diff options
author | S. Solomon Darnell | 2025-03-28 21:52:21 -0500 |
---|---|---|
committer | S. Solomon Darnell | 2025-03-28 21:52:21 -0500 |
commit | 4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch) | |
tree | ee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/networkx/algorithms/swap.py | |
parent | cc961e04ba734dd72309fb548a2f97d67d578813 (diff) | |
download | gn-ai-master.tar.gz |
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/algorithms/swap.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/networkx/algorithms/swap.py | 406 |
1 files changed, 406 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/swap.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/swap.py new file mode 100644 index 00000000..cb3cc1c0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/swap.py @@ -0,0 +1,406 @@ +"""Swap edges in a graph.""" + +import math + +import networkx as nx +from networkx.utils import py_random_state + +__all__ = ["double_edge_swap", "connected_double_edge_swap", "directed_edge_swap"] + + +@nx.utils.not_implemented_for("undirected") +@py_random_state(3) +@nx._dispatchable(mutates_input=True, returns_graph=True) +def directed_edge_swap(G, *, nswap=1, max_tries=100, seed=None): + """Swap three edges in a directed graph while keeping the node degrees fixed. + + A directed edge swap swaps three edges such that a -> b -> c -> d becomes + a -> c -> b -> d. This pattern of swapping allows all possible states with the + same in- and out-degree distribution in a directed graph to be reached. + + If the swap would create parallel edges (e.g. if a -> c already existed in the + previous example), another attempt is made to find a suitable trio of edges. + + Parameters + ---------- + G : DiGraph + A directed graph + + nswap : integer (optional, default=1) + Number of three-edge (directed) swaps to perform + + max_tries : integer (optional, default=100) + Maximum number of attempts to swap edges + + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness<randomness>`. + + Returns + ------- + G : DiGraph + The graph after the edges are swapped. + + Raises + ------ + NetworkXError + If `G` is not directed, or + If nswap > max_tries, or + If there are fewer than 4 nodes or 3 edges in `G`. + NetworkXAlgorithmError + If the number of swap attempts exceeds `max_tries` before `nswap` swaps are made + + Notes + ----- + Does not enforce any connectivity constraints. + + The graph G is modified in place. + + A later swap is allowed to undo a previous swap. + + References + ---------- + .. [1] Erdős, Péter L., et al. “A Simple Havel-Hakimi Type Algorithm to Realize + Graphical Degree Sequences of Directed Graphs.” ArXiv:0905.4913 [Math], + Jan. 2010. https://doi.org/10.48550/arXiv.0905.4913. + Published 2010 in Elec. J. Combinatorics (17(1)). R66. + http://www.combinatorics.org/Volume_17/PDF/v17i1r66.pdf + .. [2] “Combinatorics - Reaching All Possible Simple Directed Graphs with a given + Degree Sequence with 2-Edge Swaps.” Mathematics Stack Exchange, + https://math.stackexchange.com/questions/22272/. Accessed 30 May 2022. + """ + if nswap > max_tries: + raise nx.NetworkXError("Number of swaps > number of tries allowed.") + if len(G) < 4: + raise nx.NetworkXError("DiGraph has fewer than four nodes.") + if len(G.edges) < 3: + raise nx.NetworkXError("DiGraph has fewer than 3 edges") + + # Instead of choosing uniformly at random from a generated edge list, + # this algorithm chooses nonuniformly from the set of nodes with + # probability weighted by degree. + tries = 0 + swapcount = 0 + keys, degrees = zip(*G.degree()) # keys, degree + cdf = nx.utils.cumulative_distribution(degrees) # cdf of degree + discrete_sequence = nx.utils.discrete_sequence + + while swapcount < nswap: + # choose source node index from discrete distribution + start_index = discrete_sequence(1, cdistribution=cdf, seed=seed)[0] + start = keys[start_index] + tries += 1 + + if tries > max_tries: + msg = f"Maximum number of swap attempts ({tries}) exceeded before desired swaps achieved ({nswap})." + raise nx.NetworkXAlgorithmError(msg) + + # If the given node doesn't have any out edges, then there isn't anything to swap + if G.out_degree(start) == 0: + continue + second = seed.choice(list(G.succ[start])) + if start == second: + continue + + if G.out_degree(second) == 0: + continue + third = seed.choice(list(G.succ[second])) + if second == third: + continue + + if G.out_degree(third) == 0: + continue + fourth = seed.choice(list(G.succ[third])) + if third == fourth: + continue + + if ( + third not in G.succ[start] + and fourth not in G.succ[second] + and second not in G.succ[third] + ): + # Swap nodes + G.add_edge(start, third) + G.add_edge(third, second) + G.add_edge(second, fourth) + G.remove_edge(start, second) + G.remove_edge(second, third) + G.remove_edge(third, fourth) + swapcount += 1 + + return G + + +@py_random_state(3) +@nx._dispatchable(mutates_input=True, returns_graph=True) +def double_edge_swap(G, nswap=1, max_tries=100, seed=None): + """Swap two edges in the graph while keeping the node degrees fixed. + + A double-edge swap removes two randomly chosen edges u-v and x-y + and creates the new edges u-x and v-y:: + + u--v u v + becomes | | + x--y x y + + If either the edge u-x or v-y already exist no swap is performed + and another attempt is made to find a suitable edge pair. + + Parameters + ---------- + G : graph + An undirected graph + + nswap : integer (optional, default=1) + Number of double-edge swaps to perform + + max_tries : integer (optional) + Maximum number of attempts to swap edges + + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness<randomness>`. + + Returns + ------- + G : graph + The graph after double edge swaps. + + Raises + ------ + NetworkXError + If `G` is directed, or + If `nswap` > `max_tries`, or + If there are fewer than 4 nodes or 2 edges in `G`. + NetworkXAlgorithmError + If the number of swap attempts exceeds `max_tries` before `nswap` swaps are made + + Notes + ----- + Does not enforce any connectivity constraints. + + The graph G is modified in place. + """ + if G.is_directed(): + raise nx.NetworkXError( + "double_edge_swap() not defined for directed graphs. Use directed_edge_swap instead." + ) + if nswap > max_tries: + raise nx.NetworkXError("Number of swaps > number of tries allowed.") + if len(G) < 4: + raise nx.NetworkXError("Graph has fewer than four nodes.") + if len(G.edges) < 2: + raise nx.NetworkXError("Graph has fewer than 2 edges") + # Instead of choosing uniformly at random from a generated edge list, + # this algorithm chooses nonuniformly from the set of nodes with + # probability weighted by degree. + n = 0 + swapcount = 0 + keys, degrees = zip(*G.degree()) # keys, degree + cdf = nx.utils.cumulative_distribution(degrees) # cdf of degree + discrete_sequence = nx.utils.discrete_sequence + while swapcount < nswap: + # if random.random() < 0.5: continue # trick to avoid periodicities? + # pick two random edges without creating edge list + # choose source node indices from discrete distribution + (ui, xi) = discrete_sequence(2, cdistribution=cdf, seed=seed) + if ui == xi: + continue # same source, skip + u = keys[ui] # convert index to label + x = keys[xi] + # choose target uniformly from neighbors + v = seed.choice(list(G[u])) + y = seed.choice(list(G[x])) + if v == y: + continue # same target, skip + if (x not in G[u]) and (y not in G[v]): # don't create parallel edges + G.add_edge(u, x) + G.add_edge(v, y) + G.remove_edge(u, v) + G.remove_edge(x, y) + swapcount += 1 + if n >= max_tries: + e = ( + f"Maximum number of swap attempts ({n}) exceeded " + f"before desired swaps achieved ({nswap})." + ) + raise nx.NetworkXAlgorithmError(e) + n += 1 + return G + + +@py_random_state(3) +@nx._dispatchable(mutates_input=True) +def connected_double_edge_swap(G, nswap=1, _window_threshold=3, seed=None): + """Attempts the specified number of double-edge swaps in the graph `G`. + + A double-edge swap removes two randomly chosen edges `(u, v)` and `(x, + y)` and creates the new edges `(u, x)` and `(v, y)`:: + + u--v u v + becomes | | + x--y x y + + If either `(u, x)` or `(v, y)` already exist, then no swap is performed + so the actual number of swapped edges is always *at most* `nswap`. + + Parameters + ---------- + G : graph + An undirected graph + + nswap : integer (optional, default=1) + Number of double-edge swaps to perform + + _window_threshold : integer + + The window size below which connectedness of the graph will be checked + after each swap. + + The "window" in this function is a dynamically updated integer that + represents the number of swap attempts to make before checking if the + graph remains connected. It is an optimization used to decrease the + running time of the algorithm in exchange for increased complexity of + implementation. + + If the window size is below this threshold, then the algorithm checks + after each swap if the graph remains connected by checking if there is a + path joining the two nodes whose edge was just removed. If the window + size is above this threshold, then the algorithm performs do all the + swaps in the window and only then check if the graph is still connected. + + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness<randomness>`. + + Returns + ------- + int + The number of successful swaps + + Raises + ------ + + NetworkXError + + If the input graph is not connected, or if the graph has fewer than four + nodes. + + Notes + ----- + + The initial graph `G` must be connected, and the resulting graph is + connected. The graph `G` is modified in place. + + References + ---------- + .. [1] C. Gkantsidis and M. Mihail and E. Zegura, + The Markov chain simulation method for generating connected + power law random graphs, 2003. + http://citeseer.ist.psu.edu/gkantsidis03markov.html + """ + if not nx.is_connected(G): + raise nx.NetworkXError("Graph not connected") + if len(G) < 4: + raise nx.NetworkXError("Graph has fewer than four nodes.") + n = 0 + swapcount = 0 + deg = G.degree() + # Label key for nodes + dk = [n for n, d in G.degree()] + cdf = nx.utils.cumulative_distribution([d for n, d in G.degree()]) + discrete_sequence = nx.utils.discrete_sequence + window = 1 + while n < nswap: + wcount = 0 + swapped = [] + # If the window is small, we just check each time whether the graph is + # connected by checking if the nodes that were just separated are still + # connected. + if window < _window_threshold: + # This Boolean keeps track of whether there was a failure or not. + fail = False + while wcount < window and n < nswap: + # Pick two random edges without creating the edge list. Choose + # source nodes from the discrete degree distribution. + (ui, xi) = discrete_sequence(2, cdistribution=cdf, seed=seed) + # If the source nodes are the same, skip this pair. + if ui == xi: + continue + # Convert an index to a node label. + u = dk[ui] + x = dk[xi] + # Choose targets uniformly from neighbors. + v = seed.choice(list(G.neighbors(u))) + y = seed.choice(list(G.neighbors(x))) + # If the target nodes are the same, skip this pair. + if v == y: + continue + if x not in G[u] and y not in G[v]: + G.remove_edge(u, v) + G.remove_edge(x, y) + G.add_edge(u, x) + G.add_edge(v, y) + swapped.append((u, v, x, y)) + swapcount += 1 + n += 1 + # If G remains connected... + if nx.has_path(G, u, v): + wcount += 1 + # Otherwise, undo the changes. + else: + G.add_edge(u, v) + G.add_edge(x, y) + G.remove_edge(u, x) + G.remove_edge(v, y) + swapcount -= 1 + fail = True + # If one of the swaps failed, reduce the window size. + if fail: + window = math.ceil(window / 2) + else: + window += 1 + # If the window is large, then there is a good chance that a bunch of + # swaps will work. It's quicker to do all those swaps first and then + # check if the graph remains connected. + else: + while wcount < window and n < nswap: + # Pick two random edges without creating the edge list. Choose + # source nodes from the discrete degree distribution. + (ui, xi) = discrete_sequence(2, cdistribution=cdf, seed=seed) + # If the source nodes are the same, skip this pair. + if ui == xi: + continue + # Convert an index to a node label. + u = dk[ui] + x = dk[xi] + # Choose targets uniformly from neighbors. + v = seed.choice(list(G.neighbors(u))) + y = seed.choice(list(G.neighbors(x))) + # If the target nodes are the same, skip this pair. + if v == y: + continue + if x not in G[u] and y not in G[v]: + G.remove_edge(u, v) + G.remove_edge(x, y) + G.add_edge(u, x) + G.add_edge(v, y) + swapped.append((u, v, x, y)) + swapcount += 1 + n += 1 + wcount += 1 + # If the graph remains connected, increase the window size. + if nx.is_connected(G): + window += 1 + # Otherwise, undo the changes from the previous window and decrease + # the window size. + else: + while swapped: + (u, v, x, y) = swapped.pop() + G.add_edge(u, v) + G.add_edge(x, y) + G.remove_edge(u, x) + G.remove_edge(v, y) + swapcount -= 1 + window = math.ceil(window / 2) + return swapcount |