diff options
author | S. Solomon Darnell | 2025-03-28 21:52:21 -0500 |
---|---|---|
committer | S. Solomon Darnell | 2025-03-28 21:52:21 -0500 |
commit | 4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch) | |
tree | ee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests/test_branchings.py | |
parent | cc961e04ba734dd72309fb548a2f97d67d578813 (diff) | |
download | gn-ai-master.tar.gz |
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests/test_branchings.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests/test_branchings.py | 624 |
1 files changed, 624 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests/test_branchings.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests/test_branchings.py new file mode 100644 index 00000000..e19ddee3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/tree/tests/test_branchings.py @@ -0,0 +1,624 @@ +import math +from operator import itemgetter + +import pytest + +np = pytest.importorskip("numpy") + +import networkx as nx +from networkx.algorithms.tree import branchings, recognition + +# +# Explicitly discussed examples from Edmonds paper. +# + +# Used in Figures A-F. +# +# fmt: off +G_array = np.array([ + # 0 1 2 3 4 5 6 7 8 + [0, 0, 12, 0, 12, 0, 0, 0, 0], # 0 + [4, 0, 0, 0, 0, 13, 0, 0, 0], # 1 + [0, 17, 0, 21, 0, 12, 0, 0, 0], # 2 + [5, 0, 0, 0, 17, 0, 18, 0, 0], # 3 + [0, 0, 0, 0, 0, 0, 0, 12, 0], # 4 + [0, 0, 0, 0, 0, 0, 14, 0, 12], # 5 + [0, 0, 21, 0, 0, 0, 0, 0, 15], # 6 + [0, 0, 0, 19, 0, 0, 15, 0, 0], # 7 + [0, 0, 0, 0, 0, 0, 0, 18, 0], # 8 +], dtype=int) + +# Two copies of the graph from the original paper as disconnected components +G_big_array = np.zeros(np.array(G_array.shape) * 2, dtype=int) +G_big_array[:G_array.shape[0], :G_array.shape[1]] = G_array +G_big_array[G_array.shape[0]:, G_array.shape[1]:] = G_array + +# fmt: on + + +def G1(): + G = nx.from_numpy_array(G_array, create_using=nx.MultiDiGraph) + return G + + +def G2(): + # Now we shift all the weights by -10. + # Should not affect optimal arborescence, but does affect optimal branching. + Garr = G_array.copy() + Garr[np.nonzero(Garr)] -= 10 + G = nx.from_numpy_array(Garr, create_using=nx.MultiDiGraph) + return G + + +# An optimal branching for G1 that is also a spanning arborescence. So it is +# also an optimal spanning arborescence. +# +optimal_arborescence_1 = [ + (0, 2, 12), + (2, 1, 17), + (2, 3, 21), + (1, 5, 13), + (3, 4, 17), + (3, 6, 18), + (6, 8, 15), + (8, 7, 18), +] + +# For G2, the optimal branching of G1 (with shifted weights) is no longer +# an optimal branching, but it is still an optimal spanning arborescence +# (just with shifted weights). An optimal branching for G2 is similar to what +# appears in figure G (this is greedy_subopt_branching_1a below), but with the +# edge (3, 0, 5), which is now (3, 0, -5), removed. Thus, the optimal branching +# is not a spanning arborescence. The code finds optimal_branching_2a. +# An alternative and equivalent branching is optimal_branching_2b. We would +# need to modify the code to iterate through all equivalent optimal branchings. +# +# These are maximal branchings or arborescences. +optimal_branching_2a = [ + (5, 6, 4), + (6, 2, 11), + (6, 8, 5), + (8, 7, 8), + (2, 1, 7), + (2, 3, 11), + (3, 4, 7), +] +optimal_branching_2b = [ + (8, 7, 8), + (7, 3, 9), + (3, 4, 7), + (3, 6, 8), + (6, 2, 11), + (2, 1, 7), + (1, 5, 3), +] +optimal_arborescence_2 = [ + (0, 2, 2), + (2, 1, 7), + (2, 3, 11), + (1, 5, 3), + (3, 4, 7), + (3, 6, 8), + (6, 8, 5), + (8, 7, 8), +] + +# Two suboptimal maximal branchings on G1 obtained from a greedy algorithm. +# 1a matches what is shown in Figure G in Edmonds's paper. +greedy_subopt_branching_1a = [ + (5, 6, 14), + (6, 2, 21), + (6, 8, 15), + (8, 7, 18), + (2, 1, 17), + (2, 3, 21), + (3, 0, 5), + (3, 4, 17), +] +greedy_subopt_branching_1b = [ + (8, 7, 18), + (7, 6, 15), + (6, 2, 21), + (2, 1, 17), + (2, 3, 21), + (1, 5, 13), + (3, 0, 5), + (3, 4, 17), +] + + +def build_branching(edges, double=False): + G = nx.DiGraph() + for u, v, weight in edges: + G.add_edge(u, v, weight=weight) + if double: + G.add_edge(u + 9, v + 9, weight=weight) + return G + + +def sorted_edges(G, attr="weight", default=1): + edges = [(u, v, data.get(attr, default)) for (u, v, data) in G.edges(data=True)] + edges = sorted(edges, key=lambda x: (x[2], x[1], x[0])) + return edges + + +def assert_equal_branchings(G1, G2, attr="weight", default=1): + edges1 = list(G1.edges(data=True)) + edges2 = list(G2.edges(data=True)) + assert len(edges1) == len(edges2) + + # Grab the weights only. + e1 = sorted_edges(G1, attr, default) + e2 = sorted_edges(G2, attr, default) + + for a, b in zip(e1, e2): + assert a[:2] == b[:2] + np.testing.assert_almost_equal(a[2], b[2]) + + +################ + + +def test_optimal_branching1(): + G = build_branching(optimal_arborescence_1) + assert recognition.is_arborescence(G), True + assert branchings.branching_weight(G) == 131 + + +def test_optimal_branching2a(): + G = build_branching(optimal_branching_2a) + assert recognition.is_arborescence(G), True + assert branchings.branching_weight(G) == 53 + + +def test_optimal_branching2b(): + G = build_branching(optimal_branching_2b) + assert recognition.is_arborescence(G), True + assert branchings.branching_weight(G) == 53 + + +def test_optimal_arborescence2(): + G = build_branching(optimal_arborescence_2) + assert recognition.is_arborescence(G), True + assert branchings.branching_weight(G) == 51 + + +def test_greedy_suboptimal_branching1a(): + G = build_branching(greedy_subopt_branching_1a) + assert recognition.is_arborescence(G), True + assert branchings.branching_weight(G) == 128 + + +def test_greedy_suboptimal_branching1b(): + G = build_branching(greedy_subopt_branching_1b) + assert recognition.is_arborescence(G), True + assert branchings.branching_weight(G) == 127 + + +def test_greedy_max1(): + # Standard test. + # + G = G1() + B = branchings.greedy_branching(G) + # There are only two possible greedy branchings. The sorting is such + # that it should equal the second suboptimal branching: 1b. + B_ = build_branching(greedy_subopt_branching_1b) + assert_equal_branchings(B, B_) + + +def test_greedy_branching_kwarg_kind(): + G = G1() + with pytest.raises(nx.NetworkXException, match="Unknown value for `kind`."): + B = branchings.greedy_branching(G, kind="lol") + + +def test_greedy_branching_for_unsortable_nodes(): + G = nx.DiGraph() + G.add_weighted_edges_from([((2, 3), 5, 1), (3, "a", 1), (2, 4, 5)]) + edges = [(u, v, data.get("weight", 1)) for (u, v, data) in G.edges(data=True)] + with pytest.raises(TypeError): + edges.sort(key=itemgetter(2, 0, 1), reverse=True) + B = branchings.greedy_branching(G, kind="max").edges(data=True) + assert list(B) == [ + ((2, 3), 5, {"weight": 1}), + (3, "a", {"weight": 1}), + (2, 4, {"weight": 5}), + ] + + +def test_greedy_max2(): + # Different default weight. + # + G = G1() + del G[1][0][0]["weight"] + B = branchings.greedy_branching(G, default=6) + # Chosen so that edge (3,0,5) is not selected and (1,0,6) is instead. + + edges = [ + (1, 0, 6), + (1, 5, 13), + (7, 6, 15), + (2, 1, 17), + (3, 4, 17), + (8, 7, 18), + (2, 3, 21), + (6, 2, 21), + ] + B_ = build_branching(edges) + assert_equal_branchings(B, B_) + + +def test_greedy_max3(): + # All equal weights. + # + G = G1() + B = branchings.greedy_branching(G, attr=None) + + # This is mostly arbitrary...the output was generated by running the algo. + edges = [ + (2, 1, 1), + (3, 0, 1), + (3, 4, 1), + (5, 8, 1), + (6, 2, 1), + (7, 3, 1), + (7, 6, 1), + (8, 7, 1), + ] + B_ = build_branching(edges) + assert_equal_branchings(B, B_, default=1) + + +def test_greedy_min(): + G = G1() + B = branchings.greedy_branching(G, kind="min") + + edges = [ + (1, 0, 4), + (0, 2, 12), + (0, 4, 12), + (2, 5, 12), + (4, 7, 12), + (5, 8, 12), + (5, 6, 14), + (7, 3, 19), + ] + B_ = build_branching(edges) + assert_equal_branchings(B, B_) + + +def test_edmonds1_maxbranch(): + G = G1() + x = branchings.maximum_branching(G) + x_ = build_branching(optimal_arborescence_1) + assert_equal_branchings(x, x_) + + +def test_edmonds1_maxarbor(): + G = G1() + x = branchings.maximum_spanning_arborescence(G) + x_ = build_branching(optimal_arborescence_1) + assert_equal_branchings(x, x_) + + +def test_edmonds1_minimal_branching(): + # graph will have something like a minimum arborescence but no spanning one + G = nx.from_numpy_array(G_big_array, create_using=nx.DiGraph) + B = branchings.minimal_branching(G) + edges = [ + (3, 0, 5), + (0, 2, 12), + (0, 4, 12), + (2, 5, 12), + (4, 7, 12), + (5, 8, 12), + (5, 6, 14), + (2, 1, 17), + ] + B_ = build_branching(edges, double=True) + assert_equal_branchings(B, B_) + + +def test_edmonds2_maxbranch(): + G = G2() + x = branchings.maximum_branching(G) + x_ = build_branching(optimal_branching_2a) + assert_equal_branchings(x, x_) + + +def test_edmonds2_maxarbor(): + G = G2() + x = branchings.maximum_spanning_arborescence(G) + x_ = build_branching(optimal_arborescence_2) + assert_equal_branchings(x, x_) + + +def test_edmonds2_minarbor(): + G = G1() + x = branchings.minimum_spanning_arborescence(G) + # This was obtained from algorithm. Need to verify it independently. + # Branch weight is: 96 + edges = [ + (3, 0, 5), + (0, 2, 12), + (0, 4, 12), + (2, 5, 12), + (4, 7, 12), + (5, 8, 12), + (5, 6, 14), + (2, 1, 17), + ] + x_ = build_branching(edges) + assert_equal_branchings(x, x_) + + +def test_edmonds3_minbranch1(): + G = G1() + x = branchings.minimum_branching(G) + edges = [] + x_ = build_branching(edges) + assert_equal_branchings(x, x_) + + +def test_edmonds3_minbranch2(): + G = G1() + G.add_edge(8, 9, weight=-10) + x = branchings.minimum_branching(G) + edges = [(8, 9, -10)] + x_ = build_branching(edges) + assert_equal_branchings(x, x_) + + +# Need more tests + + +def test_mst(): + # Make sure we get the same results for undirected graphs. + # Example from: https://en.wikipedia.org/wiki/Kruskal's_algorithm + G = nx.Graph() + edgelist = [ + (0, 3, [("weight", 5)]), + (0, 1, [("weight", 7)]), + (1, 3, [("weight", 9)]), + (1, 2, [("weight", 8)]), + (1, 4, [("weight", 7)]), + (3, 4, [("weight", 15)]), + (3, 5, [("weight", 6)]), + (2, 4, [("weight", 5)]), + (4, 5, [("weight", 8)]), + (4, 6, [("weight", 9)]), + (5, 6, [("weight", 11)]), + ] + G.add_edges_from(edgelist) + G = G.to_directed() + x = branchings.minimum_spanning_arborescence(G) + + edges = [ + ({0, 1}, 7), + ({0, 3}, 5), + ({3, 5}, 6), + ({1, 4}, 7), + ({4, 2}, 5), + ({4, 6}, 9), + ] + + assert x.number_of_edges() == len(edges) + for u, v, d in x.edges(data=True): + assert ({u, v}, d["weight"]) in edges + + +def test_mixed_nodetypes(): + # Smoke test to make sure no TypeError is raised for mixed node types. + G = nx.Graph() + edgelist = [(0, 3, [("weight", 5)]), (0, "1", [("weight", 5)])] + G.add_edges_from(edgelist) + G = G.to_directed() + x = branchings.minimum_spanning_arborescence(G) + + +def test_edmonds1_minbranch(): + # Using -G_array and min should give the same as optimal_arborescence_1, + # but with all edges negative. + edges = [(u, v, -w) for (u, v, w) in optimal_arborescence_1] + + G = nx.from_numpy_array(-G_array, create_using=nx.DiGraph) + + # Quickly make sure max branching is empty. + x = branchings.maximum_branching(G) + x_ = build_branching([]) + assert_equal_branchings(x, x_) + + # Now test the min branching. + x = branchings.minimum_branching(G) + x_ = build_branching(edges) + assert_equal_branchings(x, x_) + + +def test_edge_attribute_preservation_normal_graph(): + # Test that edge attributes are preserved when finding an optimum graph + # using the Edmonds class for normal graphs. + G = nx.Graph() + + edgelist = [ + (0, 1, [("weight", 5), ("otherattr", 1), ("otherattr2", 3)]), + (0, 2, [("weight", 5), ("otherattr", 2), ("otherattr2", 2)]), + (1, 2, [("weight", 6), ("otherattr", 3), ("otherattr2", 1)]), + ] + G.add_edges_from(edgelist) + + B = branchings.maximum_branching(G, preserve_attrs=True) + + assert B[0][1]["otherattr"] == 1 + assert B[0][1]["otherattr2"] == 3 + + +def test_edge_attribute_preservation_multigraph(): + # Test that edge attributes are preserved when finding an optimum graph + # using the Edmonds class for multigraphs. + G = nx.MultiGraph() + + edgelist = [ + (0, 1, [("weight", 5), ("otherattr", 1), ("otherattr2", 3)]), + (0, 2, [("weight", 5), ("otherattr", 2), ("otherattr2", 2)]), + (1, 2, [("weight", 6), ("otherattr", 3), ("otherattr2", 1)]), + ] + G.add_edges_from(edgelist * 2) # Make sure we have duplicate edge paths + + B = branchings.maximum_branching(G, preserve_attrs=True) + + assert B[0][1][0]["otherattr"] == 1 + assert B[0][1][0]["otherattr2"] == 3 + + +def test_edge_attribute_discard(): + # Test that edge attributes are discarded if we do not specify to keep them + G = nx.Graph() + + edgelist = [ + (0, 1, [("weight", 5), ("otherattr", 1), ("otherattr2", 3)]), + (0, 2, [("weight", 5), ("otherattr", 2), ("otherattr2", 2)]), + (1, 2, [("weight", 6), ("otherattr", 3), ("otherattr2", 1)]), + ] + G.add_edges_from(edgelist) + + B = branchings.maximum_branching(G, preserve_attrs=False) + + edge_dict = B[0][1] + with pytest.raises(KeyError): + _ = edge_dict["otherattr"] + + +def test_partition_spanning_arborescence(): + """ + Test that we can generate minimum spanning arborescences which respect the + given partition. + """ + G = nx.from_numpy_array(G_array, create_using=nx.DiGraph) + G[3][0]["partition"] = nx.EdgePartition.EXCLUDED + G[2][3]["partition"] = nx.EdgePartition.INCLUDED + G[7][3]["partition"] = nx.EdgePartition.EXCLUDED + G[0][2]["partition"] = nx.EdgePartition.EXCLUDED + G[6][2]["partition"] = nx.EdgePartition.INCLUDED + + actual_edges = [ + (0, 4, 12), + (1, 0, 4), + (1, 5, 13), + (2, 3, 21), + (4, 7, 12), + (5, 6, 14), + (5, 8, 12), + (6, 2, 21), + ] + + B = branchings.minimum_spanning_arborescence(G, partition="partition") + assert_equal_branchings(build_branching(actual_edges), B) + + +def test_arborescence_iterator_min(): + """ + Tests the arborescence iterator. + + A brute force method found 680 arborescences in this graph. + This test will not verify all of them individually, but will check two + things + + * The iterator returns 680 arborescences + * The weight of the arborescences is non-strictly increasing + + for more information please visit + https://mjschwenne.github.io/2021/06/10/implementing-the-iterators.html + """ + G = nx.from_numpy_array(G_array, create_using=nx.DiGraph) + + arborescence_count = 0 + arborescence_weight = -math.inf + for B in branchings.ArborescenceIterator(G): + arborescence_count += 1 + new_arborescence_weight = B.size(weight="weight") + assert new_arborescence_weight >= arborescence_weight + arborescence_weight = new_arborescence_weight + + assert arborescence_count == 680 + + +def test_arborescence_iterator_max(): + """ + Tests the arborescence iterator. + + A brute force method found 680 arborescences in this graph. + This test will not verify all of them individually, but will check two + things + + * The iterator returns 680 arborescences + * The weight of the arborescences is non-strictly decreasing + + for more information please visit + https://mjschwenne.github.io/2021/06/10/implementing-the-iterators.html + """ + G = nx.from_numpy_array(G_array, create_using=nx.DiGraph) + + arborescence_count = 0 + arborescence_weight = math.inf + for B in branchings.ArborescenceIterator(G, minimum=False): + arborescence_count += 1 + new_arborescence_weight = B.size(weight="weight") + assert new_arborescence_weight <= arborescence_weight + arborescence_weight = new_arborescence_weight + + assert arborescence_count == 680 + + +def test_arborescence_iterator_initial_partition(): + """ + Tests the arborescence iterator with three included edges and three excluded + in the initial partition. + + A brute force method similar to the one used in the above tests found that + there are 16 arborescences which contain the included edges and not the + excluded edges. + """ + G = nx.from_numpy_array(G_array, create_using=nx.DiGraph) + included_edges = [(1, 0), (5, 6), (8, 7)] + excluded_edges = [(0, 2), (3, 6), (1, 5)] + + arborescence_count = 0 + arborescence_weight = -math.inf + for B in branchings.ArborescenceIterator( + G, init_partition=(included_edges, excluded_edges) + ): + arborescence_count += 1 + new_arborescence_weight = B.size(weight="weight") + assert new_arborescence_weight >= arborescence_weight + arborescence_weight = new_arborescence_weight + for e in included_edges: + assert e in B.edges + for e in excluded_edges: + assert e not in B.edges + assert arborescence_count == 16 + + +def test_branchings_with_default_weights(): + """ + Tests that various branching algorithms work on graphs without weights. + For more information, see issue #7279. + """ + graph = nx.erdos_renyi_graph(10, p=0.2, directed=True, seed=123) + + assert all( + "weight" not in d for (u, v, d) in graph.edges(data=True) + ), "test is for graphs without a weight attribute" + + # Calling these functions will modify graph inplace to add weights + # copy the graph to avoid this. + nx.minimum_spanning_arborescence(graph.copy()) + nx.maximum_spanning_arborescence(graph.copy()) + nx.minimum_branching(graph.copy()) + nx.maximum_branching(graph.copy()) + nx.algorithms.tree.minimal_branching(graph.copy()) + nx.algorithms.tree.branching_weight(graph.copy()) + nx.algorithms.tree.greedy_branching(graph.copy()) + + assert all( + "weight" not in d for (u, v, d) in graph.edges(data=True) + ), "The above calls should not modify the initial graph in-place" |