aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/networkx/classes/graph.py
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/networkx/classes/graph.py
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are hereHEADmaster
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/classes/graph.py')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/classes/graph.py2058
1 files changed, 2058 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/classes/graph.py b/.venv/lib/python3.12/site-packages/networkx/classes/graph.py
new file mode 100644
index 00000000..6828705d
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/classes/graph.py
@@ -0,0 +1,2058 @@
+"""Base class for undirected graphs.
+
+The Graph class allows any hashable object as a node
+and can associate key/value attribute pairs with each undirected edge.
+
+Self-loops are allowed but multiple edges are not (see MultiGraph).
+
+For directed graphs see DiGraph and MultiDiGraph.
+"""
+
+from copy import deepcopy
+from functools import cached_property
+
+import networkx as nx
+from networkx import convert
+from networkx.classes.coreviews import AdjacencyView
+from networkx.classes.reportviews import DegreeView, EdgeView, NodeView
+from networkx.exception import NetworkXError
+
+__all__ = ["Graph"]
+
+
+class _CachedPropertyResetterAdj:
+ """Data Descriptor class for _adj that resets ``adj`` cached_property when needed
+
+ This assumes that the ``cached_property`` ``G.adj`` should be reset whenever
+ ``G._adj`` is set to a new value.
+
+ This object sits on a class and ensures that any instance of that
+ class clears its cached property "adj" whenever the underlying
+ instance attribute "_adj" is set to a new object. It only affects
+ the set process of the obj._adj attribute. All get/del operations
+ act as they normally would.
+
+ For info on Data Descriptors see: https://docs.python.org/3/howto/descriptor.html
+ """
+
+ def __set__(self, obj, value):
+ od = obj.__dict__
+ od["_adj"] = value
+ # reset cached properties
+ props = ["adj", "edges", "degree"]
+ for prop in props:
+ if prop in od:
+ del od[prop]
+
+
+class _CachedPropertyResetterNode:
+ """Data Descriptor class for _node that resets ``nodes`` cached_property when needed
+
+ This assumes that the ``cached_property`` ``G.node`` should be reset whenever
+ ``G._node`` is set to a new value.
+
+ This object sits on a class and ensures that any instance of that
+ class clears its cached property "nodes" whenever the underlying
+ instance attribute "_node" is set to a new object. It only affects
+ the set process of the obj._adj attribute. All get/del operations
+ act as they normally would.
+
+ For info on Data Descriptors see: https://docs.python.org/3/howto/descriptor.html
+ """
+
+ def __set__(self, obj, value):
+ od = obj.__dict__
+ od["_node"] = value
+ # reset cached properties
+ if "nodes" in od:
+ del od["nodes"]
+
+
+class Graph:
+ """
+ Base class for undirected graphs.
+
+ A Graph stores nodes and edges with optional data, or attributes.
+
+ Graphs hold undirected edges. Self loops are allowed but multiple
+ (parallel) edges are not.
+
+ Nodes can be arbitrary (hashable) Python objects with optional
+ key/value attributes, except that `None` is not allowed as a node.
+
+ Edges are represented as links between nodes with optional
+ key/value attributes.
+
+ Parameters
+ ----------
+ incoming_graph_data : input graph (optional, default: None)
+ Data to initialize graph. If None (default) an empty
+ graph is created. The data can be any format that is supported
+ by the to_networkx_graph() function, currently including edge list,
+ dict of dicts, dict of lists, NetworkX graph, 2D NumPy array, SciPy
+ sparse matrix, or PyGraphviz graph.
+
+ attr : keyword arguments, optional (default= no attributes)
+ Attributes to add to graph as key=value pairs.
+
+ See Also
+ --------
+ DiGraph
+ MultiGraph
+ MultiDiGraph
+
+ Examples
+ --------
+ Create an empty graph structure (a "null graph") with no nodes and
+ no edges.
+
+ >>> G = nx.Graph()
+
+ G can be grown in several ways.
+
+ **Nodes:**
+
+ Add one node at a time:
+
+ >>> G.add_node(1)
+
+ Add the nodes from any container (a list, dict, set or
+ even the lines from a file or the nodes from another graph).
+
+ >>> G.add_nodes_from([2, 3])
+ >>> G.add_nodes_from(range(100, 110))
+ >>> H = nx.path_graph(10)
+ >>> G.add_nodes_from(H)
+
+ In addition to strings and integers any hashable Python object
+ (except None) can represent a node, e.g. a customized node object,
+ or even another Graph.
+
+ >>> G.add_node(H)
+
+ **Edges:**
+
+ G can also be grown by adding edges.
+
+ Add one edge,
+
+ >>> G.add_edge(1, 2)
+
+ a list of edges,
+
+ >>> G.add_edges_from([(1, 2), (1, 3)])
+
+ or a collection of edges,
+
+ >>> G.add_edges_from(H.edges)
+
+ If some edges connect nodes not yet in the graph, the nodes
+ are added automatically. There are no errors when adding
+ nodes or edges that already exist.
+
+ **Attributes:**
+
+ Each graph, node, and edge can hold key/value attribute pairs
+ in an associated attribute dictionary (the keys must be hashable).
+ By default these are empty, but can be added or changed using
+ add_edge, add_node or direct manipulation of the attribute
+ dictionaries named graph, node and edge respectively.
+
+ >>> G = nx.Graph(day="Friday")
+ >>> G.graph
+ {'day': 'Friday'}
+
+ Add node attributes using add_node(), add_nodes_from() or G.nodes
+
+ >>> G.add_node(1, time="5pm")
+ >>> G.add_nodes_from([3], time="2pm")
+ >>> G.nodes[1]
+ {'time': '5pm'}
+ >>> G.nodes[1]["room"] = 714 # node must exist already to use G.nodes
+ >>> del G.nodes[1]["room"] # remove attribute
+ >>> list(G.nodes(data=True))
+ [(1, {'time': '5pm'}), (3, {'time': '2pm'})]
+
+ Add edge attributes using add_edge(), add_edges_from(), subscript
+ notation, or G.edges.
+
+ >>> G.add_edge(1, 2, weight=4.7)
+ >>> G.add_edges_from([(3, 4), (4, 5)], color="red")
+ >>> G.add_edges_from([(1, 2, {"color": "blue"}), (2, 3, {"weight": 8})])
+ >>> G[1][2]["weight"] = 4.7
+ >>> G.edges[1, 2]["weight"] = 4
+
+ Warning: we protect the graph data structure by making `G.edges` a
+ read-only dict-like structure. However, you can assign to attributes
+ in e.g. `G.edges[1, 2]`. Thus, use 2 sets of brackets to add/change
+ data attributes: `G.edges[1, 2]['weight'] = 4`
+ (For multigraphs: `MG.edges[u, v, key][name] = value`).
+
+ **Shortcuts:**
+
+ Many common graph features allow python syntax to speed reporting.
+
+ >>> 1 in G # check if node in graph
+ True
+ >>> [n for n in G if n < 3] # iterate through nodes
+ [1, 2]
+ >>> len(G) # number of nodes in graph
+ 5
+
+ Often the best way to traverse all edges of a graph is via the neighbors.
+ The neighbors are reported as an adjacency-dict `G.adj` or `G.adjacency()`
+
+ >>> for n, nbrsdict in G.adjacency():
+ ... for nbr, eattr in nbrsdict.items():
+ ... if "weight" in eattr:
+ ... # Do something useful with the edges
+ ... pass
+
+ But the edges() method is often more convenient:
+
+ >>> for u, v, weight in G.edges.data("weight"):
+ ... if weight is not None:
+ ... # Do something useful with the edges
+ ... pass
+
+ **Reporting:**
+
+ Simple graph information is obtained using object-attributes and methods.
+ Reporting typically provides views instead of containers to reduce memory
+ usage. The views update as the graph is updated similarly to dict-views.
+ The objects `nodes`, `edges` and `adj` provide access to data attributes
+ via lookup (e.g. `nodes[n]`, `edges[u, v]`, `adj[u][v]`) and iteration
+ (e.g. `nodes.items()`, `nodes.data('color')`,
+ `nodes.data('color', default='blue')` and similarly for `edges`)
+ Views exist for `nodes`, `edges`, `neighbors()`/`adj` and `degree`.
+
+ For details on these and other miscellaneous methods, see below.
+
+ **Subclasses (Advanced):**
+
+ The Graph class uses a dict-of-dict-of-dict data structure.
+ The outer dict (node_dict) holds adjacency information keyed by node.
+ The next dict (adjlist_dict) represents the adjacency information and holds
+ edge data keyed by neighbor. The inner dict (edge_attr_dict) represents
+ the edge data and holds edge attribute values keyed by attribute names.
+
+ Each of these three dicts can be replaced in a subclass by a user defined
+ dict-like object. In general, the dict-like features should be
+ maintained but extra features can be added. To replace one of the
+ dicts create a new graph class by changing the class(!) variable
+ holding the factory for that dict-like structure.
+
+ node_dict_factory : function, (default: dict)
+ Factory function to be used to create the dict containing node
+ attributes, keyed by node id.
+ It should require no arguments and return a dict-like object
+
+ node_attr_dict_factory: function, (default: dict)
+ Factory function to be used to create the node attribute
+ dict which holds attribute values keyed by attribute name.
+ It should require no arguments and return a dict-like object
+
+ adjlist_outer_dict_factory : function, (default: dict)
+ Factory function to be used to create the outer-most dict
+ in the data structure that holds adjacency info keyed by node.
+ It should require no arguments and return a dict-like object.
+
+ adjlist_inner_dict_factory : function, (default: dict)
+ Factory function to be used to create the adjacency list
+ dict which holds edge data keyed by neighbor.
+ It should require no arguments and return a dict-like object
+
+ edge_attr_dict_factory : function, (default: dict)
+ Factory function to be used to create the edge attribute
+ dict which holds attribute values keyed by attribute name.
+ It should require no arguments and return a dict-like object.
+
+ graph_attr_dict_factory : function, (default: dict)
+ Factory function to be used to create the graph attribute
+ dict which holds attribute values keyed by attribute name.
+ It should require no arguments and return a dict-like object.
+
+ Typically, if your extension doesn't impact the data structure all
+ methods will inherit without issue except: `to_directed/to_undirected`.
+ By default these methods create a DiGraph/Graph class and you probably
+ want them to create your extension of a DiGraph/Graph. To facilitate
+ this we define two class variables that you can set in your subclass.
+
+ to_directed_class : callable, (default: DiGraph or MultiDiGraph)
+ Class to create a new graph structure in the `to_directed` method.
+ If `None`, a NetworkX class (DiGraph or MultiDiGraph) is used.
+
+ to_undirected_class : callable, (default: Graph or MultiGraph)
+ Class to create a new graph structure in the `to_undirected` method.
+ If `None`, a NetworkX class (Graph or MultiGraph) is used.
+
+ **Subclassing Example**
+
+ Create a low memory graph class that effectively disallows edge
+ attributes by using a single attribute dict for all edges.
+ This reduces the memory used, but you lose edge attributes.
+
+ >>> class ThinGraph(nx.Graph):
+ ... all_edge_dict = {"weight": 1}
+ ...
+ ... def single_edge_dict(self):
+ ... return self.all_edge_dict
+ ...
+ ... edge_attr_dict_factory = single_edge_dict
+ >>> G = ThinGraph()
+ >>> G.add_edge(2, 1)
+ >>> G[2][1]
+ {'weight': 1}
+ >>> G.add_edge(2, 2)
+ >>> G[2][1] is G[2][2]
+ True
+ """
+
+ __networkx_backend__ = "networkx"
+
+ _adj = _CachedPropertyResetterAdj()
+ _node = _CachedPropertyResetterNode()
+
+ node_dict_factory = dict
+ node_attr_dict_factory = dict
+ adjlist_outer_dict_factory = dict
+ adjlist_inner_dict_factory = dict
+ edge_attr_dict_factory = dict
+ graph_attr_dict_factory = dict
+
+ def to_directed_class(self):
+ """Returns the class to use for empty directed copies.
+
+ If you subclass the base classes, use this to designate
+ what directed class to use for `to_directed()` copies.
+ """
+ return nx.DiGraph
+
+ def to_undirected_class(self):
+ """Returns the class to use for empty undirected copies.
+
+ If you subclass the base classes, use this to designate
+ what directed class to use for `to_directed()` copies.
+ """
+ return Graph
+
+ def __init__(self, incoming_graph_data=None, **attr):
+ """Initialize a graph with edges, name, or graph attributes.
+
+ Parameters
+ ----------
+ incoming_graph_data : input graph (optional, default: None)
+ Data to initialize graph. If None (default) an empty
+ graph is created. The data can be an edge list, or any
+ NetworkX graph object. If the corresponding optional Python
+ packages are installed the data can also be a 2D NumPy array, a
+ SciPy sparse array, or a PyGraphviz graph.
+
+ attr : keyword arguments, optional (default= no attributes)
+ Attributes to add to graph as key=value pairs.
+
+ See Also
+ --------
+ convert
+
+ Examples
+ --------
+ >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
+ >>> G = nx.Graph(name="my graph")
+ >>> e = [(1, 2), (2, 3), (3, 4)] # list of edges
+ >>> G = nx.Graph(e)
+
+ Arbitrary graph attribute pairs (key=value) may be assigned
+
+ >>> G = nx.Graph(e, day="Friday")
+ >>> G.graph
+ {'day': 'Friday'}
+
+ """
+ self.graph = self.graph_attr_dict_factory() # dictionary for graph attributes
+ self._node = self.node_dict_factory() # empty node attribute dict
+ self._adj = self.adjlist_outer_dict_factory() # empty adjacency dict
+ self.__networkx_cache__ = {}
+ # attempt to load graph with data
+ if incoming_graph_data is not None:
+ convert.to_networkx_graph(incoming_graph_data, create_using=self)
+ # load graph attributes (must be after convert)
+ self.graph.update(attr)
+
+ @cached_property
+ def adj(self):
+ """Graph adjacency object holding the neighbors of each node.
+
+ This object is a read-only dict-like structure with node keys
+ and neighbor-dict values. The neighbor-dict is keyed by neighbor
+ to the edge-data-dict. So `G.adj[3][2]['color'] = 'blue'` sets
+ the color of the edge `(3, 2)` to `"blue"`.
+
+ Iterating over G.adj behaves like a dict. Useful idioms include
+ `for nbr, datadict in G.adj[n].items():`.
+
+ The neighbor information is also provided by subscripting the graph.
+ So `for nbr, foovalue in G[node].data('foo', default=1):` works.
+
+ For directed graphs, `G.adj` holds outgoing (successor) info.
+ """
+ return AdjacencyView(self._adj)
+
+ @property
+ def name(self):
+ """String identifier of the graph.
+
+ This graph attribute appears in the attribute dict G.graph
+ keyed by the string `"name"`. as well as an attribute (technically
+ a property) `G.name`. This is entirely user controlled.
+ """
+ return self.graph.get("name", "")
+
+ @name.setter
+ def name(self, s):
+ self.graph["name"] = s
+ nx._clear_cache(self)
+
+ def __str__(self):
+ """Returns a short summary of the graph.
+
+ Returns
+ -------
+ info : string
+ Graph information including the graph name (if any), graph type, and the
+ number of nodes and edges.
+
+ Examples
+ --------
+ >>> G = nx.Graph(name="foo")
+ >>> str(G)
+ "Graph named 'foo' with 0 nodes and 0 edges"
+
+ >>> G = nx.path_graph(3)
+ >>> str(G)
+ 'Graph with 3 nodes and 2 edges'
+
+ """
+ return "".join(
+ [
+ type(self).__name__,
+ f" named {self.name!r}" if self.name else "",
+ f" with {self.number_of_nodes()} nodes and {self.number_of_edges()} edges",
+ ]
+ )
+
+ def __iter__(self):
+ """Iterate over the nodes. Use: 'for n in G'.
+
+ Returns
+ -------
+ niter : iterator
+ An iterator over all nodes in the graph.
+
+ Examples
+ --------
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
+ >>> [n for n in G]
+ [0, 1, 2, 3]
+ >>> list(G)
+ [0, 1, 2, 3]
+ """
+ return iter(self._node)
+
+ def __contains__(self, n):
+ """Returns True if n is a node, False otherwise. Use: 'n in G'.
+
+ Examples
+ --------
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
+ >>> 1 in G
+ True
+ """
+ try:
+ return n in self._node
+ except TypeError:
+ return False
+
+ def __len__(self):
+ """Returns the number of nodes in the graph. Use: 'len(G)'.
+
+ Returns
+ -------
+ nnodes : int
+ The number of nodes in the graph.
+
+ See Also
+ --------
+ number_of_nodes: identical method
+ order: identical method
+
+ Examples
+ --------
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
+ >>> len(G)
+ 4
+
+ """
+ return len(self._node)
+
+ def __getitem__(self, n):
+ """Returns a dict of neighbors of node n. Use: 'G[n]'.
+
+ Parameters
+ ----------
+ n : node
+ A node in the graph.
+
+ Returns
+ -------
+ adj_dict : dictionary
+ The adjacency dictionary for nodes connected to n.
+
+ Notes
+ -----
+ G[n] is the same as G.adj[n] and similar to G.neighbors(n)
+ (which is an iterator over G.adj[n])
+
+ Examples
+ --------
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
+ >>> G[0]
+ AtlasView({1: {}})
+ """
+ return self.adj[n]
+
+ def add_node(self, node_for_adding, **attr):
+ """Add a single node `node_for_adding` and update node attributes.
+
+ Parameters
+ ----------
+ node_for_adding : node
+ A node can be any hashable Python object except None.
+ attr : keyword arguments, optional
+ Set or change node attributes using key=value.
+
+ See Also
+ --------
+ add_nodes_from
+
+ Examples
+ --------
+ >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
+ >>> G.add_node(1)
+ >>> G.add_node("Hello")
+ >>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)])
+ >>> G.add_node(K3)
+ >>> G.number_of_nodes()
+ 3
+
+ Use keywords set/change node attributes:
+
+ >>> G.add_node(1, size=10)
+ >>> G.add_node(3, weight=0.4, UTM=("13S", 382871, 3972649))
+
+ Notes
+ -----
+ A hashable object is one that can be used as a key in a Python
+ dictionary. This includes strings, numbers, tuples of strings
+ and numbers, etc.
+
+ On many platforms hashable items also include mutables such as
+ NetworkX Graphs, though one should be careful that the hash
+ doesn't change on mutables.
+ """
+ if node_for_adding not in self._node:
+ if node_for_adding is None:
+ raise ValueError("None cannot be a node")
+ self._adj[node_for_adding] = self.adjlist_inner_dict_factory()
+ attr_dict = self._node[node_for_adding] = self.node_attr_dict_factory()
+ attr_dict.update(attr)
+ else: # update attr even if node already exists
+ self._node[node_for_adding].update(attr)
+ nx._clear_cache(self)
+
+ def add_nodes_from(self, nodes_for_adding, **attr):
+ """Add multiple nodes.
+
+ Parameters
+ ----------
+ nodes_for_adding : iterable container
+ A container of nodes (list, dict, set, etc.).
+ OR
+ A container of (node, attribute dict) tuples.
+ Node attributes are updated using the attribute dict.
+ attr : keyword arguments, optional (default= no attributes)
+ Update attributes for all nodes in nodes.
+ Node attributes specified in nodes as a tuple take
+ precedence over attributes specified via keyword arguments.
+
+ See Also
+ --------
+ add_node
+
+ Notes
+ -----
+ When adding nodes from an iterator over the graph you are changing,
+ a `RuntimeError` can be raised with message:
+ `RuntimeError: dictionary changed size during iteration`. This
+ happens when the graph's underlying dictionary is modified during
+ iteration. To avoid this error, evaluate the iterator into a separate
+ object, e.g. by using `list(iterator_of_nodes)`, and pass this
+ object to `G.add_nodes_from`.
+
+ Examples
+ --------
+ >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
+ >>> G.add_nodes_from("Hello")
+ >>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)])
+ >>> G.add_nodes_from(K3)
+ >>> sorted(G.nodes(), key=str)
+ [0, 1, 2, 'H', 'e', 'l', 'o']
+
+ Use keywords to update specific node attributes for every node.
+
+ >>> G.add_nodes_from([1, 2], size=10)
+ >>> G.add_nodes_from([3, 4], weight=0.4)
+
+ Use (node, attrdict) tuples to update attributes for specific nodes.
+
+ >>> G.add_nodes_from([(1, dict(size=11)), (2, {"color": "blue"})])
+ >>> G.nodes[1]["size"]
+ 11
+ >>> H = nx.Graph()
+ >>> H.add_nodes_from(G.nodes(data=True))
+ >>> H.nodes[1]["size"]
+ 11
+
+ Evaluate an iterator over a graph if using it to modify the same graph
+
+ >>> G = nx.Graph([(0, 1), (1, 2), (3, 4)])
+ >>> # wrong way - will raise RuntimeError
+ >>> # G.add_nodes_from(n + 1 for n in G.nodes)
+ >>> # correct way
+ >>> G.add_nodes_from(list(n + 1 for n in G.nodes))
+ """
+ for n in nodes_for_adding:
+ try:
+ newnode = n not in self._node
+ newdict = attr
+ except TypeError:
+ n, ndict = n
+ newnode = n not in self._node
+ newdict = attr.copy()
+ newdict.update(ndict)
+ if newnode:
+ if n is None:
+ raise ValueError("None cannot be a node")
+ self._adj[n] = self.adjlist_inner_dict_factory()
+ self._node[n] = self.node_attr_dict_factory()
+ self._node[n].update(newdict)
+ nx._clear_cache(self)
+
+ def remove_node(self, n):
+ """Remove node n.
+
+ Removes the node n and all adjacent edges.
+ Attempting to remove a nonexistent node will raise an exception.
+
+ Parameters
+ ----------
+ n : node
+ A node in the graph
+
+ Raises
+ ------
+ NetworkXError
+ If n is not in the graph.
+
+ See Also
+ --------
+ remove_nodes_from
+
+ Examples
+ --------
+ >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
+ >>> list(G.edges)
+ [(0, 1), (1, 2)]
+ >>> G.remove_node(1)
+ >>> list(G.edges)
+ []
+
+ """
+ adj = self._adj
+ try:
+ nbrs = list(adj[n]) # list handles self-loops (allows mutation)
+ del self._node[n]
+ except KeyError as err: # NetworkXError if n not in self
+ raise NetworkXError(f"The node {n} is not in the graph.") from err
+ for u in nbrs:
+ del adj[u][n] # remove all edges n-u in graph
+ del adj[n] # now remove node
+ nx._clear_cache(self)
+
+ def remove_nodes_from(self, nodes):
+ """Remove multiple nodes.
+
+ Parameters
+ ----------
+ nodes : iterable container
+ A container of nodes (list, dict, set, etc.). If a node
+ in the container is not in the graph it is silently
+ ignored.
+
+ See Also
+ --------
+ remove_node
+
+ Notes
+ -----
+ When removing nodes from an iterator over the graph you are changing,
+ a `RuntimeError` will be raised with message:
+ `RuntimeError: dictionary changed size during iteration`. This
+ happens when the graph's underlying dictionary is modified during
+ iteration. To avoid this error, evaluate the iterator into a separate
+ object, e.g. by using `list(iterator_of_nodes)`, and pass this
+ object to `G.remove_nodes_from`.
+
+ Examples
+ --------
+ >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
+ >>> e = list(G.nodes)
+ >>> e
+ [0, 1, 2]
+ >>> G.remove_nodes_from(e)
+ >>> list(G.nodes)
+ []
+
+ Evaluate an iterator over a graph if using it to modify the same graph
+
+ >>> G = nx.Graph([(0, 1), (1, 2), (3, 4)])
+ >>> # this command will fail, as the graph's dict is modified during iteration
+ >>> # G.remove_nodes_from(n for n in G.nodes if n < 2)
+ >>> # this command will work, since the dictionary underlying graph is not modified
+ >>> G.remove_nodes_from(list(n for n in G.nodes if n < 2))
+ """
+ adj = self._adj
+ for n in nodes:
+ try:
+ del self._node[n]
+ for u in list(adj[n]): # list handles self-loops
+ del adj[u][n] # (allows mutation of dict in loop)
+ del adj[n]
+ except KeyError:
+ pass
+ nx._clear_cache(self)
+
+ @cached_property
+ def nodes(self):
+ """A NodeView of the Graph as G.nodes or G.nodes().
+
+ Can be used as `G.nodes` for data lookup and for set-like operations.
+ Can also be used as `G.nodes(data='color', default=None)` to return a
+ NodeDataView which reports specific node data but no set operations.
+ It presents a dict-like interface as well with `G.nodes.items()`
+ iterating over `(node, nodedata)` 2-tuples and `G.nodes[3]['foo']`
+ providing the value of the `foo` attribute for node `3`. In addition,
+ a view `G.nodes.data('foo')` provides a dict-like interface to the
+ `foo` attribute of each node. `G.nodes.data('foo', default=1)`
+ provides a default for nodes that do not have attribute `foo`.
+
+ Parameters
+ ----------
+ data : string or bool, optional (default=False)
+ The node attribute returned in 2-tuple (n, ddict[data]).
+ If True, return entire node attribute dict as (n, ddict).
+ If False, return just the nodes n.
+
+ default : value, optional (default=None)
+ Value used for nodes that don't have the requested attribute.
+ Only relevant if data is not True or False.
+
+ Returns
+ -------
+ NodeView
+ Allows set-like operations over the nodes as well as node
+ attribute dict lookup and calling to get a NodeDataView.
+ A NodeDataView iterates over `(n, data)` and has no set operations.
+ A NodeView iterates over `n` and includes set operations.
+
+ When called, if data is False, an iterator over nodes.
+ Otherwise an iterator of 2-tuples (node, attribute value)
+ where the attribute is specified in `data`.
+ If data is True then the attribute becomes the
+ entire data dictionary.
+
+ Notes
+ -----
+ If your node data is not needed, it is simpler and equivalent
+ to use the expression ``for n in G``, or ``list(G)``.
+
+ Examples
+ --------
+ There are two simple ways of getting a list of all nodes in the graph:
+
+ >>> G = nx.path_graph(3)
+ >>> list(G.nodes)
+ [0, 1, 2]
+ >>> list(G)
+ [0, 1, 2]
+
+ To get the node data along with the nodes:
+
+ >>> G.add_node(1, time="5pm")
+ >>> G.nodes[0]["foo"] = "bar"
+ >>> list(G.nodes(data=True))
+ [(0, {'foo': 'bar'}), (1, {'time': '5pm'}), (2, {})]
+ >>> list(G.nodes.data())
+ [(0, {'foo': 'bar'}), (1, {'time': '5pm'}), (2, {})]
+
+ >>> list(G.nodes(data="foo"))
+ [(0, 'bar'), (1, None), (2, None)]
+ >>> list(G.nodes.data("foo"))
+ [(0, 'bar'), (1, None), (2, None)]
+
+ >>> list(G.nodes(data="time"))
+ [(0, None), (1, '5pm'), (2, None)]
+ >>> list(G.nodes.data("time"))
+ [(0, None), (1, '5pm'), (2, None)]
+
+ >>> list(G.nodes(data="time", default="Not Available"))
+ [(0, 'Not Available'), (1, '5pm'), (2, 'Not Available')]
+ >>> list(G.nodes.data("time", default="Not Available"))
+ [(0, 'Not Available'), (1, '5pm'), (2, 'Not Available')]
+
+ If some of your nodes have an attribute and the rest are assumed
+ to have a default attribute value you can create a dictionary
+ from node/attribute pairs using the `default` keyword argument
+ to guarantee the value is never None::
+
+ >>> G = nx.Graph()
+ >>> G.add_node(0)
+ >>> G.add_node(1, weight=2)
+ >>> G.add_node(2, weight=3)
+ >>> dict(G.nodes(data="weight", default=1))
+ {0: 1, 1: 2, 2: 3}
+
+ """
+ return NodeView(self)
+
+ def number_of_nodes(self):
+ """Returns the number of nodes in the graph.
+
+ Returns
+ -------
+ nnodes : int
+ The number of nodes in the graph.
+
+ See Also
+ --------
+ order: identical method
+ __len__: identical method
+
+ Examples
+ --------
+ >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
+ >>> G.number_of_nodes()
+ 3
+ """
+ return len(self._node)
+
+ def order(self):
+ """Returns the number of nodes in the graph.
+
+ Returns
+ -------
+ nnodes : int
+ The number of nodes in the graph.
+
+ See Also
+ --------
+ number_of_nodes: identical method
+ __len__: identical method
+
+ Examples
+ --------
+ >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
+ >>> G.order()
+ 3
+ """
+ return len(self._node)
+
+ def has_node(self, n):
+ """Returns True if the graph contains the node n.
+
+ Identical to `n in G`
+
+ Parameters
+ ----------
+ n : node
+
+ Examples
+ --------
+ >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
+ >>> G.has_node(0)
+ True
+
+ It is more readable and simpler to use
+
+ >>> 0 in G
+ True
+
+ """
+ try:
+ return n in self._node
+ except TypeError:
+ return False
+
+ def add_edge(self, u_of_edge, v_of_edge, **attr):
+ """Add an edge between u and v.
+
+ The nodes u and v will be automatically added if they are
+ not already in the graph.
+
+ Edge attributes can be specified with keywords or by directly
+ accessing the edge's attribute dictionary. See examples below.
+
+ Parameters
+ ----------
+ u_of_edge, v_of_edge : nodes
+ Nodes can be, for example, strings or numbers.
+ Nodes must be hashable (and not None) Python objects.
+ attr : keyword arguments, optional
+ Edge data (or labels or objects) can be assigned using
+ keyword arguments.
+
+ See Also
+ --------
+ add_edges_from : add a collection of edges
+
+ Notes
+ -----
+ Adding an edge that already exists updates the edge data.
+
+ Many NetworkX algorithms designed for weighted graphs use
+ an edge attribute (by default `weight`) to hold a numerical value.
+
+ Examples
+ --------
+ The following all add the edge e=(1, 2) to graph G:
+
+ >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
+ >>> e = (1, 2)
+ >>> G.add_edge(1, 2) # explicit two-node form
+ >>> G.add_edge(*e) # single edge as tuple of two nodes
+ >>> G.add_edges_from([(1, 2)]) # add edges from iterable container
+
+ Associate data to edges using keywords:
+
+ >>> G.add_edge(1, 2, weight=3)
+ >>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)
+
+ For non-string attribute keys, use subscript notation.
+
+ >>> G.add_edge(1, 2)
+ >>> G[1][2].update({0: 5})
+ >>> G.edges[1, 2].update({0: 5})
+ """
+ u, v = u_of_edge, v_of_edge
+ # add nodes
+ if u not in self._node:
+ if u is None:
+ raise ValueError("None cannot be a node")
+ self._adj[u] = self.adjlist_inner_dict_factory()
+ self._node[u] = self.node_attr_dict_factory()
+ if v not in self._node:
+ if v is None:
+ raise ValueError("None cannot be a node")
+ self._adj[v] = self.adjlist_inner_dict_factory()
+ self._node[v] = self.node_attr_dict_factory()
+ # add the edge
+ datadict = self._adj[u].get(v, self.edge_attr_dict_factory())
+ datadict.update(attr)
+ self._adj[u][v] = datadict
+ self._adj[v][u] = datadict
+ nx._clear_cache(self)
+
+ def add_edges_from(self, ebunch_to_add, **attr):
+ """Add all the edges in ebunch_to_add.
+
+ Parameters
+ ----------
+ ebunch_to_add : container of edges
+ Each edge given in the container will be added to the
+ graph. The edges must be given as 2-tuples (u, v) or
+ 3-tuples (u, v, d) where d is a dictionary containing edge data.
+ attr : keyword arguments, optional
+ Edge data (or labels or objects) can be assigned using
+ keyword arguments.
+
+ See Also
+ --------
+ add_edge : add a single edge
+ add_weighted_edges_from : convenient way to add weighted edges
+
+ Notes
+ -----
+ Adding the same edge twice has no effect but any edge data
+ will be updated when each duplicate edge is added.
+
+ Edge attributes specified in an ebunch take precedence over
+ attributes specified via keyword arguments.
+
+ When adding edges from an iterator over the graph you are changing,
+ a `RuntimeError` can be raised with message:
+ `RuntimeError: dictionary changed size during iteration`. This
+ happens when the graph's underlying dictionary is modified during
+ iteration. To avoid this error, evaluate the iterator into a separate
+ object, e.g. by using `list(iterator_of_edges)`, and pass this
+ object to `G.add_edges_from`.
+
+ Examples
+ --------
+ >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
+ >>> G.add_edges_from([(0, 1), (1, 2)]) # using a list of edge tuples
+ >>> e = zip(range(0, 3), range(1, 4))
+ >>> G.add_edges_from(e) # Add the path graph 0-1-2-3
+
+ Associate data to edges
+
+ >>> G.add_edges_from([(1, 2), (2, 3)], weight=3)
+ >>> G.add_edges_from([(3, 4), (1, 4)], label="WN2898")
+
+ Evaluate an iterator over a graph if using it to modify the same graph
+
+ >>> G = nx.Graph([(1, 2), (2, 3), (3, 4)])
+ >>> # Grow graph by one new node, adding edges to all existing nodes.
+ >>> # wrong way - will raise RuntimeError
+ >>> # G.add_edges_from(((5, n) for n in G.nodes))
+ >>> # correct way - note that there will be no self-edge for node 5
+ >>> G.add_edges_from(list((5, n) for n in G.nodes))
+ """
+ for e in ebunch_to_add:
+ ne = len(e)
+ if ne == 3:
+ u, v, dd = e
+ elif ne == 2:
+ u, v = e
+ dd = {} # doesn't need edge_attr_dict_factory
+ else:
+ raise NetworkXError(f"Edge tuple {e} must be a 2-tuple or 3-tuple.")
+ if u not in self._node:
+ if u is None:
+ raise ValueError("None cannot be a node")
+ self._adj[u] = self.adjlist_inner_dict_factory()
+ self._node[u] = self.node_attr_dict_factory()
+ if v not in self._node:
+ if v is None:
+ raise ValueError("None cannot be a node")
+ self._adj[v] = self.adjlist_inner_dict_factory()
+ self._node[v] = self.node_attr_dict_factory()
+ datadict = self._adj[u].get(v, self.edge_attr_dict_factory())
+ datadict.update(attr)
+ datadict.update(dd)
+ self._adj[u][v] = datadict
+ self._adj[v][u] = datadict
+ nx._clear_cache(self)
+
+ def add_weighted_edges_from(self, ebunch_to_add, weight="weight", **attr):
+ """Add weighted edges in `ebunch_to_add` with specified weight attr
+
+ Parameters
+ ----------
+ ebunch_to_add : container of edges
+ Each edge given in the list or container will be added
+ to the graph. The edges must be given as 3-tuples (u, v, w)
+ where w is a number.
+ weight : string, optional (default= 'weight')
+ The attribute name for the edge weights to be added.
+ attr : keyword arguments, optional (default= no attributes)
+ Edge attributes to add/update for all edges.
+
+ See Also
+ --------
+ add_edge : add a single edge
+ add_edges_from : add multiple edges
+
+ Notes
+ -----
+ Adding the same edge twice for Graph/DiGraph simply updates
+ the edge data. For MultiGraph/MultiDiGraph, duplicate edges
+ are stored.
+
+ When adding edges from an iterator over the graph you are changing,
+ a `RuntimeError` can be raised with message:
+ `RuntimeError: dictionary changed size during iteration`. This
+ happens when the graph's underlying dictionary is modified during
+ iteration. To avoid this error, evaluate the iterator into a separate
+ object, e.g. by using `list(iterator_of_edges)`, and pass this
+ object to `G.add_weighted_edges_from`.
+
+ Examples
+ --------
+ >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
+ >>> G.add_weighted_edges_from([(0, 1, 3.0), (1, 2, 7.5)])
+
+ Evaluate an iterator over edges before passing it
+
+ >>> G = nx.Graph([(1, 2), (2, 3), (3, 4)])
+ >>> weight = 0.1
+ >>> # Grow graph by one new node, adding edges to all existing nodes.
+ >>> # wrong way - will raise RuntimeError
+ >>> # G.add_weighted_edges_from(((5, n, weight) for n in G.nodes))
+ >>> # correct way - note that there will be no self-edge for node 5
+ >>> G.add_weighted_edges_from(list((5, n, weight) for n in G.nodes))
+ """
+ self.add_edges_from(((u, v, {weight: d}) for u, v, d in ebunch_to_add), **attr)
+ nx._clear_cache(self)
+
+ def remove_edge(self, u, v):
+ """Remove the edge between u and v.
+
+ Parameters
+ ----------
+ u, v : nodes
+ Remove the edge between nodes u and v.
+
+ Raises
+ ------
+ NetworkXError
+ If there is not an edge between u and v.
+
+ See Also
+ --------
+ remove_edges_from : remove a collection of edges
+
+ Examples
+ --------
+ >>> G = nx.path_graph(4) # or DiGraph, etc
+ >>> G.remove_edge(0, 1)
+ >>> e = (1, 2)
+ >>> G.remove_edge(*e) # unpacks e from an edge tuple
+ >>> e = (2, 3, {"weight": 7}) # an edge with attribute data
+ >>> G.remove_edge(*e[:2]) # select first part of edge tuple
+ """
+ try:
+ del self._adj[u][v]
+ if u != v: # self-loop needs only one entry removed
+ del self._adj[v][u]
+ except KeyError as err:
+ raise NetworkXError(f"The edge {u}-{v} is not in the graph") from err
+ nx._clear_cache(self)
+
+ def remove_edges_from(self, ebunch):
+ """Remove all edges specified in ebunch.
+
+ Parameters
+ ----------
+ ebunch: list or container of edge tuples
+ Each edge given in the list or container will be removed
+ from the graph. The edges can be:
+
+ - 2-tuples (u, v) edge between u and v.
+ - 3-tuples (u, v, k) where k is ignored.
+
+ See Also
+ --------
+ remove_edge : remove a single edge
+
+ Notes
+ -----
+ Will fail silently if an edge in ebunch is not in the graph.
+
+ Examples
+ --------
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
+ >>> ebunch = [(1, 2), (2, 3)]
+ >>> G.remove_edges_from(ebunch)
+ """
+ adj = self._adj
+ for e in ebunch:
+ u, v = e[:2] # ignore edge data if present
+ if u in adj and v in adj[u]:
+ del adj[u][v]
+ if u != v: # self loop needs only one entry removed
+ del adj[v][u]
+ nx._clear_cache(self)
+
+ def update(self, edges=None, nodes=None):
+ """Update the graph using nodes/edges/graphs as input.
+
+ Like dict.update, this method takes a graph as input, adding the
+ graph's nodes and edges to this graph. It can also take two inputs:
+ edges and nodes. Finally it can take either edges or nodes.
+ To specify only nodes the keyword `nodes` must be used.
+
+ The collections of edges and nodes are treated similarly to
+ the add_edges_from/add_nodes_from methods. When iterated, they
+ should yield 2-tuples (u, v) or 3-tuples (u, v, datadict).
+
+ Parameters
+ ----------
+ edges : Graph object, collection of edges, or None
+ The first parameter can be a graph or some edges. If it has
+ attributes `nodes` and `edges`, then it is taken to be a
+ Graph-like object and those attributes are used as collections
+ of nodes and edges to be added to the graph.
+ If the first parameter does not have those attributes, it is
+ treated as a collection of edges and added to the graph.
+ If the first argument is None, no edges are added.
+ nodes : collection of nodes, or None
+ The second parameter is treated as a collection of nodes
+ to be added to the graph unless it is None.
+ If `edges is None` and `nodes is None` an exception is raised.
+ If the first parameter is a Graph, then `nodes` is ignored.
+
+ Examples
+ --------
+ >>> G = nx.path_graph(5)
+ >>> G.update(nx.complete_graph(range(4, 10)))
+ >>> from itertools import combinations
+ >>> edges = (
+ ... (u, v, {"power": u * v})
+ ... for u, v in combinations(range(10, 20), 2)
+ ... if u * v < 225
+ ... )
+ >>> nodes = [1000] # for singleton, use a container
+ >>> G.update(edges, nodes)
+
+ Notes
+ -----
+ It you want to update the graph using an adjacency structure
+ it is straightforward to obtain the edges/nodes from adjacency.
+ The following examples provide common cases, your adjacency may
+ be slightly different and require tweaks of these examples::
+
+ >>> # dict-of-set/list/tuple
+ >>> adj = {1: {2, 3}, 2: {1, 3}, 3: {1, 2}}
+ >>> e = [(u, v) for u, nbrs in adj.items() for v in nbrs]
+ >>> G.update(edges=e, nodes=adj)
+
+ >>> DG = nx.DiGraph()
+ >>> # dict-of-dict-of-attribute
+ >>> adj = {1: {2: 1.3, 3: 0.7}, 2: {1: 1.4}, 3: {1: 0.7}}
+ >>> e = [
+ ... (u, v, {"weight": d})
+ ... for u, nbrs in adj.items()
+ ... for v, d in nbrs.items()
+ ... ]
+ >>> DG.update(edges=e, nodes=adj)
+
+ >>> # dict-of-dict-of-dict
+ >>> adj = {1: {2: {"weight": 1.3}, 3: {"color": 0.7, "weight": 1.2}}}
+ >>> e = [
+ ... (u, v, {"weight": d})
+ ... for u, nbrs in adj.items()
+ ... for v, d in nbrs.items()
+ ... ]
+ >>> DG.update(edges=e, nodes=adj)
+
+ >>> # predecessor adjacency (dict-of-set)
+ >>> pred = {1: {2, 3}, 2: {3}, 3: {3}}
+ >>> e = [(v, u) for u, nbrs in pred.items() for v in nbrs]
+
+ >>> # MultiGraph dict-of-dict-of-dict-of-attribute
+ >>> MDG = nx.MultiDiGraph()
+ >>> adj = {
+ ... 1: {2: {0: {"weight": 1.3}, 1: {"weight": 1.2}}},
+ ... 3: {2: {0: {"weight": 0.7}}},
+ ... }
+ >>> e = [
+ ... (u, v, ekey, d)
+ ... for u, nbrs in adj.items()
+ ... for v, keydict in nbrs.items()
+ ... for ekey, d in keydict.items()
+ ... ]
+ >>> MDG.update(edges=e)
+
+ See Also
+ --------
+ add_edges_from: add multiple edges to a graph
+ add_nodes_from: add multiple nodes to a graph
+ """
+ if edges is not None:
+ if nodes is not None:
+ self.add_nodes_from(nodes)
+ self.add_edges_from(edges)
+ else:
+ # check if edges is a Graph object
+ try:
+ graph_nodes = edges.nodes
+ graph_edges = edges.edges
+ except AttributeError:
+ # edge not Graph-like
+ self.add_edges_from(edges)
+ else: # edges is Graph-like
+ self.add_nodes_from(graph_nodes.data())
+ self.add_edges_from(graph_edges.data())
+ self.graph.update(edges.graph)
+ elif nodes is not None:
+ self.add_nodes_from(nodes)
+ else:
+ raise NetworkXError("update needs nodes or edges input")
+
+ def has_edge(self, u, v):
+ """Returns True if the edge (u, v) is in the graph.
+
+ This is the same as `v in G[u]` without KeyError exceptions.
+
+ Parameters
+ ----------
+ u, v : nodes
+ Nodes can be, for example, strings or numbers.
+ Nodes must be hashable (and not None) Python objects.
+
+ Returns
+ -------
+ edge_ind : bool
+ True if edge is in the graph, False otherwise.
+
+ Examples
+ --------
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
+ >>> G.has_edge(0, 1) # using two nodes
+ True
+ >>> e = (0, 1)
+ >>> G.has_edge(*e) # e is a 2-tuple (u, v)
+ True
+ >>> e = (0, 1, {"weight": 7})
+ >>> G.has_edge(*e[:2]) # e is a 3-tuple (u, v, data_dictionary)
+ True
+
+ The following syntax are equivalent:
+
+ >>> G.has_edge(0, 1)
+ True
+ >>> 1 in G[0] # though this gives KeyError if 0 not in G
+ True
+
+ """
+ try:
+ return v in self._adj[u]
+ except KeyError:
+ return False
+
+ def neighbors(self, n):
+ """Returns an iterator over all neighbors of node n.
+
+ This is identical to `iter(G[n])`
+
+ Parameters
+ ----------
+ n : node
+ A node in the graph
+
+ Returns
+ -------
+ neighbors : iterator
+ An iterator over all neighbors of node n
+
+ Raises
+ ------
+ NetworkXError
+ If the node n is not in the graph.
+
+ Examples
+ --------
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
+ >>> [n for n in G.neighbors(0)]
+ [1]
+
+ Notes
+ -----
+ Alternate ways to access the neighbors are ``G.adj[n]`` or ``G[n]``:
+
+ >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
+ >>> G.add_edge("a", "b", weight=7)
+ >>> G["a"]
+ AtlasView({'b': {'weight': 7}})
+ >>> G = nx.path_graph(4)
+ >>> [n for n in G[0]]
+ [1]
+ """
+ try:
+ return iter(self._adj[n])
+ except KeyError as err:
+ raise NetworkXError(f"The node {n} is not in the graph.") from err
+
+ @cached_property
+ def edges(self):
+ """An EdgeView of the Graph as G.edges or G.edges().
+
+ edges(self, nbunch=None, data=False, default=None)
+
+ The EdgeView provides set-like operations on the edge-tuples
+ as well as edge attribute lookup. When called, it also provides
+ an EdgeDataView object which allows control of access to edge
+ attributes (but does not provide set-like operations).
+ Hence, `G.edges[u, v]['color']` provides the value of the color
+ attribute for edge `(u, v)` while
+ `for (u, v, c) in G.edges.data('color', default='red'):`
+ iterates through all the edges yielding the color attribute
+ with default `'red'` if no color attribute exists.
+
+ Parameters
+ ----------
+ nbunch : single node, container, or all nodes (default= all nodes)
+ The view will only report edges from these nodes.
+ data : string or bool, optional (default=False)
+ The edge attribute returned in 3-tuple (u, v, ddict[data]).
+ If True, return edge attribute dict in 3-tuple (u, v, ddict).
+ If False, return 2-tuple (u, v).
+ default : value, optional (default=None)
+ Value used for edges that don't have the requested attribute.
+ Only relevant if data is not True or False.
+
+ Returns
+ -------
+ edges : EdgeView
+ A view of edge attributes, usually it iterates over (u, v)
+ or (u, v, d) tuples of edges, but can also be used for
+ attribute lookup as `edges[u, v]['foo']`.
+
+ Notes
+ -----
+ Nodes in nbunch that are not in the graph will be (quietly) ignored.
+ For directed graphs this returns the out-edges.
+
+ Examples
+ --------
+ >>> G = nx.path_graph(3) # or MultiGraph, etc
+ >>> G.add_edge(2, 3, weight=5)
+ >>> [e for e in G.edges]
+ [(0, 1), (1, 2), (2, 3)]
+ >>> G.edges.data() # default data is {} (empty dict)
+ EdgeDataView([(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})])
+ >>> G.edges.data("weight", default=1)
+ EdgeDataView([(0, 1, 1), (1, 2, 1), (2, 3, 5)])
+ >>> G.edges([0, 3]) # only edges from these nodes
+ EdgeDataView([(0, 1), (3, 2)])
+ >>> G.edges(0) # only edges from node 0
+ EdgeDataView([(0, 1)])
+ """
+ return EdgeView(self)
+
+ def get_edge_data(self, u, v, default=None):
+ """Returns the attribute dictionary associated with edge (u, v).
+
+ This is identical to `G[u][v]` except the default is returned
+ instead of an exception if the edge doesn't exist.
+
+ Parameters
+ ----------
+ u, v : nodes
+ default: any Python object (default=None)
+ Value to return if the edge (u, v) is not found.
+
+ Returns
+ -------
+ edge_dict : dictionary
+ The edge attribute dictionary.
+
+ Examples
+ --------
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
+ >>> G[0][1]
+ {}
+
+ Warning: Assigning to `G[u][v]` is not permitted.
+ But it is safe to assign attributes `G[u][v]['foo']`
+
+ >>> G[0][1]["weight"] = 7
+ >>> G[0][1]["weight"]
+ 7
+ >>> G[1][0]["weight"]
+ 7
+
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
+ >>> G.get_edge_data(0, 1) # default edge data is {}
+ {}
+ >>> e = (0, 1)
+ >>> G.get_edge_data(*e) # tuple form
+ {}
+ >>> G.get_edge_data("a", "b", default=0) # edge not in graph, return 0
+ 0
+ """
+ try:
+ return self._adj[u][v]
+ except KeyError:
+ return default
+
+ def adjacency(self):
+ """Returns an iterator over (node, adjacency dict) tuples for all nodes.
+
+ For directed graphs, only outgoing neighbors/adjacencies are included.
+
+ Returns
+ -------
+ adj_iter : iterator
+ An iterator over (node, adjacency dictionary) for all nodes in
+ the graph.
+
+ Examples
+ --------
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
+ >>> [(n, nbrdict) for n, nbrdict in G.adjacency()]
+ [(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})]
+
+ """
+ return iter(self._adj.items())
+
+ @cached_property
+ def degree(self):
+ """A DegreeView for the Graph as G.degree or G.degree().
+
+ The node degree is the number of edges adjacent to the node.
+ The weighted node degree is the sum of the edge weights for
+ edges incident to that node.
+
+ This object provides an iterator for (node, degree) as well as
+ lookup for the degree for a single node.
+
+ Parameters
+ ----------
+ nbunch : single node, container, or all nodes (default= all nodes)
+ The view will only report edges incident to these nodes.
+
+ weight : string or None, optional (default=None)
+ The name of an edge attribute that holds the numerical value used
+ as a weight. If None, then each edge has weight 1.
+ The degree is the sum of the edge weights adjacent to the node.
+
+ Returns
+ -------
+ DegreeView or int
+ If multiple nodes are requested (the default), returns a `DegreeView`
+ mapping nodes to their degree.
+ If a single node is requested, returns the degree of the node as an integer.
+
+ Examples
+ --------
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
+ >>> G.degree[0] # node 0 has degree 1
+ 1
+ >>> list(G.degree([0, 1, 2]))
+ [(0, 1), (1, 2), (2, 2)]
+ """
+ return DegreeView(self)
+
+ def clear(self):
+ """Remove all nodes and edges from the graph.
+
+ This also removes the name, and all graph, node, and edge attributes.
+
+ Examples
+ --------
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
+ >>> G.clear()
+ >>> list(G.nodes)
+ []
+ >>> list(G.edges)
+ []
+
+ """
+ self._adj.clear()
+ self._node.clear()
+ self.graph.clear()
+ nx._clear_cache(self)
+
+ def clear_edges(self):
+ """Remove all edges from the graph without altering nodes.
+
+ Examples
+ --------
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
+ >>> G.clear_edges()
+ >>> list(G.nodes)
+ [0, 1, 2, 3]
+ >>> list(G.edges)
+ []
+ """
+ for nbr_dict in self._adj.values():
+ nbr_dict.clear()
+ nx._clear_cache(self)
+
+ def is_multigraph(self):
+ """Returns True if graph is a multigraph, False otherwise."""
+ return False
+
+ def is_directed(self):
+ """Returns True if graph is directed, False otherwise."""
+ return False
+
+ def copy(self, as_view=False):
+ """Returns a copy of the graph.
+
+ The copy method by default returns an independent shallow copy
+ of the graph and attributes. That is, if an attribute is a
+ container, that container is shared by the original an the copy.
+ Use Python's `copy.deepcopy` for new containers.
+
+ If `as_view` is True then a view is returned instead of a copy.
+
+ Notes
+ -----
+ All copies reproduce the graph structure, but data attributes
+ may be handled in different ways. There are four types of copies
+ of a graph that people might want.
+
+ Deepcopy -- A "deepcopy" copies the graph structure as well as
+ all data attributes and any objects they might contain.
+ The entire graph object is new so that changes in the copy
+ do not affect the original object. (see Python's copy.deepcopy)
+
+ Data Reference (Shallow) -- For a shallow copy the graph structure
+ is copied but the edge, node and graph attribute dicts are
+ references to those in the original graph. This saves
+ time and memory but could cause confusion if you change an attribute
+ in one graph and it changes the attribute in the other.
+ NetworkX does not provide this level of shallow copy.
+
+ Independent Shallow -- This copy creates new independent attribute
+ dicts and then does a shallow copy of the attributes. That is, any
+ attributes that are containers are shared between the new graph
+ and the original. This is exactly what `dict.copy()` provides.
+ You can obtain this style copy using:
+
+ >>> G = nx.path_graph(5)
+ >>> H = G.copy()
+ >>> H = G.copy(as_view=False)
+ >>> H = nx.Graph(G)
+ >>> H = G.__class__(G)
+
+ Fresh Data -- For fresh data, the graph structure is copied while
+ new empty data attribute dicts are created. The resulting graph
+ is independent of the original and it has no edge, node or graph
+ attributes. Fresh copies are not enabled. Instead use:
+
+ >>> H = G.__class__()
+ >>> H.add_nodes_from(G)
+ >>> H.add_edges_from(G.edges)
+
+ View -- Inspired by dict-views, graph-views act like read-only
+ versions of the original graph, providing a copy of the original
+ structure without requiring any memory for copying the information.
+
+ See the Python copy module for more information on shallow
+ and deep copies, https://docs.python.org/3/library/copy.html.
+
+ Parameters
+ ----------
+ as_view : bool, optional (default=False)
+ If True, the returned graph-view provides a read-only view
+ of the original graph without actually copying any data.
+
+ Returns
+ -------
+ G : Graph
+ A copy of the graph.
+
+ See Also
+ --------
+ to_directed: return a directed copy of the graph.
+
+ Examples
+ --------
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
+ >>> H = G.copy()
+
+ """
+ if as_view is True:
+ return nx.graphviews.generic_graph_view(self)
+ G = self.__class__()
+ G.graph.update(self.graph)
+ G.add_nodes_from((n, d.copy()) for n, d in self._node.items())
+ G.add_edges_from(
+ (u, v, datadict.copy())
+ for u, nbrs in self._adj.items()
+ for v, datadict in nbrs.items()
+ )
+ return G
+
+ def to_directed(self, as_view=False):
+ """Returns a directed representation of the graph.
+
+ Returns
+ -------
+ G : DiGraph
+ A directed graph with the same name, same nodes, and with
+ each edge (u, v, data) replaced by two directed edges
+ (u, v, data) and (v, u, data).
+
+ Notes
+ -----
+ This returns a "deepcopy" of the edge, node, and
+ graph attributes which attempts to completely copy
+ all of the data and references.
+
+ This is in contrast to the similar D=DiGraph(G) which returns a
+ shallow copy of the data.
+
+ See the Python copy module for more information on shallow
+ and deep copies, https://docs.python.org/3/library/copy.html.
+
+ Warning: If you have subclassed Graph to use dict-like objects
+ in the data structure, those changes do not transfer to the
+ DiGraph created by this method.
+
+ Examples
+ --------
+ >>> G = nx.Graph() # or MultiGraph, etc
+ >>> G.add_edge(0, 1)
+ >>> H = G.to_directed()
+ >>> list(H.edges)
+ [(0, 1), (1, 0)]
+
+ If already directed, return a (deep) copy
+
+ >>> G = nx.DiGraph() # or MultiDiGraph, etc
+ >>> G.add_edge(0, 1)
+ >>> H = G.to_directed()
+ >>> list(H.edges)
+ [(0, 1)]
+ """
+ graph_class = self.to_directed_class()
+ if as_view is True:
+ return nx.graphviews.generic_graph_view(self, graph_class)
+ # deepcopy when not a view
+ G = graph_class()
+ G.graph.update(deepcopy(self.graph))
+ G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items())
+ G.add_edges_from(
+ (u, v, deepcopy(data))
+ for u, nbrs in self._adj.items()
+ for v, data in nbrs.items()
+ )
+ return G
+
+ def to_undirected(self, as_view=False):
+ """Returns an undirected copy of the graph.
+
+ Parameters
+ ----------
+ as_view : bool (optional, default=False)
+ If True return a view of the original undirected graph.
+
+ Returns
+ -------
+ G : Graph/MultiGraph
+ A deepcopy of the graph.
+
+ See Also
+ --------
+ Graph, copy, add_edge, add_edges_from
+
+ Notes
+ -----
+ This returns a "deepcopy" of the edge, node, and
+ graph attributes which attempts to completely copy
+ all of the data and references.
+
+ This is in contrast to the similar `G = nx.DiGraph(D)` which returns a
+ shallow copy of the data.
+
+ See the Python copy module for more information on shallow
+ and deep copies, https://docs.python.org/3/library/copy.html.
+
+ Warning: If you have subclassed DiGraph to use dict-like objects
+ in the data structure, those changes do not transfer to the
+ Graph created by this method.
+
+ Examples
+ --------
+ >>> G = nx.path_graph(2) # or MultiGraph, etc
+ >>> H = G.to_directed()
+ >>> list(H.edges)
+ [(0, 1), (1, 0)]
+ >>> G2 = H.to_undirected()
+ >>> list(G2.edges)
+ [(0, 1)]
+ """
+ graph_class = self.to_undirected_class()
+ if as_view is True:
+ return nx.graphviews.generic_graph_view(self, graph_class)
+ # deepcopy when not a view
+ G = graph_class()
+ G.graph.update(deepcopy(self.graph))
+ G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items())
+ G.add_edges_from(
+ (u, v, deepcopy(d))
+ for u, nbrs in self._adj.items()
+ for v, d in nbrs.items()
+ )
+ return G
+
+ def subgraph(self, nodes):
+ """Returns a SubGraph view of the subgraph induced on `nodes`.
+
+ The induced subgraph of the graph contains the nodes in `nodes`
+ and the edges between those nodes.
+
+ Parameters
+ ----------
+ nodes : list, iterable
+ A container of nodes which will be iterated through once.
+
+ Returns
+ -------
+ G : SubGraph View
+ A subgraph view of the graph. The graph structure cannot be
+ changed but node/edge attributes can and are shared with the
+ original graph.
+
+ Notes
+ -----
+ The graph, edge and node attributes are shared with the original graph.
+ Changes to the graph structure is ruled out by the view, but changes
+ to attributes are reflected in the original graph.
+
+ To create a subgraph with its own copy of the edge/node attributes use:
+ G.subgraph(nodes).copy()
+
+ For an inplace reduction of a graph to a subgraph you can remove nodes:
+ G.remove_nodes_from([n for n in G if n not in set(nodes)])
+
+ Subgraph views are sometimes NOT what you want. In most cases where
+ you want to do more than simply look at the induced edges, it makes
+ more sense to just create the subgraph as its own graph with code like:
+
+ ::
+
+ # Create a subgraph SG based on a (possibly multigraph) G
+ SG = G.__class__()
+ SG.add_nodes_from((n, G.nodes[n]) for n in largest_wcc)
+ if SG.is_multigraph():
+ SG.add_edges_from(
+ (n, nbr, key, d)
+ for n, nbrs in G.adj.items()
+ if n in largest_wcc
+ for nbr, keydict in nbrs.items()
+ if nbr in largest_wcc
+ for key, d in keydict.items()
+ )
+ else:
+ SG.add_edges_from(
+ (n, nbr, d)
+ for n, nbrs in G.adj.items()
+ if n in largest_wcc
+ for nbr, d in nbrs.items()
+ if nbr in largest_wcc
+ )
+ SG.graph.update(G.graph)
+
+ Examples
+ --------
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
+ >>> H = G.subgraph([0, 1, 2])
+ >>> list(H.edges)
+ [(0, 1), (1, 2)]
+ """
+ induced_nodes = nx.filters.show_nodes(self.nbunch_iter(nodes))
+ # if already a subgraph, don't make a chain
+ subgraph = nx.subgraph_view
+ if hasattr(self, "_NODE_OK"):
+ return subgraph(
+ self._graph, filter_node=induced_nodes, filter_edge=self._EDGE_OK
+ )
+ return subgraph(self, filter_node=induced_nodes)
+
+ def edge_subgraph(self, edges):
+ """Returns the subgraph induced by the specified edges.
+
+ The induced subgraph contains each edge in `edges` and each
+ node incident to any one of those edges.
+
+ Parameters
+ ----------
+ edges : iterable
+ An iterable of edges in this graph.
+
+ Returns
+ -------
+ G : Graph
+ An edge-induced subgraph of this graph with the same edge
+ attributes.
+
+ Notes
+ -----
+ The graph, edge, and node attributes in the returned subgraph
+ view are references to the corresponding attributes in the original
+ graph. The view is read-only.
+
+ To create a full graph version of the subgraph with its own copy
+ of the edge or node attributes, use::
+
+ G.edge_subgraph(edges).copy()
+
+ Examples
+ --------
+ >>> G = nx.path_graph(5)
+ >>> H = G.edge_subgraph([(0, 1), (3, 4)])
+ >>> list(H.nodes)
+ [0, 1, 3, 4]
+ >>> list(H.edges)
+ [(0, 1), (3, 4)]
+
+ """
+ return nx.edge_subgraph(self, edges)
+
+ def size(self, weight=None):
+ """Returns the number of edges or total of all edge weights.
+
+ Parameters
+ ----------
+ weight : string or None, optional (default=None)
+ The edge attribute that holds the numerical value used
+ as a weight. If None, then each edge has weight 1.
+
+ Returns
+ -------
+ size : numeric
+ The number of edges or
+ (if weight keyword is provided) the total weight sum.
+
+ If weight is None, returns an int. Otherwise a float
+ (or more general numeric if the weights are more general).
+
+ See Also
+ --------
+ number_of_edges
+
+ Examples
+ --------
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
+ >>> G.size()
+ 3
+
+ >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
+ >>> G.add_edge("a", "b", weight=2)
+ >>> G.add_edge("b", "c", weight=4)
+ >>> G.size()
+ 2
+ >>> G.size(weight="weight")
+ 6.0
+ """
+ s = sum(d for v, d in self.degree(weight=weight))
+ # If `weight` is None, the sum of the degrees is guaranteed to be
+ # even, so we can perform integer division and hence return an
+ # integer. Otherwise, the sum of the weighted degrees is not
+ # guaranteed to be an integer, so we perform "real" division.
+ return s // 2 if weight is None else s / 2
+
+ def number_of_edges(self, u=None, v=None):
+ """Returns the number of edges between two nodes.
+
+ Parameters
+ ----------
+ u, v : nodes, optional (default=all edges)
+ If u and v are specified, return the number of edges between
+ u and v. Otherwise return the total number of all edges.
+
+ Returns
+ -------
+ nedges : int
+ The number of edges in the graph. If nodes `u` and `v` are
+ specified return the number of edges between those nodes. If
+ the graph is directed, this only returns the number of edges
+ from `u` to `v`.
+
+ See Also
+ --------
+ size
+
+ Examples
+ --------
+ For undirected graphs, this method counts the total number of
+ edges in the graph:
+
+ >>> G = nx.path_graph(4)
+ >>> G.number_of_edges()
+ 3
+
+ If you specify two nodes, this counts the total number of edges
+ joining the two nodes:
+
+ >>> G.number_of_edges(0, 1)
+ 1
+
+ For directed graphs, this method can count the total number of
+ directed edges from `u` to `v`:
+
+ >>> G = nx.DiGraph()
+ >>> G.add_edge(0, 1)
+ >>> G.add_edge(1, 0)
+ >>> G.number_of_edges(0, 1)
+ 1
+
+ """
+ if u is None:
+ return int(self.size())
+ if v in self._adj[u]:
+ return 1
+ return 0
+
+ def nbunch_iter(self, nbunch=None):
+ """Returns an iterator over nodes contained in nbunch that are
+ also in the graph.
+
+ The nodes in nbunch are checked for membership in the graph
+ and if not are silently ignored.
+
+ Parameters
+ ----------
+ nbunch : single node, container, or all nodes (default= all nodes)
+ The view will only report edges incident to these nodes.
+
+ Returns
+ -------
+ niter : iterator
+ An iterator over nodes in nbunch that are also in the graph.
+ If nbunch is None, iterate over all nodes in the graph.
+
+ Raises
+ ------
+ NetworkXError
+ If nbunch is not a node or sequence of nodes.
+ If a node in nbunch is not hashable.
+
+ See Also
+ --------
+ Graph.__iter__
+
+ Notes
+ -----
+ When nbunch is an iterator, the returned iterator yields values
+ directly from nbunch, becoming exhausted when nbunch is exhausted.
+
+ To test whether nbunch is a single node, one can use
+ "if nbunch in self:", even after processing with this routine.
+
+ If nbunch is not a node or a (possibly empty) sequence/iterator
+ or None, a :exc:`NetworkXError` is raised. Also, if any object in
+ nbunch is not hashable, a :exc:`NetworkXError` is raised.
+ """
+ if nbunch is None: # include all nodes via iterator
+ bunch = iter(self._adj)
+ elif nbunch in self: # if nbunch is a single node
+ bunch = iter([nbunch])
+ else: # if nbunch is a sequence of nodes
+
+ def bunch_iter(nlist, adj):
+ try:
+ for n in nlist:
+ if n in adj:
+ yield n
+ except TypeError as err:
+ exc, message = err, err.args[0]
+ # capture error for non-sequence/iterator nbunch.
+ if "iter" in message:
+ exc = NetworkXError(
+ "nbunch is not a node or a sequence of nodes."
+ )
+ # capture error for unhashable node.
+ if "hashable" in message:
+ exc = NetworkXError(
+ f"Node {n} in sequence nbunch is not a valid node."
+ )
+ raise exc
+
+ bunch = bunch_iter(nbunch, self._adj)
+ return bunch