about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_distance_measures.py
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_distance_measures.py
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are here HEAD master
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_distance_measures.py')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_distance_measures.py774
1 files changed, 774 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_distance_measures.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_distance_measures.py
new file mode 100644
index 00000000..0b3840fd
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/tests/test_distance_measures.py
@@ -0,0 +1,774 @@
+import math
+from random import Random
+
+import pytest
+
+import networkx as nx
+from networkx import convert_node_labels_to_integers as cnlti
+from networkx.algorithms.distance_measures import _extrema_bounding
+
+
+def test__extrema_bounding_invalid_compute_kwarg():
+    G = nx.path_graph(3)
+    with pytest.raises(ValueError, match="compute must be one of"):
+        _extrema_bounding(G, compute="spam")
+
+
+class TestDistance:
+    def setup_method(self):
+        G = cnlti(nx.grid_2d_graph(4, 4), first_label=1, ordering="sorted")
+        self.G = G
+
+    def test_eccentricity(self):
+        assert nx.eccentricity(self.G, 1) == 6
+        e = nx.eccentricity(self.G)
+        assert e[1] == 6
+
+        sp = dict(nx.shortest_path_length(self.G))
+        e = nx.eccentricity(self.G, sp=sp)
+        assert e[1] == 6
+
+        e = nx.eccentricity(self.G, v=1)
+        assert e == 6
+
+        # This behavior changed in version 1.8 (ticket #739)
+        e = nx.eccentricity(self.G, v=[1, 1])
+        assert e[1] == 6
+        e = nx.eccentricity(self.G, v=[1, 2])
+        assert e[1] == 6
+
+        # test against graph with one node
+        G = nx.path_graph(1)
+        e = nx.eccentricity(G)
+        assert e[0] == 0
+        e = nx.eccentricity(G, v=0)
+        assert e == 0
+        pytest.raises(nx.NetworkXError, nx.eccentricity, G, 1)
+
+        # test against empty graph
+        G = nx.empty_graph()
+        e = nx.eccentricity(G)
+        assert e == {}
+
+    def test_diameter(self):
+        assert nx.diameter(self.G) == 6
+
+    def test_harmonic_diameter(self):
+        assert abs(nx.harmonic_diameter(self.G) - 2.0477815699658715) < 1e-12
+
+    def test_harmonic_diameter_empty(self):
+        assert math.isnan(nx.harmonic_diameter(nx.empty_graph()))
+
+    def test_harmonic_diameter_single_node(self):
+        assert math.isnan(nx.harmonic_diameter(nx.empty_graph(1)))
+
+    def test_harmonic_diameter_discrete(self):
+        assert math.isinf(nx.harmonic_diameter(nx.empty_graph(3)))
+
+    def test_harmonic_diameter_not_strongly_connected(self):
+        DG = nx.DiGraph()
+        DG.add_edge(0, 1)
+        assert nx.harmonic_diameter(DG) == 2
+
+    def test_radius(self):
+        assert nx.radius(self.G) == 4
+
+    def test_periphery(self):
+        assert set(nx.periphery(self.G)) == {1, 4, 13, 16}
+
+    def test_center(self):
+        assert set(nx.center(self.G)) == {6, 7, 10, 11}
+
+    def test_bound_diameter(self):
+        assert nx.diameter(self.G, usebounds=True) == 6
+
+    def test_bound_radius(self):
+        assert nx.radius(self.G, usebounds=True) == 4
+
+    def test_bound_periphery(self):
+        result = {1, 4, 13, 16}
+        assert set(nx.periphery(self.G, usebounds=True)) == result
+
+    def test_bound_center(self):
+        result = {6, 7, 10, 11}
+        assert set(nx.center(self.G, usebounds=True)) == result
+
+    def test_radius_exception(self):
+        G = nx.Graph()
+        G.add_edge(1, 2)
+        G.add_edge(3, 4)
+        pytest.raises(nx.NetworkXError, nx.diameter, G)
+
+    def test_eccentricity_infinite(self):
+        with pytest.raises(nx.NetworkXError):
+            G = nx.Graph([(1, 2), (3, 4)])
+            e = nx.eccentricity(G)
+
+    def test_eccentricity_undirected_not_connected(self):
+        with pytest.raises(nx.NetworkXError):
+            G = nx.Graph([(1, 2), (3, 4)])
+            e = nx.eccentricity(G, sp=1)
+
+    def test_eccentricity_directed_weakly_connected(self):
+        with pytest.raises(nx.NetworkXError):
+            DG = nx.DiGraph([(1, 2), (1, 3)])
+            nx.eccentricity(DG)
+
+
+class TestWeightedDistance:
+    def setup_method(self):
+        G = nx.Graph()
+        G.add_edge(0, 1, weight=0.6, cost=0.6, high_cost=6)
+        G.add_edge(0, 2, weight=0.2, cost=0.2, high_cost=2)
+        G.add_edge(2, 3, weight=0.1, cost=0.1, high_cost=1)
+        G.add_edge(2, 4, weight=0.7, cost=0.7, high_cost=7)
+        G.add_edge(2, 5, weight=0.9, cost=0.9, high_cost=9)
+        G.add_edge(1, 5, weight=0.3, cost=0.3, high_cost=3)
+        self.G = G
+        self.weight_fn = lambda v, u, e: 2
+
+    def test_eccentricity_weight_None(self):
+        assert nx.eccentricity(self.G, 1, weight=None) == 3
+        e = nx.eccentricity(self.G, weight=None)
+        assert e[1] == 3
+
+        e = nx.eccentricity(self.G, v=1, weight=None)
+        assert e == 3
+
+        # This behavior changed in version 1.8 (ticket #739)
+        e = nx.eccentricity(self.G, v=[1, 1], weight=None)
+        assert e[1] == 3
+        e = nx.eccentricity(self.G, v=[1, 2], weight=None)
+        assert e[1] == 3
+
+    def test_eccentricity_weight_attr(self):
+        assert nx.eccentricity(self.G, 1, weight="weight") == 1.5
+        e = nx.eccentricity(self.G, weight="weight")
+        assert (
+            e
+            == nx.eccentricity(self.G, weight="cost")
+            != nx.eccentricity(self.G, weight="high_cost")
+        )
+        assert e[1] == 1.5
+
+        e = nx.eccentricity(self.G, v=1, weight="weight")
+        assert e == 1.5
+
+        # This behavior changed in version 1.8 (ticket #739)
+        e = nx.eccentricity(self.G, v=[1, 1], weight="weight")
+        assert e[1] == 1.5
+        e = nx.eccentricity(self.G, v=[1, 2], weight="weight")
+        assert e[1] == 1.5
+
+    def test_eccentricity_weight_fn(self):
+        assert nx.eccentricity(self.G, 1, weight=self.weight_fn) == 6
+        e = nx.eccentricity(self.G, weight=self.weight_fn)
+        assert e[1] == 6
+
+        e = nx.eccentricity(self.G, v=1, weight=self.weight_fn)
+        assert e == 6
+
+        # This behavior changed in version 1.8 (ticket #739)
+        e = nx.eccentricity(self.G, v=[1, 1], weight=self.weight_fn)
+        assert e[1] == 6
+        e = nx.eccentricity(self.G, v=[1, 2], weight=self.weight_fn)
+        assert e[1] == 6
+
+    def test_diameter_weight_None(self):
+        assert nx.diameter(self.G, weight=None) == 3
+
+    def test_diameter_weight_attr(self):
+        assert (
+            nx.diameter(self.G, weight="weight")
+            == nx.diameter(self.G, weight="cost")
+            == 1.6
+            != nx.diameter(self.G, weight="high_cost")
+        )
+
+    def test_diameter_weight_fn(self):
+        assert nx.diameter(self.G, weight=self.weight_fn) == 6
+
+    def test_radius_weight_None(self):
+        assert pytest.approx(nx.radius(self.G, weight=None)) == 2
+
+    def test_radius_weight_attr(self):
+        assert (
+            pytest.approx(nx.radius(self.G, weight="weight"))
+            == pytest.approx(nx.radius(self.G, weight="cost"))
+            == 0.9
+            != nx.radius(self.G, weight="high_cost")
+        )
+
+    def test_radius_weight_fn(self):
+        assert nx.radius(self.G, weight=self.weight_fn) == 4
+
+    def test_periphery_weight_None(self):
+        for v in set(nx.periphery(self.G, weight=None)):
+            assert nx.eccentricity(self.G, v, weight=None) == nx.diameter(
+                self.G, weight=None
+            )
+
+    def test_periphery_weight_attr(self):
+        periphery = set(nx.periphery(self.G, weight="weight"))
+        assert (
+            periphery
+            == set(nx.periphery(self.G, weight="cost"))
+            == set(nx.periphery(self.G, weight="high_cost"))
+        )
+        for v in periphery:
+            assert (
+                nx.eccentricity(self.G, v, weight="high_cost")
+                != nx.eccentricity(self.G, v, weight="weight")
+                == nx.eccentricity(self.G, v, weight="cost")
+                == nx.diameter(self.G, weight="weight")
+                == nx.diameter(self.G, weight="cost")
+                != nx.diameter(self.G, weight="high_cost")
+            )
+            assert nx.eccentricity(self.G, v, weight="high_cost") == nx.diameter(
+                self.G, weight="high_cost"
+            )
+
+    def test_periphery_weight_fn(self):
+        for v in set(nx.periphery(self.G, weight=self.weight_fn)):
+            assert nx.eccentricity(self.G, v, weight=self.weight_fn) == nx.diameter(
+                self.G, weight=self.weight_fn
+            )
+
+    def test_center_weight_None(self):
+        for v in set(nx.center(self.G, weight=None)):
+            assert pytest.approx(nx.eccentricity(self.G, v, weight=None)) == nx.radius(
+                self.G, weight=None
+            )
+
+    def test_center_weight_attr(self):
+        center = set(nx.center(self.G, weight="weight"))
+        assert (
+            center
+            == set(nx.center(self.G, weight="cost"))
+            != set(nx.center(self.G, weight="high_cost"))
+        )
+        for v in center:
+            assert (
+                nx.eccentricity(self.G, v, weight="high_cost")
+                != pytest.approx(nx.eccentricity(self.G, v, weight="weight"))
+                == pytest.approx(nx.eccentricity(self.G, v, weight="cost"))
+                == nx.radius(self.G, weight="weight")
+                == nx.radius(self.G, weight="cost")
+                != nx.radius(self.G, weight="high_cost")
+            )
+            assert nx.eccentricity(self.G, v, weight="high_cost") == nx.radius(
+                self.G, weight="high_cost"
+            )
+
+    def test_center_weight_fn(self):
+        for v in set(nx.center(self.G, weight=self.weight_fn)):
+            assert nx.eccentricity(self.G, v, weight=self.weight_fn) == nx.radius(
+                self.G, weight=self.weight_fn
+            )
+
+    def test_bound_diameter_weight_None(self):
+        assert nx.diameter(self.G, usebounds=True, weight=None) == 3
+
+    def test_bound_diameter_weight_attr(self):
+        assert (
+            nx.diameter(self.G, usebounds=True, weight="high_cost")
+            != nx.diameter(self.G, usebounds=True, weight="weight")
+            == nx.diameter(self.G, usebounds=True, weight="cost")
+            == 1.6
+            != nx.diameter(self.G, usebounds=True, weight="high_cost")
+        )
+        assert nx.diameter(self.G, usebounds=True, weight="high_cost") == nx.diameter(
+            self.G, usebounds=True, weight="high_cost"
+        )
+
+    def test_bound_diameter_weight_fn(self):
+        assert nx.diameter(self.G, usebounds=True, weight=self.weight_fn) == 6
+
+    def test_bound_radius_weight_None(self):
+        assert pytest.approx(nx.radius(self.G, usebounds=True, weight=None)) == 2
+
+    def test_bound_radius_weight_attr(self):
+        assert (
+            nx.radius(self.G, usebounds=True, weight="high_cost")
+            != pytest.approx(nx.radius(self.G, usebounds=True, weight="weight"))
+            == pytest.approx(nx.radius(self.G, usebounds=True, weight="cost"))
+            == 0.9
+            != nx.radius(self.G, usebounds=True, weight="high_cost")
+        )
+        assert nx.radius(self.G, usebounds=True, weight="high_cost") == nx.radius(
+            self.G, usebounds=True, weight="high_cost"
+        )
+
+    def test_bound_radius_weight_fn(self):
+        assert nx.radius(self.G, usebounds=True, weight=self.weight_fn) == 4
+
+    def test_bound_periphery_weight_None(self):
+        result = {1, 3, 4}
+        assert set(nx.periphery(self.G, usebounds=True, weight=None)) == result
+
+    def test_bound_periphery_weight_attr(self):
+        result = {4, 5}
+        assert (
+            set(nx.periphery(self.G, usebounds=True, weight="weight"))
+            == set(nx.periphery(self.G, usebounds=True, weight="cost"))
+            == result
+        )
+
+    def test_bound_periphery_weight_fn(self):
+        result = {1, 3, 4}
+        assert (
+            set(nx.periphery(self.G, usebounds=True, weight=self.weight_fn)) == result
+        )
+
+    def test_bound_center_weight_None(self):
+        result = {0, 2, 5}
+        assert set(nx.center(self.G, usebounds=True, weight=None)) == result
+
+    def test_bound_center_weight_attr(self):
+        result = {0}
+        assert (
+            set(nx.center(self.G, usebounds=True, weight="weight"))
+            == set(nx.center(self.G, usebounds=True, weight="cost"))
+            == result
+        )
+
+    def test_bound_center_weight_fn(self):
+        result = {0, 2, 5}
+        assert set(nx.center(self.G, usebounds=True, weight=self.weight_fn)) == result
+
+
+class TestResistanceDistance:
+    @classmethod
+    def setup_class(cls):
+        global np
+        np = pytest.importorskip("numpy")
+        sp = pytest.importorskip("scipy")
+
+    def setup_method(self):
+        G = nx.Graph()
+        G.add_edge(1, 2, weight=2)
+        G.add_edge(2, 3, weight=4)
+        G.add_edge(3, 4, weight=1)
+        G.add_edge(1, 4, weight=3)
+        self.G = G
+
+    def test_resistance_distance_directed_graph(self):
+        G = nx.DiGraph()
+        with pytest.raises(nx.NetworkXNotImplemented):
+            nx.resistance_distance(G)
+
+    def test_resistance_distance_empty(self):
+        G = nx.Graph()
+        with pytest.raises(nx.NetworkXError):
+            nx.resistance_distance(G)
+
+    def test_resistance_distance_not_connected(self):
+        with pytest.raises(nx.NetworkXError):
+            self.G.add_node(5)
+            nx.resistance_distance(self.G, 1, 5)
+
+    def test_resistance_distance_nodeA_not_in_graph(self):
+        with pytest.raises(nx.NetworkXError):
+            nx.resistance_distance(self.G, 9, 1)
+
+    def test_resistance_distance_nodeB_not_in_graph(self):
+        with pytest.raises(nx.NetworkXError):
+            nx.resistance_distance(self.G, 1, 9)
+
+    def test_resistance_distance(self):
+        rd = nx.resistance_distance(self.G, 1, 3, "weight", True)
+        test_data = 1 / (1 / (2 + 4) + 1 / (1 + 3))
+        assert round(rd, 5) == round(test_data, 5)
+
+    def test_resistance_distance_noinv(self):
+        rd = nx.resistance_distance(self.G, 1, 3, "weight", False)
+        test_data = 1 / (1 / (1 / 2 + 1 / 4) + 1 / (1 / 1 + 1 / 3))
+        assert round(rd, 5) == round(test_data, 5)
+
+    def test_resistance_distance_no_weight(self):
+        rd = nx.resistance_distance(self.G, 1, 3)
+        assert round(rd, 5) == 1
+
+    def test_resistance_distance_neg_weight(self):
+        self.G[2][3]["weight"] = -4
+        rd = nx.resistance_distance(self.G, 1, 3, "weight", True)
+        test_data = 1 / (1 / (2 + -4) + 1 / (1 + 3))
+        assert round(rd, 5) == round(test_data, 5)
+
+    def test_multigraph(self):
+        G = nx.MultiGraph()
+        G.add_edge(1, 2, weight=2)
+        G.add_edge(2, 3, weight=4)
+        G.add_edge(3, 4, weight=1)
+        G.add_edge(1, 4, weight=3)
+        rd = nx.resistance_distance(G, 1, 3, "weight", True)
+        assert np.isclose(rd, 1 / (1 / (2 + 4) + 1 / (1 + 3)))
+
+    def test_resistance_distance_div0(self):
+        with pytest.raises(ZeroDivisionError):
+            self.G[1][2]["weight"] = 0
+            nx.resistance_distance(self.G, 1, 3, "weight")
+
+    def test_resistance_distance_same_node(self):
+        assert nx.resistance_distance(self.G, 1, 1) == 0
+
+    def test_resistance_distance_only_nodeA(self):
+        rd = nx.resistance_distance(self.G, nodeA=1)
+        test_data = {}
+        test_data[1] = 0
+        test_data[2] = 0.75
+        test_data[3] = 1
+        test_data[4] = 0.75
+        assert type(rd) == dict
+        assert sorted(rd.keys()) == sorted(test_data.keys())
+        for key in rd:
+            assert np.isclose(rd[key], test_data[key])
+
+    def test_resistance_distance_only_nodeB(self):
+        rd = nx.resistance_distance(self.G, nodeB=1)
+        test_data = {}
+        test_data[1] = 0
+        test_data[2] = 0.75
+        test_data[3] = 1
+        test_data[4] = 0.75
+        assert type(rd) == dict
+        assert sorted(rd.keys()) == sorted(test_data.keys())
+        for key in rd:
+            assert np.isclose(rd[key], test_data[key])
+
+    def test_resistance_distance_all(self):
+        rd = nx.resistance_distance(self.G)
+        assert type(rd) == dict
+        assert round(rd[1][3], 5) == 1
+
+
+class TestEffectiveGraphResistance:
+    @classmethod
+    def setup_class(cls):
+        global np
+        np = pytest.importorskip("numpy")
+        sp = pytest.importorskip("scipy")
+
+    def setup_method(self):
+        G = nx.Graph()
+        G.add_edge(1, 2, weight=2)
+        G.add_edge(1, 3, weight=1)
+        G.add_edge(2, 3, weight=4)
+        self.G = G
+
+    def test_effective_graph_resistance_directed_graph(self):
+        G = nx.DiGraph()
+        with pytest.raises(nx.NetworkXNotImplemented):
+            nx.effective_graph_resistance(G)
+
+    def test_effective_graph_resistance_empty(self):
+        G = nx.Graph()
+        with pytest.raises(nx.NetworkXError):
+            nx.effective_graph_resistance(G)
+
+    def test_effective_graph_resistance_not_connected(self):
+        G = nx.Graph([(1, 2), (3, 4)])
+        RG = nx.effective_graph_resistance(G)
+        assert np.isinf(RG)
+
+    def test_effective_graph_resistance(self):
+        RG = nx.effective_graph_resistance(self.G, "weight", True)
+        rd12 = 1 / (1 / (1 + 4) + 1 / 2)
+        rd13 = 1 / (1 / (1 + 2) + 1 / 4)
+        rd23 = 1 / (1 / (2 + 4) + 1 / 1)
+        assert np.isclose(RG, rd12 + rd13 + rd23)
+
+    def test_effective_graph_resistance_noinv(self):
+        RG = nx.effective_graph_resistance(self.G, "weight", False)
+        rd12 = 1 / (1 / (1 / 1 + 1 / 4) + 1 / (1 / 2))
+        rd13 = 1 / (1 / (1 / 1 + 1 / 2) + 1 / (1 / 4))
+        rd23 = 1 / (1 / (1 / 2 + 1 / 4) + 1 / (1 / 1))
+        assert np.isclose(RG, rd12 + rd13 + rd23)
+
+    def test_effective_graph_resistance_no_weight(self):
+        RG = nx.effective_graph_resistance(self.G)
+        assert np.isclose(RG, 2)
+
+    def test_effective_graph_resistance_neg_weight(self):
+        self.G[2][3]["weight"] = -4
+        RG = nx.effective_graph_resistance(self.G, "weight", True)
+        rd12 = 1 / (1 / (1 + -4) + 1 / 2)
+        rd13 = 1 / (1 / (1 + 2) + 1 / (-4))
+        rd23 = 1 / (1 / (2 + -4) + 1 / 1)
+        assert np.isclose(RG, rd12 + rd13 + rd23)
+
+    def test_effective_graph_resistance_multigraph(self):
+        G = nx.MultiGraph()
+        G.add_edge(1, 2, weight=2)
+        G.add_edge(1, 3, weight=1)
+        G.add_edge(2, 3, weight=1)
+        G.add_edge(2, 3, weight=3)
+        RG = nx.effective_graph_resistance(G, "weight", True)
+        edge23 = 1 / (1 / 1 + 1 / 3)
+        rd12 = 1 / (1 / (1 + edge23) + 1 / 2)
+        rd13 = 1 / (1 / (1 + 2) + 1 / edge23)
+        rd23 = 1 / (1 / (2 + edge23) + 1 / 1)
+        assert np.isclose(RG, rd12 + rd13 + rd23)
+
+    def test_effective_graph_resistance_div0(self):
+        with pytest.raises(ZeroDivisionError):
+            self.G[1][2]["weight"] = 0
+            nx.effective_graph_resistance(self.G, "weight")
+
+    def test_effective_graph_resistance_complete_graph(self):
+        N = 10
+        G = nx.complete_graph(N)
+        RG = nx.effective_graph_resistance(G)
+        assert np.isclose(RG, N - 1)
+
+    def test_effective_graph_resistance_path_graph(self):
+        N = 10
+        G = nx.path_graph(N)
+        RG = nx.effective_graph_resistance(G)
+        assert np.isclose(RG, (N - 1) * N * (N + 1) // 6)
+
+
+class TestBarycenter:
+    """Test :func:`networkx.algorithms.distance_measures.barycenter`."""
+
+    def barycenter_as_subgraph(self, g, **kwargs):
+        """Return the subgraph induced on the barycenter of g"""
+        b = nx.barycenter(g, **kwargs)
+        assert isinstance(b, list)
+        assert set(b) <= set(g)
+        return g.subgraph(b)
+
+    def test_must_be_connected(self):
+        pytest.raises(nx.NetworkXNoPath, nx.barycenter, nx.empty_graph(5))
+
+    def test_sp_kwarg(self):
+        # Complete graph K_5. Normally it works...
+        K_5 = nx.complete_graph(5)
+        sp = dict(nx.shortest_path_length(K_5))
+        assert nx.barycenter(K_5, sp=sp) == list(K_5)
+
+        # ...but not with the weight argument
+        for u, v, data in K_5.edges.data():
+            data["weight"] = 1
+        pytest.raises(ValueError, nx.barycenter, K_5, sp=sp, weight="weight")
+
+        # ...and a corrupted sp can make it seem like K_5 is disconnected
+        del sp[0][1]
+        pytest.raises(nx.NetworkXNoPath, nx.barycenter, K_5, sp=sp)
+
+    def test_trees(self):
+        """The barycenter of a tree is a single vertex or an edge.
+
+        See [West01]_, p. 78.
+        """
+        prng = Random(0xDEADBEEF)
+        for i in range(50):
+            RT = nx.random_labeled_tree(prng.randint(1, 75), seed=prng)
+            b = self.barycenter_as_subgraph(RT)
+            if len(b) == 2:
+                assert b.size() == 1
+            else:
+                assert len(b) == 1
+                assert b.size() == 0
+
+    def test_this_one_specific_tree(self):
+        """Test the tree pictured at the bottom of [West01]_, p. 78."""
+        g = nx.Graph(
+            {
+                "a": ["b"],
+                "b": ["a", "x"],
+                "x": ["b", "y"],
+                "y": ["x", "z"],
+                "z": ["y", 0, 1, 2, 3, 4],
+                0: ["z"],
+                1: ["z"],
+                2: ["z"],
+                3: ["z"],
+                4: ["z"],
+            }
+        )
+        b = self.barycenter_as_subgraph(g, attr="barycentricity")
+        assert list(b) == ["z"]
+        assert not b.edges
+        expected_barycentricity = {
+            0: 23,
+            1: 23,
+            2: 23,
+            3: 23,
+            4: 23,
+            "a": 35,
+            "b": 27,
+            "x": 21,
+            "y": 17,
+            "z": 15,
+        }
+        for node, barycentricity in expected_barycentricity.items():
+            assert g.nodes[node]["barycentricity"] == barycentricity
+
+        # Doubling weights should do nothing but double the barycentricities
+        for edge in g.edges:
+            g.edges[edge]["weight"] = 2
+        b = self.barycenter_as_subgraph(g, weight="weight", attr="barycentricity2")
+        assert list(b) == ["z"]
+        assert not b.edges
+        for node, barycentricity in expected_barycentricity.items():
+            assert g.nodes[node]["barycentricity2"] == barycentricity * 2
+
+
+class TestKemenyConstant:
+    @classmethod
+    def setup_class(cls):
+        global np
+        np = pytest.importorskip("numpy")
+        sp = pytest.importorskip("scipy")
+
+    def setup_method(self):
+        G = nx.Graph()
+        w12 = 2
+        w13 = 3
+        w23 = 4
+        G.add_edge(1, 2, weight=w12)
+        G.add_edge(1, 3, weight=w13)
+        G.add_edge(2, 3, weight=w23)
+        self.G = G
+
+    def test_kemeny_constant_directed(self):
+        G = nx.DiGraph()
+        G.add_edge(1, 2)
+        G.add_edge(1, 3)
+        G.add_edge(2, 3)
+        with pytest.raises(nx.NetworkXNotImplemented):
+            nx.kemeny_constant(G)
+
+    def test_kemeny_constant_not_connected(self):
+        self.G.add_node(5)
+        with pytest.raises(nx.NetworkXError):
+            nx.kemeny_constant(self.G)
+
+    def test_kemeny_constant_no_nodes(self):
+        G = nx.Graph()
+        with pytest.raises(nx.NetworkXError):
+            nx.kemeny_constant(G)
+
+    def test_kemeny_constant_negative_weight(self):
+        G = nx.Graph()
+        w12 = 2
+        w13 = 3
+        w23 = -10
+        G.add_edge(1, 2, weight=w12)
+        G.add_edge(1, 3, weight=w13)
+        G.add_edge(2, 3, weight=w23)
+        with pytest.raises(nx.NetworkXError):
+            nx.kemeny_constant(G, weight="weight")
+
+    def test_kemeny_constant(self):
+        K = nx.kemeny_constant(self.G, weight="weight")
+        w12 = 2
+        w13 = 3
+        w23 = 4
+        test_data = (
+            3
+            / 2
+            * (w12 + w13)
+            * (w12 + w23)
+            * (w13 + w23)
+            / (
+                w12**2 * (w13 + w23)
+                + w13**2 * (w12 + w23)
+                + w23**2 * (w12 + w13)
+                + 3 * w12 * w13 * w23
+            )
+        )
+        assert np.isclose(K, test_data)
+
+    def test_kemeny_constant_no_weight(self):
+        K = nx.kemeny_constant(self.G)
+        assert np.isclose(K, 4 / 3)
+
+    def test_kemeny_constant_multigraph(self):
+        G = nx.MultiGraph()
+        w12_1 = 2
+        w12_2 = 1
+        w13 = 3
+        w23 = 4
+        G.add_edge(1, 2, weight=w12_1)
+        G.add_edge(1, 2, weight=w12_2)
+        G.add_edge(1, 3, weight=w13)
+        G.add_edge(2, 3, weight=w23)
+        K = nx.kemeny_constant(G, weight="weight")
+        w12 = w12_1 + w12_2
+        test_data = (
+            3
+            / 2
+            * (w12 + w13)
+            * (w12 + w23)
+            * (w13 + w23)
+            / (
+                w12**2 * (w13 + w23)
+                + w13**2 * (w12 + w23)
+                + w23**2 * (w12 + w13)
+                + 3 * w12 * w13 * w23
+            )
+        )
+        assert np.isclose(K, test_data)
+
+    def test_kemeny_constant_weight0(self):
+        G = nx.Graph()
+        w12 = 0
+        w13 = 3
+        w23 = 4
+        G.add_edge(1, 2, weight=w12)
+        G.add_edge(1, 3, weight=w13)
+        G.add_edge(2, 3, weight=w23)
+        K = nx.kemeny_constant(G, weight="weight")
+        test_data = (
+            3
+            / 2
+            * (w12 + w13)
+            * (w12 + w23)
+            * (w13 + w23)
+            / (
+                w12**2 * (w13 + w23)
+                + w13**2 * (w12 + w23)
+                + w23**2 * (w12 + w13)
+                + 3 * w12 * w13 * w23
+            )
+        )
+        assert np.isclose(K, test_data)
+
+    def test_kemeny_constant_selfloop(self):
+        G = nx.Graph()
+        w11 = 1
+        w12 = 2
+        w13 = 3
+        w23 = 4
+        G.add_edge(1, 1, weight=w11)
+        G.add_edge(1, 2, weight=w12)
+        G.add_edge(1, 3, weight=w13)
+        G.add_edge(2, 3, weight=w23)
+        K = nx.kemeny_constant(G, weight="weight")
+        test_data = (
+            (2 * w11 + 3 * w12 + 3 * w13)
+            * (w12 + w23)
+            * (w13 + w23)
+            / (
+                (w12 * w13 + w12 * w23 + w13 * w23)
+                * (w11 + 2 * w12 + 2 * w13 + 2 * w23)
+            )
+        )
+        assert np.isclose(K, test_data)
+
+    def test_kemeny_constant_complete_bipartite_graph(self):
+        # Theorem 1 in https://www.sciencedirect.com/science/article/pii/S0166218X20302912
+        n1 = 5
+        n2 = 4
+        G = nx.complete_bipartite_graph(n1, n2)
+        K = nx.kemeny_constant(G)
+        assert np.isclose(K, n1 + n2 - 3 / 2)
+
+    def test_kemeny_constant_path_graph(self):
+        # Theorem 2 in https://www.sciencedirect.com/science/article/pii/S0166218X20302912
+        n = 10
+        G = nx.path_graph(n)
+        K = nx.kemeny_constant(G)
+        assert np.isclose(K, n**2 / 3 - 2 * n / 3 + 1 / 2)