diff options
author | S. Solomon Darnell | 2025-03-28 21:52:21 -0500 |
---|---|---|
committer | S. Solomon Darnell | 2025-03-28 21:52:21 -0500 |
commit | 4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch) | |
tree | ee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/networkx/algorithms/shortest_paths/unweighted.py | |
parent | cc961e04ba734dd72309fb548a2f97d67d578813 (diff) | |
download | gn-ai-master.tar.gz |
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/algorithms/shortest_paths/unweighted.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/networkx/algorithms/shortest_paths/unweighted.py | 579 |
1 files changed, 579 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/algorithms/shortest_paths/unweighted.py b/.venv/lib/python3.12/site-packages/networkx/algorithms/shortest_paths/unweighted.py new file mode 100644 index 00000000..3aeef854 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/algorithms/shortest_paths/unweighted.py @@ -0,0 +1,579 @@ +""" +Shortest path algorithms for unweighted graphs. +""" + +import warnings + +import networkx as nx + +__all__ = [ + "bidirectional_shortest_path", + "single_source_shortest_path", + "single_source_shortest_path_length", + "single_target_shortest_path", + "single_target_shortest_path_length", + "all_pairs_shortest_path", + "all_pairs_shortest_path_length", + "predecessor", +] + + +@nx._dispatchable +def single_source_shortest_path_length(G, source, cutoff=None): + """Compute the shortest path lengths from source to all reachable nodes. + + Parameters + ---------- + G : NetworkX graph + + source : node + Starting node for path + + cutoff : integer, optional + Depth to stop the search. Only paths of length <= cutoff are returned. + + Returns + ------- + lengths : dict + Dict keyed by node to shortest path length to source. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> length = nx.single_source_shortest_path_length(G, 0) + >>> length[4] + 4 + >>> for node in length: + ... print(f"{node}: {length[node]}") + 0: 0 + 1: 1 + 2: 2 + 3: 3 + 4: 4 + + See Also + -------- + shortest_path_length + """ + if source not in G: + raise nx.NodeNotFound(f"Source {source} is not in G") + if cutoff is None: + cutoff = float("inf") + nextlevel = [source] + return dict(_single_shortest_path_length(G._adj, nextlevel, cutoff)) + + +def _single_shortest_path_length(adj, firstlevel, cutoff): + """Yields (node, level) in a breadth first search + + Shortest Path Length helper function + Parameters + ---------- + adj : dict + Adjacency dict or view + firstlevel : list + starting nodes, e.g. [source] or [target] + cutoff : int or float + level at which we stop the process + """ + seen = set(firstlevel) + nextlevel = firstlevel + level = 0 + n = len(adj) + for v in nextlevel: + yield (v, level) + while nextlevel and cutoff > level: + level += 1 + thislevel = nextlevel + nextlevel = [] + for v in thislevel: + for w in adj[v]: + if w not in seen: + seen.add(w) + nextlevel.append(w) + yield (w, level) + if len(seen) == n: + return + + +@nx._dispatchable +def single_target_shortest_path_length(G, target, cutoff=None): + """Compute the shortest path lengths to target from all reachable nodes. + + Parameters + ---------- + G : NetworkX graph + + target : node + Target node for path + + cutoff : integer, optional + Depth to stop the search. Only paths of length <= cutoff are returned. + + Returns + ------- + lengths : iterator + (source, shortest path length) iterator + + Examples + -------- + >>> G = nx.path_graph(5, create_using=nx.DiGraph()) + >>> length = dict(nx.single_target_shortest_path_length(G, 4)) + >>> length[0] + 4 + >>> for node in range(5): + ... print(f"{node}: {length[node]}") + 0: 4 + 1: 3 + 2: 2 + 3: 1 + 4: 0 + + See Also + -------- + single_source_shortest_path_length, shortest_path_length + """ + if target not in G: + raise nx.NodeNotFound(f"Target {target} is not in G") + + warnings.warn( + ( + "\n\nsingle_target_shortest_path_length will return a dict instead of" + "\nan iterator in version 3.5" + ), + FutureWarning, + stacklevel=3, + ) + + if cutoff is None: + cutoff = float("inf") + # handle either directed or undirected + adj = G._pred if G.is_directed() else G._adj + nextlevel = [target] + # for version 3.3 we will return a dict like this: + # return dict(_single_shortest_path_length(adj, nextlevel, cutoff)) + return _single_shortest_path_length(adj, nextlevel, cutoff) + + +@nx._dispatchable +def all_pairs_shortest_path_length(G, cutoff=None): + """Computes the shortest path lengths between all nodes in `G`. + + Parameters + ---------- + G : NetworkX graph + + cutoff : integer, optional + Depth at which to stop the search. Only paths of length at most + `cutoff` are returned. + + Returns + ------- + lengths : iterator + (source, dictionary) iterator with dictionary keyed by target and + shortest path length as the key value. + + Notes + ----- + The iterator returned only has reachable node pairs. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> length = dict(nx.all_pairs_shortest_path_length(G)) + >>> for node in [0, 1, 2, 3, 4]: + ... print(f"1 - {node}: {length[1][node]}") + 1 - 0: 1 + 1 - 1: 0 + 1 - 2: 1 + 1 - 3: 2 + 1 - 4: 3 + >>> length[3][2] + 1 + >>> length[2][2] + 0 + + """ + length = single_source_shortest_path_length + # TODO This can be trivially parallelized. + for n in G: + yield (n, length(G, n, cutoff=cutoff)) + + +@nx._dispatchable +def bidirectional_shortest_path(G, source, target): + """Returns a list of nodes in a shortest path between source and target. + + Parameters + ---------- + G : NetworkX graph + + source : node label + starting node for path + + target : node label + ending node for path + + Returns + ------- + path: list + List of nodes in a path from source to target. + + Raises + ------ + NetworkXNoPath + If no path exists between source and target. + + Examples + -------- + >>> G = nx.Graph() + >>> nx.add_path(G, [0, 1, 2, 3, 0, 4, 5, 6, 7, 4]) + >>> nx.bidirectional_shortest_path(G, 2, 6) + [2, 1, 0, 4, 5, 6] + + See Also + -------- + shortest_path + + Notes + ----- + This algorithm is used by shortest_path(G, source, target). + """ + + if source not in G: + raise nx.NodeNotFound(f"Source {source} is not in G") + + if target not in G: + raise nx.NodeNotFound(f"Target {target} is not in G") + + # call helper to do the real work + results = _bidirectional_pred_succ(G, source, target) + pred, succ, w = results + + # build path from pred+w+succ + path = [] + # from source to w + while w is not None: + path.append(w) + w = pred[w] + path.reverse() + # from w to target + w = succ[path[-1]] + while w is not None: + path.append(w) + w = succ[w] + + return path + + +def _bidirectional_pred_succ(G, source, target): + """Bidirectional shortest path helper. + + Returns (pred, succ, w) where + pred is a dictionary of predecessors from w to the source, and + succ is a dictionary of successors from w to the target. + """ + # does BFS from both source and target and meets in the middle + if target == source: + return ({target: None}, {source: None}, source) + + # handle either directed or undirected + if G.is_directed(): + Gpred = G.pred + Gsucc = G.succ + else: + Gpred = G.adj + Gsucc = G.adj + + # predecessor and successors in search + pred = {source: None} + succ = {target: None} + + # initialize fringes, start with forward + forward_fringe = [source] + reverse_fringe = [target] + + while forward_fringe and reverse_fringe: + if len(forward_fringe) <= len(reverse_fringe): + this_level = forward_fringe + forward_fringe = [] + for v in this_level: + for w in Gsucc[v]: + if w not in pred: + forward_fringe.append(w) + pred[w] = v + if w in succ: # path found + return pred, succ, w + else: + this_level = reverse_fringe + reverse_fringe = [] + for v in this_level: + for w in Gpred[v]: + if w not in succ: + succ[w] = v + reverse_fringe.append(w) + if w in pred: # found path + return pred, succ, w + + raise nx.NetworkXNoPath(f"No path between {source} and {target}.") + + +@nx._dispatchable +def single_source_shortest_path(G, source, cutoff=None): + """Compute shortest path between source + and all other nodes reachable from source. + + Parameters + ---------- + G : NetworkX graph + + source : node label + Starting node for path + + cutoff : integer, optional + Depth to stop the search. Only paths of length <= cutoff are returned. + + Returns + ------- + paths : dictionary + Dictionary, keyed by target, of shortest paths. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> path = nx.single_source_shortest_path(G, 0) + >>> path[4] + [0, 1, 2, 3, 4] + + Notes + ----- + The shortest path is not necessarily unique. So there can be multiple + paths between the source and each target node, all of which have the + same 'shortest' length. For each target node, this function returns + only one of those paths. + + See Also + -------- + shortest_path + """ + if source not in G: + raise nx.NodeNotFound(f"Source {source} not in G") + + def join(p1, p2): + return p1 + p2 + + if cutoff is None: + cutoff = float("inf") + nextlevel = {source: 1} # list of nodes to check at next level + paths = {source: [source]} # paths dictionary (paths to key from source) + return dict(_single_shortest_path(G.adj, nextlevel, paths, cutoff, join)) + + +def _single_shortest_path(adj, firstlevel, paths, cutoff, join): + """Returns shortest paths + + Shortest Path helper function + Parameters + ---------- + adj : dict + Adjacency dict or view + firstlevel : dict + starting nodes, e.g. {source: 1} or {target: 1} + paths : dict + paths for starting nodes, e.g. {source: [source]} + cutoff : int or float + level at which we stop the process + join : function + function to construct a path from two partial paths. Requires two + list inputs `p1` and `p2`, and returns a list. Usually returns + `p1 + p2` (forward from source) or `p2 + p1` (backward from target) + """ + level = 0 # the current level + nextlevel = firstlevel + while nextlevel and cutoff > level: + thislevel = nextlevel + nextlevel = {} + for v in thislevel: + for w in adj[v]: + if w not in paths: + paths[w] = join(paths[v], [w]) + nextlevel[w] = 1 + level += 1 + return paths + + +@nx._dispatchable +def single_target_shortest_path(G, target, cutoff=None): + """Compute shortest path to target from all nodes that reach target. + + Parameters + ---------- + G : NetworkX graph + + target : node label + Target node for path + + cutoff : integer, optional + Depth to stop the search. Only paths of length <= cutoff are returned. + + Returns + ------- + paths : dictionary + Dictionary, keyed by target, of shortest paths. + + Examples + -------- + >>> G = nx.path_graph(5, create_using=nx.DiGraph()) + >>> path = nx.single_target_shortest_path(G, 4) + >>> path[0] + [0, 1, 2, 3, 4] + + Notes + ----- + The shortest path is not necessarily unique. So there can be multiple + paths between the source and each target node, all of which have the + same 'shortest' length. For each target node, this function returns + only one of those paths. + + See Also + -------- + shortest_path, single_source_shortest_path + """ + if target not in G: + raise nx.NodeNotFound(f"Target {target} not in G") + + def join(p1, p2): + return p2 + p1 + + # handle undirected graphs + adj = G.pred if G.is_directed() else G.adj + if cutoff is None: + cutoff = float("inf") + nextlevel = {target: 1} # list of nodes to check at next level + paths = {target: [target]} # paths dictionary (paths to key from source) + return dict(_single_shortest_path(adj, nextlevel, paths, cutoff, join)) + + +@nx._dispatchable +def all_pairs_shortest_path(G, cutoff=None): + """Compute shortest paths between all nodes. + + Parameters + ---------- + G : NetworkX graph + + cutoff : integer, optional + Depth at which to stop the search. Only paths of length at most + `cutoff` are returned. + + Returns + ------- + paths : iterator + Dictionary, keyed by source and target, of shortest paths. + + Examples + -------- + >>> G = nx.path_graph(5) + >>> path = dict(nx.all_pairs_shortest_path(G)) + >>> print(path[0][4]) + [0, 1, 2, 3, 4] + + Notes + ----- + There may be multiple shortest paths with the same length between + two nodes. For each pair, this function returns only one of those paths. + + See Also + -------- + floyd_warshall + all_pairs_all_shortest_paths + + """ + # TODO This can be trivially parallelized. + for n in G: + yield (n, single_source_shortest_path(G, n, cutoff=cutoff)) + + +@nx._dispatchable +def predecessor(G, source, target=None, cutoff=None, return_seen=None): + """Returns dict of predecessors for the path from source to all nodes in G. + + Parameters + ---------- + G : NetworkX graph + + source : node label + Starting node for path + + target : node label, optional + Ending node for path. If provided only predecessors between + source and target are returned + + cutoff : integer, optional + Depth to stop the search. Only paths of length <= cutoff are returned. + + return_seen : bool, optional (default=None) + Whether to return a dictionary, keyed by node, of the level (number of + hops) to reach the node (as seen during breadth-first-search). + + Returns + ------- + pred : dictionary + Dictionary, keyed by node, of predecessors in the shortest path. + + + (pred, seen): tuple of dictionaries + If `return_seen` argument is set to `True`, then a tuple of dictionaries + is returned. The first element is the dictionary, keyed by node, of + predecessors in the shortest path. The second element is the dictionary, + keyed by node, of the level (number of hops) to reach the node (as seen + during breadth-first-search). + + Examples + -------- + >>> G = nx.path_graph(4) + >>> list(G) + [0, 1, 2, 3] + >>> nx.predecessor(G, 0) + {0: [], 1: [0], 2: [1], 3: [2]} + >>> nx.predecessor(G, 0, return_seen=True) + ({0: [], 1: [0], 2: [1], 3: [2]}, {0: 0, 1: 1, 2: 2, 3: 3}) + + + """ + if source not in G: + raise nx.NodeNotFound(f"Source {source} not in G") + + level = 0 # the current level + nextlevel = [source] # list of nodes to check at next level + seen = {source: level} # level (number of hops) when seen in BFS + pred = {source: []} # predecessor dictionary + while nextlevel: + level = level + 1 + thislevel = nextlevel + nextlevel = [] + for v in thislevel: + for w in G[v]: + if w not in seen: + pred[w] = [v] + seen[w] = level + nextlevel.append(w) + elif seen[w] == level: # add v to predecessor list if it + pred[w].append(v) # is at the correct level + if cutoff and cutoff <= level: + break + + if target is not None: + if return_seen: + if target not in pred: + return ([], -1) # No predecessor + return (pred[target], seen[target]) + else: + if target not in pred: + return [] # No predecessor + return pred[target] + else: + if return_seen: + return (pred, seen) + else: + return pred |