aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_non_randomness.py
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_non_randomness.py
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are hereHEADmaster
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_non_randomness.py')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_non_randomness.py42
1 files changed, 42 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_non_randomness.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_non_randomness.py
new file mode 100644
index 00000000..2f495be2
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_non_randomness.py
@@ -0,0 +1,42 @@
+import pytest
+
+import networkx as nx
+
+np = pytest.importorskip("numpy")
+
+
+@pytest.mark.parametrize(
+ "k, weight, expected",
+ [
+ (None, None, 7.21), # infers 3 communities
+ (2, None, 11.7),
+ (None, "weight", 25.45),
+ (2, "weight", 38.8),
+ ],
+)
+def test_non_randomness(k, weight, expected):
+ G = nx.karate_club_graph()
+ np.testing.assert_almost_equal(
+ nx.non_randomness(G, k, weight)[0], expected, decimal=2
+ )
+
+
+def test_non_connected():
+ G = nx.Graph([(1, 2)])
+ G.add_node(3)
+ with pytest.raises(nx.NetworkXException, match="Non connected"):
+ nx.non_randomness(G)
+
+
+def test_self_loops():
+ G = nx.Graph()
+ G.add_edge(1, 2)
+ G.add_edge(1, 1)
+ with pytest.raises(nx.NetworkXError, match="Graph must not contain self-loops"):
+ nx.non_randomness(G)
+
+
+def test_empty_graph():
+ G = nx.empty_graph(1)
+ with pytest.raises(nx.NetworkXError, match=".*not applicable to empty graphs"):
+ nx.non_randomness(G)