diff options
author | S. Solomon Darnell | 2025-03-28 21:52:21 -0500 |
---|---|---|
committer | S. Solomon Darnell | 2025-03-28 21:52:21 -0500 |
commit | 4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch) | |
tree | ee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/networkx/algorithms/shortest_paths/weighted.py | |
parent | cc961e04ba734dd72309fb548a2f97d67d578813 (diff) | |
download | gn-ai-master.tar.gz |
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/algorithms/shortest_paths/weighted.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/networkx/algorithms/shortest_paths/weighted.py | 2520 |
1 files changed, 2520 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/shortest_paths/weighted.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/shortest_paths/weighted.py new file mode 100644 index 00000000..f8421d42 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/shortest_paths/weighted.py @@ -0,0 +1,2520 @@ +""" +Shortest path algorithms for weighted graphs. +""" + +from collections import deque +from heapq import heappop, heappush +from itertools import count + +import networkx as nx +from networkx.algorithms.shortest_paths.generic import _build_paths_from_predecessors + +__all__ = [ + "dijkstra_path", + "dijkstra_path_length", + "bidirectional_dijkstra", + "single_source_dijkstra", + "single_source_dijkstra_path", + "single_source_dijkstra_path_length", + "multi_source_dijkstra", + "multi_source_dijkstra_path", + "multi_source_dijkstra_path_length", + "all_pairs_dijkstra", + "all_pairs_dijkstra_path", + "all_pairs_dijkstra_path_length", + "dijkstra_predecessor_and_distance", + "bellman_ford_path", + "bellman_ford_path_length", + "single_source_bellman_ford", + "single_source_bellman_ford_path", + "single_source_bellman_ford_path_length", + "all_pairs_bellman_ford_path", + "all_pairs_bellman_ford_path_length", + "bellman_ford_predecessor_and_distance", + "negative_edge_cycle", + "find_negative_cycle", + "goldberg_radzik", + "johnson", +] + + +def _weight_function(G, weight): + """Returns a function that returns the weight of an edge. + + The returned function is specifically suitable for input to + functions :func:`_dijkstra` and :func:`_bellman_ford_relaxation`. + + Parameters + ---------- + G : NetworkX graph. + + weight : string or function + If it is callable, `weight` itself is returned. If it is a string, + it is assumed to be the name of the edge attribute that represents + the weight of an edge. In that case, a function is returned that + gets the edge weight according to the specified edge attribute. + + Returns + ------- + function + This function returns a callable that accepts exactly three inputs: + a node, an node adjacent to the first one, and the edge attribute + dictionary for the eedge joining those nodes. That function returns + a number representing the weight of an edge. + + If `G` is a multigraph, and `weight` is not callable, the + minimum edge weight over all parallel edges is returned. If any edge + does not have an attribute with key `weight`, it is assumed to + have weight one. + + """ + if callable(weight): + return weight + # If the weight keyword argument is not callable, we assume it is a + # string representing the edge attribute containing the weight of + # the edge. + if G.is_multigraph(): + return lambda u, v, d: min(attr.get(weight, 1) for attr in d.values()) + return lambda u, v, data: data.get(weight, 1) + + +@nx._dispatchable(edge_attrs="weight") +def dijkstra_path(G, source, target, weight="weight"): + """Returns the shortest weighted path from source to target in G. + + Uses Dijkstra's Method to compute the shortest weighted path + between two nodes in a graph. + + Parameters + ---------- + G : NetworkX graph + + source : node + Starting node + + target : node + Ending node + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number or None to indicate a hidden edge. + + Returns + ------- + path : list + List of nodes in a shortest path. + + Raises + ------ + NodeNotFound + If `source` is not in `G`. + + NetworkXNoPath + If no path exists between source and target. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> print(nx.dijkstra_path(G, 0, 4)) + [0, 1, 2, 3, 4] + + Find edges of shortest path in Multigraph + + >>> G = nx.MultiDiGraph() + >>> G.add_weighted_edges_from([(1, 2, 0.75), (1, 2, 0.5), (2, 3, 0.5), (1, 3, 1.5)]) + >>> nodes = nx.dijkstra_path(G, 1, 3) + >>> edges = nx.utils.pairwise(nodes) + >>> list( + ... (u, v, min(G[u][v], key=lambda k: G[u][v][k].get("weight", 1))) + ... for u, v in edges + ... ) + [(1, 2, 1), (2, 3, 0)] + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + The weight function can be used to hide edges by returning None. + So ``weight = lambda u, v, d: 1 if d['color']=="red" else None`` + will find the shortest red path. + + The weight function can be used to include node weights. + + >>> def func(u, v, d): + ... node_u_wt = G.nodes[u].get("node_weight", 1) + ... node_v_wt = G.nodes[v].get("node_weight", 1) + ... edge_wt = d.get("weight", 1) + ... return node_u_wt / 2 + node_v_wt / 2 + edge_wt + + In this example we take the average of start and end node + weights of an edge and add it to the weight of the edge. + + The function :func:`single_source_dijkstra` computes both + path and length-of-path if you need both, use that. + + See Also + -------- + bidirectional_dijkstra + bellman_ford_path + single_source_dijkstra + """ + (length, path) = single_source_dijkstra(G, source, target=target, weight=weight) + return path + + +@nx._dispatchable(edge_attrs="weight") +def dijkstra_path_length(G, source, target, weight="weight"): + """Returns the shortest weighted path length in G from source to target. + + Uses Dijkstra's Method to compute the shortest weighted path length + between two nodes in a graph. + + Parameters + ---------- + G : NetworkX graph + + source : node label + starting node for path + + target : node label + ending node for path + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number or None to indicate a hidden edge. + + Returns + ------- + length : number + Shortest path length. + + Raises + ------ + NodeNotFound + If `source` is not in `G`. + + NetworkXNoPath + If no path exists between source and target. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> nx.dijkstra_path_length(G, 0, 4) + 4 + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + The weight function can be used to hide edges by returning None. + So ``weight = lambda u, v, d: 1 if d['color']=="red" else None`` + will find the shortest red path. + + The function :func:`single_source_dijkstra` computes both + path and length-of-path if you need both, use that. + + See Also + -------- + bidirectional_dijkstra + bellman_ford_path_length + single_source_dijkstra + + """ + if source not in G: + raise nx.NodeNotFound(f"Node {source} not found in graph") + if source == target: + return 0 + weight = _weight_function(G, weight) + length = _dijkstra(G, source, weight, target=target) + try: + return length[target] + except KeyError as err: + raise nx.NetworkXNoPath(f"Node {target} not reachable from {source}") from err + + +@nx._dispatchable(edge_attrs="weight") +def single_source_dijkstra_path(G, source, cutoff=None, weight="weight"): + """Find shortest weighted paths in G from a source node. + + Compute shortest path between source and all other reachable + nodes for a weighted graph. + + Parameters + ---------- + G : NetworkX graph + + source : node + Starting node for path. + + cutoff : integer or float, optional + Length (sum of edge weights) at which the search is stopped. + If cutoff is provided, only return paths with summed weight <= cutoff. + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number or None to indicate a hidden edge. + + Returns + ------- + paths : dictionary + Dictionary of shortest path lengths keyed by target. + + Raises + ------ + NodeNotFound + If `source` is not in `G`. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> path = nx.single_source_dijkstra_path(G, 0) + >>> path[4] + [0, 1, 2, 3, 4] + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + The weight function can be used to hide edges by returning None. + So ``weight = lambda u, v, d: 1 if d['color']=="red" else None`` + will find the shortest red path. + + See Also + -------- + single_source_dijkstra, single_source_bellman_ford + + """ + return multi_source_dijkstra_path(G, {source}, cutoff=cutoff, weight=weight) + + +@nx._dispatchable(edge_attrs="weight") +def single_source_dijkstra_path_length(G, source, cutoff=None, weight="weight"): + """Find shortest weighted path lengths in G from a source node. + + Compute the shortest path length between source and all other + reachable nodes for a weighted graph. + + Parameters + ---------- + G : NetworkX graph + + source : node label + Starting node for path + + cutoff : integer or float, optional + Length (sum of edge weights) at which the search is stopped. + If cutoff is provided, only return paths with summed weight <= cutoff. + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number or None to indicate a hidden edge. + + Returns + ------- + length : dict + Dict keyed by node to shortest path length from source. + + Raises + ------ + NodeNotFound + If `source` is not in `G`. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> length = nx.single_source_dijkstra_path_length(G, 0) + >>> length[4] + 4 + >>> for node in [0, 1, 2, 3, 4]: + ... print(f"{node}: {length[node]}") + 0: 0 + 1: 1 + 2: 2 + 3: 3 + 4: 4 + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + The weight function can be used to hide edges by returning None. + So ``weight = lambda u, v, d: 1 if d['color']=="red" else None`` + will find the shortest red path. + + See Also + -------- + single_source_dijkstra, single_source_bellman_ford_path_length + + """ + return multi_source_dijkstra_path_length(G, {source}, cutoff=cutoff, weight=weight) + + +@nx._dispatchable(edge_attrs="weight") +def single_source_dijkstra(G, source, target=None, cutoff=None, weight="weight"): + """Find shortest weighted paths and lengths from a source node. + + Compute the shortest path length between source and all other + reachable nodes for a weighted graph. + + Uses Dijkstra's algorithm to compute shortest paths and lengths + between a source and all other reachable nodes in a weighted graph. + + Parameters + ---------- + G : NetworkX graph + + source : node label + Starting node for path + + target : node label, optional + Ending node for path + + cutoff : integer or float, optional + Length (sum of edge weights) at which the search is stopped. + If cutoff is provided, only return paths with summed weight <= cutoff. + + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number or None to indicate a hidden edge. + + Returns + ------- + distance, path : pair of dictionaries, or numeric and list. + If target is None, paths and lengths to all nodes are computed. + The return value is a tuple of two dictionaries keyed by target nodes. + The first dictionary stores distance to each target node. + The second stores the path to each target node. + If target is not None, returns a tuple (distance, path), where + distance is the distance from source to target and path is a list + representing the path from source to target. + + Raises + ------ + NodeNotFound + If `source` is not in `G`. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> length, path = nx.single_source_dijkstra(G, 0) + >>> length[4] + 4 + >>> for node in [0, 1, 2, 3, 4]: + ... print(f"{node}: {length[node]}") + 0: 0 + 1: 1 + 2: 2 + 3: 3 + 4: 4 + >>> path[4] + [0, 1, 2, 3, 4] + >>> length, path = nx.single_source_dijkstra(G, 0, 1) + >>> length + 1 + >>> path + [0, 1] + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + The weight function can be used to hide edges by returning None. + So ``weight = lambda u, v, d: 1 if d['color']=="red" else None`` + will find the shortest red path. + + Based on the Python cookbook recipe (119466) at + https://code.activestate.com/recipes/119466/ + + This algorithm is not guaranteed to work if edge weights + are negative or are floating point numbers + (overflows and roundoff errors can cause problems). + + See Also + -------- + single_source_dijkstra_path + single_source_dijkstra_path_length + single_source_bellman_ford + """ + return multi_source_dijkstra( + G, {source}, cutoff=cutoff, target=target, weight=weight + ) + + +@nx._dispatchable(edge_attrs="weight") +def multi_source_dijkstra_path(G, sources, cutoff=None, weight="weight"): + """Find shortest weighted paths in G from a given set of source + nodes. + + Compute shortest path between any of the source nodes and all other + reachable nodes for a weighted graph. + + Parameters + ---------- + G : NetworkX graph + + sources : non-empty set of nodes + Starting nodes for paths. If this is just a set containing a + single node, then all paths computed by this function will start + from that node. If there are two or more nodes in the set, the + computed paths may begin from any one of the start nodes. + + cutoff : integer or float, optional + Length (sum of edge weights) at which the search is stopped. + If cutoff is provided, only return paths with summed weight <= cutoff. + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number or None to indicate a hidden edge. + + Returns + ------- + paths : dictionary + Dictionary of shortest paths keyed by target. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> path = nx.multi_source_dijkstra_path(G, {0, 4}) + >>> path[1] + [0, 1] + >>> path[3] + [4, 3] + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + The weight function can be used to hide edges by returning None. + So ``weight = lambda u, v, d: 1 if d['color']=="red" else None`` + will find the shortest red path. + + Raises + ------ + ValueError + If `sources` is empty. + NodeNotFound + If any of `sources` is not in `G`. + + See Also + -------- + multi_source_dijkstra, multi_source_bellman_ford + + """ + length, path = multi_source_dijkstra(G, sources, cutoff=cutoff, weight=weight) + return path + + +@nx._dispatchable(edge_attrs="weight") +def multi_source_dijkstra_path_length(G, sources, cutoff=None, weight="weight"): + """Find shortest weighted path lengths in G from a given set of + source nodes. + + Compute the shortest path length between any of the source nodes and + all other reachable nodes for a weighted graph. + + Parameters + ---------- + G : NetworkX graph + + sources : non-empty set of nodes + Starting nodes for paths. If this is just a set containing a + single node, then all paths computed by this function will start + from that node. If there are two or more nodes in the set, the + computed paths may begin from any one of the start nodes. + + cutoff : integer or float, optional + Length (sum of edge weights) at which the search is stopped. + If cutoff is provided, only return paths with summed weight <= cutoff. + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number or None to indicate a hidden edge. + + Returns + ------- + length : dict + Dict keyed by node to shortest path length to nearest source. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> length = nx.multi_source_dijkstra_path_length(G, {0, 4}) + >>> for node in [0, 1, 2, 3, 4]: + ... print(f"{node}: {length[node]}") + 0: 0 + 1: 1 + 2: 2 + 3: 1 + 4: 0 + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + The weight function can be used to hide edges by returning None. + So ``weight = lambda u, v, d: 1 if d['color']=="red" else None`` + will find the shortest red path. + + Raises + ------ + ValueError + If `sources` is empty. + NodeNotFound + If any of `sources` is not in `G`. + + See Also + -------- + multi_source_dijkstra + + """ + if not sources: + raise ValueError("sources must not be empty") + for s in sources: + if s not in G: + raise nx.NodeNotFound(f"Node {s} not found in graph") + weight = _weight_function(G, weight) + return _dijkstra_multisource(G, sources, weight, cutoff=cutoff) + + +@nx._dispatchable(edge_attrs="weight") +def multi_source_dijkstra(G, sources, target=None, cutoff=None, weight="weight"): + """Find shortest weighted paths and lengths from a given set of + source nodes. + + Uses Dijkstra's algorithm to compute the shortest paths and lengths + between one of the source nodes and the given `target`, or all other + reachable nodes if not specified, for a weighted graph. + + Parameters + ---------- + G : NetworkX graph + + sources : non-empty set of nodes + Starting nodes for paths. If this is just a set containing a + single node, then all paths computed by this function will start + from that node. If there are two or more nodes in the set, the + computed paths may begin from any one of the start nodes. + + target : node label, optional + Ending node for path + + cutoff : integer or float, optional + Length (sum of edge weights) at which the search is stopped. + If cutoff is provided, only return paths with summed weight <= cutoff. + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number or None to indicate a hidden edge. + + Returns + ------- + distance, path : pair of dictionaries, or numeric and list + If target is None, returns a tuple of two dictionaries keyed by node. + The first dictionary stores distance from one of the source nodes. + The second stores the path from one of the sources to that node. + If target is not None, returns a tuple of (distance, path) where + distance is the distance from source to target and path is a list + representing the path from source to target. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> length, path = nx.multi_source_dijkstra(G, {0, 4}) + >>> for node in [0, 1, 2, 3, 4]: + ... print(f"{node}: {length[node]}") + 0: 0 + 1: 1 + 2: 2 + 3: 1 + 4: 0 + >>> path[1] + [0, 1] + >>> path[3] + [4, 3] + + >>> length, path = nx.multi_source_dijkstra(G, {0, 4}, 1) + >>> length + 1 + >>> path + [0, 1] + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + The weight function can be used to hide edges by returning None. + So ``weight = lambda u, v, d: 1 if d['color']=="red" else None`` + will find the shortest red path. + + Based on the Python cookbook recipe (119466) at + https://code.activestate.com/recipes/119466/ + + This algorithm is not guaranteed to work if edge weights + are negative or are floating point numbers + (overflows and roundoff errors can cause problems). + + Raises + ------ + ValueError + If `sources` is empty. + NodeNotFound + If any of `sources` is not in `G`. + + See Also + -------- + multi_source_dijkstra_path + multi_source_dijkstra_path_length + + """ + if not sources: + raise ValueError("sources must not be empty") + for s in sources: + if s not in G: + raise nx.NodeNotFound(f"Node {s} not found in graph") + if target in sources: + return (0, [target]) + weight = _weight_function(G, weight) + paths = {source: [source] for source in sources} # dictionary of paths + dist = _dijkstra_multisource( + G, sources, weight, paths=paths, cutoff=cutoff, target=target + ) + if target is None: + return (dist, paths) + try: + return (dist[target], paths[target]) + except KeyError as err: + raise nx.NetworkXNoPath(f"No path to {target}.") from err + + +def _dijkstra(G, source, weight, pred=None, paths=None, cutoff=None, target=None): + """Uses Dijkstra's algorithm to find shortest weighted paths from a + single source. + + This is a convenience function for :func:`_dijkstra_multisource` + with all the arguments the same, except the keyword argument + `sources` set to ``[source]``. + + """ + return _dijkstra_multisource( + G, [source], weight, pred=pred, paths=paths, cutoff=cutoff, target=target + ) + + +def _dijkstra_multisource( + G, sources, weight, pred=None, paths=None, cutoff=None, target=None +): + """Uses Dijkstra's algorithm to find shortest weighted paths + + Parameters + ---------- + G : NetworkX graph + + sources : non-empty iterable of nodes + Starting nodes for paths. If this is just an iterable containing + a single node, then all paths computed by this function will + start from that node. If there are two or more nodes in this + iterable, the computed paths may begin from any one of the start + nodes. + + weight: function + Function with (u, v, data) input that returns that edge's weight + or None to indicate a hidden edge + + pred: dict of lists, optional(default=None) + dict to store a list of predecessors keyed by that node + If None, predecessors are not stored. + + paths: dict, optional (default=None) + dict to store the path list from source to each node, keyed by node. + If None, paths are not stored. + + target : node label, optional + Ending node for path. Search is halted when target is found. + + cutoff : integer or float, optional + Length (sum of edge weights) at which the search is stopped. + If cutoff is provided, only return paths with summed weight <= cutoff. + + Returns + ------- + distance : dictionary + A mapping from node to shortest distance to that node from one + of the source nodes. + + Raises + ------ + NodeNotFound + If any of `sources` is not in `G`. + + Notes + ----- + The optional predecessor and path dictionaries can be accessed by + the caller through the original pred and paths objects passed + as arguments. No need to explicitly return pred or paths. + + """ + G_succ = G._adj # For speed-up (and works for both directed and undirected graphs) + + push = heappush + pop = heappop + dist = {} # dictionary of final distances + seen = {} + # fringe is heapq with 3-tuples (distance,c,node) + # use the count c to avoid comparing nodes (may not be able to) + c = count() + fringe = [] + for source in sources: + seen[source] = 0 + push(fringe, (0, next(c), source)) + while fringe: + (d, _, v) = pop(fringe) + if v in dist: + continue # already searched this node. + dist[v] = d + if v == target: + break + for u, e in G_succ[v].items(): + cost = weight(v, u, e) + if cost is None: + continue + vu_dist = dist[v] + cost + if cutoff is not None: + if vu_dist > cutoff: + continue + if u in dist: + u_dist = dist[u] + if vu_dist < u_dist: + raise ValueError("Contradictory paths found:", "negative weights?") + elif pred is not None and vu_dist == u_dist: + pred[u].append(v) + elif u not in seen or vu_dist < seen[u]: + seen[u] = vu_dist + push(fringe, (vu_dist, next(c), u)) + if paths is not None: + paths[u] = paths[v] + [u] + if pred is not None: + pred[u] = [v] + elif vu_dist == seen[u]: + if pred is not None: + pred[u].append(v) + + # The optional predecessor and path dictionaries can be accessed + # by the caller via the pred and paths objects passed as arguments. + return dist + + +@nx._dispatchable(edge_attrs="weight") +def dijkstra_predecessor_and_distance(G, source, cutoff=None, weight="weight"): + """Compute weighted shortest path length and predecessors. + + Uses Dijkstra's Method to obtain the shortest weighted paths + and return dictionaries of predecessors for each node and + distance for each node from the `source`. + + Parameters + ---------- + G : NetworkX graph + + source : node label + Starting node for path + + cutoff : integer or float, optional + Length (sum of edge weights) at which the search is stopped. + If cutoff is provided, only return paths with summed weight <= cutoff. + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number or None to indicate a hidden edge. + + Returns + ------- + pred, distance : dictionaries + Returns two dictionaries representing a list of predecessors + of a node and the distance to each node. + + Raises + ------ + NodeNotFound + If `source` is not in `G`. + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + The list of predecessors contains more than one element only when + there are more than one shortest paths to the key node. + + Examples + -------- + >>> G = nx.path_graph(5, create_using=nx.DiGraph()) + >>> pred, dist = nx.dijkstra_predecessor_and_distance(G, 0) + >>> sorted(pred.items()) + [(0, []), (1, [0]), (2, [1]), (3, [2]), (4, [3])] + >>> sorted(dist.items()) + [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)] + + >>> pred, dist = nx.dijkstra_predecessor_and_distance(G, 0, 1) + >>> sorted(pred.items()) + [(0, []), (1, [0])] + >>> sorted(dist.items()) + [(0, 0), (1, 1)] + """ + if source not in G: + raise nx.NodeNotFound(f"Node {source} is not found in the graph") + weight = _weight_function(G, weight) + pred = {source: []} # dictionary of predecessors + return (pred, _dijkstra(G, source, weight, pred=pred, cutoff=cutoff)) + + +@nx._dispatchable(edge_attrs="weight") +def all_pairs_dijkstra(G, cutoff=None, weight="weight"): + """Find shortest weighted paths and lengths between all nodes. + + Parameters + ---------- + G : NetworkX graph + + cutoff : integer or float, optional + Length (sum of edge weights) at which the search is stopped. + If cutoff is provided, only return paths with summed weight <= cutoff. + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edge[u][v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number or None to indicate a hidden edge. + + Yields + ------ + (node, (distance, path)) : (node obj, (dict, dict)) + Each source node has two associated dicts. The first holds distance + keyed by target and the second holds paths keyed by target. + (See single_source_dijkstra for the source/target node terminology.) + If desired you can apply `dict()` to this function to create a dict + keyed by source node to the two dicts. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> len_path = dict(nx.all_pairs_dijkstra(G)) + >>> len_path[3][0][1] + 2 + >>> for node in [0, 1, 2, 3, 4]: + ... print(f"3 - {node}: {len_path[3][0][node]}") + 3 - 0: 3 + 3 - 1: 2 + 3 - 2: 1 + 3 - 3: 0 + 3 - 4: 1 + >>> len_path[3][1][1] + [3, 2, 1] + >>> for n, (dist, path) in nx.all_pairs_dijkstra(G): + ... print(path[1]) + [0, 1] + [1] + [2, 1] + [3, 2, 1] + [4, 3, 2, 1] + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + The yielded dicts only have keys for reachable nodes. + """ + for n in G: + dist, path = single_source_dijkstra(G, n, cutoff=cutoff, weight=weight) + yield (n, (dist, path)) + + +@nx._dispatchable(edge_attrs="weight") +def all_pairs_dijkstra_path_length(G, cutoff=None, weight="weight"): + """Compute shortest path lengths between all nodes in a weighted graph. + + Parameters + ---------- + G : NetworkX graph + + cutoff : integer or float, optional + Length (sum of edge weights) at which the search is stopped. + If cutoff is provided, only return paths with summed weight <= cutoff. + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number or None to indicate a hidden edge. + + Returns + ------- + distance : iterator + (source, dictionary) iterator with dictionary keyed by target and + shortest path length as the key value. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> length = dict(nx.all_pairs_dijkstra_path_length(G)) + >>> for node in [0, 1, 2, 3, 4]: + ... print(f"1 - {node}: {length[1][node]}") + 1 - 0: 1 + 1 - 1: 0 + 1 - 2: 1 + 1 - 3: 2 + 1 - 4: 3 + >>> length[3][2] + 1 + >>> length[2][2] + 0 + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + The dictionary returned only has keys for reachable node pairs. + """ + length = single_source_dijkstra_path_length + for n in G: + yield (n, length(G, n, cutoff=cutoff, weight=weight)) + + +@nx._dispatchable(edge_attrs="weight") +def all_pairs_dijkstra_path(G, cutoff=None, weight="weight"): + """Compute shortest paths between all nodes in a weighted graph. + + Parameters + ---------- + G : NetworkX graph + + cutoff : integer or float, optional + Length (sum of edge weights) at which the search is stopped. + If cutoff is provided, only return paths with summed weight <= cutoff. + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number or None to indicate a hidden edge. + + Returns + ------- + paths : iterator + (source, dictionary) iterator with dictionary keyed by target and + shortest path as the key value. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> path = dict(nx.all_pairs_dijkstra_path(G)) + >>> path[0][4] + [0, 1, 2, 3, 4] + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + See Also + -------- + floyd_warshall, all_pairs_bellman_ford_path + + """ + path = single_source_dijkstra_path + # TODO This can be trivially parallelized. + for n in G: + yield (n, path(G, n, cutoff=cutoff, weight=weight)) + + +@nx._dispatchable(edge_attrs="weight") +def bellman_ford_predecessor_and_distance( + G, source, target=None, weight="weight", heuristic=False +): + """Compute shortest path lengths and predecessors on shortest paths + in weighted graphs. + + The algorithm has a running time of $O(mn)$ where $n$ is the number of + nodes and $m$ is the number of edges. It is slower than Dijkstra but + can handle negative edge weights. + + If a negative cycle is detected, you can use :func:`find_negative_cycle` + to return the cycle and examine it. Shortest paths are not defined when + a negative cycle exists because once reached, the path can cycle forever + to build up arbitrarily low weights. + + Parameters + ---------- + G : NetworkX graph + The algorithm works for all types of graphs, including directed + graphs and multigraphs. + + source: node label + Starting node for path + + target : node label, optional + Ending node for path + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number. + + heuristic : bool + Determines whether to use a heuristic to early detect negative + cycles at a hopefully negligible cost. + + Returns + ------- + pred, dist : dictionaries + Returns two dictionaries keyed by node to predecessor in the + path and to the distance from the source respectively. + + Raises + ------ + NodeNotFound + If `source` is not in `G`. + + NetworkXUnbounded + If the (di)graph contains a negative (di)cycle, the + algorithm raises an exception to indicate the presence of the + negative (di)cycle. Note: any negative weight edge in an + undirected graph is a negative cycle. + + Examples + -------- + >>> G = nx.path_graph(5, create_using=nx.DiGraph()) + >>> pred, dist = nx.bellman_ford_predecessor_and_distance(G, 0) + >>> sorted(pred.items()) + [(0, []), (1, [0]), (2, [1]), (3, [2]), (4, [3])] + >>> sorted(dist.items()) + [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)] + + >>> pred, dist = nx.bellman_ford_predecessor_and_distance(G, 0, 1) + >>> sorted(pred.items()) + [(0, []), (1, [0]), (2, [1]), (3, [2]), (4, [3])] + >>> sorted(dist.items()) + [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)] + + >>> G = nx.cycle_graph(5, create_using=nx.DiGraph()) + >>> G[1][2]["weight"] = -7 + >>> nx.bellman_ford_predecessor_and_distance(G, 0) + Traceback (most recent call last): + ... + networkx.exception.NetworkXUnbounded: Negative cycle detected. + + See Also + -------- + find_negative_cycle + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + The dictionaries returned only have keys for nodes reachable from + the source. + + In the case where the (di)graph is not connected, if a component + not containing the source contains a negative (di)cycle, it + will not be detected. + + In NetworkX v2.1 and prior, the source node had predecessor `[None]`. + In NetworkX v2.2 this changed to the source node having predecessor `[]` + """ + if source not in G: + raise nx.NodeNotFound(f"Node {source} is not found in the graph") + weight = _weight_function(G, weight) + if G.is_multigraph(): + if any( + weight(u, v, {k: d}) < 0 + for u, v, k, d in nx.selfloop_edges(G, keys=True, data=True) + ): + raise nx.NetworkXUnbounded("Negative cycle detected.") + else: + if any(weight(u, v, d) < 0 for u, v, d in nx.selfloop_edges(G, data=True)): + raise nx.NetworkXUnbounded("Negative cycle detected.") + + dist = {source: 0} + pred = {source: []} + + if len(G) == 1: + return pred, dist + + weight = _weight_function(G, weight) + + dist = _bellman_ford( + G, [source], weight, pred=pred, dist=dist, target=target, heuristic=heuristic + ) + return (pred, dist) + + +def _bellman_ford( + G, + source, + weight, + pred=None, + paths=None, + dist=None, + target=None, + heuristic=True, +): + """Calls relaxation loop for Bellman–Ford algorithm and builds paths + + This is an implementation of the SPFA variant. + See https://en.wikipedia.org/wiki/Shortest_Path_Faster_Algorithm + + Parameters + ---------- + G : NetworkX graph + + source: list + List of source nodes. The shortest path from any of the source + nodes will be found if multiple sources are provided. + + weight : function + The weight of an edge is the value returned by the function. The + function must accept exactly three positional arguments: the two + endpoints of an edge and the dictionary of edge attributes for + that edge. The function must return a number. + + pred: dict of lists, optional (default=None) + dict to store a list of predecessors keyed by that node + If None, predecessors are not stored + + paths: dict, optional (default=None) + dict to store the path list from source to each node, keyed by node + If None, paths are not stored + + dist: dict, optional (default=None) + dict to store distance from source to the keyed node + If None, returned dist dict contents default to 0 for every node in the + source list + + target: node label, optional + Ending node for path. Path lengths to other destinations may (and + probably will) be incorrect. + + heuristic : bool + Determines whether to use a heuristic to early detect negative + cycles at a hopefully negligible cost. + + Returns + ------- + dist : dict + Returns a dict keyed by node to the distance from the source. + Dicts for paths and pred are in the mutated input dicts by those names. + + Raises + ------ + NodeNotFound + If any of `source` is not in `G`. + + NetworkXUnbounded + If the (di)graph contains a negative (di)cycle, the + algorithm raises an exception to indicate the presence of the + negative (di)cycle. Note: any negative weight edge in an + undirected graph is a negative cycle + """ + if pred is None: + pred = {v: [] for v in source} + + if dist is None: + dist = {v: 0 for v in source} + + negative_cycle_found = _inner_bellman_ford( + G, + source, + weight, + pred, + dist, + heuristic, + ) + if negative_cycle_found is not None: + raise nx.NetworkXUnbounded("Negative cycle detected.") + + if paths is not None: + sources = set(source) + dsts = [target] if target is not None else pred + for dst in dsts: + gen = _build_paths_from_predecessors(sources, dst, pred) + paths[dst] = next(gen) + + return dist + + +def _inner_bellman_ford( + G, + sources, + weight, + pred, + dist=None, + heuristic=True, +): + """Inner Relaxation loop for Bellman–Ford algorithm. + + This is an implementation of the SPFA variant. + See https://en.wikipedia.org/wiki/Shortest_Path_Faster_Algorithm + + Parameters + ---------- + G : NetworkX graph + + source: list + List of source nodes. The shortest path from any of the source + nodes will be found if multiple sources are provided. + + weight : function + The weight of an edge is the value returned by the function. The + function must accept exactly three positional arguments: the two + endpoints of an edge and the dictionary of edge attributes for + that edge. The function must return a number. + + pred: dict of lists + dict to store a list of predecessors keyed by that node + + dist: dict, optional (default=None) + dict to store distance from source to the keyed node + If None, returned dist dict contents default to 0 for every node in the + source list + + heuristic : bool + Determines whether to use a heuristic to early detect negative + cycles at a hopefully negligible cost. + + Returns + ------- + node or None + Return a node `v` where processing discovered a negative cycle. + If no negative cycle found, return None. + + Raises + ------ + NodeNotFound + If any of `source` is not in `G`. + """ + for s in sources: + if s not in G: + raise nx.NodeNotFound(f"Source {s} not in G") + + if pred is None: + pred = {v: [] for v in sources} + + if dist is None: + dist = {v: 0 for v in sources} + + # Heuristic Storage setup. Note: use None because nodes cannot be None + nonexistent_edge = (None, None) + pred_edge = {v: None for v in sources} + recent_update = {v: nonexistent_edge for v in sources} + + G_succ = G._adj # For speed-up (and works for both directed and undirected graphs) + inf = float("inf") + n = len(G) + + count = {} + q = deque(sources) + in_q = set(sources) + while q: + u = q.popleft() + in_q.remove(u) + + # Skip relaxations if any of the predecessors of u is in the queue. + if all(pred_u not in in_q for pred_u in pred[u]): + dist_u = dist[u] + for v, e in G_succ[u].items(): + dist_v = dist_u + weight(u, v, e) + + if dist_v < dist.get(v, inf): + # In this conditional branch we are updating the path with v. + # If it happens that some earlier update also added node v + # that implies the existence of a negative cycle since + # after the update node v would lie on the update path twice. + # The update path is stored up to one of the source nodes, + # therefore u is always in the dict recent_update + if heuristic: + if v in recent_update[u]: + # Negative cycle found! + pred[v].append(u) + return v + + # Transfer the recent update info from u to v if the + # same source node is the head of the update path. + # If the source node is responsible for the cost update, + # then clear the history and use it instead. + if v in pred_edge and pred_edge[v] == u: + recent_update[v] = recent_update[u] + else: + recent_update[v] = (u, v) + + if v not in in_q: + q.append(v) + in_q.add(v) + count_v = count.get(v, 0) + 1 + if count_v == n: + # Negative cycle found! + return v + + count[v] = count_v + dist[v] = dist_v + pred[v] = [u] + pred_edge[v] = u + + elif dist.get(v) is not None and dist_v == dist.get(v): + pred[v].append(u) + + # successfully found shortest_path. No negative cycles found. + return None + + +@nx._dispatchable(edge_attrs="weight") +def bellman_ford_path(G, source, target, weight="weight"): + """Returns the shortest path from source to target in a weighted graph G. + + Parameters + ---------- + G : NetworkX graph + + source : node + Starting node + + target : node + Ending node + + weight : string or function (default="weight") + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number. + + Returns + ------- + path : list + List of nodes in a shortest path. + + Raises + ------ + NodeNotFound + If `source` is not in `G`. + + NetworkXNoPath + If no path exists between source and target. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> nx.bellman_ford_path(G, 0, 4) + [0, 1, 2, 3, 4] + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + See Also + -------- + dijkstra_path, bellman_ford_path_length + """ + length, path = single_source_bellman_ford(G, source, target=target, weight=weight) + return path + + +@nx._dispatchable(edge_attrs="weight") +def bellman_ford_path_length(G, source, target, weight="weight"): + """Returns the shortest path length from source to target + in a weighted graph. + + Parameters + ---------- + G : NetworkX graph + + source : node label + starting node for path + + target : node label + ending node for path + + weight : string or function (default="weight") + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number. + + Returns + ------- + length : number + Shortest path length. + + Raises + ------ + NodeNotFound + If `source` is not in `G`. + + NetworkXNoPath + If no path exists between source and target. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> nx.bellman_ford_path_length(G, 0, 4) + 4 + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + See Also + -------- + dijkstra_path_length, bellman_ford_path + """ + if source == target: + if source not in G: + raise nx.NodeNotFound(f"Node {source} not found in graph") + return 0 + + weight = _weight_function(G, weight) + + length = _bellman_ford(G, [source], weight, target=target) + + try: + return length[target] + except KeyError as err: + raise nx.NetworkXNoPath(f"node {target} not reachable from {source}") from err + + +@nx._dispatchable(edge_attrs="weight") +def single_source_bellman_ford_path(G, source, weight="weight"): + """Compute shortest path between source and all other reachable + nodes for a weighted graph. + + Parameters + ---------- + G : NetworkX graph + + source : node + Starting node for path. + + weight : string or function (default="weight") + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number. + + Returns + ------- + paths : dictionary + Dictionary of shortest path lengths keyed by target. + + Raises + ------ + NodeNotFound + If `source` is not in `G`. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> path = nx.single_source_bellman_ford_path(G, 0) + >>> path[4] + [0, 1, 2, 3, 4] + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + See Also + -------- + single_source_dijkstra, single_source_bellman_ford + + """ + (length, path) = single_source_bellman_ford(G, source, weight=weight) + return path + + +@nx._dispatchable(edge_attrs="weight") +def single_source_bellman_ford_path_length(G, source, weight="weight"): + """Compute the shortest path length between source and all other + reachable nodes for a weighted graph. + + Parameters + ---------- + G : NetworkX graph + + source : node label + Starting node for path + + weight : string or function (default="weight") + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number. + + Returns + ------- + length : dictionary + Dictionary of shortest path length keyed by target + + Raises + ------ + NodeNotFound + If `source` is not in `G`. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> length = nx.single_source_bellman_ford_path_length(G, 0) + >>> length[4] + 4 + >>> for node in [0, 1, 2, 3, 4]: + ... print(f"{node}: {length[node]}") + 0: 0 + 1: 1 + 2: 2 + 3: 3 + 4: 4 + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + See Also + -------- + single_source_dijkstra, single_source_bellman_ford + + """ + weight = _weight_function(G, weight) + return _bellman_ford(G, [source], weight) + + +@nx._dispatchable(edge_attrs="weight") +def single_source_bellman_ford(G, source, target=None, weight="weight"): + """Compute shortest paths and lengths in a weighted graph G. + + Uses Bellman-Ford algorithm for shortest paths. + + Parameters + ---------- + G : NetworkX graph + + source : node label + Starting node for path + + target : node label, optional + Ending node for path + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number. + + Returns + ------- + distance, path : pair of dictionaries, or numeric and list + If target is None, returns a tuple of two dictionaries keyed by node. + The first dictionary stores distance from one of the source nodes. + The second stores the path from one of the sources to that node. + If target is not None, returns a tuple of (distance, path) where + distance is the distance from source to target and path is a list + representing the path from source to target. + + Raises + ------ + NodeNotFound + If `source` is not in `G`. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> length, path = nx.single_source_bellman_ford(G, 0) + >>> length[4] + 4 + >>> for node in [0, 1, 2, 3, 4]: + ... print(f"{node}: {length[node]}") + 0: 0 + 1: 1 + 2: 2 + 3: 3 + 4: 4 + >>> path[4] + [0, 1, 2, 3, 4] + >>> length, path = nx.single_source_bellman_ford(G, 0, 1) + >>> length + 1 + >>> path + [0, 1] + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + See Also + -------- + single_source_dijkstra + single_source_bellman_ford_path + single_source_bellman_ford_path_length + """ + if source == target: + if source not in G: + raise nx.NodeNotFound(f"Node {source} is not found in the graph") + return (0, [source]) + + weight = _weight_function(G, weight) + + paths = {source: [source]} # dictionary of paths + dist = _bellman_ford(G, [source], weight, paths=paths, target=target) + if target is None: + return (dist, paths) + try: + return (dist[target], paths[target]) + except KeyError as err: + msg = f"Node {target} not reachable from {source}" + raise nx.NetworkXNoPath(msg) from err + + +@nx._dispatchable(edge_attrs="weight") +def all_pairs_bellman_ford_path_length(G, weight="weight"): + """Compute shortest path lengths between all nodes in a weighted graph. + + Parameters + ---------- + G : NetworkX graph + + weight : string or function (default="weight") + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number. + + Returns + ------- + distance : iterator + (source, dictionary) iterator with dictionary keyed by target and + shortest path length as the key value. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> length = dict(nx.all_pairs_bellman_ford_path_length(G)) + >>> for node in [0, 1, 2, 3, 4]: + ... print(f"1 - {node}: {length[1][node]}") + 1 - 0: 1 + 1 - 1: 0 + 1 - 2: 1 + 1 - 3: 2 + 1 - 4: 3 + >>> length[3][2] + 1 + >>> length[2][2] + 0 + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + The dictionary returned only has keys for reachable node pairs. + """ + length = single_source_bellman_ford_path_length + for n in G: + yield (n, dict(length(G, n, weight=weight))) + + +@nx._dispatchable(edge_attrs="weight") +def all_pairs_bellman_ford_path(G, weight="weight"): + """Compute shortest paths between all nodes in a weighted graph. + + Parameters + ---------- + G : NetworkX graph + + weight : string or function (default="weight") + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number. + + Returns + ------- + paths : iterator + (source, dictionary) iterator with dictionary keyed by target and + shortest path as the key value. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> path = dict(nx.all_pairs_bellman_ford_path(G)) + >>> path[0][4] + [0, 1, 2, 3, 4] + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + See Also + -------- + floyd_warshall, all_pairs_dijkstra_path + + """ + path = single_source_bellman_ford_path + for n in G: + yield (n, path(G, n, weight=weight)) + + +@nx._dispatchable(edge_attrs="weight") +def goldberg_radzik(G, source, weight="weight"): + """Compute shortest path lengths and predecessors on shortest paths + in weighted graphs. + + The algorithm has a running time of $O(mn)$ where $n$ is the number of + nodes and $m$ is the number of edges. It is slower than Dijkstra but + can handle negative edge weights. + + Parameters + ---------- + G : NetworkX graph + The algorithm works for all types of graphs, including directed + graphs and multigraphs. + + source: node label + Starting node for path + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number. + + Returns + ------- + pred, dist : dictionaries + Returns two dictionaries keyed by node to predecessor in the + path and to the distance from the source respectively. + + Raises + ------ + NodeNotFound + If `source` is not in `G`. + + NetworkXUnbounded + If the (di)graph contains a negative (di)cycle, the + algorithm raises an exception to indicate the presence of the + negative (di)cycle. Note: any negative weight edge in an + undirected graph is a negative cycle. + + As of NetworkX v3.2, a zero weight cycle is no longer + incorrectly reported as a negative weight cycle. + + + Examples + -------- + >>> G = nx.path_graph(5, create_using=nx.DiGraph()) + >>> pred, dist = nx.goldberg_radzik(G, 0) + >>> sorted(pred.items()) + [(0, None), (1, 0), (2, 1), (3, 2), (4, 3)] + >>> sorted(dist.items()) + [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)] + + >>> G = nx.cycle_graph(5, create_using=nx.DiGraph()) + >>> G[1][2]["weight"] = -7 + >>> nx.goldberg_radzik(G, 0) + Traceback (most recent call last): + ... + networkx.exception.NetworkXUnbounded: Negative cycle detected. + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + The dictionaries returned only have keys for nodes reachable from + the source. + + In the case where the (di)graph is not connected, if a component + not containing the source contains a negative (di)cycle, it + will not be detected. + + """ + if source not in G: + raise nx.NodeNotFound(f"Node {source} is not found in the graph") + weight = _weight_function(G, weight) + if G.is_multigraph(): + if any( + weight(u, v, {k: d}) < 0 + for u, v, k, d in nx.selfloop_edges(G, keys=True, data=True) + ): + raise nx.NetworkXUnbounded("Negative cycle detected.") + else: + if any(weight(u, v, d) < 0 for u, v, d in nx.selfloop_edges(G, data=True)): + raise nx.NetworkXUnbounded("Negative cycle detected.") + + if len(G) == 1: + return {source: None}, {source: 0} + + G_succ = G._adj # For speed-up (and works for both directed and undirected graphs) + + inf = float("inf") + d = {u: inf for u in G} + d[source] = 0 + pred = {source: None} + + def topo_sort(relabeled): + """Topologically sort nodes relabeled in the previous round and detect + negative cycles. + """ + # List of nodes to scan in this round. Denoted by A in Goldberg and + # Radzik's paper. + to_scan = [] + # In the DFS in the loop below, neg_count records for each node the + # number of edges of negative reduced costs on the path from a DFS root + # to the node in the DFS forest. The reduced cost of an edge (u, v) is + # defined as d[u] + weight[u][v] - d[v]. + # + # neg_count also doubles as the DFS visit marker array. + neg_count = {} + for u in relabeled: + # Skip visited nodes. + if u in neg_count: + continue + d_u = d[u] + # Skip nodes without out-edges of negative reduced costs. + if all(d_u + weight(u, v, e) >= d[v] for v, e in G_succ[u].items()): + continue + # Nonrecursive DFS that inserts nodes reachable from u via edges of + # nonpositive reduced costs into to_scan in (reverse) topological + # order. + stack = [(u, iter(G_succ[u].items()))] + in_stack = {u} + neg_count[u] = 0 + while stack: + u, it = stack[-1] + try: + v, e = next(it) + except StopIteration: + to_scan.append(u) + stack.pop() + in_stack.remove(u) + continue + t = d[u] + weight(u, v, e) + d_v = d[v] + if t < d_v: + is_neg = t < d_v + d[v] = t + pred[v] = u + if v not in neg_count: + neg_count[v] = neg_count[u] + int(is_neg) + stack.append((v, iter(G_succ[v].items()))) + in_stack.add(v) + elif v in in_stack and neg_count[u] + int(is_neg) > neg_count[v]: + # (u, v) is a back edge, and the cycle formed by the + # path v to u and (u, v) contains at least one edge of + # negative reduced cost. The cycle must be of negative + # cost. + raise nx.NetworkXUnbounded("Negative cycle detected.") + to_scan.reverse() + return to_scan + + def relax(to_scan): + """Relax out-edges of relabeled nodes.""" + relabeled = set() + # Scan nodes in to_scan in topological order and relax incident + # out-edges. Add the relabled nodes to labeled. + for u in to_scan: + d_u = d[u] + for v, e in G_succ[u].items(): + w_e = weight(u, v, e) + if d_u + w_e < d[v]: + d[v] = d_u + w_e + pred[v] = u + relabeled.add(v) + return relabeled + + # Set of nodes relabled in the last round of scan operations. Denoted by B + # in Goldberg and Radzik's paper. + relabeled = {source} + + while relabeled: + to_scan = topo_sort(relabeled) + relabeled = relax(to_scan) + + d = {u: d[u] for u in pred} + return pred, d + + +@nx._dispatchable(edge_attrs="weight") +def negative_edge_cycle(G, weight="weight", heuristic=True): + """Returns True if there exists a negative edge cycle anywhere in G. + + Parameters + ---------- + G : NetworkX graph + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number. + + heuristic : bool + Determines whether to use a heuristic to early detect negative + cycles at a negligible cost. In case of graphs with a negative cycle, + the performance of detection increases by at least an order of magnitude. + + Returns + ------- + negative_cycle : bool + True if a negative edge cycle exists, otherwise False. + + Examples + -------- + >>> G = nx.cycle_graph(5, create_using=nx.DiGraph()) + >>> print(nx.negative_edge_cycle(G)) + False + >>> G[1][2]["weight"] = -7 + >>> print(nx.negative_edge_cycle(G)) + True + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + This algorithm uses bellman_ford_predecessor_and_distance() but finds + negative cycles on any component by first adding a new node connected to + every node, and starting bellman_ford_predecessor_and_distance on that + node. It then removes that extra node. + """ + if G.size() == 0: + return False + + # find unused node to use temporarily + newnode = -1 + while newnode in G: + newnode -= 1 + # connect it to all nodes + G.add_edges_from([(newnode, n) for n in G]) + + try: + bellman_ford_predecessor_and_distance( + G, newnode, weight=weight, heuristic=heuristic + ) + except nx.NetworkXUnbounded: + return True + finally: + G.remove_node(newnode) + return False + + +@nx._dispatchable(edge_attrs="weight") +def find_negative_cycle(G, source, weight="weight"): + """Returns a cycle with negative total weight if it exists. + + Bellman-Ford is used to find shortest_paths. That algorithm + stops if there exists a negative cycle. This algorithm + picks up from there and returns the found negative cycle. + + The cycle consists of a list of nodes in the cycle order. The last + node equals the first to make it a cycle. + You can look up the edge weights in the original graph. In the case + of multigraphs the relevant edge is the minimal weight edge between + the nodes in the 2-tuple. + + If the graph has no negative cycle, a NetworkXError is raised. + + Parameters + ---------- + G : NetworkX graph + + source: node label + The search for the negative cycle will start from this node. + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number. + + Examples + -------- + >>> G = nx.DiGraph() + >>> G.add_weighted_edges_from( + ... [(0, 1, 2), (1, 2, 2), (2, 0, 1), (1, 4, 2), (4, 0, -5)] + ... ) + >>> nx.find_negative_cycle(G, 0) + [4, 0, 1, 4] + + Returns + ------- + cycle : list + A list of nodes in the order of the cycle found. The last node + equals the first to indicate a cycle. + + Raises + ------ + NetworkXError + If no negative cycle is found. + """ + weight = _weight_function(G, weight) + pred = {source: []} + + v = _inner_bellman_ford(G, [source], weight, pred=pred) + if v is None: + raise nx.NetworkXError("No negative cycles detected.") + + # negative cycle detected... find it + neg_cycle = [] + stack = [(v, list(pred[v]))] + seen = {v} + while stack: + node, preds = stack[-1] + if v in preds: + # found the cycle + neg_cycle.extend([node, v]) + neg_cycle = list(reversed(neg_cycle)) + return neg_cycle + + if preds: + nbr = preds.pop() + if nbr not in seen: + stack.append((nbr, list(pred[nbr]))) + neg_cycle.append(node) + seen.add(nbr) + else: + stack.pop() + if neg_cycle: + neg_cycle.pop() + else: + if v in G[v] and weight(G, v, v) < 0: + return [v, v] + # should not reach here + raise nx.NetworkXError("Negative cycle is detected but not found") + # should not get here... + msg = "negative cycle detected but not identified" + raise nx.NetworkXUnbounded(msg) + + +@nx._dispatchable(edge_attrs="weight") +def bidirectional_dijkstra(G, source, target, weight="weight"): + r"""Dijkstra's algorithm for shortest paths using bidirectional search. + + Parameters + ---------- + G : NetworkX graph + + source : node + Starting node. + + target : node + Ending node. + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number or None to indicate a hidden edge. + + Returns + ------- + length, path : number and list + length is the distance from source to target. + path is a list of nodes on a path from source to target. + + Raises + ------ + NodeNotFound + If `source` or `target` is not in `G`. + + NetworkXNoPath + If no path exists between source and target. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> length, path = nx.bidirectional_dijkstra(G, 0, 4) + >>> print(length) + 4 + >>> print(path) + [0, 1, 2, 3, 4] + + Notes + ----- + Edge weight attributes must be numerical. + Distances are calculated as sums of weighted edges traversed. + + The weight function can be used to hide edges by returning None. + So ``weight = lambda u, v, d: 1 if d['color']=="red" else None`` + will find the shortest red path. + + In practice bidirectional Dijkstra is much more than twice as fast as + ordinary Dijkstra. + + Ordinary Dijkstra expands nodes in a sphere-like manner from the + source. The radius of this sphere will eventually be the length + of the shortest path. Bidirectional Dijkstra will expand nodes + from both the source and the target, making two spheres of half + this radius. Volume of the first sphere is `\pi*r*r` while the + others are `2*\pi*r/2*r/2`, making up half the volume. + + This algorithm is not guaranteed to work if edge weights + are negative or are floating point numbers + (overflows and roundoff errors can cause problems). + + See Also + -------- + shortest_path + shortest_path_length + """ + if source not in G: + raise nx.NodeNotFound(f"Source {source} is not in G") + + if target not in G: + raise nx.NodeNotFound(f"Target {target} is not in G") + + if source == target: + return (0, [source]) + + weight = _weight_function(G, weight) + push = heappush + pop = heappop + # Init: [Forward, Backward] + dists = [{}, {}] # dictionary of final distances + paths = [{source: [source]}, {target: [target]}] # dictionary of paths + fringe = [[], []] # heap of (distance, node) for choosing node to expand + seen = [{source: 0}, {target: 0}] # dict of distances to seen nodes + c = count() + # initialize fringe heap + push(fringe[0], (0, next(c), source)) + push(fringe[1], (0, next(c), target)) + # neighs for extracting correct neighbor information + if G.is_directed(): + neighs = [G._succ, G._pred] + else: + neighs = [G._adj, G._adj] + # variables to hold shortest discovered path + # finaldist = 1e30000 + finalpath = [] + dir = 1 + while fringe[0] and fringe[1]: + # choose direction + # dir == 0 is forward direction and dir == 1 is back + dir = 1 - dir + # extract closest to expand + (dist, _, v) = pop(fringe[dir]) + if v in dists[dir]: + # Shortest path to v has already been found + continue + # update distance + dists[dir][v] = dist # equal to seen[dir][v] + if v in dists[1 - dir]: + # if we have scanned v in both directions we are done + # we have now discovered the shortest path + return (finaldist, finalpath) + + for w, d in neighs[dir][v].items(): + # weight(v, w, d) for forward and weight(w, v, d) for back direction + cost = weight(v, w, d) if dir == 0 else weight(w, v, d) + if cost is None: + continue + vwLength = dists[dir][v] + cost + if w in dists[dir]: + if vwLength < dists[dir][w]: + raise ValueError("Contradictory paths found: negative weights?") + elif w not in seen[dir] or vwLength < seen[dir][w]: + # relaxing + seen[dir][w] = vwLength + push(fringe[dir], (vwLength, next(c), w)) + paths[dir][w] = paths[dir][v] + [w] + if w in seen[0] and w in seen[1]: + # see if this path is better than the already + # discovered shortest path + totaldist = seen[0][w] + seen[1][w] + if finalpath == [] or finaldist > totaldist: + finaldist = totaldist + revpath = paths[1][w][:] + revpath.reverse() + finalpath = paths[0][w] + revpath[1:] + raise nx.NetworkXNoPath(f"No path between {source} and {target}.") + + +@nx._dispatchable(edge_attrs="weight") +def johnson(G, weight="weight"): + r"""Uses Johnson's Algorithm to compute shortest paths. + + Johnson's Algorithm finds a shortest path between each pair of + nodes in a weighted graph even if negative weights are present. + + Parameters + ---------- + G : NetworkX graph + + weight : string or function + If this is a string, then edge weights will be accessed via the + edge attribute with this key (that is, the weight of the edge + joining `u` to `v` will be ``G.edges[u, v][weight]``). If no + such edge attribute exists, the weight of the edge is assumed to + be one. + + If this is a function, the weight of an edge is the value + returned by the function. The function must accept exactly three + positional arguments: the two endpoints of an edge and the + dictionary of edge attributes for that edge. The function must + return a number. + + Returns + ------- + distance : dictionary + Dictionary, keyed by source and target, of shortest paths. + + Examples + -------- + >>> graph = nx.DiGraph() + >>> graph.add_weighted_edges_from( + ... [("0", "3", 3), ("0", "1", -5), ("0", "2", 2), ("1", "2", 4), ("2", "3", 1)] + ... ) + >>> paths = nx.johnson(graph, weight="weight") + >>> paths["0"]["2"] + ['0', '1', '2'] + + Notes + ----- + Johnson's algorithm is suitable even for graphs with negative weights. It + works by using the Bellman–Ford algorithm to compute a transformation of + the input graph that removes all negative weights, allowing Dijkstra's + algorithm to be used on the transformed graph. + + The time complexity of this algorithm is $O(n^2 \log n + n m)$, + where $n$ is the number of nodes and $m$ the number of edges in the + graph. For dense graphs, this may be faster than the Floyd–Warshall + algorithm. + + See Also + -------- + floyd_warshall_predecessor_and_distance + floyd_warshall_numpy + all_pairs_shortest_path + all_pairs_shortest_path_length + all_pairs_dijkstra_path + bellman_ford_predecessor_and_distance + all_pairs_bellman_ford_path + all_pairs_bellman_ford_path_length + + """ + dist = {v: 0 for v in G} + pred = {v: [] for v in G} + weight = _weight_function(G, weight) + + # Calculate distance of shortest paths + dist_bellman = _bellman_ford(G, list(G), weight, pred=pred, dist=dist) + + # Update the weight function to take into account the Bellman--Ford + # relaxation distances. + def new_weight(u, v, d): + return weight(u, v, d) + dist_bellman[u] - dist_bellman[v] + + def dist_path(v): + paths = {v: [v]} + _dijkstra(G, v, new_weight, paths=paths) + return paths + + return {v: dist_path(v) for v in G} |