(self):
+ assert nx.number_of_nodes(nx.trivial_graph()) == 1
+
+ def test_turan_graph(self):
+ assert nx.number_of_edges(nx.turan_graph(13, 4)) == 63
+ assert is_isomorphic(
+ nx.turan_graph(13, 4), nx.complete_multipartite_graph(3, 4, 3, 3)
+ )
+
+ def test_wheel_graph(self):
+ for n, G in [
+ ("", nx.null_graph()),
+ (0, nx.null_graph()),
+ (1, nx.empty_graph(1)),
+ (2, nx.path_graph(2)),
+ (3, nx.complete_graph(3)),
+ (4, nx.complete_graph(4)),
+ ]:
+ g = nx.wheel_graph(n)
+ assert is_isomorphic(g, G)
+
+ g = nx.wheel_graph(10)
+ assert sorted(d for n, d in g.degree()) == [3, 3, 3, 3, 3, 3, 3, 3, 3, 9]
+
+ pytest.raises(nx.NetworkXError, nx.wheel_graph, 10, create_using=nx.DiGraph)
+
+ mg = nx.wheel_graph(10, create_using=nx.MultiGraph())
+ assert edges_equal(mg.edges(), g.edges())
+
+ G = nx.wheel_graph("abc")
+ assert len(G) == 3
+ assert G.size() == 3
+
+ G = nx.wheel_graph("abcb")
+ assert len(G) == 3
+ assert G.size() == 4
+ G = nx.wheel_graph("abcb", nx.MultiGraph)
+ assert len(G) == 3
+ assert G.size() == 6
+
+ def test_non_int_integers_for_wheel_graph(self):
+ np = pytest.importorskip("numpy")
+ G = nx.wheel_graph(np.int32(3))
+ assert len(G) == 3
+ assert G.size() == 3
+
+ def test_complete_0_partite_graph(self):
+ """Tests that the complete 0-partite graph is the null graph."""
+ G = nx.complete_multipartite_graph()
+ H = nx.null_graph()
+ assert nodes_equal(G, H)
+ assert edges_equal(G.edges(), H.edges())
+
+ def test_complete_1_partite_graph(self):
+ """Tests that the complete 1-partite graph is the empty graph."""
+ G = nx.complete_multipartite_graph(3)
+ H = nx.empty_graph(3)
+ assert nodes_equal(G, H)
+ assert edges_equal(G.edges(), H.edges())
+
+ def test_complete_2_partite_graph(self):
+ """Tests that the complete 2-partite graph is the complete bipartite
+ graph.
+
+ """
+ G = nx.complete_multipartite_graph(2, 3)
+ H = nx.complete_bipartite_graph(2, 3)
+ assert nodes_equal(G, H)
+ assert edges_equal(G.edges(), H.edges())
+
+ def test_complete_multipartite_graph(self):
+ """Tests for generating the complete multipartite graph."""
+ G = nx.complete_multipartite_graph(2, 3, 4)
+ blocks = [(0, 1), (2, 3, 4), (5, 6, 7, 8)]
+ # Within each block, no two vertices should be adjacent.
+ for block in blocks:
+ for u, v in itertools.combinations_with_replacement(block, 2):
+ assert v not in G[u]
+ assert G.nodes[u] == G.nodes[v]
+ # Across blocks, all vertices should be adjacent.
+ for block1, block2 in itertools.combinations(blocks, 2):
+ for u, v in itertools.product(block1, block2):
+ assert v in G[u]
+ assert G.nodes[u] != G.nodes[v]
+ with pytest.raises(nx.NetworkXError, match="Negative number of nodes"):
+ nx.complete_multipartite_graph(2, -3, 4)
+
+ def test_kneser_graph(self):
+ # the petersen graph is a special case of the kneser graph when n=5 and k=2
+ assert is_isomorphic(nx.kneser_graph(5, 2), nx.petersen_graph())
+
+ # when k is 1, the kneser graph returns a complete graph with n vertices
+ for i in range(1, 7):
+ assert is_isomorphic(nx.kneser_graph(i, 1), nx.complete_graph(i))
+
+ # the kneser graph of n and n-1 is the empty graph with n vertices
+ for j in range(3, 7):
+ assert is_isomorphic(nx.kneser_graph(j, j - 1), nx.empty_graph(j))
+
+ # in general the number of edges of the kneser graph is equal to
+ # (n choose k) times (n-k choose k) divided by 2
+ assert nx.number_of_edges(nx.kneser_graph(8, 3)) == 280