aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_simple_paths.py
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_simple_paths.py
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are hereHEADmaster
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_simple_paths.py')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_simple_paths.py803
1 files changed, 803 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_simple_paths.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_simple_paths.py
new file mode 100644
index 00000000..7855bbad
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_simple_paths.py
@@ -0,0 +1,803 @@
+import random
+
+import pytest
+
+import networkx as nx
+from networkx import convert_node_labels_to_integers as cnlti
+from networkx.algorithms.simple_paths import (
+ _bidirectional_dijkstra,
+ _bidirectional_shortest_path,
+)
+from networkx.utils import arbitrary_element, pairwise
+
+
+class TestIsSimplePath:
+ """Unit tests for the
+ :func:`networkx.algorithms.simple_paths.is_simple_path` function.
+
+ """
+
+ def test_empty_list(self):
+ """Tests that the empty list is not a valid path, since there
+ should be a one-to-one correspondence between paths as lists of
+ nodes and paths as lists of edges.
+
+ """
+ G = nx.trivial_graph()
+ assert not nx.is_simple_path(G, [])
+
+ def test_trivial_path(self):
+ """Tests that the trivial path, a path of length one, is
+ considered a simple path in a graph.
+
+ """
+ G = nx.trivial_graph()
+ assert nx.is_simple_path(G, [0])
+
+ def test_trivial_nonpath(self):
+ """Tests that a list whose sole element is an object not in the
+ graph is not considered a simple path.
+
+ """
+ G = nx.trivial_graph()
+ assert not nx.is_simple_path(G, ["not a node"])
+
+ def test_simple_path(self):
+ G = nx.path_graph(2)
+ assert nx.is_simple_path(G, [0, 1])
+
+ def test_non_simple_path(self):
+ G = nx.path_graph(2)
+ assert not nx.is_simple_path(G, [0, 1, 0])
+
+ def test_cycle(self):
+ G = nx.cycle_graph(3)
+ assert not nx.is_simple_path(G, [0, 1, 2, 0])
+
+ def test_missing_node(self):
+ G = nx.path_graph(2)
+ assert not nx.is_simple_path(G, [0, 2])
+
+ def test_missing_starting_node(self):
+ G = nx.path_graph(2)
+ assert not nx.is_simple_path(G, [2, 0])
+
+ def test_directed_path(self):
+ G = nx.DiGraph([(0, 1), (1, 2)])
+ assert nx.is_simple_path(G, [0, 1, 2])
+
+ def test_directed_non_path(self):
+ G = nx.DiGraph([(0, 1), (1, 2)])
+ assert not nx.is_simple_path(G, [2, 1, 0])
+
+ def test_directed_cycle(self):
+ G = nx.DiGraph([(0, 1), (1, 2), (2, 0)])
+ assert not nx.is_simple_path(G, [0, 1, 2, 0])
+
+ def test_multigraph(self):
+ G = nx.MultiGraph([(0, 1), (0, 1)])
+ assert nx.is_simple_path(G, [0, 1])
+
+ def test_multidigraph(self):
+ G = nx.MultiDiGraph([(0, 1), (0, 1), (1, 0), (1, 0)])
+ assert nx.is_simple_path(G, [0, 1])
+
+
+# Tests for all_simple_paths
+def test_all_simple_paths():
+ G = nx.path_graph(4)
+ paths = nx.all_simple_paths(G, 0, 3)
+ assert {tuple(p) for p in paths} == {(0, 1, 2, 3)}
+
+
+def test_all_simple_paths_with_two_targets_emits_two_paths():
+ G = nx.path_graph(4)
+ G.add_edge(2, 4)
+ paths = nx.all_simple_paths(G, 0, [3, 4])
+ assert {tuple(p) for p in paths} == {(0, 1, 2, 3), (0, 1, 2, 4)}
+
+
+def test_digraph_all_simple_paths_with_two_targets_emits_two_paths():
+ G = nx.path_graph(4, create_using=nx.DiGraph())
+ G.add_edge(2, 4)
+ paths = nx.all_simple_paths(G, 0, [3, 4])
+ assert {tuple(p) for p in paths} == {(0, 1, 2, 3), (0, 1, 2, 4)}
+
+
+def test_all_simple_paths_with_two_targets_cutoff():
+ G = nx.path_graph(4)
+ G.add_edge(2, 4)
+ paths = nx.all_simple_paths(G, 0, [3, 4], cutoff=3)
+ assert {tuple(p) for p in paths} == {(0, 1, 2, 3), (0, 1, 2, 4)}
+
+
+def test_digraph_all_simple_paths_with_two_targets_cutoff():
+ G = nx.path_graph(4, create_using=nx.DiGraph())
+ G.add_edge(2, 4)
+ paths = nx.all_simple_paths(G, 0, [3, 4], cutoff=3)
+ assert {tuple(p) for p in paths} == {(0, 1, 2, 3), (0, 1, 2, 4)}
+
+
+def test_all_simple_paths_with_two_targets_in_line_emits_two_paths():
+ G = nx.path_graph(4)
+ paths = nx.all_simple_paths(G, 0, [2, 3])
+ assert {tuple(p) for p in paths} == {(0, 1, 2), (0, 1, 2, 3)}
+
+
+def test_all_simple_paths_ignores_cycle():
+ G = nx.cycle_graph(3, create_using=nx.DiGraph())
+ G.add_edge(1, 3)
+ paths = nx.all_simple_paths(G, 0, 3)
+ assert {tuple(p) for p in paths} == {(0, 1, 3)}
+
+
+def test_all_simple_paths_with_two_targets_inside_cycle_emits_two_paths():
+ G = nx.cycle_graph(3, create_using=nx.DiGraph())
+ G.add_edge(1, 3)
+ paths = nx.all_simple_paths(G, 0, [2, 3])
+ assert {tuple(p) for p in paths} == {(0, 1, 2), (0, 1, 3)}
+
+
+def test_all_simple_paths_source_target():
+ G = nx.path_graph(4)
+ assert list(nx.all_simple_paths(G, 1, 1)) == [[1]]
+
+
+def test_all_simple_paths_cutoff():
+ G = nx.complete_graph(4)
+ paths = nx.all_simple_paths(G, 0, 1, cutoff=1)
+ assert {tuple(p) for p in paths} == {(0, 1)}
+ paths = nx.all_simple_paths(G, 0, 1, cutoff=2)
+ assert {tuple(p) for p in paths} == {(0, 1), (0, 2, 1), (0, 3, 1)}
+
+
+def test_all_simple_paths_on_non_trivial_graph():
+ """you may need to draw this graph to make sure it is reasonable"""
+ G = nx.path_graph(5, create_using=nx.DiGraph())
+ G.add_edges_from([(0, 5), (1, 5), (1, 3), (5, 4), (4, 2), (4, 3)])
+ paths = nx.all_simple_paths(G, 1, [2, 3])
+ assert {tuple(p) for p in paths} == {
+ (1, 2),
+ (1, 3, 4, 2),
+ (1, 5, 4, 2),
+ (1, 3),
+ (1, 2, 3),
+ (1, 5, 4, 3),
+ (1, 5, 4, 2, 3),
+ }
+ paths = nx.all_simple_paths(G, 1, [2, 3], cutoff=3)
+ assert {tuple(p) for p in paths} == {
+ (1, 2),
+ (1, 3, 4, 2),
+ (1, 5, 4, 2),
+ (1, 3),
+ (1, 2, 3),
+ (1, 5, 4, 3),
+ }
+ paths = nx.all_simple_paths(G, 1, [2, 3], cutoff=2)
+ assert {tuple(p) for p in paths} == {(1, 2), (1, 3), (1, 2, 3)}
+
+
+def test_all_simple_paths_multigraph():
+ G = nx.MultiGraph([(1, 2), (1, 2)])
+ assert list(nx.all_simple_paths(G, 1, 1)) == [[1]]
+ nx.add_path(G, [3, 1, 10, 2])
+ paths = list(nx.all_simple_paths(G, 1, 2))
+ assert len(paths) == 3
+ assert {tuple(p) for p in paths} == {(1, 2), (1, 2), (1, 10, 2)}
+
+
+def test_all_simple_paths_multigraph_with_cutoff():
+ G = nx.MultiGraph([(1, 2), (1, 2), (1, 10), (10, 2)])
+ paths = list(nx.all_simple_paths(G, 1, 2, cutoff=1))
+ assert len(paths) == 2
+ assert {tuple(p) for p in paths} == {(1, 2), (1, 2)}
+
+ # See GitHub issue #6732.
+ G = nx.MultiGraph([(0, 1), (0, 2)])
+ assert list(nx.all_simple_paths(G, 0, {1, 2}, cutoff=1)) == [[0, 1], [0, 2]]
+
+
+def test_all_simple_paths_directed():
+ G = nx.DiGraph()
+ nx.add_path(G, [1, 2, 3])
+ nx.add_path(G, [3, 2, 1])
+ paths = nx.all_simple_paths(G, 1, 3)
+ assert {tuple(p) for p in paths} == {(1, 2, 3)}
+
+
+def test_all_simple_paths_empty():
+ G = nx.path_graph(4)
+ paths = nx.all_simple_paths(G, 0, 3, cutoff=2)
+ assert list(paths) == []
+
+
+def test_all_simple_paths_corner_cases():
+ assert list(nx.all_simple_paths(nx.empty_graph(2), 0, 0)) == [[0]]
+ assert list(nx.all_simple_paths(nx.empty_graph(2), 0, 1)) == []
+ assert list(nx.all_simple_paths(nx.path_graph(9), 0, 8, 0)) == []
+
+
+def test_all_simple_paths_source_in_targets():
+ # See GitHub issue #6690.
+ G = nx.path_graph(3)
+ assert list(nx.all_simple_paths(G, 0, {0, 1, 2})) == [[0], [0, 1], [0, 1, 2]]
+
+
+def hamiltonian_path(G, source):
+ source = arbitrary_element(G)
+ neighbors = set(G[source]) - {source}
+ n = len(G)
+ for target in neighbors:
+ for path in nx.all_simple_paths(G, source, target):
+ if len(path) == n:
+ yield path
+
+
+def test_hamiltonian_path():
+ from itertools import permutations
+
+ G = nx.complete_graph(4)
+ paths = [list(p) for p in hamiltonian_path(G, 0)]
+ exact = [[0] + list(p) for p in permutations([1, 2, 3], 3)]
+ assert sorted(paths) == sorted(exact)
+
+
+def test_cutoff_zero():
+ G = nx.complete_graph(4)
+ paths = nx.all_simple_paths(G, 0, 3, cutoff=0)
+ assert [list(p) for p in paths] == []
+ paths = nx.all_simple_paths(nx.MultiGraph(G), 0, 3, cutoff=0)
+ assert [list(p) for p in paths] == []
+
+
+def test_source_missing():
+ with pytest.raises(nx.NodeNotFound):
+ G = nx.Graph()
+ nx.add_path(G, [1, 2, 3])
+ list(nx.all_simple_paths(nx.MultiGraph(G), 0, 3))
+
+
+def test_target_missing():
+ with pytest.raises(nx.NodeNotFound):
+ G = nx.Graph()
+ nx.add_path(G, [1, 2, 3])
+ list(nx.all_simple_paths(nx.MultiGraph(G), 1, 4))
+
+
+# Tests for all_simple_edge_paths
+def test_all_simple_edge_paths():
+ G = nx.path_graph(4)
+ paths = nx.all_simple_edge_paths(G, 0, 3)
+ assert {tuple(p) for p in paths} == {((0, 1), (1, 2), (2, 3))}
+
+
+def test_all_simple_edge_paths_empty_path():
+ G = nx.empty_graph(1)
+ assert list(nx.all_simple_edge_paths(G, 0, 0)) == [[]]
+
+
+def test_all_simple_edge_paths_with_two_targets_emits_two_paths():
+ G = nx.path_graph(4)
+ G.add_edge(2, 4)
+ paths = nx.all_simple_edge_paths(G, 0, [3, 4])
+ assert {tuple(p) for p in paths} == {
+ ((0, 1), (1, 2), (2, 3)),
+ ((0, 1), (1, 2), (2, 4)),
+ }
+
+
+def test_digraph_all_simple_edge_paths_with_two_targets_emits_two_paths():
+ G = nx.path_graph(4, create_using=nx.DiGraph())
+ G.add_edge(2, 4)
+ paths = nx.all_simple_edge_paths(G, 0, [3, 4])
+ assert {tuple(p) for p in paths} == {
+ ((0, 1), (1, 2), (2, 3)),
+ ((0, 1), (1, 2), (2, 4)),
+ }
+
+
+def test_all_simple_edge_paths_with_two_targets_cutoff():
+ G = nx.path_graph(4)
+ G.add_edge(2, 4)
+ paths = nx.all_simple_edge_paths(G, 0, [3, 4], cutoff=3)
+ assert {tuple(p) for p in paths} == {
+ ((0, 1), (1, 2), (2, 3)),
+ ((0, 1), (1, 2), (2, 4)),
+ }
+
+
+def test_digraph_all_simple_edge_paths_with_two_targets_cutoff():
+ G = nx.path_graph(4, create_using=nx.DiGraph())
+ G.add_edge(2, 4)
+ paths = nx.all_simple_edge_paths(G, 0, [3, 4], cutoff=3)
+ assert {tuple(p) for p in paths} == {
+ ((0, 1), (1, 2), (2, 3)),
+ ((0, 1), (1, 2), (2, 4)),
+ }
+
+
+def test_all_simple_edge_paths_with_two_targets_in_line_emits_two_paths():
+ G = nx.path_graph(4)
+ paths = nx.all_simple_edge_paths(G, 0, [2, 3])
+ assert {tuple(p) for p in paths} == {((0, 1), (1, 2)), ((0, 1), (1, 2), (2, 3))}
+
+
+def test_all_simple_edge_paths_ignores_cycle():
+ G = nx.cycle_graph(3, create_using=nx.DiGraph())
+ G.add_edge(1, 3)
+ paths = nx.all_simple_edge_paths(G, 0, 3)
+ assert {tuple(p) for p in paths} == {((0, 1), (1, 3))}
+
+
+def test_all_simple_edge_paths_with_two_targets_inside_cycle_emits_two_paths():
+ G = nx.cycle_graph(3, create_using=nx.DiGraph())
+ G.add_edge(1, 3)
+ paths = nx.all_simple_edge_paths(G, 0, [2, 3])
+ assert {tuple(p) for p in paths} == {((0, 1), (1, 2)), ((0, 1), (1, 3))}
+
+
+def test_all_simple_edge_paths_source_target():
+ G = nx.path_graph(4)
+ paths = nx.all_simple_edge_paths(G, 1, 1)
+ assert list(paths) == [[]]
+
+
+def test_all_simple_edge_paths_cutoff():
+ G = nx.complete_graph(4)
+ paths = nx.all_simple_edge_paths(G, 0, 1, cutoff=1)
+ assert {tuple(p) for p in paths} == {((0, 1),)}
+ paths = nx.all_simple_edge_paths(G, 0, 1, cutoff=2)
+ assert {tuple(p) for p in paths} == {((0, 1),), ((0, 2), (2, 1)), ((0, 3), (3, 1))}
+
+
+def test_all_simple_edge_paths_on_non_trivial_graph():
+ """you may need to draw this graph to make sure it is reasonable"""
+ G = nx.path_graph(5, create_using=nx.DiGraph())
+ G.add_edges_from([(0, 5), (1, 5), (1, 3), (5, 4), (4, 2), (4, 3)])
+ paths = nx.all_simple_edge_paths(G, 1, [2, 3])
+ assert {tuple(p) for p in paths} == {
+ ((1, 2),),
+ ((1, 3), (3, 4), (4, 2)),
+ ((1, 5), (5, 4), (4, 2)),
+ ((1, 3),),
+ ((1, 2), (2, 3)),
+ ((1, 5), (5, 4), (4, 3)),
+ ((1, 5), (5, 4), (4, 2), (2, 3)),
+ }
+ paths = nx.all_simple_edge_paths(G, 1, [2, 3], cutoff=3)
+ assert {tuple(p) for p in paths} == {
+ ((1, 2),),
+ ((1, 3), (3, 4), (4, 2)),
+ ((1, 5), (5, 4), (4, 2)),
+ ((1, 3),),
+ ((1, 2), (2, 3)),
+ ((1, 5), (5, 4), (4, 3)),
+ }
+ paths = nx.all_simple_edge_paths(G, 1, [2, 3], cutoff=2)
+ assert {tuple(p) for p in paths} == {((1, 2),), ((1, 3),), ((1, 2), (2, 3))}
+
+
+def test_all_simple_edge_paths_multigraph():
+ G = nx.MultiGraph([(1, 2), (1, 2)])
+ paths = nx.all_simple_edge_paths(G, 1, 1)
+ assert list(paths) == [[]]
+ nx.add_path(G, [3, 1, 10, 2])
+ paths = list(nx.all_simple_edge_paths(G, 1, 2))
+ assert len(paths) == 3
+ assert {tuple(p) for p in paths} == {
+ ((1, 2, 0),),
+ ((1, 2, 1),),
+ ((1, 10, 0), (10, 2, 0)),
+ }
+
+
+def test_all_simple_edge_paths_multigraph_with_cutoff():
+ G = nx.MultiGraph([(1, 2), (1, 2), (1, 10), (10, 2)])
+ paths = list(nx.all_simple_edge_paths(G, 1, 2, cutoff=1))
+ assert len(paths) == 2
+ assert {tuple(p) for p in paths} == {((1, 2, 0),), ((1, 2, 1),)}
+
+
+def test_all_simple_edge_paths_directed():
+ G = nx.DiGraph()
+ nx.add_path(G, [1, 2, 3])
+ nx.add_path(G, [3, 2, 1])
+ paths = nx.all_simple_edge_paths(G, 1, 3)
+ assert {tuple(p) for p in paths} == {((1, 2), (2, 3))}
+
+
+def test_all_simple_edge_paths_empty():
+ G = nx.path_graph(4)
+ paths = nx.all_simple_edge_paths(G, 0, 3, cutoff=2)
+ assert list(paths) == []
+
+
+def test_all_simple_edge_paths_corner_cases():
+ assert list(nx.all_simple_edge_paths(nx.empty_graph(2), 0, 0)) == [[]]
+ assert list(nx.all_simple_edge_paths(nx.empty_graph(2), 0, 1)) == []
+ assert list(nx.all_simple_edge_paths(nx.path_graph(9), 0, 8, 0)) == []
+
+
+def test_all_simple_edge_paths_ignores_self_loop():
+ G = nx.Graph([(0, 0), (0, 1), (1, 1), (1, 2)])
+ assert list(nx.all_simple_edge_paths(G, 0, 2)) == [[(0, 1), (1, 2)]]
+
+
+def hamiltonian_edge_path(G, source):
+ source = arbitrary_element(G)
+ neighbors = set(G[source]) - {source}
+ n = len(G)
+ for target in neighbors:
+ for path in nx.all_simple_edge_paths(G, source, target):
+ if len(path) == n - 1:
+ yield path
+
+
+def test_hamiltonian__edge_path():
+ from itertools import permutations
+
+ G = nx.complete_graph(4)
+ paths = hamiltonian_edge_path(G, 0)
+ exact = [list(pairwise([0] + list(p))) for p in permutations([1, 2, 3], 3)]
+ assert sorted(exact) == sorted(paths)
+
+
+def test_edge_cutoff_zero():
+ G = nx.complete_graph(4)
+ paths = nx.all_simple_edge_paths(G, 0, 3, cutoff=0)
+ assert [list(p) for p in paths] == []
+ paths = nx.all_simple_edge_paths(nx.MultiGraph(G), 0, 3, cutoff=0)
+ assert [list(p) for p in paths] == []
+
+
+def test_edge_source_missing():
+ with pytest.raises(nx.NodeNotFound):
+ G = nx.Graph()
+ nx.add_path(G, [1, 2, 3])
+ list(nx.all_simple_edge_paths(nx.MultiGraph(G), 0, 3))
+
+
+def test_edge_target_missing():
+ with pytest.raises(nx.NodeNotFound):
+ G = nx.Graph()
+ nx.add_path(G, [1, 2, 3])
+ list(nx.all_simple_edge_paths(nx.MultiGraph(G), 1, 4))
+
+
+# Tests for shortest_simple_paths
+def test_shortest_simple_paths():
+ G = cnlti(nx.grid_2d_graph(4, 4), first_label=1, ordering="sorted")
+ paths = nx.shortest_simple_paths(G, 1, 12)
+ assert next(paths) == [1, 2, 3, 4, 8, 12]
+ assert next(paths) == [1, 5, 6, 7, 8, 12]
+ assert [len(path) for path in nx.shortest_simple_paths(G, 1, 12)] == sorted(
+ len(path) for path in nx.all_simple_paths(G, 1, 12)
+ )
+
+
+def test_shortest_simple_paths_singleton_path():
+ G = nx.empty_graph(3)
+ assert list(nx.shortest_simple_paths(G, 0, 0)) == [[0]]
+
+
+def test_shortest_simple_paths_directed():
+ G = nx.cycle_graph(7, create_using=nx.DiGraph())
+ paths = nx.shortest_simple_paths(G, 0, 3)
+ assert list(paths) == [[0, 1, 2, 3]]
+
+
+def test_shortest_simple_paths_directed_with_weight_function():
+ def cost(u, v, x):
+ return 1
+
+ G = cnlti(nx.grid_2d_graph(4, 4), first_label=1, ordering="sorted")
+ paths = nx.shortest_simple_paths(G, 1, 12)
+ assert next(paths) == [1, 2, 3, 4, 8, 12]
+ assert next(paths) == [1, 5, 6, 7, 8, 12]
+ assert [
+ len(path) for path in nx.shortest_simple_paths(G, 1, 12, weight=cost)
+ ] == sorted(len(path) for path in nx.all_simple_paths(G, 1, 12))
+
+
+def test_shortest_simple_paths_with_weight_function():
+ def cost(u, v, x):
+ return 1
+
+ G = nx.cycle_graph(7, create_using=nx.DiGraph())
+ paths = nx.shortest_simple_paths(G, 0, 3, weight=cost)
+ assert list(paths) == [[0, 1, 2, 3]]
+
+
+def test_shortest_simple_paths_with_none_weight_function():
+ def cost(u, v, x):
+ delta = abs(u - v)
+ # ignore interior edges
+ return 1 if (delta == 1 or delta == 4) else None
+
+ G = nx.complete_graph(5)
+ paths = nx.shortest_simple_paths(G, 0, 2, weight=cost)
+ assert list(paths) == [[0, 1, 2], [0, 4, 3, 2]]
+
+
+def test_Greg_Bernstein():
+ g1 = nx.Graph()
+ g1.add_nodes_from(["N0", "N1", "N2", "N3", "N4"])
+ g1.add_edge("N4", "N1", weight=10.0, capacity=50, name="L5")
+ g1.add_edge("N4", "N0", weight=7.0, capacity=40, name="L4")
+ g1.add_edge("N0", "N1", weight=10.0, capacity=45, name="L1")
+ g1.add_edge("N3", "N0", weight=10.0, capacity=50, name="L0")
+ g1.add_edge("N2", "N3", weight=12.0, capacity=30, name="L2")
+ g1.add_edge("N1", "N2", weight=15.0, capacity=42, name="L3")
+ solution = [["N1", "N0", "N3"], ["N1", "N2", "N3"], ["N1", "N4", "N0", "N3"]]
+ result = list(nx.shortest_simple_paths(g1, "N1", "N3", weight="weight"))
+ assert result == solution
+
+
+def test_weighted_shortest_simple_path():
+ def cost_func(path):
+ return sum(G.adj[u][v]["weight"] for (u, v) in zip(path, path[1:]))
+
+ G = nx.complete_graph(5)
+ weight = {(u, v): random.randint(1, 100) for (u, v) in G.edges()}
+ nx.set_edge_attributes(G, weight, "weight")
+ cost = 0
+ for path in nx.shortest_simple_paths(G, 0, 3, weight="weight"):
+ this_cost = cost_func(path)
+ assert cost <= this_cost
+ cost = this_cost
+
+
+def test_directed_weighted_shortest_simple_path():
+ def cost_func(path):
+ return sum(G.adj[u][v]["weight"] for (u, v) in zip(path, path[1:]))
+
+ G = nx.complete_graph(5)
+ G = G.to_directed()
+ weight = {(u, v): random.randint(1, 100) for (u, v) in G.edges()}
+ nx.set_edge_attributes(G, weight, "weight")
+ cost = 0
+ for path in nx.shortest_simple_paths(G, 0, 3, weight="weight"):
+ this_cost = cost_func(path)
+ assert cost <= this_cost
+ cost = this_cost
+
+
+def test_weighted_shortest_simple_path_issue2427():
+ G = nx.Graph()
+ G.add_edge("IN", "OUT", weight=2)
+ G.add_edge("IN", "A", weight=1)
+ G.add_edge("IN", "B", weight=2)
+ G.add_edge("B", "OUT", weight=2)
+ assert list(nx.shortest_simple_paths(G, "IN", "OUT", weight="weight")) == [
+ ["IN", "OUT"],
+ ["IN", "B", "OUT"],
+ ]
+ G = nx.Graph()
+ G.add_edge("IN", "OUT", weight=10)
+ G.add_edge("IN", "A", weight=1)
+ G.add_edge("IN", "B", weight=1)
+ G.add_edge("B", "OUT", weight=1)
+ assert list(nx.shortest_simple_paths(G, "IN", "OUT", weight="weight")) == [
+ ["IN", "B", "OUT"],
+ ["IN", "OUT"],
+ ]
+
+
+def test_directed_weighted_shortest_simple_path_issue2427():
+ G = nx.DiGraph()
+ G.add_edge("IN", "OUT", weight=2)
+ G.add_edge("IN", "A", weight=1)
+ G.add_edge("IN", "B", weight=2)
+ G.add_edge("B", "OUT", weight=2)
+ assert list(nx.shortest_simple_paths(G, "IN", "OUT", weight="weight")) == [
+ ["IN", "OUT"],
+ ["IN", "B", "OUT"],
+ ]
+ G = nx.DiGraph()
+ G.add_edge("IN", "OUT", weight=10)
+ G.add_edge("IN", "A", weight=1)
+ G.add_edge("IN", "B", weight=1)
+ G.add_edge("B", "OUT", weight=1)
+ assert list(nx.shortest_simple_paths(G, "IN", "OUT", weight="weight")) == [
+ ["IN", "B", "OUT"],
+ ["IN", "OUT"],
+ ]
+
+
+def test_weight_name():
+ G = nx.cycle_graph(7)
+ nx.set_edge_attributes(G, 1, "weight")
+ nx.set_edge_attributes(G, 1, "foo")
+ G.adj[1][2]["foo"] = 7
+ paths = list(nx.shortest_simple_paths(G, 0, 3, weight="foo"))
+ solution = [[0, 6, 5, 4, 3], [0, 1, 2, 3]]
+ assert paths == solution
+
+
+def test_ssp_source_missing():
+ with pytest.raises(nx.NodeNotFound):
+ G = nx.Graph()
+ nx.add_path(G, [1, 2, 3])
+ list(nx.shortest_simple_paths(G, 0, 3))
+
+
+def test_ssp_target_missing():
+ with pytest.raises(nx.NodeNotFound):
+ G = nx.Graph()
+ nx.add_path(G, [1, 2, 3])
+ list(nx.shortest_simple_paths(G, 1, 4))
+
+
+def test_ssp_multigraph():
+ with pytest.raises(nx.NetworkXNotImplemented):
+ G = nx.MultiGraph()
+ nx.add_path(G, [1, 2, 3])
+ list(nx.shortest_simple_paths(G, 1, 4))
+
+
+def test_ssp_source_missing2():
+ with pytest.raises(nx.NetworkXNoPath):
+ G = nx.Graph()
+ nx.add_path(G, [0, 1, 2])
+ nx.add_path(G, [3, 4, 5])
+ list(nx.shortest_simple_paths(G, 0, 3))
+
+
+def test_bidirectional_shortest_path_restricted_cycle():
+ cycle = nx.cycle_graph(7)
+ length, path = _bidirectional_shortest_path(cycle, 0, 3)
+ assert path == [0, 1, 2, 3]
+ length, path = _bidirectional_shortest_path(cycle, 0, 3, ignore_nodes=[1])
+ assert path == [0, 6, 5, 4, 3]
+
+
+def test_bidirectional_shortest_path_restricted_wheel():
+ wheel = nx.wheel_graph(6)
+ length, path = _bidirectional_shortest_path(wheel, 1, 3)
+ assert path in [[1, 0, 3], [1, 2, 3]]
+ length, path = _bidirectional_shortest_path(wheel, 1, 3, ignore_nodes=[0])
+ assert path == [1, 2, 3]
+ length, path = _bidirectional_shortest_path(wheel, 1, 3, ignore_nodes=[0, 2])
+ assert path == [1, 5, 4, 3]
+ length, path = _bidirectional_shortest_path(
+ wheel, 1, 3, ignore_edges=[(1, 0), (5, 0), (2, 3)]
+ )
+ assert path in [[1, 2, 0, 3], [1, 5, 4, 3]]
+
+
+def test_bidirectional_shortest_path_restricted_directed_cycle():
+ directed_cycle = nx.cycle_graph(7, create_using=nx.DiGraph())
+ length, path = _bidirectional_shortest_path(directed_cycle, 0, 3)
+ assert path == [0, 1, 2, 3]
+ pytest.raises(
+ nx.NetworkXNoPath,
+ _bidirectional_shortest_path,
+ directed_cycle,
+ 0,
+ 3,
+ ignore_nodes=[1],
+ )
+ length, path = _bidirectional_shortest_path(
+ directed_cycle, 0, 3, ignore_edges=[(2, 1)]
+ )
+ assert path == [0, 1, 2, 3]
+ pytest.raises(
+ nx.NetworkXNoPath,
+ _bidirectional_shortest_path,
+ directed_cycle,
+ 0,
+ 3,
+ ignore_edges=[(1, 2)],
+ )
+
+
+def test_bidirectional_shortest_path_ignore():
+ G = nx.Graph()
+ nx.add_path(G, [1, 2])
+ nx.add_path(G, [1, 3])
+ nx.add_path(G, [1, 4])
+ pytest.raises(
+ nx.NetworkXNoPath, _bidirectional_shortest_path, G, 1, 2, ignore_nodes=[1]
+ )
+ pytest.raises(
+ nx.NetworkXNoPath, _bidirectional_shortest_path, G, 1, 2, ignore_nodes=[2]
+ )
+ G = nx.Graph()
+ nx.add_path(G, [1, 3])
+ nx.add_path(G, [1, 4])
+ nx.add_path(G, [3, 2])
+ pytest.raises(
+ nx.NetworkXNoPath, _bidirectional_shortest_path, G, 1, 2, ignore_nodes=[1, 2]
+ )
+
+
+def validate_path(G, s, t, soln_len, path):
+ assert path[0] == s
+ assert path[-1] == t
+ assert soln_len == sum(
+ G[u][v].get("weight", 1) for u, v in zip(path[:-1], path[1:])
+ )
+
+
+def validate_length_path(G, s, t, soln_len, length, path):
+ assert soln_len == length
+ validate_path(G, s, t, length, path)
+
+
+def test_bidirectional_dijkstra_restricted():
+ XG = nx.DiGraph()
+ XG.add_weighted_edges_from(
+ [
+ ("s", "u", 10),
+ ("s", "x", 5),
+ ("u", "v", 1),
+ ("u", "x", 2),
+ ("v", "y", 1),
+ ("x", "u", 3),
+ ("x", "v", 5),
+ ("x", "y", 2),
+ ("y", "s", 7),
+ ("y", "v", 6),
+ ]
+ )
+
+ XG3 = nx.Graph()
+ XG3.add_weighted_edges_from(
+ [[0, 1, 2], [1, 2, 12], [2, 3, 1], [3, 4, 5], [4, 5, 1], [5, 0, 10]]
+ )
+ validate_length_path(XG, "s", "v", 9, *_bidirectional_dijkstra(XG, "s", "v"))
+ validate_length_path(
+ XG, "s", "v", 10, *_bidirectional_dijkstra(XG, "s", "v", ignore_nodes=["u"])
+ )
+ validate_length_path(
+ XG,
+ "s",
+ "v",
+ 11,
+ *_bidirectional_dijkstra(XG, "s", "v", ignore_edges=[("s", "x")]),
+ )
+ pytest.raises(
+ nx.NetworkXNoPath,
+ _bidirectional_dijkstra,
+ XG,
+ "s",
+ "v",
+ ignore_nodes=["u"],
+ ignore_edges=[("s", "x")],
+ )
+ validate_length_path(XG3, 0, 3, 15, *_bidirectional_dijkstra(XG3, 0, 3))
+ validate_length_path(
+ XG3, 0, 3, 16, *_bidirectional_dijkstra(XG3, 0, 3, ignore_nodes=[1])
+ )
+ validate_length_path(
+ XG3, 0, 3, 16, *_bidirectional_dijkstra(XG3, 0, 3, ignore_edges=[(2, 3)])
+ )
+ pytest.raises(
+ nx.NetworkXNoPath,
+ _bidirectional_dijkstra,
+ XG3,
+ 0,
+ 3,
+ ignore_nodes=[1],
+ ignore_edges=[(5, 4)],
+ )
+
+
+def test_bidirectional_dijkstra_no_path():
+ with pytest.raises(nx.NetworkXNoPath):
+ G = nx.Graph()
+ nx.add_path(G, [1, 2, 3])
+ nx.add_path(G, [4, 5, 6])
+ _bidirectional_dijkstra(G, 1, 6)
+
+
+def test_bidirectional_dijkstra_ignore():
+ G = nx.Graph()
+ nx.add_path(G, [1, 2, 10])
+ nx.add_path(G, [1, 3, 10])
+ pytest.raises(nx.NetworkXNoPath, _bidirectional_dijkstra, G, 1, 2, ignore_nodes=[1])
+ pytest.raises(nx.NetworkXNoPath, _bidirectional_dijkstra, G, 1, 2, ignore_nodes=[2])
+ pytest.raises(
+ nx.NetworkXNoPath, _bidirectional_dijkstra, G, 1, 2, ignore_nodes=[1, 2]
+ )